1
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
2
|
Shigetomi E, Sakai K, Koizumi S. Extracellular ATP/adenosine dynamics in the brain and its role in health and disease. Front Cell Dev Biol 2024; 11:1343653. [PMID: 38304611 PMCID: PMC10830686 DOI: 10.3389/fcell.2023.1343653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Extracellular ATP and adenosine are neuromodulators that regulate numerous neuronal functions in the brain. Neuronal activity and brain insults such as ischemic and traumatic injury upregulate these neuromodulators, which exert their effects by activating purinergic receptors. In addition, extracellular ATP/adenosine signaling plays a pivotal role in the pathogenesis of neurological diseases. Virtually every cell type in the brain contributes to the elevation of ATP/adenosine, and various mechanisms underlying this increase have been proposed. Extracellular adenosine is thought to be mainly produced via the degradation of extracellular ATP. However, adenosine is also released from neurons and glia in the brain. Therefore, the regulation of extracellular ATP/adenosine in physiological and pathophysiological conditions is likely far more complex than previously thought. To elucidate the complex mechanisms that regulate extracellular ATP/adenosine levels, accurate methods of assessing their spatiotemporal dynamics are needed. Several novel techniques for acquiring spatiotemporal information on extracellular ATP/adenosine, including fluorescent sensors, have been developed and have started to reveal the mechanisms underlying the release, uptake and degradation of ATP/adenosine. Here, we review methods for analyzing extracellular ATP/adenosine dynamics as well as the current state of knowledge on the spatiotemporal dynamics of ATP/adenosine in the brain. We focus on the mechanisms used by neurons and glia to cooperatively produce the activity-dependent increase in ATP/adenosine and its physiological and pathophysiological significance in the brain.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
3
|
Yule DI, Takano T. Pacing intracellular Ca 2+ signals in exocrine acinar cells. J Physiol 2024:10.1113/JP284755. [PMID: 38197224 PMCID: PMC11233423 DOI: 10.1113/jp284755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
An increase in intracellular [Ca2+ ] in exocrine acinar cells resident in the salivary glands or pancreas is a fundamental event that drives fluid secretion and exocytosis of proteins. Stimulation with secretagogues initiates Ca2+ signals with precise spatiotemporal properties thought to be important for driving physiological output. Both in vitro, in acutely isolated acini, and in vivo, in animals expressing genetically encoded indicators, individual cells appear specialized to initiate Ca2+ signals upon stimulation. Furthermore, these signals appear to spread to neighbouring cells. These properties are present in the absence of a conventional pacemaker mechanism dependent on the cyclical activation of Ca2+ -dependent or Ca2+ -conducting plasma membrane ion channels. In this article, we propose a model for 'pacing' intracellular Ca2+ signals in acinar cells based on the enhanced sensitivity of a subpopulation of individual cells and the intercellular diffusion through gap junctions of inositol 1,4,5-trisphosphate and Ca2+ to neighbouring cells.
Collapse
Affiliation(s)
- David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14526. USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14526. USA
| |
Collapse
|
4
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
5
|
Millet LJ, Jain A, Gillette MU. Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications. MICROMACHINES 2023; 14:214. [PMID: 36677275 PMCID: PMC9866318 DOI: 10.3390/mi14010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cues in the micro-environment are key determinants in the emergence of complex cellular morphologies and functions. Primary among these is the presence of neighboring cells that form networks. For high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction and hydrothermal annealing create unique conditions that produce high-strength bonds between solvent-extracted PDMS (E-PDMS) and glass-properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Herein, our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high adhesion forces, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate the simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These E-PDMS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- The Center for Environmental Biotechnology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Anika Jain
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
7
|
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NEUROSCI 2022; 3:604-615. [PMID: 39483765 PMCID: PMC11523754 DOI: 10.3390/neurosci3040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2024] Open
Abstract
Different brain disorders display distinctive etiologies and pathogenic mechanisms. However, they also share pathogenic events. One event systematically occurring in different brain disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly important in the control of astrocytic activity and in astrocyte-neuron communication. In diverse brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurodegeneration by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana S. Figueira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Joana M. Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
10
|
Nobili P, Shen W, Milicevic K, Bogdanovic Pristov J, Audinat E, Nikolic L. Therapeutic Potential of Astrocyte Purinergic Signalling in Epilepsy and Multiple Sclerosis. Front Pharmacol 2022; 13:900337. [PMID: 35586058 PMCID: PMC9109958 DOI: 10.3389/fphar.2022.900337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy and multiple sclerosis (MS), two of the most common neurological diseases, are characterized by the establishment of inflammatory environment in the central nervous system that drives disease progression and impacts on neurodegeneration. Current therapeutic approaches in the treatments of epilepsy and MS are targeting neuronal activity and immune cell response, respectively. However, the lack of fully efficient responses to the available treatments obviously shows the need to search for novel therapeutic candidates that will not exclusively target neurons or immune cells. Accumulating knowledge on epilepsy and MS in humans and analysis of relevant animal models, reveals that astrocytes are promising therapeutic candidates to target as they participate in the modulation of the neuroinflammatory response in both diseases from the initial stages and may play an important role in their development. Indeed, astrocytes respond to reactive immune cells and contribute to the neuronal hyperactivity in the inflamed brain. Mechanistically, these astrocytic cell to cell interactions are fundamentally mediated by the purinergic signalling and involve metabotropic P2Y1 receptors in case of astrocyte interactions with neurons, while ionotropic P2X7 receptors are mainly involved in astrocyte interactions with autoreactive immune cells. Herein, we review the potential of targeting astrocytic purinergic signalling mediated by P2Y1 and P2X7 receptors to develop novel approaches for treatments of epilepsy and MS at very early stages.
