1
|
Tominaga M, Shima Y, Nozaki K, Ito Y, Someda M, Shoya Y, Hashii N, Obata C, Matsumoto-Kitano M, Suematsu K, Matsukawa T, Hosoya K, Hashiba N, Kondo A, Ishii J. Designing strong inducible synthetic promoters in yeasts. Nat Commun 2024; 15:10653. [PMID: 39702268 DOI: 10.1038/s41467-024-54865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Inducible promoters are essential for precise control of target gene expression in synthetic biological systems. However, engineering eukaryotic promoters is often more challenging than engineering prokaryotic promoters due to their greater mechanistic complexity. In this study, we describe a simple and reliable approach for constructing strongly inducible synthetic promoters with minimum leakiness in yeasts. The results indicate that the leakiness of yeast-inducible synthetic promoters is primarily the result of cryptic transcriptional activation of heterologous sequences that may be avoided by appropriate insulation and operator mutagenesis. Our promoter design approach has successfully generated robust, inducible promoters that achieve a > 103-fold induction in reporter gene expression. The utility of these promoters is demonstrated by using them to produce various biologics with titers up to 2 g/L, including antigens designed to raise specific antibodies against a SARS-CoV-2 omicron variant through chicken immunization.
Collapse
Affiliation(s)
- Masahiro Tominaga
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yoko Shima
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Kenta Nozaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yoichiro Ito
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | | | - Yuji Shoya
- Pharma Foods International Co. Ltd., Kyoto, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Chihiro Obata
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | | | - Kohei Suematsu
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | | | - Keita Hosoya
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Noriko Hashiba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Kobe, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
2
|
Sakakibara S, Liu YC, Ishikawa M, Edahiro R, Shirai Y, Haruna S, El Hussien MA, Xu Z, Li S, Yamaguchi Y, Murakami T, Morita T, Kato Y, Hirata H, Takeda Y, Sugihara F, Naito Y, Motooka D, Tsai CY, Ono C, Matsuura Y, Wing JB, Matsumoto H, Ogura H, Okada M, Kumanogoh A, Okada Y, Standley DM, Kikutani H, Okuzaki D. Clonal landscape of autoantibody-secreting plasmablasts in COVID-19 patients. Life Sci Alliance 2024; 7:e202402774. [PMID: 39288992 PMCID: PMC11408605 DOI: 10.26508/lsa.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Whereas severe COVID-19 is often associated with elevated autoantibody titers, the underlying mechanism behind their generation has remained unclear. Here we report clonal composition and diversity of autoantibodies in humoral response to SARS-CoV-2. Immunoglobulin repertoire analysis and characterization of plasmablast-derived monoclonal antibodies uncovered clonal expansion of plasmablasts producing cardiolipin (CL)-reactive autoantibodies. Half of the expanded CL-reactive clones exhibited strong binding to SARS-CoV-2 antigens. One such clone, CoV1804, was reactive to both CL and viral nucleocapsid (N), and further showed anti-nucleolar activity in human cells. Notably, antibodies sharing genetic features with CoV1804 were identified in COVID-19 patient-derived immunoglobulins, thereby constituting a novel public antibody. These public autoantibodies had numerous mutations that unambiguously enhanced anti-N reactivity, when causing fluctuations in anti-CL reactivity along with the acquisition of additional self-reactivities, such as anti-nucleolar activity, in the progeny. Thus, potentially CL-reactive precursors may have developed multiple self-reactivities through clonal selection, expansion, and somatic hypermutation driven by viral antigens. Our results revealed the nature of autoantibody production during COVID-19 and provided novel insights into the origin of virus-induced autoantibodies.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masakazu Ishikawa
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Soichiro Haruna
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Marwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Zichang Xu
