1
|
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K ATP channel structure and function. Channels (Austin) 2024; 18:2327708. [PMID: 38489043 PMCID: PMC10950283 DOI: 10.1080/19336950.2024.2327708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
Collapse
Affiliation(s)
- Bruce L. Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Yang Y, Chen L. Functional dissection of KATP channel structures reveals the importance of a conserved interface. Structure 2024; 32:168-176.e2. [PMID: 38101402 DOI: 10.1016/j.str.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K ATP Channel Mutations in Intact Cells. J Pharmacol Exp Ther 2023; 386:298-309. [PMID: 37527933 PMCID: PMC10449099 DOI: 10.1124/jpet.123.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023] Open
Abstract
Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Conor McClenaghan
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Kenneth A Matreyek
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Dorothy K Grange
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| |
Collapse
|
4
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
6
|
Driggers CM, Shyng SL. Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 2022; 155:213723. [PMID: 36441147 PMCID: PMC9700523 DOI: 10.1085/jgp.202113046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Gated by intracellular ATP and ADP, ATP-sensitive potassium (KATP) channels couple cell energetics with membrane excitability in many cell types, enabling them to control a wide range of physiological processes based on metabolic demands. The KATP channel is a complex of four potassium channel subunits from the Kir channel family, Kir6.1 or Kir6.2, and four sulfonylurea receptor subunits, SUR1, SUR2A, or SUR2B, from the ATP-binding cassette (ABC) transporter family. Dysfunction of KATP channels underlies several human diseases. The importance of these channels in human health and disease has made them attractive drug targets. How the channel subunits interact with one another and how the ligands interact with the channel to regulate channel activity have been long-standing questions in the field. In the past 5 yr, a steady stream of high-resolution KATP channel structures has been published using single-particle cryo-electron microscopy (cryo-EM). Here, we review the advances these structures bring to our understanding of channel regulation by physiological and pharmacological ligands.
Collapse
Affiliation(s)
- Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR,Correspondence to Show-Ling Shyng:
| |
Collapse
|
7
|
McClenaghan C, Rapini N, De Rose DU, Gao J, Roeglin J, Bizzarri C, Schiaffini R, Tiberi E, Mucciolo M, Deodati A, Perri A, Vento G, Barbetti F, Nichols CG, Cianfarani S. Sulfonylurea-Insensitive Permanent Neonatal Diabetes Caused by a Severe Gain-of-Function Tyr330His Substitution in Kir6.2. Horm Res Paediatr 2022; 95:215-223. [PMID: 34999583 PMCID: PMC9259755 DOI: 10.1159/000521858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS Mutations in KCNJ11, the gene encoding the Kir6.2 subunit of pancreatic and neuronal KATP channels, are associated with a spectrum of neonatal diabetes diseases. METHODS Variant screening was used to identify the cause of neonatal diabetes, and continuous glucose monitoring was used to assess effectiveness of sulfonylurea treatment. Electrophysiological analysis of variant KATP channel function was used to determine molecular basis. RESULTS We identified a previously uncharacterized KCNJ11 mutation, c.988T>C [p.Tyr330His], in an Italian child diagnosed with sulfonylurea-resistant permanent neonatal diabetes and developmental delay (intermediate DEND). Functional analysis of recombinant KATP channels reveals that this mutation causes a drastic gain-of-function, due to a reduction in ATP inhibition. Further, we demonstrate that the Tyr330His substitution causes a significant decrease in sensitivity to the sulfonylurea, glibenclamide. CONCLUSIONS In this subject, the KCNJ11 (c.988T>C) mutation provoked neonatal diabetes, with mild developmental delay, which was insensitive to correction by sulfonylurea therapy. This is explained by the molecular loss of sulfonylurea sensitivity conferred by the Tyr330His substitution and highlights the need for molecular analysis of such mutations.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Novella Rapini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy,Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Jian Gao
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacob Roeglin
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Bizzarri
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Riccardo Schiaffini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Eloisa Tiberi
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mafalda Mucciolo
- Genetics and Rare Disease Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Alessandro Perri
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Giovanni Vento
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Barbetti
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00131 Rome, Italy
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Cognitive deficits and impaired hippocampal long-term potentiation in K ATP-induced DEND syndrome. Proc Natl Acad Sci U S A 2021; 118:2109721118. [PMID: 34732576 PMCID: PMC8609313 DOI: 10.1073/pnas.2109721118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium (KATP) gain-of-function (GOF) mutations cause neonatal diabetes, with some individuals exhibiting developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. Mice expressing KATP-GOF mutations pan-neuronally (nKATP-GOF) demonstrated sensorimotor and cognitive deficits, whereas hippocampus-specific hKATP-GOF mice exhibited mostly learning and memory deficiencies. Both nKATP-GOF and hKATP-GOF mice showed altered neuronal excitability and reduced hippocampal long-term potentiation (LTP). Sulfonylurea therapy, which inhibits KATP, mildly improved sensorimotor but not cognitive deficits in KATP-GOF mice. Mice expressing KATP-GOF mutations in pancreatic β-cells developed severe diabetes but did not show learning and memory deficits, suggesting neuronal KATP-GOF as promoting these features. These findings suggest a possible origin of cognitive dysfunction in DEND and the need for novel drugs to treat neurological features induced by neuronal KATP-GOF.