Collapse
Affiliation(s)
- Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Weida Shen
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Katarina Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Jelena Bogdanovic Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolic
- Department of Neurophysiology, University of Belgrade, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
11
|
Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, Stella C, Blancard C, Salin B, Julio-Kalajzić F, Cannich A, Massa F, Varilh M, Deforges S, Robin LM, De Stefani D, Busquets-Garcia A, Gambino F, Beyeler A, Pouvreau S, Marsicano G. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep 2021; 37:110133. [PMID: 34936875 DOI: 10.1016/j.celrep.2021.110133] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Sebastien Delcasso
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Andrea Ruiz-Calvo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Carol Stella
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Benedicte Salin
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Francisca Julio-Kalajzić
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Federico Massa
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Severine Deforges
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Laurie M Robin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Arnau Busquets-Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Frederic Gambino
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Anna Beyeler
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
12
|
Ding Z, Guo S, Luo L, Zheng Y, Gan S, Kang X, Wu X, Zhu S. Emerging Roles of Microglia in Neuro-vascular Unit: Implications of Microglia-Neurons Interactions. Front Cell Neurosci 2021; 15:706025. [PMID: 34712121 PMCID: PMC8546170 DOI: 10.3389/fncel.2021.706025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, which serve as the defensive interface of the nervous system, are activated in many neurological diseases. Their role as immune responding cells has been extensively studied in the past few years. Recent studies have demonstrated that neuronal feedback can be shaped by the molecular signals received and sent by microglia. Altered neuronal activity or synaptic plasticity leads to the release of various communication messages from neurons, which in turn exert effects on microglia. Research on microglia-neuron communication has thus expanded from focusing only on neurons to the neurovascular unit (NVU). This approach can be used to explore the potential mechanism of neurovascular coupling across sophisticated receptor systems and signaling cascades in health and disease. However, it remains unclear how microglia-neuron communication happens in the brain. Here, we discuss the functional contribution of microglia to synapses, neuroimmune communication, and neuronal activity. Moreover, the current state of knowledge of bidirectional control mechanisms regarding interactions between neurons and microglia are reviewed, with a focus on purinergic regulatory systems including ATP-P2RY12R signaling, ATP-adenosine-A1Rs/A2ARs, and the ATP-pannexin 1 hemichannel. This review aims to organize recent studies to highlight the multifunctional roles of microglia within the neural communication network in health and disease.
Collapse
Affiliation(s)
- Zhe Ding
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohui Guo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihui Luo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyuan Gan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Mielnicka A, Michaluk P. Exocytosis in Astrocytes. Biomolecules 2021; 11:1367. [PMID: 34572580 PMCID: PMC8471187 DOI: 10.3390/biom11091367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Until recently, astrocytes were thought to be a part of a simple "brain glue" providing only a supporting role for neurons. However, the discoveries of the last two decades have proven astrocytes to be dynamic partners participating in brain metabolism and actively influencing communication between neurons. The means of astrocyte-neuron communication are diverse, although regulated exocytosis has received the most attention but also caused the most debate. Similar to most of eukaryotic cells, astrocytes have a complex range of vesicular organelles which can undergo exocytosis as well as intricate molecular mechanisms that regulate this process. In this review, we focus on the components needed for regulated exocytosis to occur and summarise the knowledge about experimental evidence showing its presence in astrocytes.
Collapse
Affiliation(s)
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland;
| |
Collapse
|
14
|
Choi JIV, Tchernookova BK, Kumar W, Kiedrowski L, Goeke C, Guizzetti M, Larson J, Kreitzer MA, Malchow RP. Extracellular ATP-Induced Alterations in Extracellular H + Fluxes From Cultured Cortical and Hippocampal Astrocytes. Front Cell Neurosci 2021; 15:640217. [PMID: 33994945 PMCID: PMC8120152 DOI: 10.3389/fncel.2021.640217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Small alterations in the level of extracellular H+ can profoundly alter neuronal activity throughout the nervous system. In this study, self-referencing H+-selective microelectrodes were used to examine extracellular H+ fluxes from individual astrocytes. Activation of astrocytes cultured from mouse hippocampus and rat cortex with extracellular ATP produced a pronounced increase in extracellular H+ flux. The ATP-elicited increase in H+ flux appeared to be independent of bicarbonate transport, as ATP increased H+ flux regardless of whether the primary extracellular pH buffer was 26 mM bicarbonate or 1 mM HEPES, and persisted when atmospheric levels of CO2 were replaced by oxygen. Adenosine failed to elicit any change in extracellular H+ fluxes, and ATP-mediated increases in H+ flux were inhibited by the P2 inhibitors suramin and PPADS suggesting direct activation of ATP receptors. Extracellular ATP also induced an intracellular rise in calcium in cultured astrocytes, and ATP-induced rises in both calcium and H+ efflux were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin. Replacement of extracellular sodium with choline did not significantly reduce the size of the ATP-induced increases in H+ flux, and the increases in H+ flux were not significantly affected by addition of EIPA, suggesting little involvement of Na+/H+ exchangers in ATP-elicited increases in H+ flux. Given the high sensitivity of voltage-sensitive calcium channels on neurons to small changes in levels of free H+, we hypothesize that the ATP-mediated extrusion of H+ from astrocytes may play a key role in regulating signaling at synapses within the nervous system.