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Songling Li
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - James B Wing
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Human Single Cell Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Okada
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| | - Yukinari Okada
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Wakō, japan
| | - Daron M Standley
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Hung HC, Tan BF, Lin WS, Wu SC. Glycan masking of NTD loops with a chimeric RBD of the spike protein as a vaccine design strategy against emerging SARS-CoV-2 Omicron variants. J Med Virol 2024; 96:e29893. [PMID: 39192804 DOI: 10.1002/jmv.29893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The N-terminal domain (NTD) of the SARS-CoV-2 S protein comprises five exposed protruding loops. Deletions, insertions, and substitutions within these NTD loops play a significant role in viral evolution and contribute to immune evasion. We reported previously that introducing the glycan masking mutation R158N/Y160T in the NTD loop led to increased titers of neutralizing antibodies against the SARS-CoV-2 Wuhan-Hu-01 strain, as well as the Alpha, Beta, and Delta variants. In this study, we conducted further investigations on 10 additional glycan-masking sites in the NTD loops. Our findings indicate that the introduction of glycan masking mutations, specifically N87/G89T, H146N/N148T, N185/K187T, and V213N/D215T significantly enhanced neutralizing antibody titers against the Delta variant. The combination of dual glycan-masking mutations R158N/Y160T+V213N/D215T and R158N/Y160T+G219N results in a shift toward the Omicron BA.1. Furthermore, the introduction of the Omicron receptor binding domain (RBD) alongside these two dual glycan masking mutations of Wuhan-Hu-1 and XBB.1 NTD sequences resulted in a noticeable shift in antigenic distances, aligning with the Omicron BA.4/5, BA.2.75.2, BQ.1.1, and XBB.1 subvariants on the antigenic map. This strategic combination, which involves the dual glycan masking mutations R158N/Y160T+V213N/D215T and R158N/Y160T+G219N in the NTD loops, along with the domain swap incorporating the Omicron RBD, emerges as a promising vaccine design strategy for the continuous development of next-generation SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Hao-Chan Hung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Boon-Fatt Tan
- Department of Pediatrics, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Wei-Shuo Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Adimmune Corporation, Taichung, Taiwan
| |
Collapse
|
4
|
Liang Z, Li C, Gong X, Ye G, Jiang Y, Shi H, Hussain A, Zhao M, Li M, Tian Y, Zhao W, Yang Y, Huang Y, Shen C, Yang M. Development of Glycan-masked SARS-CoV-2 RBD vaccines against SARS-related coronaviruses. PLoS Pathog 2024; 20:e1012599. [PMID: 39325829 PMCID: PMC11460674 DOI: 10.1371/journal.ppat.1012599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/08/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Emerging and recurrent infectious diseases caused by coronaviruses remain a significant public health concern. Here, we present a targeted approach to elicit antibodies capable of neutralizing SARS-CoV-2 variants and other SARS-related coronaviruses. By introducing amino acid mutations at mutation-prone sites, we engineered glycosylation modifications to the Receptor Binding Domain (RBD) of SARS-CoV-2, thereby exposing more conserved, yet less accessible epitopes. We developed both messenger RNA (mRNA) and recombination subunit vaccines using these engineered-RBDs (M1, M2) and the wild-type RBD as immunogens. The engineered-RBD vaccines elicited robust neutralizing responses against various SARS-CoV-2 variants as well as SARS-CoV and WIV1-CoV, and conferred protection in mice challenged with the XBB.1.16 strain. Furthermore, We highlighted that glycan masking is a decisive factor in antibody binding changes and RBD-conserved antibody response. Additionally, the glycan-engineered RBD mRNA vaccines stimulated stronger cell-mediated immune responses. Our glycan modification strategy significantly enhances broad-spectrum neutralizing efficacy and cellular immunity, providing valuable insights for the development of vaccines against a wide range of SARS-related coronaviruses.