Collapse
|
9
|
Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Methods Enzymol 2021; 653:121-150. [PMID: 34099169 DOI: 10.1016/bs.mie.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels are multimeric protein complexes made of four inward rectifying potassium channel (Kir6.x) subunits and four ABC protein sulfonylurea receptor (SURx) subunits. Kir6.x subunits form the potassium ion conducting pore of the channel, and SURx functions to regulate Kir6.x. Kir6.x and SURx are uniquely dependent on each other for expression and function. In pancreatic β-cells, channels comprising SUR1 and Kir6.2 mediate glucose-stimulated insulin secretion and are the targets of antidiabetic sulfonylureas. Mutations in genes encoding SUR1 or Kir6.2 are linked to insulin secretion disorders, with loss- or gain-of-function mutations causing congenital hyperinsulinism or neonatal diabetes mellitus, respectively. Defects in the KATP channel in other tissues underlie human diseases of the cardiovascular and nervous systems. Key to understanding how channels are regulated by physiological and pharmacological ligands and how mutations disrupt channel assembly or gating to cause disease is the ability to observe structural changes associated with subunit interactions and ligand binding. While recent advances in the structural method of single-particle cryo-electron microscopy (cryoEM) offers direct visualization of channel structures, success of obtaining high-resolution structures is dependent on highly concentrated, homogeneous KATP channel particles. In this chapter, we describe a method for expressing KATP channels in mammalian cell culture, solubilizing the channel in detergent micelles and purifying KATP channels using an affinity tag to the SURx subunit for cryoEM structural studies.
Collapse
|
10
|
Martin GM, Sung MW, Shyng SL. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures. Mol Cell Endocrinol 2020; 502:110667. [PMID: 31821855 PMCID: PMC6994177 DOI: 10.1016/j.mce.2019.110667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are uniquely evolved protein complexes that couple cell energy levels to cell excitability. They govern a wide range of physiological processes including hormone secretion, neuronal transmission, vascular dilation, and cardiac and neuronal preconditioning against ischemic injuries. In pancreatic β-cells, KATP channels composed of Kir6.2 and SUR1, encoded by KCNJ11 and ABCC8, respectively, play a key role in coupling blood glucose concentration to insulin secretion. Mutations in ABCC8 or KCNJ11 that diminish channel function result in congenital hyperinsulinism. Many of these mutations principally hamper channel biogenesis and hence trafficking to the cell surface. Several small molecules have been shown to correct channel biogenesis and trafficking defects. Here, we review studies aimed at understanding how mutations impair channel biogenesis and trafficking and how pharmacological ligands overcome channel trafficking defects, particularly highlighting recent cryo-EM structural studies which have shed light on the mechanisms of channel assembly and pharmacological chaperones.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Min Woo Sung
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
12
|
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Mechanism of pharmacochaperoning in a mammalian K ATP channel revealed by cryo-EM. eLife 2019; 8:46417. [PMID: 31343405 PMCID: PMC6699824 DOI: 10.7554/elife.46417] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of a pore-forming Kir6.2 potassium channel and a regulatory ABC transporter sulfonylurea receptor 1 (SUR1) regulate insulin secretion in pancreatic β-cells to maintain glucose homeostasis. Mutations that impair channel folding or assembly prevent cell surface expression and cause congenital hyperinsulinism. Structurally diverse KATP inhibitors are known to act as pharmacochaperones to correct mutant channel expression, but the mechanism is unknown. Here, we compare cryoEM structures of a mammalian KATP channel bound to pharmacochaperones glibenclamide, repaglinide, and carbamazepine. We found all three drugs bind within a common pocket in SUR1. Further, we found the N-terminus of Kir6.2 inserted within the central cavity of the SUR1 ABC core, adjacent the drug binding pocket. The findings reveal a common mechanism by which diverse compounds stabilize the Kir6.2 N-terminus within SUR1’s ABC core, allowing it to act as a firm ‘handle’ for the assembly of metastable mutant SUR1-Kir6.2 complexes.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Min Woo Sung
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Laura M Innes
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
13
|
Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K ATP channels. J Biol Chem 2018; 294:3707-3719. [PMID: 30587573 DOI: 10.1074/jbc.ra118.005236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jelena Sikimic
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Timothy S McMillen
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Cita Bleile
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Frank Dastvan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Ulrich Quast
- Department of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, D-72074 Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Gisela Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| |
Collapse
|
14
|
Hughes JW, Ustione A, Lavagnino Z, Piston DW. Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab 2018; 20 Suppl 2:127-136. [PMID: 30230183 PMCID: PMC6148361 DOI: 10.1111/dom.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
The islet of Langerhans plays a key role in glucose homeostasis through regulated secretion of the hormones insulin and glucagon. Islet research has focused on the insulin-secreting β-cells, even though aberrant glucagon secretion from α-cells also contributes to the aetiology of diabetes. Despite its importance, the mechanisms controlling glucagon secretion remain controversial. Proper α-cell function requires the islet milieu, where β- and δ-cells drive and constrain α-cell dynamics. The response of glucagon to glucose is similar between isolated islets and that measured in vivo, so it appears that the glucose dependence requires only islet-intrinsic factors and not input from blood flow or the nervous system. Elevated intracellular free Ca2+ is needed for α-cell exocytosis, but interpreting Ca2+ data is tricky since it is heterogeneous among α-cells at all physiological glucose levels. Total Ca2+ activity in α-cells increases slightly with glucose, so Ca2+ may serve a permissive, rather than regulatory, role in glucagon secretion. On the other hand, cAMP is a more promising candidate for controlling glucagon secretion and is itself driven by paracrine signalling from β- and δ-cells. Another pathway, juxtacrine signalling through the α-cell EphA receptors, stimulated by β-cell ephrin ligands, leads to a tonic inhibition of glucagon secretion. We discuss potential combinations of Ca2+ , cAMP, paracrine and juxtacrine factors in the regulation of glucagon secretion, focusing on recent data in the literature that might unify the field towards a quantitative understanding of α-cell function.
