1
|
Louis-Gray KR, Beatty JA, Cox CL. A novel mechanism for short-term post-tetanic plasticity in thalamocortical neurons. Brain Res 2025; 1859:149654. [PMID: 40268039 DOI: 10.1016/j.brainres.2025.149654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Information transfer through the thalamus is a dynamic process, which can be influenced by multiple factors within the thalamocortical circuit. Activity-dependent changes in neuronal excitability and synaptic efficacy can impact both short- and long-term processing through the thalamocortical circuit. In these experiments, we investigate the mechanism of a novel form of post-tetanic synaptic plasticity, induced by tetanic stimulation of excitatory afferents onto thalamocortical neurons. We show that tetanic activation of excitatory afferents produces a short-lasting (10-15 min) facilitation of excitatory postsynaptic currents in ventrobasal thalamocortical neurons. This potentiation is mediated by a calcium-dependent, presynaptic mechanism. This potentiation is partly due to the activation of adenylyl cyclase and involves alteration in the hyperpolarization-activated mixed cation current, Ih. This activity-dependent facilitation of excitatory synaptic transmission provides a mechanism through which prolonged excitatory enhancement may impact sensory processing through thalamocortical circuits.
Collapse
Affiliation(s)
- Kathleen R Louis-Gray
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Joseph A Beatty
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Charles L Cox
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
2
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
3
|
Kodirov SA. Probability of A-channel rectification (Commentary on Johnston et al., 2008). Eur J Neurosci 2022; 56:5960-5966. [PMID: 35995751 PMCID: PMC9722546 DOI: 10.1111/ejn.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at
Brownsville, Brownsville, Texas, USA,Pavlov Institute of Physiology, Russian Academy of
Sciences, Saint Petersburg, Russia,Instituto de Medicina Molecular João Lobo Antunes,
Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Winlow W, Polese G, Moghadam HF, Ahmed IA, Di Cosmo A. Sense and Insensibility - An Appraisal of the Effects of Clinical Anesthetics on Gastropod and Cephalopod Molluscs as a Step to Improved Welfare of Cephalopods. Front Physiol 2018; 9:1147. [PMID: 30197598 PMCID: PMC6117391 DOI: 10.3389/fphys.2018.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Recent progress in animal welfare legislation stresses the need to treat cephalopod molluscs, such as Octopus vulgaris, humanely, to have regard for their wellbeing and to reduce their pain and suffering resulting from experimental procedures. Thus, appropriate measures for their sedation and analgesia are being introduced. Clinical anesthetics are renowned for their ability to produce unconsciousness in vertebrate species, but their exact mechanisms of action still elude investigators. In vertebrates it can prove difficult to specify the differences of response of particular neuron types given the multiplicity of neurons in the CNS. However, gastropod molluscs such as Aplysia, Lymnaea, or Helix, with their large uniquely identifiable nerve cells, make studies on the cellular, subcellular, network and behavioral actions of anesthetics much more feasible, particularly as identified cells may also be studied in culture, isolated from the rest of the nervous system. To date, the sorts of study outlined above have never been performed on cephalopods in the same way as on gastropods. However, criteria previously applied to gastropods and vertebrates have proved successful in developing a method for humanely anesthetizing Octopus with clinical doses of isoflurane, i.e., changes in respiratory rate, color pattern and withdrawal responses. However, in the long term, further refinements will be needed, including recordings from the CNS of intact animals in the presence of a variety of different anesthetic agents and their adjuvants. Clues as to their likely responsiveness to other appropriate anesthetic agents and muscle relaxants can be gained from background studies on gastropods such as Lymnaea, given their evolutionary history.