Collapse
Affiliation(s)
- Ji-In Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Boriana K Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Wasan Kumar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Lech Kiedrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Spot Cells LLC, Chicago, IL, United States
| | - Calla Goeke
- VA Portland Health Care System, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Matthew A Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Astrocytes promote ethanol-induced enhancement of intracellular Ca 2+ signals through intercellular communication with neurons. iScience 2021; 24:102436. [PMID: 33997707 PMCID: PMC8105650 DOI: 10.1016/j.isci.2021.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Ethanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable in vitro system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes. Neuronally-derived purinergic signaling primed a subpopulation of astrocytes to respond to subsequent acute EtOH exposures (SEastrocytes: signal enhanced astrocytes) with greater calcium signal strength. Generation of SEastrocytes arose from astrocytic hemichannel-derived ATP and accumulation of its metabolite adenosine within the astrocyte microenvironment to modulate adenylyl cyclase and phospholipase C activity. These results highlight an important role of astrocytes in shaping the overall physiological responsiveness to EtOH and emphasize the unique plasticity of astrocytes to adapt to single and multiple exposures of EtOH.
Collapse
|
16
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
17
|
Moro N, Ghavim SS, Sutton RL. Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. Exp Ther Med 2021; 21:575. [PMID: 33850547 PMCID: PMC8027727 DOI: 10.3892/etm.2021.10007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of the current study was to determine effects of mild traumatic brain injury (TBI), with or without blockade of purinergic ATP Y1 (P2Y1) receptors or store-operated calcium channels, on extracellular levels of ATP, glutamate, glucose and lactate. Concentrations of ATP, glutamate, glucose and lactate were measured in cerebral microdialysis samples obtained from the ipsilateral cortex and underlying hippocampus of rats with mild unilateral controlled cortical impact (CCI) or sham injury. Immediately after CCI, a large release of ATP was observed in the cortex (3.53-fold increase of pre-injury value) and hippocampus (2.97-fold increase of pre-injury value), with ATP returning to the baseline levels within 20 min post-injury and remaining stable for during the 3-h sampling period. In agreement with the results of previous studies, there was a significant increase in glutamate 20 min after CCI, which was concomitant with a decrease in extracellular glucose (20 min) and an increase in lactate (40-60 min) in both brain regions after CCI. Addition of a selective P2Y1 receptor blocker (MRS2179 ammonium salt hydrate) to the microdialysis perfusate significantly lowered pre-injury ATP and glutamate levels, and eliminated the post-CCI peaks. Addition of a blocker of store-operated calcium channels [2-aminoethoxy diphenylborinate (2-APB)] to the microdialysis perfusate significantly lowered pre-injury ATP in the hippocampus, and attenuated the post-CCI peak in both the cortex and hippocampus. 2-APB treatment significantly increased baseline glutamate levels, but the values post-injury did not differ from those in the sham group. Pre-injury glucose levels, but not lactate levels, were increased by MRS2179 and decreased by 2-APB. However, none of these treatments substantially altered the CCI-induced reduction in glucose and increase in lactate in the cortex. In conclusion, the results of the present study demonstrated that a short although extensive release of ATP immediately after experimental TBI can be significantly attenuated by blockade of P2Y1 receptors or store-operated calcium channels.
Collapse
Affiliation(s)
- Nobuhiro Moro
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Sima S Ghavim
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA
| | - Richard L Sutton
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA
| |
Collapse
|
18
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
19
|
Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells 2021; 10:cells10010188. [PMID: 33477811 PMCID: PMC7832900 DOI: 10.3390/cells10010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secretion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard. Hopefully, new findings on the impact of adenine purines/related enzymes on EV functions may be exploited in tumor management uncovering novel tumor biomarkers and/or druggable targets.
Collapse
|
20
|
Turovsky EA, Braga A, Yu Y, Esteras N, Korsak A, Theparambil SM, Hadjihambi A, Hosford PS, Teschemacher AG, Marina N, Lythgoe MF, Haydon PG, Gourine AV. Mechanosensory Signaling in Astrocytes. J Neurosci 2020; 40:9364-9371. [PMID: 33122390 PMCID: PMC7724146 DOI: 10.1523/jneurosci.1249-20.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signaling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (1) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knock-down; (2) antagonists of TRPV4 channels; (3) antagonist of P2Y1 receptors for ATP; and (4) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knock-out mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signaling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENT There is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 (Cx43) hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia, and reduced perfusion.
Collapse
Affiliation(s)
- Egor A Turovsky
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Alice Braga
- Department of Neuroscience, Tufts Neuroscience Institute, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yichao Yu
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6DD, United Kingdom
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6DD, United Kingdom
| | - Philip G Haydon
- Department of Neuroscience, Tufts Neuroscience Institute, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Caudal LC, Gobbo D, Scheller A, Kirchhoff F. The Paradox of Astroglial Ca 2 + Signals at the Interface of Excitation and Inhibition. Front Cell Neurosci 2020; 14:609947. [PMID: 33324169 PMCID: PMC7726216 DOI: 10.3389/fncel.2020.609947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Astroglial networks constitute a non-neuronal communication system in the brain and are acknowledged modulators of synaptic plasticity. A sophisticated set of transmitter receptors in combination with distinct secretion mechanisms enables astrocytes to sense and modulate synaptic transmission. This integrative function evolved around intracellular Ca2+ signals, by and large considered as the main indicator of astrocyte activity. Regular brain physiology meticulously relies on the constant reciprocity of excitation and inhibition (E/I). Astrocytes are metabolically, physically, and functionally associated to the E/I convergence. Metabolically, astrocytes provide glutamine, the precursor of both major neurotransmitters governing E/I in the central nervous system (CNS): glutamate and γ-aminobutyric acid (GABA). Perisynaptic astroglial processes are structurally and functionally associated with the respective circuits throughout the CNS. Astonishingly, in astrocytes, glutamatergic as well as GABAergic inputs elicit similar rises in intracellular Ca2+ that in turn can trigger the release of glutamate and GABA as well. Paradoxically, as gliotransmitters, these two molecules can thus strengthen, weaken or even reverse the input signal. Therefore, the net impact on neuronal network function is often convoluted and cannot be simply predicted by the nature of the stimulus itself. In this review, we highlight the ambiguity of astrocytes on discriminating and affecting synaptic activity in physiological and pathological state. Indeed, aberrant astroglial Ca2+ signaling is a key aspect of pathological conditions exhibiting compromised network excitability, such as epilepsy. Here, we gather recent evidence on the complexity of astroglial Ca2+ signals in health and disease, challenging the traditional, neuro-centric concept of segregating E/I, in favor of a non-binary, mutually dependent perspective on glutamatergic and GABAergic transmission.