Collapse
Affiliation(s)
- Jing W. Hughes
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Martin GM, Kandasamy B, DiMaio F, Yoshioka C, Shyng SL. Anti-diabetic drug binding site in a mammalian K ATP channel revealed by Cryo-EM. eLife 2017; 6:31054. [PMID: 29035201 PMCID: PMC5655142 DOI: 10.7554/elife.31054] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Sulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of a hamster SUR1/rat Kir6.2 channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.63 Å resolution, which reveals unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| |
Collapse
|
17
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
18
|
Emfinger CH, Welscher A, Yan Z, Wang Y, Conway H, Moss JB, Moss LG, Remedi MS, Nichols CG. Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160808. [PMID: 28386438 PMCID: PMC5367309 DOI: 10.1098/rsos.160808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
ATP-sensitive potassium channels (KATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, KATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism-secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish KATP using diazoxide, a specific KATP channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell KATP channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Alecia Welscher
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Zihan Yan
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Yixi Wang
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Hannah Conway
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jennifer B. Moss
- Division of Endocrinology, Metabolism, and Nutrition and DMPI, Duke University Medical Center, Durham, NC, USA
| | - Larry G. Moss
- Division of Endocrinology, Metabolism, and Nutrition and DMPI, Duke University Medical Center, Durham, NC, USA
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
19
|
Cooper PE, Sala-Rabanal M, Lee SJ, Nichols CG. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel. ACTA ACUST UNITED AC 2017; 146:527-40. [PMID: 26621776 PMCID: PMC4664827 DOI: 10.1085/jgp.201511495] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations that increase the activity of ATP-sensitive potassium channels through either enhanced activation by MgADP or decreased sensitivity to inhibition by ATP can lead to Cantú syndrome. Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.
Collapse
Affiliation(s)
- Paige E Cooper
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Sun Joo Lee
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
20
|
Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell 2017; 168:101-110.e10. [DOI: 10.1016/j.cell.2016.12.028] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
21
|
The shifting landscape of KATP channelopathies and the need for 'sharper' therapeutics. Future Med Chem 2016; 8:789-802. [PMID: 27161588 DOI: 10.4155/fmc-2016-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels play fundamental roles in the regulation of endocrine, neural and cardiovascular function. Small-molecule inhibitors (e.g., sulfonylurea drugs) or activators (e.g., diazoxide) acting on SUR1 or SUR2 have been used clinically for decades to manage the inappropriate secretion of insulin in patients with Type 2 diabetes, hyperinsulinism and intractable hypertension. More recently, the discovery of rare disease-causing mutations in KATP channel-encoding genes has highlighted the need for new therapeutics for the treatment of certain forms of neonatal diabetes mellitus, congenital hyperinsulinism and Cantu syndrome. Here, we provide a high-level overview of the pathophysiology of these diseases and discuss the development of a flexible high-throughput screening platform to enable the development of new classes of KATP channel modulators.
Collapse
|
22
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
23
|
Proks P, de Wet H, Ashcroft FM. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study. ACTA ACUST UNITED AC 2015; 144:469-86. [PMID: 25348414 PMCID: PMC4210431 DOI: 10.1085/jgp.201411222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfonylureas suppress the stimulatory effect of Mg-nucleotides on recombinant β-cell (Kir6.2/SUR1) but not cardiac (Kir6.2/SUR2A) KATP channels. Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.
Collapse
Affiliation(s)
- Peter Proks
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Heidi de Wet
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Frances M Ashcroft
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| |
Collapse
|
24
|
Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge. Biochem J 2015; 464:343-54. [PMID: 25236767 DOI: 10.1042/bj20140273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP-sensitive potassium channels play key roles in many tissues by coupling metabolic status to membrane potential. In contrast with other potassium channels, the pore-forming Kir6 subunits must co-assemble in hetero-octameric complexes with ATP-binding cassette (ABC) family sulfonylurea receptor (SUR) subunits to facilitate cell surface expression. Binding of nucleotides and drugs to SUR regulates channel gating but how these responses are communicated within the complex has remained elusive to date. We have now identified an electrostatic interaction, forming part of a functional interface between the cytoplasmic nucleotide-binding domain-2 of SUR2 subunits and the distal C-terminus of Kir6 polypeptides that determines channel response to nucleotide, potassium channel opener and antagonist. Mutation of participating residues disrupted physical interaction and regulation of expressed channels, properties that were restored in paired charge-swap mutants. Equivalent interactions were identified in Kir6.1- and Kir6.2-containing channels suggesting a conserved mechanism of allosteric regulation.
