1
|
Al Qureshah F, Le Pen J, de Weerd NA, Moncada-Velez M, Materna M, Lin DC, Milisavljevic B, Vianna F, Bizien L, Lorenzo L, Lecuit M, Pommier JD, Keles S, Ozcelik T, Pedraza-Sanchez S, de Prost N, El Zein L, Hammoud H, Ng LFP, Halwani R, Saheb Sharif-Askari N, Lau YL, Tam AR, Singh N, Bhattad S, Berkun Y, Chantratita W, Aguilar-López R, Shahrooei M, Abel L, Bastard P, Jouanguy E, Béziat V, Zhang P, Rice CM, Cobat A, Zhang SY, Hertzog PJ, Casanova JL, Zhang Q. A common form of dominant human IFNAR1 deficiency impairs IFN-α and -ω but not IFN-β-dependent immunity. J Exp Med 2025; 222:e20241413. [PMID: 39680367 DOI: 10.1084/jem.20241413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Autosomal recessive deficiency of the IFNAR1 or IFNAR2 chain of the human type I IFN receptor abolishes cellular responses to IFN-α, -β, and -ω, underlies severe viral diseases, and is globally very rare, except for IFNAR1 and IFNAR2 deficiency in Western Polynesia and the Arctic, respectively. We report 11 human IFNAR1 alleles, the products of which impair but do not abolish responses to IFN-α and -ω without affecting responses to IFN-β. Ten of these alleles are rare in all populations studied, but the remaining allele (P335del) is common in Southern China (minor allele frequency ≈2%). Cells heterozygous for these variants display a dominant phenotype in vitro with impaired responses to IFN-α and -ω, but not -β, and viral susceptibility. Negative dominance, rather than haploinsufficiency, accounts for this dominance. Patients heterozygous for these variants are prone to viral diseases, attesting to both the dominance of these variants clinically and the importance of IFN-α and -ω for protective immunity against some viruses.
Collapse
Affiliation(s)
- Fahd Al Qureshah
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology , Riyadh, Saudi Arabia
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Daniel C Lin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Université Paris Cité, Imagine Institute , Paris, France
| | - Baptiste Milisavljevic
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fernanda Vianna
- Laboratório de Medicina Genômica Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP) , Porto Alegre, Brazil
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Marc Lecuit
- Université Paris Cité, Imagine Institute , Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Jean-David Pommier
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Sigifredo Pedraza-Sanchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ) , Mexico City, Mexico
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil , Créteil Cedex, France
- INSERM U955, Team "Viruses, Hepatology, Cancer" , Créteil, France
| | - Loubna El Zein
- Biology Department, Lebanese University, Beirut, Lebanon
| | | | - Lisa F P Ng
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research , Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University , Singapore, Singapore
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah , Sharjah, UAE
- Prince Abdullah Bin Khalid Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony R Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | | | | | - Yackov Berkun
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Raúl Aguilar-López
- Department of Surgery, Maternal and Child Hospital, Social Security Institute of the State of Mexico and Municipalities (ISSEMYM), Toluca, Mexico
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Dr. Shahrooei's Laboratory , Tehran, Iran
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris , Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| |
Collapse
|
2
|
Li J, Luo Y, Fu Q, Tang S, Zhang P, Frazer IH, Liu X, Wang T, Ni G. Caerin 1.1/1.9-mediated antitumor immunity depends on IFNAR-Stat1 signalling of tumour infiltrating macrophage by autocrine IFNα and is enhanced by CD47 blockade. Sci Rep 2025; 15:3789. [PMID: 39885296 PMCID: PMC11782643 DOI: 10.1038/s41598-025-87687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear. In this study, we explored the impact of F1/F3 on the tumor microenvironment in a transplanted B16 melanoma model, and further investigated the mechanism of action of F1/F3 using monoclonal antibodies to deplete relevant cells, gene knockout mice and flow cytometry. We show that F1/F3 is able to inhibit the growth of melanoma B16 tumour cells both in vitro and in vivo. Depletion of macrophages, blockade of IFNα receptor, and Stat1 inhibition each abolishes F1/F3-mediated antitumor responses. Subsequent analysis reveals that F1/F3 increases the tumour infiltration of inflammatory macrophages, upregulates the level of IFNα receptor, and promotes the secretion of IFNα by macrophages. Interestingly, F1/F3 upregulates CD47 level on tumour cells; and blocking CD47 increases F1/F3-mediated antitumor responses. Furthermore, F1/F3 intratumor injection, CD47 blockade, and therapeutic vaccination significantly increases the survival time of B16 tumour-bearing mice. These results indicate that F1/F3 may be effective to improve the efficacy of ICB and therapeutic vaccine-based immunotherapy for human epithelial cancers and warrants consideration for clinical trials.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Zhongao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, 550000, Guizhou, China
| | - Quanlan Fu
- Medical School of Guizhou University, Guiyang, 550000, Guizhou, China
| | - Shuxian Tang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Pingping Zhang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Ian H Frazer
- Diamantia Institute, Translational Research Institute, University of Queensland, Woolloongabba, Brisbane, QLD, 4002, Australia
| | - Xiaosong Liu
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| | - Guoying Ni
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China.
| |
Collapse
|
3
|
Kholaiq H, Abdelmoumen Y, Moundir A, El Kettani A, Ailal F, Benhsaien I, Adnane F, Drissi Bourhanbour A, Amenzoui N, El Bakkouri J, Bousfiha AA. Human genetic and immunological determinants of SARS-CoV-2 infection and multisystem inflammatory syndrome in children. Clin Exp Immunol 2025; 219:uxae062. [PMID: 39028583 PMCID: PMC11771195 DOI: 10.1093/cei/uxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in coronavirus disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3-5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15-20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.
Collapse
Affiliation(s)
- Halima Kholaiq
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yousra Abdelmoumen
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Assiya El Kettani
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asmaa Drissi Bourhanbour
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naima Amenzoui
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
4
|
Qiu L, He X, Zheng C, Li L. Identifying a Gene Deficiency in the Antiviral Innate Immune Signaling Pathway. Methods Mol Biol 2025; 2854:253-264. [PMID: 39192135 DOI: 10.1007/978-1-0716-4108-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Innate immunity is an important defense barrier for the human body. After viral pathogen-associated molecular patterns (PAMPs) are detected by host-pathogen recognition receptors (PRRs), the associated signaling pathways trigger the activation of the interferon (IFN) regulatory factor (IRF) family members and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, any gene defects among the signaling adaptors will compromise innate immune efficiency. Therefore, investigating genetic defects in the antiviral innate immune signaling pathway is important. We summarize the commonly used research methods related to antiviral immune gene defects and outline the relevant research protocols, which will help investigators study antiviral innate immunity.
Collapse
Affiliation(s)
- Lijuan Qiu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming Children's Hospital, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Zhu Z, Chen X, He G, Yu R, Wang C, Qi C, Cheng L. SCovid v2.0: a comprehensive resource to decipher the molecular characteristics across tissues in COVID-19 and other human coronaviruses. Microbiol Spectr 2024:e0193324. [PMID: 39714149 DOI: 10.1128/spectrum.01933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
SCovid v2.0 (http://bio-annotation.cn/scovid or http://bio-computing.hrbmu.edu.cn/scovid/) is an updated database designed to assist researchers in uncovering the molecular characteristics of coronavirus disease 2019 (COVID-19) across various tissues through transcriptome sequencing. Compared with its predecessor, SCovid v2.0 is enhanced with comprehensive data, practical functionalities, and a reconstructed pipeline. The current release includes (i) 3,544,360 cells from 45 single-cell RNA-seq (scRNA-seq) data sets encompassing 789 samples from 15 tissues; (ii) the addition of 62 COVID-19 bulk RNA-seq data comprising 1,688 samples from 12 tissues; (iii) incorporation of seven bulk RNA-seq data sets related to other human coronaviruses, such as HCoV-229E, HCoV-OC43, and MERS-CoV for a thorough comparative analysis of pan-coronavirus mechanisms in COVID-19; and (iv) systematic comparisons between the data sets conducted using standardized procedures. Furthermore, we have developed an advanced search engine and upgraded web interface to browse, search, visualize, and download detailed information. Overall, SCovid v2.0 is a valuable resource for exploring molecular characteristics of COVID-19 across different tissues. IMPORTANCE This manuscript provides a comprehensive analysis of the molecular characteristics of COVID-19 through cross-tissue transcriptome analysis, contributing to the understanding of COVID-19 by clinicians and scientists. Considering the cyclical nature of coronavirus outbreaks, this updated database adds transcriptome data on other human coronaviruses, contributing to potential and existing mechanisms of other human coronaviruses.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guoyou He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. Sci Immunol 2024; 9:eadp7951. [PMID: 39642242 DOI: 10.1126/sciimmunol.adp7951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024]
Abstract
Severity of COVID-19 is affected by multiple factors; however, it is not understood how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure affects the control of viral replication. Here, we demonstrate that immune events in the mouse lung closely preceding SARS-CoV-2 infection affect viral control and identify innate immune pathways that limit viral replication. Pulmonary inflammatory stimuli including resolved, antecedent respiratory infections with Staphylococcus aureus or influenza, ongoing pulmonary Mycobacterium tuberculosis infection, ovalbumin/alum-induced asthma, or airway administration of TLR ligands and recombinant cytokines all establish an antiviral state in the lung that restricts SARS-CoV-2 replication. In addition to antiviral type I interferons, TNFα and IL-1 potently precondition the lung for enhanced viral control. Our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation preceding SARS-CoV-2 exposure may contribute to variability in disease outcomes.