Collapse
Affiliation(s)
- Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Chunhui Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Xiaohua Gong
- National Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Laboratory Animal Center, Anhui Medical University, Hefei, People’s Republic of China
| | - Guoguo Ye
- National Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Huiping Shi
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Abid Hussain
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Mengyuan Zhao
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuxin Tian
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yang Yang
- National Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Infectious Diseases Research in South China, Southern Medical University, Ministry of Education, Guangzhou, People’s Republic of China
| | - Minghui Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Hauser B, Sangesland M, Lam EC, St Denis KJ, Sheehan ML, Vu ML, Cheng AH, Sordilla S, Lamson DT, Almawi AW, Balazs AB, Lingwood D, Schmidt AG. Heterologous Sarbecovirus Receptor Binding Domains as Scaffolds for SARS-CoV-2 Receptor Binding Motif Presentation. ACS Infect Dis 2024; 10:553-561. [PMID: 38281136 PMCID: PMC10862550 DOI: 10.1021/acsinfecdis.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center on targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potent neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake
M. Hauser
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maya Sangesland
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Evan C. Lam
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kerri J. St Denis
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maegan L. Sheehan
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Mya L. Vu
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Agnes H. Cheng
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Sophia Sordilla
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Dana Thornlow Lamson
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmad W. Almawi
- Center
for Molecular Interactions, Department of Biological Chemistry and
Molecular Pharmacology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Alejandro B. Balazs
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Daniel Lingwood
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
7
|
Inoue T. Memory B cell differentiation from germinal centers. Int Immunol 2023; 35:565-570. [PMID: 37232558 DOI: 10.1093/intimm/dxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Establishment of humoral immune memory depends on two layers of defense: pre-existing antibodies secreted by long-lived plasma cells; and the antibodies produced by antigen-reactivated memory B cells. Memory B cells can now be considered as a second layer of defense upon re-infection by variant pathogens that have not been cleared by the long-lived plasma cell-mediated defense. Affinity-matured memory B cells are derived from the germinal center (GC) reaction, but the selection mechanism of GC B cells into the memory compartment is still incompletely understood. Recent studies have revealed the critical determinants of cellular and molecular factors for memory B cell differentiation from the GC reaction. In addition, the contribution of antibody-mediated feedback regulation to B cell selection, as exemplified by the B cell response upon COVID-19 mRNA vaccination, has now garnered considerable attention, which may provide valuable implications for future vaccine design.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Hauser BM, Sangesland M, Lam EC, Denis KJS, Sheehan ML, Vu ML, Cheng AH, Balazs AB, Lingwood D, Schmidt AG. Heterologous sarbecovirus receptor binding domains as scaffolds for SARS-CoV-2 receptor binding motif presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554179. [PMID: 37662405 PMCID: PMC10473630 DOI: 10.1101/2023.08.21.554179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center upon targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potently neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake M. Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | | | - Mya L. Vu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Agnes H. Cheng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Rouet R, Henry JY, Johansen MD, Sobti M, Balachandran H, Langley DB, Walker GJ, Lenthall H, Jackson J, Ubiparipovic S, Mazigi O, Schofield P, Burnett DL, Brown SHJ, Martinello M, Hudson B, Gilroy N, Post JJ, Kelleher A, Jäck HM, Goodnow CC, Turville SG, Rawlinson WD, Bull RA, Stewart AG, Hansbro PM, Christ D. Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients. Nat Commun 2023; 14:687. [PMID: 36755042 PMCID: PMC9907207 DOI: 10.1038/s41467-023-36295-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia.
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Matt D Johansen
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Meghna Sobti
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Harikrishnan Balachandran
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - David B Langley
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Gregory J Walker
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
- Prince of Wales Hospital, Sydney, NSW, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Stephanie Ubiparipovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Simon H J Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Marianne Martinello
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | | | | | - Anthony Kelleher
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen-Nürnberg, Germany
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Stuart G Turville
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - William D Rawlinson
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rowena A Bull
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Alastair G Stewart