Collapse
Affiliation(s)
- Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
22
|
Tedoldi A, Argent L, Montgomery JM. The role of the tripartite synapse in the heart: how glial cells may contribute to the physiology and pathophysiology of the intracardiac nervous system. Am J Physiol Cell Physiol 2020; 320:C1-C14. [PMID: 33085497 DOI: 10.1152/ajpcell.00363.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major roles of the intracardiac nervous system (ICNS) is to act as the final site of signal integration for efferent information destined for the myocardium to enable local control of heart rate and rhythm. Multiple subtypes of neurons exist in the ICNS where they are organized into clusters termed ganglionated plexi (GP). The majority of cells in the ICNS are actually glial cells; however, despite this, ICNS glial cells have received little attention to date. In the central nervous system, where glial cell function has been widely studied, glia are no longer viewed simply as supportive cells but rather have been shown to play an active role in modulating neuronal excitability and synaptic plasticity. Pioneering studies have demonstrated that in addition to glia within the brain stem, glial cells within multiple autonomic ganglia in the peripheral nervous system, including the ICNS, can also act to modulate cardiovascular function. Clinically, patients with atrial fibrillation (AF) undergoing catheter ablation show high plasma levels of S100B, a protein produced by cardiac glial cells, correlated with decreased AF recurrence. Interestingly, S100B also alters GP neuron excitability and neurite outgrowth in the ICNS. These studies highlight the importance of understanding how glial cells can affect the heart by modulating GP neuron activity or synaptic inputs. Here, we review studies investigating glia both in the central and peripheral nervous systems to discuss the potential role of glia in controlling cardiac function in health and disease, paying particular attention to the glial cells of the ICNS.
Collapse
Affiliation(s)
- Angelo Tedoldi
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
24
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
25
|
P2Y1 receptor inhibition rescues impaired synaptic plasticity and astroglial Ca 2+-dependent activity in the epileptic hippocampus. Neurobiol Dis 2020; 146:105132. [PMID: 33049315 DOI: 10.1016/j.nbd.2020.105132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is characterized by a progressive predisposition to suffer seizures due to neuronal hyperexcitability, and one of its most common co-morbidities is cognitive decline. In animal models of chronic epilepsy, such as kindling, electrically induced seizures impair long-term potentiation (LTP), deteriorating learning and memory performance. Astrocytes are known to actively modulate synaptic plasticity and neuronal excitability through Ca2+-dependent gliotransmitter release. It is unclear, however, if astroglial Ca2+ signaling could contribute to the development of synaptic plasticity alterations in the epileptic hippocampus. By employing electrophysiological tools and Ca2+ imaging, we found that glutamatergic CA3-CA1 synapses from kindled rats exhibit an impairment in theta burst (TBS) and high frequency stimulation (HFS)-induced LTP, which is accompanied by an increased probability of neurotransmitter release (Pr) and an abnormal pattern of astroglial Ca2+-dependent transients. Both the impairment in LTP and the Pr were reversed by inhibiting purinergic P2Y1 receptors (P2Y1R) with the specific antagonist MRS2179, which also restored the spontaneous and TBS-induced pattern of astroglial Ca2+-dependent signals. Two consecutive, spaced TBS protocols also failed to induce LTP in the kindled group, however, this impairment was reversed and a strong LTP was induced when the second TBS was applied in the presence of MRS2179, suggesting that the mechanisms underlying the alterations in TBS-induced LTP are likely associated with an aberrant modulation of the induction threshold for LTP. Altogether, these results indicate that P2Y1R inhibition rescues both the pattern of astroglial Ca2+-activity and the plastic properties of CA3-CA1 synapses in the epileptic hippocampus, suggesting that astrocytes might take part in the mechanisms that deteriorate synaptic plasticity and thus cause cognitive decline in epileptic patients.
Collapse
|
26
|
Bijelić DD, Milićević KD, Lazarević MN, Miljković DM, Bogdanović Pristov JJ, Savić DZ, Petković BB, Andjus PR, Momčilović MB, Nikolić LM. Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. J Neurosci Res 2020; 98:2317-2332. [PMID: 32799373 DOI: 10.1002/jnr.24699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.