Collapse
Affiliation(s)
- Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Andrea C Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eduardo P Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sydnee T Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Artur T L Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, MD 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, MD 20852, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Gervais A, Bastard P, Bizien L, Delifer C, Tiberghien P, Rodrigo C, Trespidi F, Angelini M, Rossini G, Lazzarotto T, Conti F, Cassaniti I, Baldanti F, Rovida F, Ferrari A, Mileto D, Mancon A, Abel L, Puel A, Cobat A, Rice CM, Cadar D, Schmidt-Chanasit J, Scheid JF, Lemieux JE, Rosenberg ES, Agudelo M, Tangye SG, Borghesi A, Durand GA, Duburcq-Gury E, Valencia BM, Lloyd AR, Nagy A, MacDonald MM, Simonin Y, Zhang SY, Casanova JL. Auto-Abs neutralizing type I IFNs in patients with severe Powassan, Usutu, or Ross River virus disease. J Exp Med 2024; 221:e20240942. [PMID: 39485284 PMCID: PMC11533500 DOI: 10.1084/jem.20240942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Céline Delifer
- Établissement Français du Sang, La Plaine Saint-Denis, France
| | | | - Chaturaka Rodrigo
- Faculty of Medicine, School of Biomedical Sciences, UNSW Australia, Sydney, Australia
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Johannes F. Scheid
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E. Lemieux
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric S. Rosenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Guillaume André Durand
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), Marseille, France
| | - Emilie Duburcq-Gury
- Intensive Care Unit, Saint Philibert Hospital, Lille Catholic Hospitals, Lille, France
| | | | | | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Margaret M. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
8
|
Zhang SY, Casanova JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 2024; 635:563-573. [PMID: 39567785 DOI: 10.1038/s41586-024-08119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8-10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
9
|
Adi G, Obaid Z, Hafez DH, Shahrani AMA, Nahass AA, Saud HA, Alkateb FA. Severe Adverse Reaction to Measles Vaccine Due to Homozygous Mutation in the IFNAR2 Gene: A Case Report and Literature Review. J Clin Immunol 2024; 45:30. [PMID: 39436454 DOI: 10.1007/s10875-024-01814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Receiving the measles vaccination is crucial for controlling the disease and preventing severe complications. However, adverse reactions can occur in individuals with inborn errors of immunity. This case report details a severe reaction to the measles vaccine in a ten-month-old female with a homozygous mutation in the IFNAR2 gene, leading to immunodeficiency-45. Following vaccination, she developed viremia, meningoencephalitis, and multi-organ failure. Genetic analysis identified a Variant of Uncertain Significance (VUS) in the IFNAR2 gene, which is essential for type I interferon (IFN-I) signaling. This case highlights the importance of incorporating genetic screening into vaccination programs for individuals at risk. It demonstrates the complex relationship between genetic mutations and the immune responses to the vaccines.
Collapse
Affiliation(s)
- Ghaith Adi
- College of Medicine, Alfaisal University, Takhassusi Road, Riyadh, 11533, Saudi Arabia.
| | - Zaki Obaid
- College of Medicine, Alfaisal University, Takhassusi Road, Riyadh, 11533, Saudi Arabia.
| | - Deema Hassan Hafez
- Children's Specialised Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Assalh Ali Nahass
- Children's Specialised Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Faten Ahmed Alkateb
- Children's Specialised Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Signore IA, Donoso G, Bocchieri P, Tobar-Calfucoy EA, Yáñez CE, Carvajal-Silva L, Silva AX, Otth C, Cappelli C, Valenzuela Jorquera H, Zapata-Contreras D, Espinosa-Parrilla Y, Zúñiga-Pacheco P, Fuentes-Guajardo M, Monardes-Ramírez VA, Kochifas Velasquez P, Muñoz CA, Dorador C, García-Araya J, Campillay-Véliz CP, Echeverria C, Santander RA, Cerpa LC, Martínez MF, Quiñones LA, Lamoza Galleguillos ER, Saez Hidalgo J, Nova-Lamperti E, Sanhueza S, Giacaman A, Acosta-Jamett G, Verdugo C, Plaza A, Verdugo C, Selman C, Verdugo RA, Colombo A. The Chilean COVID-19 Genomics Network Biorepository: A Resource for Multi-Omics Studies of COVID-19 and Long COVID in a Latin American Population. Genes (Basel) 2024; 15:1352. [PMID: 39596552 PMCID: PMC11593408 DOI: 10.3390/genes15111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 11/28/2024] Open
Abstract
Although a lack of diversity in genetic studies is an acknowledged obstacle for personalized medicine and precision public health, Latin American populations remain particularly understudied despite their heterogeneity and mixed ancestry. This gap extends to COVID-19 despite its variability in susceptibility and clinical course, where ethnic background appears to influence disease severity, with non-Europeans facing higher hospitalization rates. In addition, access to high-quality samples and data is a critical issue for personalized and precision medicine, and it has become clear that the solution lies in biobanks. The creation of the Chilean COVID-19 Biorepository reported here addresses these gaps, representing the first nationwide multicentric Chilean initiative. It operates under rigorous biobanking standards and serves as one of South America's largest COVID cohorts. A centralized harmonization strategy was chosen and included unified standard operating procedures, a sampling coding system, and biobanking staff training. Adults with confirmed SARS-CoV-2 infection provided broad informed consent. Samples were collected to preserve blood, plasma, buffy coat, and DNA. Quality controls included adherence to the standard preanalytical code, incident reporting, and DNA concentration and absorbance ratio 260/280 assessments. Detailed sociodemographic, health, medication, and preexisting condition data were gathered. In five months, 2262 participants were enrolled, pseudonymized, and sorted by disease severity. The average Amerindian ancestry considering all participant was 44.0% [SD 15.5%], and this value increased to 61.2% [SD 19.5%] among those who self-identified as Native South Americans. Notably, 279 participants self-identified with one of 12 ethnic groups. High compliance (>90%) in all assessed quality controls was achieved. Looking ahead, our team founded the COVID-19 Genomics Network (C19-GenoNet) focused on identifying genetic factors influencing SARS-CoV-2 outcomes. In conclusion, this bottom-up collaborative effort aims to promote the integration of Latin American populations into global genetic research and welcomes collaborations supporting this endeavor. Interested parties are invited to explore collaboration opportunities through our catalog, accessible online.
Collapse
Affiliation(s)
- Iskra A. Signore
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
| | - Gerardo Donoso
- Service of Anatomic Pathology, University of Chile Clinical Hospital (HCUCH), Santiago 8380453, Chile
| | - Pamela Bocchieri
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
| | - Eduardo A. Tobar-Calfucoy
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Cristian E. Yáñez
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Laura Carvajal-Silva
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Andrea X. Silva
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
- Institute of Environmental and Evolutionary Sciences, Faculty of Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Austral University of Chile, Valdivia 5090000, Chile
| | - Claudio Cappelli
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
| | - Héctor Valenzuela Jorquera
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
| | - Daniela Zapata-Contreras
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
| | - Yolanda Espinosa-Parrilla
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
- Interuniversity Center for Healthy Aging, Punta Arena 6210005, Chile
| | - Paula Zúñiga-Pacheco
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
| | - Macarena Fuentes-Guajardo
- Department of Medical Technology, Faculty of Health Sciences, University of Tarapacá, Arica 1010197, Chile
| | | | - Pia Kochifas Velasquez
- Clinical Laboratory of the Technical Area of Molecular Biology, Salvador Hospital, Santiago 7500922, Chile
| | - Christian A. Muñoz
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Cristina Dorador
- Laboratory of Microbial Complexity and Functional Ecology, Antofagasta Institute & Biotechnology Department, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jonathan García-Araya
- Laboratory of Microbial Complexity and Functional Ecology, Antofagasta Institute & Biotechnology Department, University of Antofagasta, Antofagasta 1240000, Chile
| | - Claudia P. Campillay-Véliz
- Laboratory of Molecular Virology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta 1240000, Chile
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapó 1533601, Chile
| | - Rodolfo Alejandro Santander
- Emergency Public Assistance Hospital, Santiago 8330145, Chile
- Emergency Medical Assistance Service (SAMU), Punta Arenas 6200000, Chile
| | - Leslie C. Cerpa
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
| | - Matías F. Martínez
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Department of Pharmaceutical Sciences and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Luis Abel Quiñones
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Department of Pharmaceutical Sciences and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Eduardo Roberto Lamoza Galleguillos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Juan Saez Hidalgo
- Department of Computer Science, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago 8370458, Chile
| | - Estefanía Nova-Lamperti
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción 4070383, Chile
| | - Sergio Sanhueza
- Center of Excellence in Translational Medicine, Faculty of Medicine, University of The Frontier, Temuco 4781176, Chile
| | - Annesi Giacaman
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Gerardo Acosta-Jamett
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
| | - Cristóbal Verdugo
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
| | - Anita Plaza
- Institute of Animal Pathology, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Claudio Verdugo
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
- Institute of Animal Pathology, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | | | - Ricardo Alejandro Verdugo
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Institute of Interdisciplinary Research, University of Talca, Talca 3460000, Chile
- School of Medicine, University of Talca, Talca 3460000, Chile
| | - Alicia Colombo
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
- Service of Anatomic Pathology, University of Chile Clinical Hospital (HCUCH), Santiago 8380453, Chile
| |
Collapse
|
11
|
Diz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, Tamayo E, Tamayo-Velasco A, Taracido-Fernandez JC, Teper A, Torres-Tobar L, Urioste M, Valencia-Ramos J, Yáñez Z, Zarate R, de Rojas I, Ruiz A, Sánchez P, Real LM, Guillen-Navarro E, Ayuso C, Parra E, Riancho JA, Rojas-Martinez A, Flores C, Lapunzina P, Carracedo Á. Novel risk loci for COVID-19 hospitalization among admixed American populations. eLife 2024; 13:RP93666. [PMID: 39361370 PMCID: PMC11449485 DOI: 10.7554/elife.93666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Collapse
Affiliation(s)
- Silvia Diz-de Almeida
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andre D Luchessi
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | | | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | | | - Vivian Nogueira Silbiger
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - Marta Sevilla Porras
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jair Antonio Tenorio Castaño
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Julian Nevado
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jose María Aguado
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | | | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- Navarra Health Service, NavarraBioMed Research Group, Pamplona, Spain
| | | | - Berta Almoguera
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nuria Alvarez