Collapse
Affiliation(s)
- William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Hadi-Fathi Moghadam
- Department of Physiology, Faculty of Medicine, Physiology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Kehl SJ. A Model of the Block of Voltage-Gated Potassium Kv4.2 Ionic Currents by 4-Aminopyridine. J Pharmacol Exp Ther 2017; 363:184-195. [PMID: 28864468 DOI: 10.1124/jpet.117.243097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Voltage clamp recordings of macroscopic currents were made from rat potassium-gated potassium 4.2(Kv4.2) channels expressed in human embryonic kidney (HEK293) cells with the main goals of quantifying the concentration, time, and voltage dependence of the block and to generate a state model that replicates the features of the block. When applied either externally or internally, the block of Kv4.2 currents by 4-aminopyridine (4AP) occurs at the holding potential (-80 mV), is affected by the stimulus frequency, and is relieved by membrane depolarization. The Kd for the tonic block at -80 mV was 0.9 ± 0.07 mM and was consistent with 1:1 binding. Relief of block during a step to 50 mV was well fitted by a single exponential with a time constant of ∼40 milliseconds. At -80 mV, the association rate constant was 0.08 mM-1 s-1, and the off-rate was 0.08 s-1 The state model replicates the features of the experimental data reasonably well by assuming that 4AP binds only to closed states, that 4AP binding and inactivation are mutually exclusive processes, and that the activation of closed-bound channels is the same as for closed channels. Since the open channel has a very low or no affinity for 4AP, channel opening promotes the unbinding of 4AP, which accounts for the reverse use dependence of the block.
Collapse
Affiliation(s)
- Steven J Kehl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Sabareesan AT, Singh J, Roy S, Udgaonkar JB, Mathew MK. The Pathogenic A116V Mutation Enhances Ion-Selective Channel Formation by Prion Protein in Membranes. Biophys J 2017; 110:1766-1776. [PMID: 27119637 DOI: 10.1016/j.bpj.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders that afflict mammals. Misfolded and aggregated forms of the prion protein (PrP(Sc)) have been associated with many prion diseases. A transmembrane form of PrP favored by the pathogenic mutation A116V is associated with Gerstmann-Sträussler-Scheinker syndrome, but no accumulation of PrP(Sc) is detected. However, the role of the transmembrane form of PrP in pathological processes leading to neuronal death remains unclear. This study reports that the full-length mouse PrP (moPrP) significantly increases the permeability of living cells to K(+), and forms K(+)- and Ca(2+)-selective channels in lipid membranes. Importantly, the pathogenic mutation A116V greatly increases the channel-forming capability of moPrP. The channels thus formed are impermeable to sodium and chloride ions, and are blocked by blockers of voltage-gated ion channels. Hydrogen-deuterium exchange studies coupled with mass spectrometry (HDX-MS) show that upon interaction with lipid, the central hydrophobic region (109-132) of the protein is protected against exchange, making it a good candidate for inserting into the membrane and lining the channel. HDX-MS also shows a dramatic increase in the protein-lipid stoichiometry for A116V moPrP, providing a rationale for its increased channel-forming capability. The results suggest that ion channel formation may be a possible mechanism of PrP-mediated neurodegeneration by the transmembrane forms of PrP.
Collapse
Affiliation(s)
- Ambadi Thody Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Samrat Roy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; Biocon Bristol Myers Squibb Research Center, Bengaluru, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
8
|
Paeger L, Bardos V, Kloppenburg P. Transient voltage-activated K + currents in central antennal lobe neurons: cell type-specific functional properties. J Neurophysiol 2017; 117:2053-2064. [PMID: 28179480 PMCID: PMC5434483 DOI: 10.1152/jn.00685.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.
Collapse
Affiliation(s)
- Lars Paeger
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 2016; 113:E3280-9. [PMID: 27217559 DOI: 10.1073/pnas.1522180113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron-astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide-gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell formation.
Collapse
|
10
|
Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning. Sci Rep 2016; 6:24678. [PMID: 27094086 PMCID: PMC4837398 DOI: 10.1038/srep24678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 11/08/2022] Open
Abstract
Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.
Collapse
|
11
|
Pathak D, Guan D, Foehring RC. Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex. J Neurophysiol 2016; 115:2317-29. [PMID: 26864770 DOI: 10.1152/jn.01028.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.