Collapse
Affiliation(s)
- Dunja D Bijelić
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Katarina D Milićević
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Milica N Lazarević
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje M Miljković
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena J Bogdanović Pristov
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Savić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka B Petković
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle R Andjus
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | - Miljana B Momčilović
- Department of Immunology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana M Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Scemes E, Velíšek L, Velíšková J. Astrocyte and Neuronal Pannexin1 Contribute Distinctly to Seizures. ASN Neuro 2020; 11:1759091419833502. [PMID: 30862176 PMCID: PMC6415468 DOI: 10.1177/1759091419833502] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ATP- and adenosine-mediated signaling are prominent types of glia–glia and glia–neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.
Collapse
Affiliation(s)
- Eliana Scemes
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,2 Departments of Neurology and Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,3 Departments of Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
29
|
Burnstock G. Introduction to Purinergic Signalling in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:1-12. [PMID: 32034706 DOI: 10.1007/978-3-030-30651-9_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP is a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the brain. There is a widespread presence of both adenosine (P1) and P2 nucleotide receptors in the brain on both neurons and glial cells. Adenosine receptors play a major role in presynaptic neuromodulation, while P2X ionotropic receptors are involved in fast synaptic transmission and synaptic plasticity. P2Y G protein-coupled receptors are largely involved in presynaptic activities, as well as mediating long-term (trophic) signalling in cell proliferation, differentiation and death during development and regeneration. Both P1 and P2 receptors participate in neuron-glial interactions. Purinergic signalling is involved in control of cerebral vascular tone and remodelling and has been implicated in learning and memory, locomotor and feeding behaviour and sleep. There is increasing interest in the involvement of purinergic signalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsychiatric and mood disorders, and cancer, including gliomas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|
30
|
Lenk K, Satuvuori E, Lallouette J, Ladrón-de-Guevara A, Berry H, Hyttinen JAK. A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate. Front Comput Neurosci 2020; 13:92. [PMID: 32038210 PMCID: PMC6987305 DOI: 10.3389/fncom.2019.00092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales at which they operate. However, the exact nature of gliotransmission and the effect of the tripartite synapse function at the network level are currently elusive. In this paper, we propose a computational model of interactions between an astrocyte network and a neuron network, starting from tripartite synapses and spanning to a joint network level. Our model focuses on a two-dimensional setup emulating a mixed in vitro neuron-astrocyte cell culture. The model depicts astrocyte-released gliotransmitters exerting opposing effects on the neurons: increasing the release probability of the presynaptic neuron while hyperpolarizing the post-synaptic one at a longer time scale. We simulated the joint networks with various levels of astrocyte contributions and neuronal activity levels. Our results indicate that astrocytes prolong the burst duration of neurons, while restricting hyperactivity. Thus, in our model, the effect of astrocytes is homeostatic; the firing rate of the network stabilizes to an intermediate level independently of neuronal base activity. Our computational model highlights the plausible roles of astrocytes in interconnected astrocytic and neuronal networks. Our simulations support recent findings in neurons and astrocytes in vivo and in vitro suggesting that astrocytic networks provide a modulatory role in the bursting of the neuronal network.
Collapse
Affiliation(s)
- Kerstin Lenk
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eero Satuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Complex Systems (ISC), National Research Council (CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jules Lallouette
- INRIA, Villeurbanne, France.,LIRIS UMR5205, University of Lyon, Villeurbanne, France
| | | | - Hugues Berry
- INRIA, Villeurbanne, France.,LIRIS UMR5205, University of Lyon, Villeurbanne, France
| | - Jari A K Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
31
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
32
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
34
|
Sun Y, Yang J, Hu X, Gao X, Li Y, Yu M, Liu S, Lu Y, Wang J, Huang L, Lu X, Jin C, Wu S, Cai Y. Conditioned medium from overly excitatory primary astrocytes induced by La 3+ increases apoptosis in primary neurons via upregulating the expression of NMDA receptors. Metallomics 2019; 10:1016-1028. [PMID: 29989126 DOI: 10.1039/c8mt00056e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lanthanum (La) can accumulate in the brain and impair learning and memory. However, the underlying mechanism of La-induced neurotoxicity has remained elusive. Under physiological conditions, it has been reported that moderately excitatory astrocytes play an important role in the regulation of neuronal signals and synaptic plasticity. However, under pathological conditions, overly excitatory astrocytes can release excess excitatory transmitters, such as glutamate (Glu) and d-serine, and induce the over-activation of NMDA receptors (NMDAR) in neurons, ultimately leading to neuronal excitotoxicity. To date, limited work has been performed with respect to whether La can induce neuronal excitotoxicity by inducing astrocytes to become overexcited. In this study, in vitro models of primary culture rat cortical astrocytes and neurons were established. First, the astrocytes were treated with 0.125 mM, 0.25 mM and 0.5 mM lanthanum chloride (LaCl3) for 24 h, and the supernatants were collected as a conditioned medium (CM) which is denoted as CM (La3+); then, the neurons were treated with CM (La3+) for 48 h. The results illustrate that LaCl3 treatment significantly upregulated the mRNA and protein expression levels of metabotropic glutamate receptor 5 (mGLUR5), phospholipase C (PLC), connexin 43 (Cx43) and Cx30, increased the concentrations of inositol trisphosphate (IP3) and [Ca2+]i, and promoted the synthesis and release of Glu and d-serine in astrocytes. Moreover, the CM (La3+) could increase the mRNA and protein expression levels of NMDAR subunits (NR1, NR2A, NR2B), the concentration of [Ca2+]i and the rate of apoptosis in neurons. Furthermore, after removal of La, CM (La-free) had a similar effect on neurons which could be antagonized by MK-801, DCKA and DAAO. These results suggest that the neuron apoptosis induced by La is closely related to the excessive release of Glu and d-serine from overly excitatory astrocytes.