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Inoue T, Shinnakasu R, Kawai C, Yamamoto H, Sakakibara S, Ono C, Itoh Y, Terooatea T, Yamashita K, Okamoto T, Hashii N, Ishii-Watabe A, Butler NS, Matsuura Y, Matsumoto H, Otsuka S, Hiraoka K, Teshima T, Murakami M, Kurosaki T. Antibody feedback contributes to facilitating the development of Omicron-reactive memory B cells in SARS-CoV-2 mRNA vaccinees. J Exp Med 2023; 220:213745. [PMID: 36512034 PMCID: PMC9750191 DOI: 10.1084/jem.20221786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
In contrast to a second dose of the SARS-CoV-2 mRNA vaccine, a third dose elicits potent neutralizing activity against the Omicron variant. To address the underlying mechanism for this differential antibody response, we examined spike receptor-binding domain (RBD)-specific memory B cells in vaccinated individuals. Frequency of Omicron-reactive memory B cells increased ∼9 mo after the second vaccine dose. These memory B cells show an altered distribution of epitopes from pre-second memory B cells, presumably due to an antibody feedback mechanism. This hypothesis was tested using mouse models, showing that an addition or a depletion of RBD-induced serum antibodies results in a concomitant increase or decrease, respectively, of Omicron-reactive germinal center (GC) and memory B cells. Our data suggest that pre-generated antibodies modulate the selection of GC and subsequent memory B cells after the second vaccine dose, accumulating more Omicron-reactive memory B cells over time, which contributes to the generation of Omicron-neutralizing antibodies elicited by the third vaccine dose.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Medical Research Support, Advanced Research Support Center, Ehime University, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinya Otsuka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Kei Hiraoka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
11
|
Hebel C, Thomsen AR. A survey of mechanisms underlying current and potential COVID-19 vaccines. APMIS 2023; 131:37-60. [PMID: 36394112 DOI: 10.1111/apm.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The emergence of SARS-CoV-2 caught the world off guard resulting in a global health crisis. Even though COVID-19 have caused the death of millions of people and many countries are still battling waves of infections, the odds of the pandemic ending soon have turned significantly in our favor. The key has been the development and distribution of a broad range of vaccines in record time. In this survey, we summarize the immunology required to understand the mechanisms underlying current and potential COVID-19 vaccines. Furthermore, we provide an up to date (according to data from WHO May 27, 2022) overview of the vaccine landscape consisting of 11 approved vaccines in phase 4, and a pipeline consisting of 161 vaccine candidates in clinical development and 198 in preclinical development (World Health Organization, Draft landscape and tracker of COVID-19 candidate vaccines [Internet], WHO, 2022). Our focus is to provide an understanding of the underlying biological mode of action of different vaccine platform designs, their advantages and disadvantages, rather than a deep dive into safety and efficacy data. We further present arguments concerning why a broad range of vaccines are needed and discuss future challenges.
Collapse
Affiliation(s)
- Christian Hebel
- Department of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Zheng W, He R, Liang X, Roudi S, Bost J, Coly P, van Niel G, Andaloussi SEL. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J Extracell Vesicles 2022; 11:e12290. [PMID: 36463392 PMCID: PMC9719568 DOI: 10.1002/jev2.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.
Collapse
Affiliation(s)
- Wenyi Zheng
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Rui He
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Xiuming Liang
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Samantha Roudi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Jeremy Bost
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Pierre‐Michael Coly
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Samir E. L. Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- EVOX Therapeutics LimitedOxfordUK
| |
Collapse
|
13
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
14
|
Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PNP, Kakutani LM, West AP, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 2022; 377:eabq0839. [PMID: 35857620 PMCID: PMC9273039 DOI: 10.1126/science.abq0839] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Greg Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tiong K. Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Hauser BM, Sangesland M, Lam EC, Feldman J, Balazs AB, Lingwood D, Schmidt AG. Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization. Front Immunol 2022; 13:902260. [PMID: 35990628 PMCID: PMC9386501 DOI: 10.3389/fimmu.2022.902260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 01/19/2023] Open
Abstract
Since the emergence of SARS-CoV-2 (SARS-2), multiple vaccine candidates were developed and studied both preclinically and clinically. Nearly all are based on the SARS-2 spike glycoprotein or its receptor binding domain (RBD). Studies of these vaccine candidates have largely been in a SARS-2 naïve context. However, pre-existing immunity to SARS-2 acquired through infection or vaccination continues to increase. Evaluating future vaccine candidates in context of this pre-existing immunity is necessary to understand how immune responses are subsequently influenced. Here, we evaluated the serum and IgG+ B cell responses to the SARS-2 RBD in context of pre-existing immunity elicited by the full SARS-2 spike, and we compared this to boosting with the full SARS-2 spike. Boosting with the SARS-2 RBD resulted in increased reactivity to RBD epitopes, but both immunization regimens resulted in similarly broad neutralization across diverse sarbecoviruses. These findings may inform comparison among SARS-2 RBD-based vaccine candidates to currently approved spike-based candidates.