Collapse
Affiliation(s)
- Dhruba Pathak
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
dos Santos-Nascimento T, Veras KM, Cruz JS, Leal-Cardoso JH. Inhibitory effect of terpinen-4-ol on voltage-dependent potassium currents in rat small sensory neurons. JOURNAL OF NATURAL PRODUCTS 2015; 78:173-180. [PMID: 25607610 DOI: 10.1021/np4009249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The biological and pharmacological activities of the terpenoid terpinen-4-ol (1), which include depressant effects in the central nervous system, are of potential therapeutic interest. In the present study, the effects of 1 on neuronal excitability and voltage-dependent K(+) currents in the somatic sensory system were investigated. Intact and dissociated neurons of rat dorsal root ganglia (DRG) were used for intracellular and patch-clamp recordings, respectively. In neurons of intact DRG, 1 caused concentration-dependent depolarization of the resting membrane potential and increased input resistance. 1 also inhibited action potentials (AP) and decreased AP parameters, with the exception of AP duration, which was increased. In dissociated DRG neurons, 1 partially blocked the total K(+) current in a concentration-dependent manner. 1 inhibited I(A), I(D), and I(K) with IC50 values of 3.2 ± 03, 0.7 ± 0.1, and 1.6 ± 0.7 mM, respectively. 1 did not shift either the steady-state activation or inactivation curves of I(A), I(D), and I(K) but reduced the decay time course of I(A). The alterations in DRG reported here are consistent with the inhibition of K(+) currents and might partially explain the effect of 1 on excitable tissues.
Collapse
Affiliation(s)
- Tiago dos Santos-Nascimento
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará , Campus of Itaperi, Fortaleza, CE, Brazil
| | | | | | | |
Collapse
|
13
|
Chae YJ, Kim DH, Lee HJ, Sung KW, Kwon OJ, Hahn SJ. Raloxifene inhibits cloned Kv4.3 channels in an estrogen receptor-independent manner. Pflugers Arch 2014; 467:1663-76. [PMID: 25231973 DOI: 10.1007/s00424-014-1602-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
Abstract
Raloxifene is widely used for the treatment and prevention of postmenopausal osteoporosis. We examined the effects of raloxifene on the Kv4.3 currents expressed in Chinese hamster ovary (CHO) cells using the whole-cell patch-clamp technique and on the long-term modulation of Kv4.3 messenger RNA (mRNA) by real-time PCR analysis. Raloxifene decreased the Kv4.3 currents with an IC50 of 2.0 μM and accelerated the inactivation and activation kinetics in a concentration-dependent manner. The inhibitory effects of raloxifene on Kv4.3 were time-dependent: the association and dissociation rate constants for raloxifene were 9.5 μM(-1) s(-1) and 23.0 s(-1), respectively. The inhibition by raloxifene was voltage-dependent (δ = 0.13). Raloxifene shifted the steady-state inactivation curves in a hyperpolarizing direction and accelerated the closed-state inactivation of Kv4.3. Raloxifene slowed the time course of recovery from inactivation, thus producing a use-dependent inhibition of Kv4.3. β-Estradiol and tamoxifen had little effect on Kv4.3. A preincubation of ICI 182,780, an estrogen receptor antagonist, for 1 h had no effect on the inhibitory effect of raloxifene on Kv4.3. The metabolites of raloxifene, raloxifene-4'-glucuronide and raloxifene-6'-glucuronide, had little or no effect on Kv4.3. Coexpression of KChIP2 subunits did not alter the drug potency and steady-state inactivation of Kv4.3 channels. Long-term exposure to raloxifene (24 h) significantly decreased the expression level of Kv4.3 mRNA. This effect was not abolished by the coincubation with ICI 182,780. Raloxifene inhibited Kv4.3 channels by interacting with their open state during depolarization and with the closed state at subthreshold potentials. This effect was not mediated via an estrogen receptor.
Collapse
Affiliation(s)
- Yun Ju Chae
- Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Lee HJ, Sung KW, Hahn SJ. Effects of haloperidol on Kv4.3 potassium channels. Eur J Pharmacol 2014; 740:1-8. [PMID: 24998874 DOI: 10.1016/j.ejphar.2014.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
Abstract
Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 μM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials.