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Eunate Arana-Arri
- Biocruces Bizkai HRI, Bizkaia, Spain
- Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Arranz
- Fundació Docència I Recerca Mutua Terrassa, Barcelona, Spain
| | | | - Raúl C Baptista-Rosas
- Hospital General de Occidente, Zapopan Jalisco, Mexico
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
- Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - María Barreda-Sánchez
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Moncef Belhassen-Garcia
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de Enfermedades Infecciosas, Salamanca, Spain
| | - Joao F Bezerra
- Escola Tecnica de Saúde, Laboratorio de Vigilancia Molecular Aplicada, Brasilia, Brazil
| | - Marcos A C Bezerra
- Federal University of Pernambuco, Genetics Postgraduate Program, Recife, Brazil
| | | | - María Brion
- Instituto de Investigación Sanitaria de Santiago (IDIS), Xenética Cardiovascular, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ramón Brugada
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Hospital Josep Trueta, Cardiology Service, Girona, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
| | - Enrique J Calderón
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca, Spain
- Universidad de Salamanca, Salamanca, Spain
| | - Luis Castano
- CIBERER, ISCIII, Madrid, Spain
- Biocruces Bizkai HRI, Bizkaia, Spain
- Osakidetza, Cruces University Hospital, Bizkaia, Spain
- Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- University of Pais Vasco, UPV/EHU, Bizkaia, Spain
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | - M Lourdes Cordero-Lorenzana
- Servicio de Medicina intensiva, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Jose L Cortes-Sanchez
- Tecnológico de Monterrey, Monterrey, Mexico
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Marta Corton
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Alba De Martino-Rodríguez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Victor Del Campo-Pérez
- Preventive Medicine Department, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | | | - Rocío Eirós
- Hospital Universitario de Salamanca-IBSAL, Servicio de Cardiología, Salamanca, Spain
| | - María Carmen Fariñas
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Uxía Fernández-Robelo
- Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Amanda Fernández-Rodríguez
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tania Fernández-Villa
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| | | | - Javier Gómez-Arrue
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Beatriz González Álvarez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | | | - Anna González-Neira
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Gutiérrez-Bautista
- Hospital Universitario Virgen de las Nieves, Servicio de Análisis Clínicos e Inmunología, Granada, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, Valencia, Spain
- Universidad de Valencia, Departamento de Farmacología, Valencia, Spain
| | - Antonio Herrero-Gonzalez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María A Jimenez-Sousa
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Claudia Lattig
- Universidad de los Andes, Facultad de Ciencias, Bogotá, Colombia
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Rosario Lopez-Rodriguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Esther Mancebo
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
| | | | - Vicente Martín
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Oscar Martinez-Nieto
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Fundación Santa Fe de Bogota, Departamento Patologia y Laboratorios, Bogotá, Colombia
| | - Iciar Martinez-Lopez
- Unidad de Genética y Genómica Islas Baleares, Islas Baleares, Spain
- Hospital Universitario Son Espases, Unidad de Diagnóstico Molecular y Genética Clínica, Islas Baleares, Spain
| | | | - Angel Martinez-Perez
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juliana F Mazzeu
- Universidade de Brasília, Faculdade de Medicina, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Médicas (UnB), Brasília, Brazil
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
| | | | - Pablo Minguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Victor Moreno Cuerda
- Hospital Universitario Mostoles, Medicina Interna, Madrid, Spai, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Silviene F Oliveira
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Biologia Animal (UnB), Brasília, Brazil
- Programa de Pós-Graduação Profissional em Ensino de Biologia (UnB), Brasília, Brazil
| | - Eva Ortega-Paino
- Spanish National Cancer Research Centre, CNIO Biobank, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Paz-Artal
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
- Universidad Complutense de Madrid, Department of Immunology, Ophthalmology and ENT, Madrid, Spain
| | - Ney P C Santos
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | - M Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | | | - Mellina Pinsach-Abuin
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
| | - Guillermo Pita
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Ericka N Pompa-Mera
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Mexico City, Mexico
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional La Raza, Hospital de Infectología, Mexico City, Mexico
| | | | - Aurora Pujol
- CIBERER, ISCIII, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory, L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Salvador Resino
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marianne R Fernandes
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
- Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Brazil
| | - Emilio Rodríguez-Ruiz
- IDIS, Seongnam, Republic of Korea
- Unidad de Cuidados Intensivos, Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Fernando Rodriguez-Artalejo
- CIBERESP, ISCIII, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | - Francisco Ruiz-Cabello
- IDIS, Seongnam, Republic of Korea
- Instituto de Investigación Biosanitaria de Granada (ibs GRANADA), Granada, Spain
- Universidad de Granada, Departamento Bioquímica, Biología Molecular e Inmunología III, Granada, Spain
| | - Javier Ruiz-Hornillos
- Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pablo Ryan
- CIBERINFEC, ISCIII, Madrid, Spain
- Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juan Carlos Souto
- Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Eduardo Tamayo
- Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimación, Valladolid, Spain
- Universidad de Valladolid, Departamento de Cirugía, Valladolid, Spain
| | - Alvaro Tamayo-Velasco
- Hospital Clinico Universitario de Valladolid, Servicio de Hematologia y Hemoterapia, Valladolid, Spain
| | - Juan Carlos Taracido-Fernandez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alejandro Teper
- Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | - Miguel Urioste
- Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain
| | | | - Zuleima Yáñez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Ruth Zarate
- Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay
| | - Itziar de Rojas
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Agustín Ruiz
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pascual Sánchez
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Luis Miguel Real
- Hospital Universitario de Valme, Unidad Clínica de Enfermedades Infecciosas y Microbiología, Sevilla, Spain
| | - Encarna Guillen-Navarro
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Sección Genética Médica - Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), Murcia, Spain
- Grupo Clínico Vinculado, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| | - José A Riancho
- CIBERER, ISCIII, Madrid, Spain
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Lapunzina
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Ángel Carracedo
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| |
Collapse
|
12
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Gervais A, Le Floc'h C, Le Voyer T, Bizien L, Bohlen J, Celmeli F, Al Qureshah F, Masson C, Rosain J, Chbihi M, Lévy R, Castagnoli R, Rothenbuhler A, Jouanguy E, Zhang Q, Zhang SY, Béziat V, Bustamante J, Puel A, Bastard P, Casanova JL. A sensitive assay for measuring whole-blood responses to type I IFNs. Proc Natl Acad Sci U S A 2024; 121:e2402983121. [PMID: 39312669 PMCID: PMC11459193 DOI: 10.1073/pnas.2402983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Human inborn errors of the type I IFN response pathway and auto-Abs neutralizing IFN-α, -β, and/or -ω can underlie severe viral illnesses. We report a simple assay for the detection of both types of condition. We stimulate whole blood from healthy individuals and patients with either inborn errors of type I IFN immunity or auto-Abs against type I IFNs with glycosylated human IFN-α2, -β, or -ω. As controls, we add a monoclonal antibody (mAb) blocking the type I IFN receptors and stimulated blood with IFN-γ (type II IFN). Of the molecules we test, IP-10 (encoded by the interferon-stimulated gene (ISG) CXCL10) is the molecule most strongly induced by type I and type II IFNs in the whole blood of healthy donors in an ELISA-like assay. In patients with inherited IFNAR1, IFNAR2, TYK2, or IRF9 deficiency, IP-10 is induced only by IFN-γ, whereas, in those with auto-Abs neutralizing specific type I IFNs, IP-10 is also induced by the type I IFNs not neutralized by the auto-Abs. The measurement of type I and type II IFN-dependent IP-10 induction therefore constitutes a simple procedure for detecting rare inborn errors of the type I IFN response pathway and more common auto-Abs neutralizing type I IFNs.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris 75010, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Education and Research Hospital, University of Medical Science, Antalya 07100, Türkiye
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
- Pediatric Clinic, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Anya Rothenbuhler
- Endocrinology and Diabetes for children, Reference Center for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre 94270, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
- Department of Pediatrics, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
14
|
Larsen ML, Skouboe MK, Mogensen TH, Laursen AL, Deleuran B, Troldborg A, Rasch MNB. Dangers of Herpesvirus Infection in SLE Patients Under Anifrolumab Treatment: Case Reports and Clinical Implications. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e944505. [PMID: 39245905 PMCID: PMC11393608 DOI: 10.12659/ajcr.944505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Anifrolumab, a monoclonal antibody targeting the type 1 interferon (IFN-I) signaling pathway, holds promise as a therapeutic intervention for systemic lupus erythematosus (SLE). However, its use is associated with an increased risk of infections, particularly viral infections like herpes zoster (HZ). Results from the clinical trials on anifrolumab show yearly rates of upper respiratory tract infections of 34% and HZ of 6.1%. An increased frequency of other specific viral infections, including herpes simplex virus (HSV), was not reported. CASE REPORT Here, we present 2 cases of patients with SLE treated with anifrolumab, both experiencing severe adverse reactions in the form of disseminated herpesvirus infections, specifically disseminated HSV-2 and varicella zoster virus (VZV, HZ encephalitis). To the best of our knowledge, no previous reports of severe disseminated HSV-2 or HZ have been published in anifrolumab-treated patients. The patient in case 1 experienced a primary HSV-2 infection following anifrolumab treatment, potentially explaining the severity of the infection. The patient in case 2 had a history of previous HZ skin infections, which may have increased her risk of disseminated infection. Both patients recovered from the infections with minor sequelae, but they still require prophylactic antiviral treatment. These cases highlight the critical role of IFN-I immunity in protecting against herpesvirus infections. CONCLUSIONS Thorough risk assessment before anifrolumab initiation, considering the patient's viral infection history, vaccination status, and potential exposure risks, is essential. Administration of recombinant zoster vaccine before anifrolumab therapy may benefit susceptible individuals.