Collapse
|
25
|
Devaraneni PK, Martin GM, Olson EM, Zhou Q, Shyng SL. Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism. J Biol Chem 2015; 290:7980-91. [PMID: 25637631 DOI: 10.1074/jbc.m114.634576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gregory M Martin
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Erik M Olson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Qing Zhou
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
26
|
Xie L, Liang T, Kang Y, Lin X, Sobbi R, Xie H, Chao C, Backx P, Feng ZP, Shyng SL, Gaisano HY. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels. J Mol Cell Cardiol 2014; 75:100-10. [DOI: 10.1016/j.yjmcc.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/15/2022]
|
27
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
28
|
Abstract
ATP-sensitive potassium (KATP) channels were first discovered in the heart 30 years ago. Reconstitution of KATP channel activity by coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein subfamily has led to the elucidation of many details of channel gating and pore properties. In addition, the essential roles of Kir6.x and SURx subunits in generating cardiac and vascular KATP(2) and the detrimental consequences of genetic deletions or mutations in mice have been recognized. However, despite this extensive body of knowledge, there has been a paucity of defined roles of KATP subunits in human cardiovascular diseases, although there are reports of association of a single Kir6.1 variant with the J-wave syndrome in the ECG, and 2 isolated studies have reported association of loss of function mutations in SUR2 with atrial fibrillation and heart failure. Two new studies convincingly demonstrate that mutations in the SUR2 gene are associated with Cantu syndrome, a complex multi-organ disorder characterized by hypertrichosis, craniofacial dysmorphology, osteochondrodysplasia, patent ductus arteriosus, cardiomegaly, pericardial effusion, and lymphoedema. This realization of previously unconsidered consequences provides significant insight into the roles of the KATP channel in the cardiovascular system and suggests novel therapeutic possibilities.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
29
|
Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012; 75:425-36. [PMID: 22884327 DOI: 10.1016/j.neuron.2012.03.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
VIDEO ABSTRACT The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity.
Collapse
Affiliation(s)
- Shi-Bing Yang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sala-Rabanal M, Wang S, Nichols CG. On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J Biol Chem 2012; 287:8746-56. [PMID: 22291026 DOI: 10.1074/jbc.m111.336131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The sulfonylurea receptor SUR1 associates with Kir6.2 or Kir6.1 to form K(ATP) channels, which link metabolism to excitability in multiple cell types. The strong physical coupling of SUR1 with Kir6 subunits appears exclusive, but recent studies argue that SUR1 also modulates TRPM4, a member of the transient receptor potential family of non-selective cation channels. It has been reported that, following stroke, brain, or spinal cord injury, SUR1 is increased in neurovascular cells at the site of injury. This is accompanied by up-regulation of a non-selective cation conductance with TRPM4-like properties and apparently sensitive to sulfonylureas, leading to the postulation that post-traumatic non-selective cation currents are determined by TRPM4/SUR1 channels. To investigate the mechanistic hypothesis for the coupling between TRPM4 and SUR1, we performed electrophysiological and FRET studies in COSm6 cells expressing TRPM4 channels with or without SUR1. TRPM4-mediated currents were Ca(2+)-activated, voltage-dependent, underwent desensitization, and were inhibited by ATP but were insensitive to glibenclamide and tolbutamide. These properties were not affected by cotransfection with SUR1. When the same SUR1 was cotransfected with Kir6.2, functional K(ATP) channels were formed. In cells cotransfected with Kir6.2, SUR1, and TRPM4, we measured K(ATP)-mediated K(+) currents and Ca(2+)-activated, sulfonylurea-insensitive Na(+) currents in the same patch, further showing that SUR1 controls K(ATP) channel activity but not TRPM4 channels. FRET signal between fluorophore-tagged TRPM4 subunits was similar to that between Kir6.2 and SUR1, whereas there was no detectable FRET efficiency between TRPM4 and SUR1. Our data suggest that functional or structural association of TRPM4 and SUR1 is unlikely.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
31
|
Kühner P, Prager R, Stephan D, Russ U, Winkler M, Ortiz D, Bryan J, Quast U. Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic KATP channel. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:299-311. [DOI: 10.1007/s00210-011-0709-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
|
32
|
Babenko AP, Vaxillaire M. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8). FEBS Lett 2011; 585:3555-9. [PMID: 22020219 DOI: 10.1016/j.febslet.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023]
Abstract
Activating mutations in different domains of the ABCC8 gene-coded sulfonylurea receptor 1 (SUR1) cause neonatal diabetes. Here we show that a diabetogenic mutation in an unexplored helix preceding the ABC core of SUR1 dramatically increases open probability of (SUR1/Kir6.2)(4) channel (KATP) by reciprocally changing rates of its transitions to and from the long-lived, inhibitory ligand-stabilized closed state. This kinetic mechanism attenuates ATP and sulfonylurea inhibition, but not Mg-nucleotide stimulation, of SUR1/Kir6.2. The results suggest a key role for L0 helix in KATP gating and together with previous findings from mutant KATP clarify why many patients with neonatal diabetes require high doses of sulfonylureas.
Collapse
Affiliation(s)
- Andrey P Babenko
- Pacific Northwest Research Institute, University of Washington Diabetes Endocrinology Research Center, Seattle, WA 98122, United States.
| | | |
Collapse
|
33
|
Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. VITAMINS AND HORMONES 2011; 84:279-302. [PMID: 21094904 DOI: 10.1016/b978-0-12-381517-0.00010-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) binds its Class II G protein-coupled receptor to stimulate cyclic adenosine monophosphate (cAMP) production and to potentiate the glucose metabolism-dependent secretion of insulin from pancreatic β cells located within the islets of Langerhans. Prior clinical studies demonstrate that this cAMP-mediated action of GLP-1 to potentiate glucose-stimulated insulin secretion (GSIS) is of major therapeutic importance when evaluating the abilities of GLP-1 receptor (GLP-1R) agonists to lower levels of blood glucose in type 2 diabetic subjects. Surprisingly, recent in vitro studies of human or rodent islets of Langerhans provide evidence for the existence of a noncanonical mechanism of β cell cAMP signal transduction, one that may explain how GLP-1R agonists potentiate GSIS. What these studies demonstrate is that a cAMP-regulated guanine nucleotide exchange factor designated as Epac2 couples β cell cAMP production to the protein kinase A-independent stimulation of insulin exocytosis. Provided here is an overview of the Epac2 signal transduction system in β cells, with special emphasis on Rap1, a Ras-related GTPase that is an established target of Epac2.