Collapse
Affiliation(s)
- Hong Joon Lee
- Department of Pharmacology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, , Seoul 137-701, Republic of Korea
| | - Ki-Wug Sung
- Department of Pharmacology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, , Seoul 137-701, Republic of Korea.
| | - Sang June Hahn
- Department of Physiology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|
15
|
Jensen HB, Ravnborg M, Dalgas U, Stenager E. 4-Aminopyridine for symptomatic treatment of multiple sclerosis: a systematic review. Ther Adv Neurol Disord 2014; 7:97-113. [PMID: 24587826 PMCID: PMC3932769 DOI: 10.1177/1756285613512712] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This systematic review summarizes the existing evidence on the effect of 4-aminopyridine (4-AP) as a symptomatic treatment of decreased walking capacity in patients with multiple sclerosis (MS) when administered as an immediate release compound and a slow release compound. It summarizes existing evidence on the basic mechanisms of 4-AP from experimental studies and evidence on the clinical use of the compound. A systematic literature search was conducted of the following databases: PubMed and EMBASE. Thirty-five studies were included in the review divided into 16 experimental studies, two clinical studies with paraclinical endpoints and 17 clinical studies with clinical endpoints. Animal studies show that 4-AP can improve impulse conduction through demyelinated lesions. In patients with MS this translates into improved walking speed and muscle strength of the lower extremities in a subset of patients at a level that is often of clinical relevance. Phase III trials demonstrate approximately 25% increase in walking speed in roughly 40% and improved muscle strength in the lower extremities. Furthermore, 4-AP might have an effect on other domains such as cognition, upper extremity function and bowel and bladder, but this warrants further investigation. Side effects are mainly mild to moderate, consisting primarily of paraesthesia, dizziness, nausea/vomiting, falls/balance disorders, insomnia, urinary tract infections and asthenia. Side effects are worse when administered intravenously and when administered as an immediate release compound. Serious adverse events are rarely seen in the marketed clinical dosages. In conclusion, 4-AP is easy and safe to use. Slow release 4-AP shows more robust clinical effects and a more beneficial side-effect profile than immediate release 4-AP.
Collapse
Affiliation(s)
- Henrik Boye Jensen
- Institute of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense C, Denmark
| | - Mads Ravnborg
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Ulrik Dalgas
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
| | - Egon Stenager
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Boiko N, Kucher V, Eaton BA, Stockand JD. Inhibition of neuronal degenerin/epithelial Na+ channels by the multiple sclerosis drug 4-aminopyridine. J Biol Chem 2013; 288:9418-27. [PMID: 23404498 DOI: 10.1074/jbc.m112.449413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The voltage-gated K(+) (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na(+) and Ca(2+) currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na(+) (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.
Collapse
Affiliation(s)
- Nina Boiko
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
17
|
Sollai G, Solari P, Corda V, Masala C, Crnjar R. The spike generator in the labellar taste receptors of the blowfly is differently affected by 4-aminopyridine and 5-hydroxytryptamine. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1686-1693. [PMID: 23085554 DOI: 10.1016/j.jinsphys.2012.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
In taste chemoreception of invertebrates the interaction of taste stimuli with specific membrane receptors and/or ion channels located in the apical membrane of taste receptor cells results in the generation of a receptor potential which, in turn, activates the 'encoder' region to produce action potentials which propagate to the CNS. This study investigates, in the labellar chemosensilla of the blowfly, Protophormia terraenovae, the voltage-gated K(+) currents involved in the action potential repolarization and repetitive firing of the neurons by way of the K(v) channel inhibitors, 4-aminopyridine and 5-hydroxytryptamine. The receptor potential and the spike activity were simultaneously recorded from the 'salt', 'sugar' and 'deterrent' cells, by means of the extracellular side-wall technique, in response to 150 mM NaCl, 100 mM sucrose and 1 mM quinine HCl, before, 0÷10 min after apical administration of 4-AP (0.01-10 mM) or 5-HT (0.1-100 mM). The results show that the receptor potential in all three cells is neither affected by 4-AP nor by 5-HT. Instead, spike activity is significantly decreased, by way of blocking different K(v) channel types: an inactivating A-type K(+) current (KA) modulating repetitive firing of the cells and responsible for the after hyperpolarization, and a sustained K(+) current that resembles the delayed rectifier (DKR) and contributes to action potential repolarization.