Collapse
Affiliation(s)
- Mads Lamm Larsen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Hyrup Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Alex Lund Laursen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
15
|
Møller M, Friis-Hansen L, Kirkby N, Dilling-Hansen C, Andersson M, Vedsted P, Mølbak K, Koch A. Robust immune response to COVID-19 vaccination in the island population of Greenland. COMMUNICATIONS MEDICINE 2024; 4:173. [PMID: 39242878 PMCID: PMC11379896 DOI: 10.1038/s43856-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND In Greenland, the COVID-19 pandemic was characterised by a late onset of community transmission and a low impact on the healthcare system, hypothesised as being partly due to a high uptake of vaccinations. To underpin this description, we aimed to assess the SARS-CoV-2 immune response post-vaccination in a Greenlandic population. METHODS In this observational cohort study, we included 430 adults in Greenland who had received a complete two-dose SARS-CoV-2 vaccination at enrolment. The total plasma SARS-CoV-2 spike glycoprotein Ig antibodies (S-Ab) induced by either the BNT162b2 or mRNA-1273 vaccine, was measured up to 11 months after the second vaccine dose. In addition, total salivary S-Abs were examined in 107 participants, and the T-cell response to the spike glycoprotein was assessed in 78 participants out of the entire study cohort. RESULTS Here we demonstrate that two months after the second vaccine dose, 96% of participants have protective plasma S-Ab levels. By 11 months, 98% have protective levels, with prior SARS-CoV-2 infection particularly enhancing S-Ab levels by 37% (95% CI 25-51%). Among individuals aged 60 years and older, we observe a 21% (95% CI 7-33%) reduction in antibody response. Total salivary S-Ab levels are detectable in all participants and significantly correlate with plasma levels. Moreover, all participants exhibit a robust SARS-CoV-2-specific T-cell response 11 months post-primary vaccination. CONCLUSIONS Our findings show that Greenlanders exhibit a robust and lasting immune response, both humoral and cellular, comparable to other population groups up to at least 11 months after the second vaccine dose. These results corroborate the hypothesis that vaccines contributed to the mild impact of the COVID-19 pandemic in the Greenlandic population.
Collapse
Affiliation(s)
- Mie Møller
- Institue of Health and Nature, University of Greenland, Nuuk, Greenland.
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland.
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark.
| | - Lennart Friis-Hansen
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Vedsted
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Ilulissat Regional Hospital, Ilulissat, Greenland
| | - Kåre Mølbak
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Institue of Health and Nature, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Arias AA, Neehus AL, Ogishi M, Meynier V, Krebs A, Lazarov T, Lee AM, Arango-Franco CA, Yang R, Orrego J, Corcini Berndt M, Rojas J, Li H, Rinchai D, Erazo-Borrás L, Han JE, Pillay B, Ponsin K, Chaldebas M, Philippot Q, Bohlen J, Rosain J, Le Voyer T, Janotte T, Amarajeeva K, Soudée C, Brollo M, Wiegmann K, Marquant Q, Seeleuthner Y, Lee D, Lainé C, Kloos D, Bailey R, Bastard P, Keating N, Rapaport F, Khan T, Moncada-Vélez M, Carmona MC, Obando C, Alvarez J, Cataño JC, Martínez-Rosado LL, Sanchez JP, Tejada-Giraldo M, L'Honneur AS, Agudelo ML, Perez-Zapata LJ, Arboleda DM, Alzate JF, Cabarcas F, Zuluaga A, Pelham SJ, Ensser A, Schmidt M, Velásquez-Lopera MM, Jouanguy E, Puel A, Krönke M, Ghirardello S, Borghesi A, Pahari S, Boisson B, Pittaluga S, Ma CS, Emile JF, Notarangelo LD, Tangye SG, Marr N, Lachmann N, Salvator H, Schlesinger LS, Zhang P, Glickman MS, Nathan CF, Geissmann F, Abel L, Franco JL, Bustamante J, Casanova JL, Boisson-Dupuis S. Tuberculosis in otherwise healthy adults with inherited TNF deficiency. Nature 2024; 633:417-425. [PMID: 39198650 PMCID: PMC11390478 DOI: 10.1038/s41586-024-07866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Homozygote
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/cytology
- Inflammation/immunology
- Interferon-gamma/immunology
- Loss of Function Mutation
- Lung/cytology
- Lung/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mycobacterium tuberculosis/immunology
- Phenotype
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Respiratory Burst
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/genetics
- Tumor Necrosis Factor Inhibitors/pharmacology
- Tumor Necrosis Factors/deficiency
- Tumor Necrosis Factors/genetics
- Adolescent
- Young Adult
Collapse
Affiliation(s)
- Andrés A Arias
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Vincent Meynier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Adam Krebs
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Angela M Lee
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carlos A Arango-Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Julio Orrego
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Melissa Corcini Berndt
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Julian Rojas
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Lucia Erazo-Borrás
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Khoren Ponsin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Chaldebas
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Till Janotte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Krishnajina Amarajeeva
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marion Brollo
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quentin Marquant
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
| | - Rasheed Bailey
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Franck Rapaport
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - María Camila Carmona
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Catalina Obando
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Jesús Alvarez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Carlos Cataño
- Infectious Diseases Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Larry Luber Martínez-Rosado
- Latin American Research Team in Infectiology and Public Health (ELISAP), La Maria Hospital, Medellín, Colombia
| | - Juan P Sanchez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Manuela Tejada-Giraldo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Anne-Sophie L'Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, AP-HP, Paris, France
| | - María L Agudelo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet J Perez-Zapata
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Fernando Alzate
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- SISTEMIC Group, Department of Electronic Engineering, Faculty of Engineering, University of Antioquia UdeA, Medellín, Colombia
| | | | - Simon J Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Armin Ensser
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margarita M Velásquez-Lopera
- Dermatology Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Dermatological Research Center (CIDERM), Medellín, Colombia
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Susanta Pahari
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stefania Pittaluga
- Center for Cancer Research, Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Hélène Salvator
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
- Respiratory Diseases Department, FOCH Hospital, Suresnes, France
- Simone Veil Department of Health Sciences, Versailles Saint Quentin University, Montigny le Bretonneux, France
| | - Larry S Schlesinger
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carl F Nathan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - José Luis Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
17
|
Strunz B, Maucourant C, Mehta A, Wan H, Du L, Sun D, Chen P, Nordlander A, Gao Y, Cornillet M, Bister J, Kvedaraite E, Christ W, Klingström J, Geanon D, Parke Å, Ekwall-Larson A, Rivino L, MacAry PA, Aleman S, Buggert M, Ljunggren HG, Pan-Hammarström Q, Lund-Johansen F, Strålin K, Björkström NK. Type I Interferon Autoantibodies Correlate With Cellular Immune Alterations in Severe COVID-19. J Infect Dis 2024; 230:e318-e326. [PMID: 38421006 PMCID: PMC11326830 DOI: 10.1093/infdis/jiae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.