Collapse
|
34
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
35
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K channel openers is hampered by their inability to cross the blood-brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. METHODS To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. RESULTS Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration-inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 +/- 4 to 96 +/- 6 microm. CONCLUSIONS Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood-brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke.
Collapse
|
37
|
Amann T, Schell S, Kühner P, Winkler M, Schwanstecher M, Russ U, Quast U. Substitution of the Walker A lysine by arginine in the nucleotide-binding domains of sulphonylurea receptor SUR2B: effects on ligand binding and channel activity. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:507-16. [PMID: 20352196 DOI: 10.1007/s00210-010-0510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
Sulphonylurea receptors (SURs) serve as regulatory subunits of ATP-sensitive K(+) channels. SURs are members of the ATP-binding cassette (ABC) protein superfamily and contain two conserved nucleotide-binding domains (NBDs) which bind and hydrolyse MgATP; in addition, they carry the binding sites for the sulphonylureas like glibenclamide (GBC) which close the channel and for the K(ATP) channel openers such as P1075. Here we have exchanged the conserved Lys in the Walker A motif by Arg in both NBDs of SUR2B, the regulatory subunit of the vascular K(ATP) channel. Then the effect of the mutation on the ATPase-dependent binding of GBC and P1075 to SUR2B and on the activity of the recombinant vascular (Kir6.1/SUR2B) channel was assessed. Surprisingly, in the absence of MgATP, the mutation weakened binding of P1075 and the extent of allosteric inhibition of GBC binding by P1075. The mutation abolished most, but not all, of the MgATP effects on the binding of GBC and P1075 and prevented nucleotide-induced activation of the channel which relies on SUR reaching the posthydrolytic (MgADP-bound) state; the mutant channel was, however, opened by P1075 at higher concentrations. The data provide evidence that mutant SUR2B binds MgATP but that the posthydrolytic state is insufficiently populated. This suggests that the mutation locks SUR2B in an MgATP-binding prehydrolytic-like state; binding of P1075 may induce a posthydrolytic-like conformation to open the channel.
Collapse
Affiliation(s)
- Tobias Amann
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard-Karls-University Hospitals and Clinics, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Leech CA, Dzhura I, Chepurny OG, Schwede F, Genieser HG, Holz GG. Facilitation of ß-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets 2010; 2:72-81. [PMID: 20428467 PMCID: PMC2860288 DOI: 10.4161/isl.2.2.10582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2’-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2’-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2’-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2’-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.
Collapse
Affiliation(s)
- Colin A Leech
- Department of Medicine, State University of New York, Syracuse, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Remedi MS, Kurata HT, Scott A, Wunderlich FT, Rother E, Kleinridders A, Tong A, Brüning JC, Koster JC, Nichols CG. Secondary consequences of beta cell inexcitability: identification and prevention in a murine model of K(ATP)-induced neonatal diabetes mellitus. Cell Metab 2009; 9:140-51. [PMID: 19187772 PMCID: PMC4793729 DOI: 10.1016/j.cmet.2008.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/09/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
ATP-insensitive K(ATP) channel mutations cause neonatal diabetes mellitus (NDM). To explore the mechanistic etiology, we generated transgenic mice carrying an ATP-insensitive mutant K(ATP) channel subunit. Constitutive expression in pancreatic beta cells caused neonatal hyperglycemia and progression to severe diabetes and growth retardation, with loss of islet insulin content and beta cell architecture. Tamoxifen-induced expression in adult beta cells led to diabetes within 2 weeks, with similar secondary consequences. Diabetes was prevented by transplantation of normal islets under the kidney capsule. Moreover, the endogenous islets maintained normal insulin content and secretion in response to sulfonylureas, but not glucose, consistent with reduced ATP sensitivity of beta cell K(ATP) channels. In NDM, transfer to sulfonylurea therapy is less effective in older patients. This may stem from poor glycemic control or lack of insulin because glibenclamide treatment prior to tamoxifen induction prevented diabetes and secondary complications in mice but failed to halt disease progression after diabetes had developed.