Collapse
Affiliation(s)
- Yaling Sun
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miras-Portugal MT, Menéndez-Méndez A, Gómez-Villafuertes R, Ortega F, Delicado EG, Pérez-Sen R, Gualix J. Physiopathological Role of the Vesicular Nucleotide Transporter (VNUT) in the Central Nervous System: Relevance of the Vesicular Nucleotide Release as a Potential Therapeutic Target. Front Cell Neurosci 2019; 13:224. [PMID: 31156398 PMCID: PMC6533569 DOI: 10.3389/fncel.2019.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in the central nervous system. Neurotransmitter uptake into secretory vesicles is carried out by vesicular transporters, which use the electrochemical proton gradient generated by a vacuolar H+-ATPase to drive neurotransmitter vesicular accumulation. ATP and other nucleotides are relevant extracellular signaling molecules that participate in a variety of biological processes. Although the active transport of nucleotides into secretory vesicles has been characterized from the pharmacological and biochemical point of view, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, the human SLC17A9 gene, the last identified member of the SLC17 transporters, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport a wide variety of nucleotides in a vesicular membrane potential-dependent manner. VNUT knockout mice lack vesicular storage and release of ATP, resulting in blockage of the purinergic transmission. This review summarizes the current studies on VNUT and analyzes the physiological relevance of the vesicular nucleotide transport in the central nervous system. The possible role of VNUT in the development of some pathological processes, such as chronic neuropathic pain or glaucoma is also discussed. The putative involvement of VNUT in these pathologies raises the possibility of the use of VNUT inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- María T Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Aida Menéndez-Méndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
36
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
37
|
Lobas MA, Tao R, Nagai J, Kronschläger MT, Borden PM, Marvin JS, Looger LL, Khakh BS. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun 2019; 10:711. [PMID: 30755613 PMCID: PMC6372613 DOI: 10.1038/s41467-019-08441-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Adenosine 5' triphosphate (ATP) is a universal intracellular energy source and an evolutionarily ancient, ubiquitous extracellular signal in diverse species. Here, we report the generation and characterization of single-wavelength genetically encoded fluorescent sensors (iATPSnFRs) for imaging extracellular and cytosolic ATP from insertion of circularly permuted superfolder GFP into the epsilon subunit of F0F1-ATPase from Bacillus PS3. On the cell surface and within the cytosol, iATPSnFR1.0 responds to relevant ATP concentrations (30 μM to 3 mM) with fast increases in fluorescence. iATPSnFRs can be genetically targeted to specific cell types and sub-cellular compartments, imaged with standard light microscopes, do not respond to other nucleotides and nucleosides, and when fused with a red fluorescent protein function as ratiometric indicators. After careful consideration of their modest pH sensitivity, iATPSnFRs represent promising reagents for imaging ATP in the extracellular space and within cells during a variety of settings, and for further application-specific refinements.
Collapse
Affiliation(s)
- Mark A Lobas
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Koniku Inc., 740 Heinz Avenue, Berkeley, CA, 94710, USA
| | - Rongkun Tao
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Mira T Kronschläger
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Philip M Borden
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | | | - Loren L Looger
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA.
| |
Collapse
|
38
|
Beamer E, Conte G, Engel T. ATP release during seizures - A critical evaluation of the evidence. Brain Res Bull 2019; 151:65-73. [PMID: 30660718 DOI: 10.1016/j.brainresbull.2018.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
That adenosine 5' triphosphate (ATP) functions as an extracellular signaling molecule has been established since the 1970s. Ubiquitous throughout the body as the principal molecular store of intracellular energy, ATP has a short extracellular half-life and is difficult to measure directly. Extracellular ATP concentrations are dependent both on the rate of cellular release and of enzymatic degradation. Some findings from in vitro studies suggest that extracellular ATP concentrations increase during high levels of neuronal activity and seizure-like events in hippocampal slices. Pharmacological studies suggest that antagonism of ATP-sensitive purinergic receptors can suppress the severity of seizures and block epileptogenesis. Directly measuring extracellular ATP concentrations in the brain, however, has a number of specific challenges, notably, the rapid hydrolysis of ATP and huge gradient between intracellular and extracellular compartments. Two studies using microdialysis found no change in extracellular ATP in the hippocampus of rats during experimentally-induced status epilepticus. One of which demonstrated that ATP increased measurably, only in the presence of ectoATPase inhibitors, with the other study demonstrating increases only during later spontaneous seizures. Current evidence is mixed and seems highly dependent on the model used and method of detection. More sensitive methods of detection with higher spatial resolution, which induce less tissue disruption will be necessary to provide evidence for or against the hypothesis of seizure-induced elevations in extracellular ATP. Here we describe the current hypothesis for ATP release during seizures and its role in epileptogenesis, describe the technical challenges involved and critically examine the current evidence.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02YN77, Dublin, Ireland.