Collapse
Affiliation(s)
- Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Adi Mehta
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Puran Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nordlander
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa Parke
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Ekwall-Larson
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Rivino
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Kristoffer Strålin
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Huynh A, Gray PE, Sullivan A, Mackie J, Guerin A, Rao G, Pathmanandavel K, Mina ED, Hollway G, Hobbs M, Enthoven K, O'Young P, McManus S, Wainwright LH, Higgins M, Noon F, Wong M, Bastard P, Zhang Q, Casanova JL, Hsiao KC, Pinzon-Charry A, Ma CS, Tangye SG. A Novel Case of IFNAR1 Deficiency Identified a Common Canonical Splice Site Variant in DOCK8 in Western Polynesia: The Importance of Validating Variants of Unknown Significance in Under-Represented Ancestries. J Clin Immunol 2024; 44:170. [PMID: 39098944 PMCID: PMC11298505 DOI: 10.1007/s10875-024-01774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Advanced genomic technologies such as whole exome or whole genome sequencing have improved diagnoses and disease outcomes for individuals with genetic diseases. Yet, variants of unknown significance (VUS) require rigorous validation to establish disease causality or modification, or to exclude them from further analysis. Here, we describe a young individual of Polynesian ancestry who in the first 13 mo of life presented with SARS-CoV-2 pneumonia, severe enterovirus meningitis and adenovirus gastroenteritis, and severe adverse reaction to MMR vaccination. Genomic analysis identified a previously reported pathogenic homozygous variant in IFNAR1 (c.1156G > T, p.Glu386* LOF), which is common in Western Polynesia. Moreover, a new and putatively deleterious canonical splice site variant in DOCK8 was also found in homozygosity (c.3234 + 2T > C). This DOCK8 variant is common in Polynesians and other under-represented ancestries in large genomic databases. Despite in silico bioinformatic predictions, extensive in vitro and ex vivo analysis revealed the DOCK8 variant likely be neutral. Thus, our study reports a novel case of IFNAR1 deficiency, but also highlights the importance of functional validation of VUS, including those predicted to be deleterious, and the pressing need to expand our knowledge of the genomic architecture and landscape of under-represented populations and ancestries.
Collapse
Affiliation(s)
- Aimee Huynh
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- School Medicine, Western Sydney University, Penrith, NSW, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
| | - Anna Sullivan
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Clinical Immunogenomics Research Consortium, Australasia, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Georgina Hollway
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Matthew Hobbs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karen Enthoven
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Patrick O'Young
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Sam McManus
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | | | - Fallon Noon
- Genetic Health Queensland, Brisbane, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, USA
| | - Kuang-Chih Hsiao
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Starship Child Health, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Alberto Pinzon-Charry
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Griffith University and University of Queensland, Queensland, Australia
| | - Cindy S Ma
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium, Australasia, Australia.
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Chan YH, Liu Z, Bastard P, Khobrekar N, Hutchison KM, Yamazaki Y, Fan Q, Matuozzo D, Harschnitz O, Kerrouche N, Nakajima K, Amin P, Yatim A, Rinchai D, Chen J, Zhang P, Ciceri G, Chen J, Dobbs K, Belkaya S, Lee D, Gervais A, Aydın K, Kartal A, Hasek ML, Zhao S, Reino EG, Lee YS, Seeleuthner Y, Chaldebas M, Bailey R, Vanhulle C, Lorenzo L, Boucherit S, Rozenberg F, Marr N, Mogensen TH, Aubart M, Cobat A, Dulac O, Emiroglu M, Paludan SR, Abel L, Notarangelo L, Longnecker R, Smith G, Studer L, Casanova JL, Zhang SY. Human TMEFF1 is a restriction factor for herpes simplex virus in the brain. Nature 2024; 632:390-400. [PMID: 39048830 PMCID: PMC11306101 DOI: 10.1038/s41586-024-07745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE.
Collapse
Affiliation(s)
- Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Noopur Khobrekar
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Kennen M Hutchison
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing Fan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniela Matuozzo
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Oliver Harschnitz
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Human Technopole, Milan, Italy
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Koji Nakajima
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Param Amin
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jia Chen
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Kürşad Aydın
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ayse Kartal
- Child Neurology Department, Selcuk University, Konya, Turkey
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Eduardo Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Lazaro Lorenzo
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Soraya Boucherit
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Mélodie Aubart
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Pediatric Neurology Department, Necker Hospital for Sick Children, Paris-City University, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Olivier Dulac
- Department of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Melike Emiroglu
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Greg Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Paris Cité University, Imagine Institute, Paris, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
20
|
Abel L, Casanova JL. Human determinants of age-dependent patterns of death from infection. Immunity 2024; 57:1457-1465. [PMID: 38986441 PMCID: PMC11345826 DOI: 10.1016/j.immuni.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Regardless of microbial virulence (i.e., the global infection-fatality ratio), age generally drives the prevalence of death from infection in unvaccinated humans. Four mortality patterns are recognized: the common U- and L-shaped curves of endemic infections and the unique W- and J-shaped curves of pandemic infections. We suggest that these patterns result from different sets of human genetic and immunological determinants. In this model, it is the interplay between (1) monogenic genotypes affecting immunity to primary infection that preferentially manifest early in life and related genotypes or their phenocopies, including auto-antibodies, which manifest later in life and (2) the occurrence and persistence of adaptive, acquired immunity to primary or cross-reactive infections, which shapes the age-dependent pattern of human deaths from infection.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
21
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
22
|
Yang XT, Yang WL, Lau YL. NGS data analysis for molecular diagnosis of Inborn Errors of Immunity. Semin Immunol 2024; 74-75:101901. [PMID: 39509871 DOI: 10.1016/j.smim.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Inborn errors of immunity (IEI) encompass a group of disorders with a strong genetic component. Prompt and accurate diagnosis of these disorders is essential for effective clinical management. Next-generation sequencing (NGS) has significantly enhanced the diagnostic process by offering a comprehensive and scalable approach for identifying genomic variations causal for these disorders. Nevertheless, the bioinformatics analysis of NGS data poses several challenges. In this review, we explore these challenges and share our insights on addressing them, aiming to improve the overall diagnostic yield.
Collapse
Affiliation(s)
- X T Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W L Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Y L Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
23
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
24
|
Møller M, Abelsen T, Sørensen AIV, Andersson M, Hansen LF, Dilling-Hansen C, Kirkby N, Vedsted P, Mølbak K, Koch A. Exploring the dynamics of COVID-19 in a Greenlandic cohort: Mild acute illness and moderate risk of long COVID. IJID REGIONS 2024; 11:100366. [PMID: 38736712 PMCID: PMC11081797 DOI: 10.1016/j.ijregi.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Objectives This study aimed to explore how the Greenlandic population experienced the course of both acute and long-term COVID-19. It was motivated by the unique epidemiologic situation in Greenland, with delayed community transmission of SARS-CoV-2 relative to the rest of the world. Methods In a survey among 310 Greenlandic adults, we assessed the association between previous SARS-CoV-2 infection and overall health outcomes by administering three repeated questionnaires over 12 months after infection, with a response rate of 41% at the 12-month follow-up. The study included 128 individuals with confirmed SARS-CoV-2 infection from January/February 2022 and 182 test-negative controls. Participants were recruited through personal approaches, phone calls, and social media platforms. Results A total of 53.7% of 162 participants who were test-positive recovered within 4 weeks and 2.5% were hospitalized due to SARS-CoV-2. The most common symptoms were fatigue and signs of mild upper respiratory tract infection. Less than 5% reported sick leave above 2 weeks after infection. Compared with participants who were test-negative, there was an increased risk of reporting fatigue (risk differences 25.4%, 95% confidence interval 8.8-44.0) and mental exhaustion (risk differences 23.4%, 95% confidence interval 4.8-42.2) up to 12 months after a positive test. Conclusions Our results indicate that during a period dominated by the Omicron variant, Greenlanders experienced a mild acute course of COVID-19, with quick recovery, minimizing the impact on sick leave. Long COVID may be present in Greenlanders, with symptoms persisting up to 12 months after infection. However, it is important to consider the small sample size and modest response rate as limitations when interpreting the results.
Collapse
Affiliation(s)
- Mie Møller
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Internal Medicine, Queen Ingrid's Hospital Nuuk, Nuuk, Greenland
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Trine Abelsen
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital Nuuk, Nuuk, Greenland
- National Board of Health, Nuuk, Greenland
| | - Anna Irene Vedel Sørensen
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lennart Friis Hansen
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Nikolai Kirkby
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Peter Vedsted
- Clinical medicine / Public health, University of Aarhus, Aarhus, Denmark
- Ilulissat Regional Hospital, Ilulissat, Greenland
| | - Kåre Mølbak
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital Nuuk, Nuuk, Greenland
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
29
|
Woon ST, Tjandra F, Mackay J, Lumley T, Grainger P, Wood A, Hsiao KC, Ameratunga R. Detection of interferon alpha and beta receptor subunit 1 (IFNAR1) loss-of-function Glu386∗ variant by tri-allelic genotyping. Pathology 2024; 56:92-97. [PMID: 37973454 DOI: 10.1016/j.pathol.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Mutations of the human interferon alpha and beta receptor subunit 1 (IFNAR1) gene are associated with severe viral infections. Individuals homozygous for the Glu386∗ variant have impaired type I interferon signalling and can suffer severe illness when exposed to certain viruses and live attenuated virus vaccines. Glu386∗ heterozygotes are clinically unaffected, but can pass the variant allele to their descendants. We aimed to develop an assay that can identify IFNAR1 Glu386∗ homozygotes and heterozygotes to support urgent clinical diagnosis, and that can use dried blood spots (DBS) sent at ambient temperature to overcome geographical logistical challenges in the South Pacific region. The tri-allelic genotyping assay interrogates a single nucleotide polymorphism (rs201609461) located in IFNAR1. The reference allele G encodes for wild-type IFNAR1. Minor alleles A (c.1156G>A) and T (c.1156G>T) encode for Glu386Lys and a truncated IFNAR1 protein (p.Glu386∗), respectively. Synthetic oligonucleotides were mixed in equal molar ratio to create six different genotypes which were randomly assigned to 960 genotyping reactions by R software. Three different fluorescence probes were designed to discriminate the three alleles (G, T and A) within a pair of flanking primers in a single genotyping reaction. The assay discriminated all three alleles using DBS from Guthrie cards randomly spiked with synthetic oligonucleotides. We correctly identified all the different genotypes in 960 reactions in these blinded experiments. These findings validate the genotyping assay for rapidly identifying the IFNAR1 Glu386∗ variant from DBS.