Collapse
Affiliation(s)
- Maria Sara Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Russ U, Kühner P, Prager R, Stephan D, Bryan J, Quast U. Incomplete dissociation of glibenclamide from wild-type and mutant pancreatic K ATP channels limits their recovery from inhibition. Br J Pharmacol 2009; 156:354-61. [PMID: 19154434 DOI: 10.1111/j.1476-5381.2008.00005.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The antidiabetic sulphonylurea, glibenclamide, acts by inhibiting the pancreatic ATP-sensitive K(+) (K(ATP)) channel, a tetradimeric complex of K(IR)6.2 and sulphonylurea receptor 1 (K(IR)6.2/SUR1)(4). At room temperature, recovery of channel activity following washout of glibenclamide is very slow and cannot be measured. This study investigates the relation between the recovery of channel activity from glibenclamide inhibition and the dissociation rate of [(3)H]-glibenclamide from the channel at 37 degrees C. EXPERIMENTAL APPROACH K(IR)6.2, K(IR)6.2DeltaN5 or K(IR)6.2DeltaN10 (the latter lacking amino-terminal residues 2-5 or 2-10 respectively) were coexpressed with SUR1 in HEK cells. Dissociation of [(3)H]-glibenclamide from the channel and recovery of channel activity from glibenclamide inhibition were determined at 37 degrees C. KEY RESULTS The dissociation kinetics of [(3)H]-glibenclamide from the wild-type channel followed an exponential decay with a dissociation half-time, t(1/2)(D) = 14 min; however, only limited and slow recovery of channel activity was observed. t(1/2)(D) for K(IR)6.2DeltaN5/SUR1 channels was 5.3 min and recovery of channel activity exhibited a sluggish sigmoidal time course with a half-time, t(1/2)(R) = 12 min. t(1/2)(D) for the DeltaN10 channel was 2.3 min; recovery kinetics were again sigmoidal with t(1/2)(R) approximately 4 min. CONCLUSIONS AND IMPLICATIONS The dissociation of glibenclamide from the truncated channels is the rate-limiting step of channel recovery. The sigmoidal recovery kinetics are in quantitative agreement with a model where glibenclamide must dissociate from all four (or at least three) sites before the channel reopens. It is argued that these conclusions hold also for the wild-type (pancreatic) K(ATP) channel.
Collapse
Affiliation(s)
- U Russ
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Modeling K(ATP) channel gating and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:7-19. [PMID: 18983870 DOI: 10.1016/j.pbiomolbio.2008.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to plasmalemmal potassium fluxes in a variety of cell types. The activity of these channels is primarily determined by intracellular adenosine nucleotides, which have both inhibitory and stimulatory effects. The role of K(ATP) channels has been studied most extensively in pancreatic beta-cells, where they link glucose metabolism to insulin secretion. Many mutations in K(ATP) channel subunits (Kir6.2, SUR1) have been identified that cause either neonatal diabetes or congenital hyperinsulinism. Thus, a mechanistic understanding of K(ATP) channel behavior is necessary for modeling beta-cell electrical activity and insulin release in both health and disease. Here, we review recent advances in the K(ATP) channel structure and function. We focus on the molecular mechanisms of K(ATP) channel gating by adenosine nucleotides, phospholipids and sulphonylureas and consider the advantages and limitations of various mathematical models of macroscopic and single-channel K(ATP) currents. Finally, we outline future directions for the development of more realistic models of K(ATP) channel gating.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The development of refractory arterial hypotension represents a significant problem in the treatment of critically ill patients, especially during sepsis. Increased activation of ATP-sensitive potassium channels in vascular smooth muscle cells is critically implicated in the pathophysiology of sepsis-induced vasodilation and vascular hyporesponsiveness to catecholamines. Pharmacological blockade of ATP-sensitive potassium channels has been proposed as a goal-directed therapeutic approach to stabilize hemodynamics in septic patients. RECENT FINDINGS In different animal models of sepsis, ATP-sensitive potassium channel inhibition with intravenously infused sulfonylureas effectively reversed sepsis-induced systemic vasodilation and hypotension. Two recent clinical trials, however, failed to demonstrate beneficial effects of enterally administered glibenclamide on norepinephrine requirements and blood pressure in septic shock patients. Relevant problems related to ATP-sensitive potassium channel blockade with sulfonylureas in human septic shock include the route of administration (enteral versus intravenous) and the dose itself (benefit-risk relationship). In addition, significant adverse events may result from unspecific inhibition of nonvascular ATP-sensitive potassium channels. SUMMARY Inhibition of ATP-sensitive potassium channels remains an attractive option to treat excessive vasodilation in the presence of systemic inflammation. Before this knowledge can be translated into clinical practice, however, future research is needed to define the role of ATP-sensitive potassium channels in critical illness and their specific inhibition in different tissues in more detail.
Collapse
|
43
|
Lange M, Morelli A, Ertmer C, Bröking K, Rehberg S, Van Aken H, Traber DL, Westphal M. Role of adenosine triphosphate-sensitive potassium channel inhibition in shock states: physiology and clinical implications. Shock 2008; 28:394-400. [PMID: 17577137 DOI: 10.1097/shk.0b013e318050c836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shock states are associated with an impaired tissue oxygen supply-demand relationship and perturbations within the microcirculation, leading to global tissue hypoxia, finally resulting in multiple-organ failure or even death. Two of the most frequent causes of shock are acute hemorrhage and sepsis. Although the origin and the pathophysiology of hemorrhagic and septic shock are basically different, the involvement of adenosine triphosphate-sensitive potassium (KATP) channels, as an important regulator of vascular smooth muscles tone, plays a pivotal role under both conditions. Because the excessive activation of vascular KATP channels is a major cause of arterial hypotension and vascular hyporesponsiveness to catecholamines, the pharmacological inhibition of KATP channels may represent a goal-directed therapeutic option to stabilize the hemodynamic situation in shock states. Despite promising results of preclinical studies, the efficacy of this innovative therapeutic approach remains to be confirmed in the clinical setting. The differences in the species, the comorbidity, and the difficulty in determining the exact onset of shock in clinical practice and, thus, any duration-related alterations in vascular responses and KATP channel activation may explain the discrepancy between the results obtained from experimental and clinical studies. Currently, two of the most relevant problems related to effective KATP blockade in shock states are represented by (1) the dose itself (benefit-risk ratio) and (2) the route of administration (oral vs. i.v.). This review article critically elucidates the published in vivo studies on the role of KATP channel inhibition in both described shock forms and discusses the advantages and the potential pitfalls related to the treatment of human shock states.