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02YN77, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02YN77, Dublin, Ireland
| |
Collapse
|
39
|
|
40
|
|
41
|
Mederos S, González-Arias C, Perea G. Astrocyte-Neuron Networks: A Multilane Highway of Signaling for Homeostatic Brain Function. Front Synaptic Neurosci 2018; 10:45. [PMID: 30542276 PMCID: PMC6277918 DOI: 10.3389/fnsyn.2018.00045] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Research on glial cells over the past 30 years has confirmed the critical role of astrocytes in pathophysiological brain states. However, most of our knowledge about astrocyte physiology and of the interactions between astrocytes and neurons is based on the premises that astrocytes constitute a homogeneous cell type, without considering the particular properties of the circuits or brain nuclei in which the astrocytes are located. Therefore, we argue that more-sophisticated experiments are required to elucidate the specific features of astrocytes in different brain regions, and even within different layers of a particular circuit. Thus, in addition to considering the diverse mechanisms used by astrocytes to communicate with neurons and synaptic partners, it is necessary to take into account the cellular heterogeneity that likely contributes to the outcomes of astrocyte-neuron signaling. In this review article, we briefly summarize the current data regarding the anatomical, molecular and functional properties of astrocyte-neuron communication, as well as the heterogeneity within this communication.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Candela González-Arias
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| |
Collapse
|
42
|
Wellmann M, Álvarez-Ferradas C, Maturana CJ, Sáez JC, Bonansco C. Astroglial Ca 2+-Dependent Hyperexcitability Requires P2Y 1 Purinergic Receptors and Pannexin-1 Channel Activation in a Chronic Model of Epilepsy. Front Cell Neurosci 2018; 12:446. [PMID: 30542266 PMCID: PMC6277884 DOI: 10.3389/fncel.2018.00446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
Astrocytes from the hippocampus of chronic epileptic rats exhibit an abnormal pattern of intracellular calcium oscillations, characterized by an augmented frequency of long lasting spontaneous Ca2+ transients, which are sensitive to purinergic receptor antagonists but resistant to tetrodotoxin. The above suggests that alterations in astroglial Ca2+-dependent excitability observed in the epileptic tissue could arise from changes in astrocyte-to-astrocyte signaling, which is mainly mediated by purines in physiological and pathological conditions. In spite of that, how purinergic signaling contributes to astrocyte dysfunction in epilepsy remains unclear. Here, we assessed the possible contribution of P2Y1R as well as pannexin1 and connexin43 hemichannels—both candidates for non-vesicular ATP-release—by performing astroglial Ca2+ imaging and dye uptake experiments in hippocampal slices from control and fully kindled rats. P2Y1R blockade with MRS2179 decreased the mean duration of astroglial Ca2+ oscillations by reducing the frequency of slow Ca2+ transients, and thereby restoring the balance between slow (ST) and fast transients (FT) in the kindled group. The potential contribution of astroglial pannexin1 and connexin43 hemichannels as pathways for purine release (e.g., ATP) was assessed through dye uptake experiments. Astrocytes from kindled hippocampi exhibit three-fold more EtBr uptake than controls, whereby pannexin1 hemichannels (Panx1 HCs) accounts for almost all dye uptake with only a slight contribution from connexin43 hemichannels (Cx43 HCs). Confirming its functional involvement, Panx1 HCs inhibition decreased the mean duration of astroglial Ca2+ transients and the frequency of slow oscillations in kindled slices, but had no noticeable effects on the control group. As expected, Cx43 HCs blockade did not have any effects over the mean duration of astroglial Ca2+ oscillations. These findings suggest that P2Y1R and Panx1 HCs play a pivotal role in astroglial pathophysiology, which would explain the upregulation of glutamatergic neurotransmission in the epileptic brain and thus represents a new potential pharmacological target for the treatment of drug-refractory epilepsy.
Collapse
Affiliation(s)
- Mario Wellmann
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carla Álvarez-Ferradas
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Ciencias de la Salud, Universidad Viña del Mar, Valparaíso, Chile
| | - Carola J Maturana
- Departamento de Ciencias Fisiológicas, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Ciencias Fisiológicas, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
43
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G Georgakilas
- 2 DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens , Athens, Greece
| | - Jean-Luc Ravanat
- 3 Univ. Grenoble Alpes , CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
44
|
Angelova PR, Iversen KZ, Teschemacher AG, Kasparov S, Gourine AV, Abramov AY. Signal transduction in astrocytes: Localization and release of inorganic polyphosphate. Glia 2018; 66:2126-2136. [PMID: 30260496 PMCID: PMC6282517 DOI: 10.1002/glia.23466] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Inorganic polyphosphate (polyP) is present in every cell and is highly conserved from primeval times. In the mammalian cells, polyP plays multiple roles including control of cell bioenergetics and signal transduction. In the brain, polyP mediates signaling between astrocytes via activation of purinergic receptors, however, the mechanisms of polyP release remain unknown. Here we report identification of polyP-containing vesicles in cortical astrocytes and the main triggers that evoke vesicular polyP release. In cultured astrocytes, polyP was localized predominantly within the intracellular vesicular compartments which express vesicular nucleotide transporter VNUT (putative ATP-containing vesicles), but not within the compartments expressing vesicular glutamate transporter 2 (VGLUT2). The number of lysosomes which contain polyP was dependent on the conditions of astrocytes. Release of polyP from a proportion of lysosomes could be induced by calcium ionophores. In contrast, polyP release from the VNUT-containing vesicles could be triggered by various physiological stimuli, such as pH changes, polyP induced polyP release and other stimuli which increase [Ca2+ ] i . These data suggest that astrocytes release polyP predominantly via exocytosis from the VNUT-containing vesicles. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Plamena R. Angelova
- Department of Molecular NeuroscienceUCL Institute of Neurology, Queen SquareLondon, WC1N 3BGUnited Kingdom
| | - Kathrine Z. Iversen
- Department of Molecular NeuroscienceUCL Institute of Neurology, Queen SquareLondon, WC1N 3BGUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology and PharmacologyUniversity of Bristol, University WalkBristol, BS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology and PharmacologyUniversity of Bristol, University WalkBristol, BS8 1TDUnited Kingdom