Collapse
Affiliation(s)
- See-Tarn Woon
- Molecular Immunology, LabPLUS, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand; Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Felicia Tjandra
- Molecular Immunology, LabPLUS, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand
| | - John Mackay
- dnature diagnostics and research Limited, Gisborne, New Zealand
| | - Thomas Lumley
- Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Pippa Grainger
- Diagnostic Genetics, LabPLUS, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand
| | - Andrew Wood
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Starship Children's Health, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand
| | - Kuang-Chih Hsiao
- Starship Children's Health, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand
| | - Rohan Ameratunga
- Molecular Immunology, LabPLUS, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand; Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Clinical Immunology, Te Whatu Ora, Health New Zealand Te Toka Tumai Auckland, New Zealand
| |
Collapse
|
30
|
Covill LE, Sendel A, Campbell TM, Piiroinen I, Enoksson SL, Borgström EW, Hansen S, Ma K, Marits P, Norlin AC, Smith CIE, Kåhlin J, Eriksson LI, Bergman P, Bryceson YT. Evaluation of Genetic or Cellular Impairments in Type I IFN Immunity in a Cohort of Young Adults with Critical COVID-19. J Clin Immunol 2024; 44:50. [PMID: 38231281 PMCID: PMC10794435 DOI: 10.1007/s10875-023-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Several genetic and immunological risk factors for severe COVID-19 have been identified, with monogenic conditions relating to 13 genes of type I interferon (IFN) immunity proposed to explain 4.8% of critical cases. However, previous cohorts have been clinically heterogeneous and were not subjected to thorough genetic and immunological analyses. We therefore aimed to systematically investigate the prevalence of rare genetic variants causing inborn errors of immunity (IEI) and functionally interrogate the type I IFN pathway in young adults that suffered from critical COVID-19 yet lacked comorbidities. We selected and clinically characterized a cohort of 38 previously healthy individuals under 50 years of age who were treated in intensive care units due to critical COVID-19. Blood samples were collected after convalescence. Two patients had IFN-α autoantibodies. Genome sequencing revealed very rare variants in the type I IFN pathway in 31.6% of the patients, which was similar to controls. Analyses of cryopreserved leukocytes did not indicate any defect in plasmacytoid dendritic cell sensing of TLR7 and TLR9 agonists in patients carrying variants in these pathways. However, lymphocyte STAT phosphorylation and protein upregulation upon IFN-α stimulation revealed three possible cases of impaired type I IFN signaling in carriers of rare variants. Together, our results suggest a strategy of functional screening followed by genome analyses and biochemical validation to uncover undiagnosed causes of critical COVID-19.
Collapse
Affiliation(s)
- L E Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - A Sendel
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - T M Campbell
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - I Piiroinen
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - S Lind Enoksson
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - E Wahren Borgström
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - S Hansen
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - K Ma
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - P Marits
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - A C Norlin
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I E Smith
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J Kåhlin
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - L I Eriksson
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - P Bergman
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Y T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
31
|
Saygılı S, Koşukcu C, Baştuğ T, Doğan ÖA, Yılmaz EK, Kalyoncu AU, Ağbaş A, Canpolat N, Çalışkan S, Ozaltin F. A novel homozygous missense variant in TBC1D31 in a consanguineous family with congenital anomalies of the kidney and urinary tract (CAKUT). Clin Genet 2023; 104:679-685. [PMID: 37468454 DOI: 10.1111/cge.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is the leading cause of chronic kidney disease in the first three decades of life. Until now, more than 180 monogenic causes of isolated or syndromic CAKUT have been described. In addition, copy number variants (CNV) have also been implicated, however, all of these causative factors only explain a small fraction of patients with CAKUT, suggesting that additional yet-to-be-discovered novel genes are present. Herein, we report three siblings (two of them are monozygotic twin) of a consanguineous family with CAKUT. Whole-exome sequencing identified a homozygous variant in TBC1D31. Three dimensional protein modeling as well as molecular dynamics simulations predicted it as pathogenic. We therefore showed for the first time an association between a homozygous TBC1D31 variant with CAKUT in humans, expanding its genetic spectrum.
Collapse
Affiliation(s)
- Seha Saygılı
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| | - Turgut Baştuğ
- Department of Biophysics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Esra Karabağ Yılmaz
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Ayşe Uçar Kalyoncu
- Department of Pediatric Radiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Salim Çalışkan
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
- Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
32
|
Chauhan NR, Kundu S, Bal R, Chattopadhyay D, Sahu R, Mehto S, Yadav R, Krishna S, Jena KK, Satapathy S, Pv A, Murmu KC, Singh B, Patnaik S, Jena S, Harshan KH, Syed GH, Idris MM, Prasad P, Chauhan S. Transgenic mouse models support a protective role of type I IFN response in SARS-CoV-2 infection-related lung immunopathology and neuroinvasion. Cell Rep 2023; 42:113275. [PMID: 37874678 DOI: 10.1016/j.celrep.2023.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Type I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-), to comprehend the role of IFN-I response. We report that hACE2; Irgm1-/- mice are resistant to lethal SARS-CoV-2 infection. In contrast, a severe SARS-CoV-2 infection along with immune cell infiltration, cytokine storm, and enhanced pathology is observed in the lungs and brain of hACE2; Ifnar1-/- mice. The hACE2; Irgm1-/-Ifnar1-/- double-knockout mice display loss of the protective phenotype observed in hACE2; Irgm1-/- mice, suggesting that heightened IFN-I response accounts for the observed immunity. Taking the results together, we demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target against SARS-CoV-2.
Collapse
Affiliation(s)
- Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India.
| | - Soumya Kundu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Diya Chattopadhyay
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Sameekshya Satapathy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Anusha Pv
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Sarita Jena
- Experimental Animal Facility, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Mohammed M Idris
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
33
|
Reyahi A, Studahl M, Skouboe MK, Fruhwürth S, Narita R, Ren F, Bjerhem Viklund M, Iversen MB, Christiansen M, Svensson A, Mogensen TH, Eriksson K, Paludan SR. An IKBKE variant conferring functional cGAS/STING pathway deficiency and susceptibility to recurrent HSV-2 meningitis. JCI Insight 2023; 8:e173066. [PMID: 37937644 PMCID: PMC10721272 DOI: 10.1172/jci.insight.173066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
The mechanisms underlying susceptibility to recurrent herpes simplex virus type 2 (HSV-2) meningitis remain incompletely understood. In a patient experiencing multiple episodes of HSV-2 meningitis, we identified a monoallelic variant in the IKBKE gene, which encodes the IKKε kinase involved in induction of antiviral IFN genes. Patient cells displayed impaired induction of IFN-β1 (IFNB1) expression upon infection with HSV-2 or stimulation with double-stranded DNA (dsDNA) and failed to induce phosphorylation of STING, an activation marker of the DNA-sensing cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway. The patient allele encoded a truncated IKKε protein with loss of kinase activity and also capable of exerting dominant-negative activity. In stem cell-derived microglia, HSV-2-induced expression of IFNB1 was dependent on cGAS, TANK binding kinase 1 (TBK1), and IKBKE, but not TLR3, and supernatants from HSV-2-treated microglia exerted IKBKE-dependent type I IFN-mediated antiviral activity upon neurons. Reintroducing wild-type IKBKE into patient cells rescued IFNB1 induction following treatment with HSV-2 or dsDNA and restored antiviral activity. Collectively, we identify IKKε to be important for protection against HSV-2 meningitis and suggest a nonredundant role for the cGAS/STING pathway in human antiviral immunity.
Collapse
Affiliation(s)
- Azadeh Reyahi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Studahl
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Stefanie Fruhwürth
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Moa Bjerhem Viklund
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Søren R. Paludan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
López-Bielma MF, Falfán-Valencia R, Abarca-Rojano E, Pérez-Rubio G. Participation of Single-Nucleotide Variants in IFNAR1 and IFNAR2 in the Immune Response against SARS-CoV-2 Infection: A Systematic Review. Pathogens 2023; 12:1320. [PMID: 38003785 PMCID: PMC10675296 DOI: 10.3390/pathogens12111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Host genetic factors significantly influence susceptibility to SARS-CoV-2 infection and COVID-19 severity. Among these genetic factors are single-nucleotide variants (SNVs). IFNAR2 and IFNAR1 genes have been associated with severe COVID-19 in populations from the United Kingdom, Africa, and Latin America. IFNAR1 and IFNAR2 are subunits forming the type I interferon receptor (IFNAR). SNVs in the IFNAR genes impact protein function, affecting antiviral response and disease phenotypes. This systematic review aimed to describe IFNAR1 and IFNAR2 variants associated with COVID-19 susceptibility and severity. Accordingly, the current review focused on IFNAR1 and IFNAR2 studies published between January 2021 and February 2023, utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol. The electronic search was conducted in PubMed databases using Boolean operators and inclusion and exclusion criteria. Of the 170 literature pieces, 11 studies were included. We include case reports of rare SNVs, defined by minor allele frequency (MAF) < 1%, and genome-wide associated studies (GWAS). Variants in IFNAR1 and IFNAR2 could potentially be new targets for therapies that limit the infection and the resulting inflammation by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- María Fernanda López-Bielma
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico (R.F.-V.)