Collapse
Affiliation(s)
- Blake M. Hauser
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Maya Sangesland
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Evan C. Lam
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jared Feldman
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Aaron G. Schmidt
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Lv H, So RTY, Teo QW, Yuan M, Liu H, Lee CCD, Yip GK, Ng WW, Wilson IA, Peiris M, Wu NC, Mok CKP. Neutralizing Antibody Response to Sarbecovirus Is Delayed in Sequential Heterologous Immunization. Viruses 2022; 14:1382. [PMID: 35891363 PMCID: PMC9318566 DOI: 10.3390/v14071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antigenic imprinting, which describes the bias of the antibody response due to previous immune history, can influence vaccine effectiveness. While this phenomenon has been reported for viruses such as influenza, there is little understanding of how prior immune history affects the antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting through immunization with two Sarbecoviruses, the subgenus that includes SARS-CoV-2. Mice were immunized subsequently with two antigenically distinct Sarbecovirus strains, namely SARS-CoV-1 and SARS-CoV-2. We found that sequential heterologous immunization induced cross-reactive binding antibodies for both viruses and delayed the emergence of neutralizing antibody responses against the booster strain. Our results provide fundamental knowledge about the immune response to Sarbecovirus and important insights into the development of pan-sarbecovirus vaccines and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ray T. Y. So
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Garrick K. Yip
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Wilson W. Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
- The Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Bian L, Bai Y, Gao F, Liu M, He Q, Wu X, Mao Q, Xu M, Liang Z. Effective protection of ZF2001 against the SARS-CoV-2 Delta variant in lethal K18-hACE2 mice. Virol J 2022; 19:86. [PMID: 35596222 PMCID: PMC9122244 DOI: 10.1186/s12985-022-01818-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 12/28/2022] Open
Abstract
To investigate the protective efficacy and mechanism of ZF2001 (a protein subunit vaccine with conditional approval in China) to SARS-CoV-2 Delta variant-induced severe pneumonia, the lethal challenge model of K18-hACE2 transgenic mice was used in this study. An inactivated-virus vaccine at the research and development stage (abbreviated as RDINA) was compared to ZF2001. We found that ZF2001 and RDINA could provide the protective effect against Delta variant-induced severe cases, as measured by the improved survival rates, the reduced virus loads, the alleviated lung histopathology and the high neutralizing antibody geomean titers, compared to aluminum adjuvant group. To prevent and control Omicron or other variant epidemics, further improvements in vaccine design and compatibilities with the novel adjuvant are required to achieve better immunogenicity.
Collapse
Affiliation(s)
- Lianlian Bian
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
18
|
Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PN, Kakutani LM, West AP, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.25.485875. [PMID: 35378752 PMCID: PMC8978945 DOI: 10.1101/2022.03.25.485875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Greg Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tiong K. Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Hauser BM, Sangesland M, St Denis KJ, Lam EC, Case JB, Windsor IW, Feldman J, Caradonna TM, Kannegieter T, Diamond MS, Balazs AB, Lingwood D, Schmidt AG. Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Rep 2022; 38:110561. [PMID: 35303475 PMCID: PMC8898741 DOI: 10.1016/j.celrep.2022.110561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
Eliciting antibodies to surface-exposed viral glycoproteins can generate protective responses that control and prevent future infections. Targeting conserved sites may reduce the likelihood of viral escape and limit the spread of related viruses with pandemic potential. Here we leverage rational immunogen design to focus humoral responses on conserved epitopes. Using glycan engineering and epitope scaffolding in boosting immunogens, we focus murine serum antibody responses to conserved receptor binding motif (RBM) and receptor binding domain (RBD) epitopes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike imprinting. Although all engineered immunogens elicit a robust SARS-CoV-2-neutralizing serum response, RBM-focusing immunogens exhibit increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV; structural characterization of representative antibodies defines a conserved epitope. RBM-focused sera confer protection against SARS-CoV-2 challenge. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses without compromising SARS-CoV-2 protection. These engineering strategies are adaptable to other viral glycoproteins for targeting conserved epitopes.
Collapse
Affiliation(s)
- Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ian W Windsor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Ty Kannegieter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Konrath KM, Liaw K, Wu Y, Zhu X, Walker SN, Xu Z, Schultheis K, Chokkalingam N, Chawla H, Du J, Tursi NJ, Moore A, Adolf-Bryfogle J, Purwar M, Reuschel EL, Frase D, Sullivan M, Fry B, Maricic I, Andrade VM, Iffland C, Crispin M, Broderick KE, Humeau LMPF, Patel A, Smith TRF, Pallesen J, Weiner DB, Kulp DW. Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Rep 2022; 38:110318. [PMID: 35090597 PMCID: PMC8747942 DOI: 10.1016/j.celrep.2022.110318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.
Collapse
Affiliation(s)
- Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Yuanhan Wu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xizhou Zhu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Susanne N Walker
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jianqiu Du
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alan Moore
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | | - Mansi Purwar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Emma L Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Drew Frase
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Matthew Sullivan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Fry
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Igor Maricic
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | | | | | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|