Collapse
Affiliation(s)
- Matthias Lange
- Department of Anesthesiology and Intensive Care, University of Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xie LH, John SA, Ribalet B, Weiss JN. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:320-35. [PMID: 16837026 DOI: 10.1016/j.pbiomolbio.2006.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All members of the inwardly rectifying potassium channels (Kir1-7) are regulated by the membrane phospholipid, phosphatidylinosital-4,5-bisphosphate (PIP(2)). Some are also modulated by other regulatory factors or ligands such as ATP and G-proteins, which give them their common names, such as the ATP sensitive potassium (K(ATP)) channel and the G-protein gated potassium channel. Other more non-specific regulators include polyamines, kinases, pH and Na(+) ions. Recent studies have demonstrated that PIP(2) acts cooperatively with other regulatory factors to modulate Kir channels. Here we review how PIP(2) and co-factors modulate channel activities in each subfamily of the Kir channels.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
45
|
Ma W, Berg J, Yellen G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 2007; 27:3618-25. [PMID: 17409226 PMCID: PMC6672398 DOI: 10.1523/jneurosci.0132-07.2007] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jim Berg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Masia R, Koster JC, Tumini S, Chiarelli F, Colombo C, Nichols CG, Barbetti F. An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes. Diabetes 2007; 56:328-36. [PMID: 17259376 DOI: 10.2337/db06-1275] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in the pancreatic ATP-sensitive K(+) channel (K(ATP) channel) cause permanent neonatal diabetes mellitus (PNDM) in humans. All of the K(ATP) channel mutations examined result in decreased ATP inhibition, which in turn is predicted to suppress insulin secretion. Here we describe a patient with severe PNDM, which includes developmental delay and epilepsy, in addition to neonatal diabetes (developmental delay, epilepsy, and neonatal diabetes [DEND]), due to a G334D mutation in the Kir6.2 subunit of K(ATP) channel. The patient was wholly unresponsive to sulfonylurea therapy (up to 1.14 mg . kg(-1) . day(-1)) and remained insulin dependent. Consistent with the putative role of G334 as an ATP-binding residue, reconstituted homomeric and mixed WT+G334D channels exhibit absent or reduced ATP sensitivity but normal gating behavior in the absence of ATP. In disagreement with the sulfonylurea insensitivity of the affected patient, the G334D mutation has no effect on the sulfonylurea inhibition of reconstituted channels in excised patches. However, in macroscopic rubidium-efflux assays in intact cells, reconstituted mutant channels do exhibit a decreased, but still present, sulfonylurea response. The results demonstrate that ATP-binding site mutations can indeed cause DEND and suggest the possibility that sulfonylurea insensitivity of such patients may be a secondary reflection of the presence of DEND rather than a simple reflection of the underlying molecular basis.
Collapse
Affiliation(s)
- Ricard Masia
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Nagamatsu S, Ohara-Imaizumi M, Nakamichi Y, Kikuta T, Nishiwaki C. Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes 2006; 55:2819-25. [PMID: 17003348 DOI: 10.2337/db06-0105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfonylurea and glinide drugs, commonly used for antidiabetes therapies, are known to stimulate insulin release from pancreatic beta-cells by closing ATP-sensitive K+ channels. However, the specific actions of these drugs on insulin granule motion are largely unknown. Here, we used total internal reflection fluorescence (TIRF) microscopy to analyze the docking and fusion of single insulin granules in live beta-cells exposed to either the sulfonylurea drug glibenclamide or the glinide drug mitiglinide. TIRF images showed that both agents caused rapid fusion of newcomer insulin granules with the cell membrane in both control and diabetic Goto-Kakizaki (GK) rat pancreatic beta-cells. However, in the context of beta-cells from sulfonylurea receptor 1 (SUR1) knockout mice, TIRF images showed that only mitiglinide, but not glibenclamide, caused fusion of newcomer insulin granules. Compositely, our data indicate that 1) the mechanism by which both sulfonylurea and glinide drugs promote insulin release entails the preferential fusion of newcomer, rather than previously docked, insulin granules, and that 2) mitiglinide can induce insulin release by a mechanism independent of mitiglinide binding to SUR1.