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico (R.F.-V.)
| | - Edgar Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico (R.F.-V.)
| |
Collapse
|
35
|
Alhumaid S, Al Mutared KM, Al Alawi Z, Sabr Z, Alkhars O, Alabdulqader M, Al Dossary N, ALShakhs FM, Majzoub RA, Alalawi YH, Al Noaim K, Alnaim AA, Al Ghamdi MA, Alahmari AA, Albattat SS, Almubarak YS, Al Abdulmohsen EM, Al Shaikh H, Alobaidan ME, Almusallam HH, Alhassan FM, Alamer MA, Al-Hajji JA, Al-Hajji DA, Alkadi AA, Al Mutair A, Rabaan AA. Severity of SARS-CoV-2 infection in children with inborn errors of immunity (primary immunodeficiencies): a systematic review. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:69. [PMID: 37559153 PMCID: PMC10413516 DOI: 10.1186/s13223-023-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) are considered significant challenges for children with IEIs, their families, and their medical providers. Infections are the most common complication of IEIs and children can acquire coronavirus disease 2019 (COVID-19) even when protective measures are taken. OBJECTIVES To estimate the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children with IEIs and analyse the demographic parameters, clinical characteristics and treatment outcomes in children with IEIs with COVID-19 illness. METHODS For this systematic review, we searched ProQuest, Medline, Embase, PubMed, CINAHL, Wiley online library, Scopus and Nature through the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guideline for studies on the development of COVID-19 in children with IEIs, published from December 1, 2019 to February 28, 2023, with English language restriction. RESULTS Of the 1095 papers that were identified, 116 articles were included in the systematic review (73 case report, 38 cohort 4 case-series and 1 case-control studies). Studies involving 710 children with IEIs with confirmed COVID-19 were analyzed. Among all 710 IEIs pediatric cases who acquired SARS-CoV-2, some children were documented to be admitted to the intensive care unit (ICU) (n = 119, 16.8%), intubated and placed on mechanical ventilation (n = 87, 12.2%), suffered acute respiratory distress syndrome (n = 98, 13.8%) or died (n = 60, 8.4%). Overall, COVID-19 in children with different IEIs patents resulted in no or low severity of disease in more than 76% of all included cases (COVID-19 severity: asymptomatic = 105, mild = 351, or moderate = 88). The majority of children with IEIs received treatment for COVID-19 (n = 579, 81.5%). Multisystem inflammatory syndrome in children (MIS-C) due to COVID-19 in children with IEIs occurred in 103 (14.5%). Fatality in children with IEIs with COVID-19 was reported in any of the included IEIs categories for cellular and humoral immunodeficiencies (n = 19, 18.6%), immune dysregulatory diseases (n = 17, 17.9%), innate immunodeficiencies (n = 5, 10%), bone marrow failure (n = 1, 14.3%), complement deficiencies (n = 1, 9.1%), combined immunodeficiencies with associated or syndromic features (n = 7, 5.5%), phagocytic diseases (n = 3, 5.5%), autoinflammatory diseases (n = 2, 3%) and predominantly antibody deficiencies (n = 5, 2.5%). Mortality was COVID-19-related in a considerable number of children with IEIs (29/60, 48.3%). The highest ICU admission and fatality rates were observed in cases belonging to cellular and humoral immunodeficiencies (26.5% and 18.6%) and immune dysregulatory diseases (35.8% and 17.9%) groups, especially in children infected with SARS-CoV-2 who suffered severe combined immunodeficiency (28.6% and 23.8%), combined immunodeficiency (25% and 15%), familial hemophagocytic lymphohistiocytosis (40% and 20%), X-linked lymphoproliferative diseases-1 (75% and 75%) and X-linked lymphoproliferative diseases-2 (50% and 50%) compared to the other IEIs cases. CONCLUSION Children with IEIs infected with SARS-CoV-2 may experience higher rates of ICU admission and mortality in comparison with the immunocompetent pediatric populations. Underlying immune defects does seem to be independent risk factors for severe SARS-CoV-2 infection in children with IEIs, a number of children with SCID and CID were reported to have prolonged infections-though the number of patients is small-but especially immune dysregulation diseases (XLP1 and XLP2) and innate immunodeficiencies impairing type I interferon signalling (IFNAR1, IFNAR2 and TBK1).
Collapse
Affiliation(s)
- Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, 7000, Australia.
| | - Koblan M Al Mutared
- Administration of Pharmaceutical Care, Ministry of Health, 66255, Najran, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Zainah Sabr
- Division of Allergy and Immunology, Pediatric Department, College of Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | - Ola Alkhars
- Pediatric Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Muneera Alabdulqader
- Pediatric Nephrology Specialty, Pediatric Department, Medical College, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Nourah Al Dossary
- General Surgery Department, Alomran General Hospital, Ministry of Health, 36358, Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatemah M ALShakhs
- Respiratory Therapy Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Rabab Abbas Majzoub
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Yousef Hassan Alalawi
- Ear, Nose and Throat Department, Al Jabr Hospital for Eye, Ear, Nose and Throat, Ministry of Health, 36422, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Khalid Al Noaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Abdulrahman A Alnaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed A Al Ghamdi
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Abdulaziz A Alahmari
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Sawsan Sami Albattat
- College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Yasin S Almubarak
- Regional Medical Supply, Al-Ahsa Health Cluster, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | | | - Hanan Al Shaikh
- Infection Prevention and Control Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Mortadah Essa Alobaidan
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Hadi Hassan Almusallam
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatimah Mohammed Alhassan
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed Abdulhadi Alamer
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Jawad Ali Al-Hajji
- Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 24231, Hofuf, Al-Ahsa, Saudi Arabia
| | - Duaa Ali Al-Hajji
- Nursing Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Anwar Ahmed Alkadi
- Nursing Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, 36342, Al Mubarraz, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdul Rahman University, 11564, Riyadh, Saudi Arabia
- School of Nursing, University of Wollongong, Wollongong, NSW, 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, 33048, Dhahran, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
- Department of Public Health/Nutrition, The University of Haripur, Haripur, 22620, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
36
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
37
|
Bucciol G, Moens L, Ogishi M, Rinchai D, Matuozzo D, Momenilandi M, Kerrouche N, Cale CM, Treffeisen ER, Al Salamah M, Al-Saud BK, Lachaux A, Duclaux-Loras R, Meignien M, Bousfiha A, Benhsaien I, Shcherbina A, Roppelt A, Gothe F, Houhou-Fidouh N, Hackett SJ, Bartnikas LM, Maciag MC, Alosaimi MF, Chou J, Mohammed RW, Freij BJ, Jouanguy E, Zhang SY, Boisson-Dupuis S, Béziat V, Zhang Q, Duncan CJ, Hambleton S, Casanova JL, Meyts I. Human inherited complete STAT2 deficiency underlies inflammatory viral diseases. J Clin Invest 2023; 133:e168321. [PMID: 36976641 PMCID: PMC10266780 DOI: 10.1172/jci168321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Leen Moens
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Catherine M. Cale
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Elsa R. Treffeisen
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammad Al Salamah
- King Abdullah Specialist Children’s Hospital and International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Ministry of the National Guard–Health Affairs, Riyadh, Saudi Arabia
| | - Bandar K. Al-Saud
- Pediatric Department, Section of Immunology and Allergy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alain Lachaux
- Gastroenterology, Hepatology and Nutrition Unit, University and Pediatric Hospital of Lyon, and Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Autophagy, Infection and Immunity, Lyon, France
| | - Remi Duclaux-Loras
- Gastroenterology, Hepatology and Nutrition Unit, University and Pediatric Hospital of Lyon, and Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Autophagy, Infection and Immunity, Lyon, France
| | - Marie Meignien
- Internal Medicine and Vascular Pathology Service, University Hospital of Lyon, Lyon, France
| | - Aziz Bousfiha
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, King Hassan II University, Casablanca, Morocco
- Clinical Immunology Unit, Pediatric Infectious Disease Department Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, King Hassan II University, Casablanca, Morocco
- Clinical Immunology Unit, Pediatric Infectious Disease Department Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Roppelt
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Florian Gothe
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nadhira Houhou-Fidouh
- Department of Virology, INSERM, Infection, Antimicrobiens, Modélisation, Evolution, UMR 1137, Bichat–Claude Bernard Hospital, University of Paris, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Scott J. Hackett
- Department of Paediatrics, Birmingham Chest Clinic and Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lisa M. Bartnikas
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle C. Maciag
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed F. Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reem W. Mohammed
- Pediatric Department, Section of Immunology and Allergy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bishara J. Freij
- Pediatric Infectious Diseases Section, Beaumont Children’s Hospital, Royal Oak, Michigan, USA
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Stephanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Christopher J.A. Duncan
- The COVID Human Genetic Effort is detailed in Supplemental Acknowledgments
- Department of Infectious Disease and Tropical Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom, and
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children’s Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
38
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
39
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
40
|
Bucciol G, Meyts I. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. J Allergy Clin Immunol 2023; 151:832-840. [PMID: 36841740 PMCID: PMC9951110 DOI: 10.1016/j.jaci.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic, global sequencing efforts have led in the field of inborn errors of immunity, and inspired particularly by previous research on life-threatening influenza, they have revealed that known and novel inborn errors affecting type I interferon immunity underlie critical COVID-19 in up to 5% of cases. In addition, neutralizing autoantibodies against type I interferons have been identified in up to 20% of patients with critical COVID-19 who are older than 80 years and 20% of fatal cases, with a higher prevalence in men and individuals older than 70 years. Also, inborn errors impairing regulation of type I interferon responses and RNA degradation have been found as causes of multisystem inflammatory syndrome in children, a life-threatening hyperinflammatory condition complicating otherwise mild initial SARS-CoV-2 infection in children and young adults. Better understanding of these immunologic mechanisms can aid in designing treatments for severe COVID-19, multisystem inflammatory syndrome in children, long COVID, and neuro-COVID.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium.