- Baltic Federal University2 Universitetskaya str, Kaliningrad, 236000Russian Federation
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonGower Street, London, WC1E 6BTUnited Kingdom
| | - Andrey Y. Abramov
- Department of Molecular NeuroscienceUCL Institute of Neurology, Queen SquareLondon, WC1N 3BGUnited Kingdom
| |
Collapse
|
45
|
Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018; 40:465-475. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nano- to micro-scale membrane-enclosed vesicles that are released from presumably all cell types. Tumor cells and immune cells are prodigious generators of EVs often with competing phenotypes in terms of immune suppression versus immune stimulation. Purinergic receptors, proteins that bind diverse purine nucleotides and nucleosides (ATP, ADP, AMP, adenosine), are widely expressed across tissues and cell types, and are prominent players in immune and tumor cell nucleotide metabolism. The effects of purinergic receptor stimulation or agonism tend to produce inflammatory responses that may aid immune stimulation but may also provoke various immune suppression mechanisms, particularly in the tumor microenvironment. EVs released by cells following receptor stimulation are frequently pro-inflammatory, but often also pro-thrombolytic; these EVs may generate an environment that favors tumor progression at the cost of an effective immune response. Purinergic signaling pathways are becoming more recognized as valuable targets in various therapeutic scenarios, including cancer. It is possible that some of those clinically relevant compounds might also impact EV secretion and/or phenotype, which would hopefully capitalize on the immune stimulatory properties of purinergic signaling while minimizing the immune suppressive consequences. This review covers a relatively understudied area in EV biology, but even so, focuses almost exclusively on the purinergic receptors in a very limited capacity. There is much more to evaluate and incorporate into our understanding of extracellular nucleotides in EV biology, and we hope this work prompts further discovery.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, RC2, 12700 E 19th Ave, Room 5125, Aurora, CO, 80045, USA.
| |
Collapse
|
46
|
Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1805-1814. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Collapse
Affiliation(s)
| | - Elke Decrock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Valérie Van Haver
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Marijke De Bock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Luc Leybaert
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium.
| |
Collapse
|
47
|
Mayorquin LC, Rodriguez AV, Sutachan JJ, Albarracín SL. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons. Front Mol Neurosci 2018; 11:118. [PMID: 29695954 PMCID: PMC5905222 DOI: 10.3389/fnmol.2018.00118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/27/2018] [Indexed: 01/24/2023] Open
Abstract
The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.
Collapse
Affiliation(s)
- Lady C Mayorquin
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea V Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L Albarracín
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
48
|
Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat Commun 2018; 9:370. [PMID: 29371650 PMCID: PMC5785528 DOI: 10.1038/s41467-017-02723-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022] Open
Abstract
Astrocytes are implicated in modulation of neuronal excitability and synaptic function, but it remains unknown if these glial cells can directly control activities of motor circuits to influence complex behaviors in vivo. This study focused on the vital respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) and determined how compromised function of local astrocytes affects breathing in conscious experimental animals (rats). Vesicular release mechanisms in astrocytes were disrupted by virally driven expression of either the dominant-negative SNARE protein or light chain of tetanus toxin. We show that blockade of vesicular release in preBötC astrocytes reduces the resting breathing rate and frequency of periodic sighs, decreases rhythm variability, impairs respiratory responses to hypoxia and hypercapnia, and dramatically reduces the exercise capacity. These findings indicate that astrocytes modulate the activity of CNS circuits generating the respiratory rhythm, critically contribute to adaptive respiratory responses in conditions of increased metabolic demand and determine the exercise capacity. Circuits of the preBötzinger complex generate rhythms needed for breathing. Here, the authors provide evidence, using a combination of chemogenetic approaches and approaches to inhibit vesicular release, that astrocytes play a role in regulating respiratory rate.
Collapse
|
49
|
Xing F, Zhang P, Jiang P, Chen Z, Yang J, Hu F, Drevenšek-Olenik I, Zhang X, Pan L, Xu J. Spatiotemporal Characteristics of Intercellular Calcium Wave Communication in Micropatterned Assemblies of Single Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2937-2945. [PMID: 29283550 DOI: 10.1021/acsami.7b15759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Micropatterned substrates offer a unique possibility to define and control spatial organization of biological cells at the microscale, which greatly facilitates investigations of the cell-to-cell communication in vitro. Here, we developed a simple micropatterning strategy to resolve various spatiotemporal characteristics of intercellular calcium wave (ICW) communication among isolated BV-2 microglial cells. By using a single-ring assembly, we found that the direction of the initial transmitter secretion was strongly correlated with the site of the cell at which the mechanical stimulus triggering the ICWs was imposed. By using multiring assemblies, we observed that the response ratio of the same outmost cells 160 μm away from the center increased from 0% in the single-ring assembly to 9.6% in the four-ring assembly. This revealed that cells located in the interring acted as regenerative amplifiers for the ICWs generated by the central cell. By using a special oval-type micropattern, we found that calcium mobilization in lamellipodia of a fusiform BV-2 microglia cell occurred 2.9 times faster than that in the middle part of the cell, demonstrating a higher region-specific sensitivity of lamellipodia to the transmitter. Taken together, our micropatterning strategy opened up new experimental prospects to study ICWs and revealed novel spatiotemporal characteristics of ICW communication including stimulation site-dependent secretion, regenerative propagation, and region-specific cell sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute , Ljubljana SI1000, Slovenia
| | | | | | - Jingjun Xu
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| |
Collapse
|
50
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|