Collapse
Affiliation(s)
- Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | |
Collapse
|
48
|
Yan FF, Casey J, Shyng SL. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J Biol Chem 2006; 281:33403-13. [PMID: 16956886 DOI: 10.1074/jbc.m605195200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels mediate glucose-induced insulin secretion by coupling metabolic signals to beta-cell membrane potential and the secretory machinery. Reduced K(ATP) channel expression caused by mutations in the channel proteins: sulfonylurea receptor 1 (SUR1) and Kir6.2, results in loss of channel function as seen in congenital hyperinsulinism. Previously, we reported that sulfonylureas, oral hypoglycemic drugs widely used to treat type II diabetes, correct the endoplasmic reticulum to the plasma membrane trafficking defect caused by two SUR1 mutations, A116P and V187D. In this study, we investigated the mechanism by which sulfonylureas rescue these mutants. We found that glinides, another class of SUR-binding hypoglycemic drugs, also markedly increased surface expression of the trafficking mutants. Attenuating or abolishing the ability of mutant SUR1 to bind sulfonylureas or glinides by the following mutations: Y230A, S1238Y, or both, accordingly diminished the rescuing effects of the drugs. Interestingly, rescue of the trafficking defects requires mutant SUR1 to be co-expressed with Kir6.2, suggesting that the channel complex, rather than SUR1 alone, is the drug target. Observations that sulfonylureas also reverse trafficking defects caused by neonatal diabetes-associated Kir6.2 mutations in a way that is dependent on intact sulfonylurea binding sites in SUR1 further support this notion. Our results provide insight into the mechanistic and structural basis on which sulfonylureas rescue K(ATP) channel surface expression defects caused by channel mutations.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
49
|
Klein A, Lichtenberg J, Stephan D, Quast U. Lipids modulate ligand binding to sulphonylurea receptors. Br J Pharmacol 2006; 145:907-15. [PMID: 15895108 PMCID: PMC1576209 DOI: 10.1038/sj.bjp.0706252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive K(+) channels (K(ATP) channels) are complexes of inwardly rectifying K(+) channels (Kir6.x) and sulphonylurea receptors (SURs). Kir6.2-containing channels are closed by ATP binding to Kir6.2, and opened by MgADP binding to SUR. Channel activity is modulated by synthetic compounds such as the channel-blocking sulphonylureas and the K(ATP) channel openers, which both act by binding to SUR. By interacting with Kir6.2, phosphatidylinositol-4,5-bisphosphate (PIP(2)) and oleoyl-coenzyme A (OCoA) decrease the ATP-sensitivity of the channel and abolish the effect of the synthetic channel modulators. Here, we have investigated whether lipids and related compounds interfered with the binding of the sulphonylurea, glibenclamide (GBC) and of the opener, N-cyano-N'-(1,1-dimethylpropyl)-N''-3-pyridylguanidine (P1075), to the SUR subtypes. Lipids (100-300 microM) inhibited binding of [(3)H]GBC and [(3)H]P1075 to SUR subtypes in the rank order OCoA>dioleylglycerol-succinyl-nitriloacetic acid (DOGS-NTA)>oleate>malonyl-CoA>PIP(2.)OCoA inhibited radioligand binding to SUR completely, with IC(50) values ranging from 6 to 44 microM. Inhibition was reversed by increasing the concentration of the radioligands in agreement with an essentially competitive mechanism. MgATP and coexpression with Kir6.2 decreased the potency of OCoA. DOGS-NTA inhibited radioligand binding to SUR by 40-88%, with IC(50) values ranging from 38 to 120 microM. Poly-lysine increased radioligand binding to SUR by up to 30% but did not affect much the inhibition of ligand binding by OCoA and DOGS-NTA. Radioligand binding to SUR2A but not to the other SUR subtypes was slightly (10-20%) stimulated by lipids at concentrations approximately 10 x lower than required for inhibition. The data show that certain lipids, at high concentrations, interact with SUR and inhibit the binding of GBC and P1075; with SUR2A, a modest stimulation of ligand binding precedes inhibition. Regarding K(ATP) channel activity, these effects will be overruled by the interaction of the lipids with Kir6.2 at lower (physiological) concentrations. They are, however, of pharmacological importance and must be taken into account if high concentrations of these compounds (e.g. OCoA>10 microM) are used to interfere with the action of sulphonylureas and openers on K(ATP) channel activity.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Jochen Lichtenberg
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Damian Stephan
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Ulrich Quast
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
- Author for correspondence:
| |
Collapse
|
50
|
Ribalet B, John SA, Xie LH, Weiss JN. ATP-sensitive K+ channels: regulation of bursting by the sulphonylurea receptor, PIP2 and regions of Kir6.2. J Physiol 2005; 571:303-17. [PMID: 16373383 PMCID: PMC1796795 DOI: 10.1113/jphysiol.2005.100719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ATP-sensitive K+ channels composed of the pore-forming protein Kir6.2 and the sulphonylurea receptor SUR1 are inhibited by ATP and activated by Phosphatidylinositol Bisphosphate (PIP2). Residues involved in binding of these ligands to the Kir6.2 cytoplasmic domain have been identified, and it has been hypothesized that gating mechanisms involve conformational changes in the regions of the bundle crossing and/or the selectivity filter of Kir6.2. Regulation of Kir6.2 by SUR1, however, is not well-understood, even though this process is ATP and PIP2 dependent. In this study, we investigated the relationship between channel regulation by SUR1 and PIP2 by comparing a number of single and double mutants known to affect open probability (P(o)), PIP2 affinity, and sulphonylurea and MgADP sensitivity. When coexpressed with SUR1, the Kir6.2 mutant C166A, which is characterized by a P(o) value close to 0.8, exhibits no sulphonylurea or MgADP sensitivity. However, when P(o) was reduced by combining mutations at the PIP2-sensitive residues R176 and R177 with C166A, sulphonylurea and MgADP sensitivities were restored. These effects correlated with a dramatic decrease in PIP2 affinity, as assessed by PIP2-induced channel reactivation and inhibition by neomycin, an antagonist of PIP2 binding. Based on macroscopic and single-channel data, we propose a model in which entry into the high-P(o) bursting state by the C166A mutation or by SUR1 depends on the interaction of PIP2 with R176 and R177 and, to a lesser extent, R54. In conjunction with this PIP2-dependent process, SUR1 also regulates channel activity via a PIP2-independent, but MgADP-dependent process.
Collapse
Affiliation(s)
- Bernard Ribalet
- University of California Los Angeles Cardiovascular Research Laboratory, 90095, USA.
| | | | | | | |
Collapse
|