| |
Collapse
|
41
|
Inborn Errors of Immunity Predisposing to Herpes Simplex Virus Infections of the Central Nervous System. Pathogens 2023; 12:pathogens12020310. [PMID: 36839582 PMCID: PMC9961685 DOI: 10.3390/pathogens12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Herpesvirus infections can lead to a number of severe clinical manifestations, particularly when involving the central nervous system (CNS), causing encephalitis and meningitis. However, understanding of the host factors conferring increased susceptibility to these diseases and their complications remains incomplete. Previous studies have uncovered defects in the innate Toll-like receptor 3 pathway and production of type I interferon (IFN-I) in children and adults that predispose them to herpes simplex encephalitis. More recently, there is accumulating evidence for an important role of IFN-independent cell-autonomous intrinsic mechanisms, including small nucleolar RNAs, RNA lariat metabolism, and autophagy, in restricting herpesvirus replication and conferring protection against CNS infection. The present review first describes clinical manifestations of HSV infection with a focus on neurological complications and then summarizes the host-pathogen interactions and innate immune pathways responsible for sensing herpesviruses and triggering antiviral responses and immunity. Next, we review the current landscape of inborn errors of immunity and the underlying genetic defects and disturbances of cellular immune pathways that confer increased susceptibility to HSV infection in CNS. Ultimately, we discuss some of the present outstanding unanswered questions relating to inborn errors of immunity and HSV CNS infection together with some perspectives and future directions for research in the pathogenesis of these severe diseases in humans.
Collapse
|
42
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
43
|
Hanrath AT, Hatton CF, Gothe F, Browne C, Vowles J, Leary P, Cockell SJ, Cowley SA, James WS, Hambleton S, Duncan CJA. Type I interferon receptor ( IFNAR2) deficiency reveals Zika virus cytopathicity in human macrophages and microglia. Front Immunol 2022; 13:1035532. [PMID: 36439115 PMCID: PMC9691778 DOI: 10.3389/fimmu.2022.1035532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.
Collapse
Affiliation(s)
- Aidan T. Hanrath
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Catherine F. Hatton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Florian Gothe
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter Leary
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| | - Simon J. Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle, United Kingdom
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sophie Hambleton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Christopher J. A. Duncan
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
44
|
Notarangelo LD, Bosticardo M. Interferons in Down syndrome: When more is less. Immunity 2022; 55:1967-1969. [PMID: 36351368 PMCID: PMC10593427 DOI: 10.1016/j.immuni.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals with Down syndrome (DS) are at a lower risk for viral infections than the general population, yet their infectious episodes are often more serious. In this issue of Immunity, Malle et al. provide important mechanistic insight into this paradox, showing that individuals with DS have dysregulated IFN-I responses with increased initial signaling translating into a refractory state that makes their immune systems less capable of controlling viral infections.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, Le Voyer T, Bizien L, Manry J, Rosain J, Philippot Q, Goavec K, Padey B, Cupic A, Laurent E, Saker K, Vanker M, Särekannu K, García-Salum T, Ferres M, Le Corre N, Sánchez-Céspedes J, Balsera-Manzanero M, Carratala J, Retamar-Gentil P, Abelenda-Alonso G, Valiente A, Tiberghien P, Zins M, Debette S, Meyts I, Haerynck F, Castagnoli R, Notarangelo LD, Gonzalez-Granado LI, Dominguez-Pinilla N, Andreakos E, Triantafyllia V, Rodríguez-Gallego C, Solé-Violán J, Ruiz-Hernandez JJ, Rodríguez de Castro F, Ferreres J, Briones M, Wauters J, Vanderbeke L, Feys S, Kuo CY, Lei WT, Ku CL, Tal G, Etzioni A, Hanna S, Fournet T, Casalegno JS, Queromes G, Argaud L, Javouhey E, Rosa-Calatrava M, Cordero E, Aydillo T, Medina RA, Kisand K, Puel A, Jouanguy E, Abel L, Cobat A, Trouillet-Assant S, García-Sastre A, Casanova JL. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022; 219:e20220514. [PMID: 36112363 PMCID: PMC9485705 DOI: 10.1084/jem.20220514] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Lisa Miorin
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Kelian Goavec
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Signia Therapeutics SAS, Lyon, France
| | - Anastasija Cupic
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Kahina Saker
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Martti Vanker
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara García-Salum
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pathology Advanced Translational Research Unit, Dept. of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA
| | - Marcela Ferres
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - María Balsera-Manzanero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - Jordi Carratala
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Pilar Retamar-Gentil
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriela Abelenda-Alonso
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Dept. of Infectious Diseases, Bellvitge University Hospital, Barcelona, Spain
| | - Adoración Valiente
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Pierre Tiberghien
- Etablissement Francais Du Sang, La Plaine-Saint Denis, Saint-Denis, France
| | - Marie Zins
- University of Paris Cite, University of Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital October 12, Research Institute Hospital October 12, School of Medicine, Complutense University, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Pediatrics Service, Hematology and Oncology Unit, University Hospital 12 October, Madrid, Spain
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Carlos Rodríguez-Gallego
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Ruiz-Hernandez
- Dept. of Internal Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Ferreres
- Critical Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Marisa Briones
- Dept. of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Joost Wauters
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Dept. of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Suhair Hanna
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Thomas Fournet
- Etablissement Français Du Sang, Université de Franche-Comté, Besançon, France
| | - Jean-Sebastien Casalegno
- Virology Laboratory, CNR des Virus des Infections Respiratoires, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gregory Queromes
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Dept., Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Dept. of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Aydillo
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rafael A. Medina
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Adolfo García-Sastre
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
46
|
Developing CIRdb as a catalog of natural genetic variation in the Canary Islanders. Sci Rep 2022; 12:16132. [PMID: 36168029 PMCID: PMC9514705 DOI: 10.1038/s41598-022-20442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The current inhabitants of the Canary Islands have a unique genetic makeup in the European diversity landscape due to the existence of African footprints from recent admixture events, especially of North African components (> 20%). The underrepresentation of non-Europeans in genetic studies and the sizable North African ancestry, which is nearly absent from all existing catalogs of worldwide genetic diversity, justify the need to develop CIRdb, a population-specific reference catalog of natural genetic variation in the Canary Islanders. Based on array genotyping of the selected unrelated donors and comparisons against available datasets from European, sub-Saharan, and North African populations, we illustrate the intermediate genetic differentiation of Canary Islanders between Europeans and North Africans and the existence of within-population differences that are likely driven by genetic isolation. Here we describe the overall design and the methods that are being implemented to further develop CIRdb. This resource will help to strengthen the implementation of Precision Medicine in this population by contributing to increase the diversity in genetic studies. Among others, this will translate into improved ability to fine map disease genes and simplify the identification of causal variants and estimate the prevalence of unattended Mendelian diseases.
Collapse
|
47
|
Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol 2022; 12:963239. [PMID: 36204639 PMCID: PMC9530247 DOI: 10.3389/fcimb.2022.963239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bin Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bi Ze
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
48
|
van der Made CI, Netea MG, van der Veerdonk FL, Hoischen A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med 2022; 14:96. [PMID: 35986347 PMCID: PMC9390103 DOI: 10.1186/s13073-022-01100-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023] Open
Abstract
Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus biology and the host factors that modulate the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased susceptibility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and personalized clinical management. This review aims to provide an overview of our current understanding of the host genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling genes and their potential clinical implications.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van der Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
49
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
50
|
Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, Asano T, Bohlen J, Liu Z, Moncada-Velez M, Kendir-Demirkol Y, Jing H, Bizien L, Marchal A, Abolhassani H, Delafontaine S, Bucciol G, Bayhan GI, Keles S, Kiykim A, Hancerli S, Haerynck F, Florkin B, Hatipoglu N, Ozcelik T, Morelle G, Zatz M, Ng LF, Lye DC, Young BE, Leo YS, Dalgard CL, Lifton RP, Renia L, Meyts I, Jouanguy E, Hammarström L, Pan-Hammarström Q, Boisson B, Bastard P, Su HC, Boisson-Dupuis S, Abel L, Rice CM, Zhang SY, Cobat A, Casanova JL. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J Exp Med 2022; 219:213287. [PMID: 35708626 PMCID: PMC9206114 DOI: 10.1084/jem.20220131] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Leen Moens
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Selket Delafontaine
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | | | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Selda Hancerli
- Department of Pediatrics (Infectious Diseases), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Filomeen Haerynck
- Department of Pediatric Immunology and Pulmonology, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Benoit Florkin
- Department of Pediatrics, Hôpital de la Citadelle, Liége, Belgium
| | - Nevin Hatipoglu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Guillaume Morelle
- Department of General Pediatrics, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Mayana Zatz
- Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Richard P. Lifton
- Laboratory of Genetics and Genomics, The Rockefeller University, New York, NY
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|