Collapse
Affiliation(s)
- Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cittadella Universitaria, SP 8 Km 0.700, 09042 Monserrato, (CA), Italy
| | | | | | | | | |
Collapse
|
18
|
Hazra A, Rosenbaum R, Bodmann B, Cao S, Josić K, Žiburkus J. β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. J Neurophysiol 2012; 108:658-71. [PMID: 22496530 DOI: 10.1152/jn.00708.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A description of healthy and pathological brain dynamics requires an understanding of spatiotemporal patterns of neural activity and characteristics of its propagation between interconnected circuits. However, the structure and modulation of the neural activation maps underlying these patterns and their propagation remain elusive. We investigated effects of β-adrenergic receptor (β-AR) stimulation on the spatiotemporal characteristics of emergent activity in rat hippocampal circuits. Synchronized epileptiform-like activity, such as interictal bursts (IBs) and ictal-like events (ILEs), were evoked by 4-aminopyridine (4-AP), and their dynamics were studied using a combination of electrophysiology and fast voltage-sensitive dye imaging. Dynamic characterization of the spontaneous IBs showed that they originated in dentate gyrus/CA3 border and propagated toward CA1. To determine how β-AR modulates spatiotemporal characteristics of the emergent IBs, we used the β-AR agonist isoproterenol (ISO). ISO significantly reduced the spatiotemporal extent and propagation velocity of the IBs and significantly altered network activity in the 1- to 20-Hz range. Dual whole cell recordings of the IBs in CA3/CA1 pyramidal cells and optical analysis of those regions showed that ISO application reduced interpyramidal and interregional synchrony during the IBs. In addition, ISO significantly reduced duration not only of the shorter duration IBs but also the prolonged ILEs in 4-AP. To test whether the decrease in ILE duration was model dependent, we used a different hyperexcitability model, zero magnesium (0 Mg(2+)). Prolonged ILEs were readily formed in 0 Mg(2+), and addition of ISO significantly reduced their durations. Taken together, these novel results provide evidence that β-AR activation dynamically reshapes the spatiotemporal activity patterns in hyperexcitable circuits by altering network rhythmogenesis, propagation velocity, and intercellular/regional synchronization.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dalfampridine in multiple sclerosis: from symptomatic treatment to immunomodulation. Clin Immunol 2011; 142:84-92. [PMID: 21742559 DOI: 10.1016/j.clim.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that is deemed to affect more than 2.1 million people worldwide, and for which there is no cure. Early symptoms of MS are believed to result from axonal demyelination leading to slowing or blockade of impulse conduction. The blockade of K+ channels has been proven to improve conduction deficiencies secondary to demyelination in patients with MS. Dalfampridine is a K+ channel blocker that was recently approved by FDA for the symptomatic treatment of ambulation hardship in MS. Understanding the mechanisms by which Dalfampridine exerts its therapeutic effects is a complex issue as it blocks a wide variety of K+ channels that are distributed across multiple cell types in the nervous system but also in the immune system, and because of their molecular identities remaining unknown. This review describes Dalfampridine potential roles at the cellular and molecular levels in MS pathogenesis.
Collapse
|
20
|
Ito HT, Schuman EM. Distance-dependent homeostatic synaptic scaling mediated by a-type potassium channels. Front Cell Neurosci 2009; 3:15. [PMID: 20076774 PMCID: PMC2806179 DOI: 10.3389/neuro.03.015.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/09/2009] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low)-to-distal (high) dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with tetrodotoxin) coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 h, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC) frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron.
Collapse
Affiliation(s)
- Hiroshi T Ito
- Division of Biology, California Institute of Technology Pasadena, CA, USA
| | | |
Collapse
|
21
|
Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex. Exp Neurol 2009; 219:136-45. [DOI: 10.1016/j.expneurol.2009.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/20/2022]
|
22
|
Chung WK, Shin M, Jaramillo TC, Leibel RL, LeDuc CA, Fischer SG, Tzilianos E, Gheith AA, Lewis AS, Chetkovich DM. Absence epilepsy in apathetic, a spontaneous mutant mouse lacking the h channel subunit, HCN2. Neurobiol Dis 2008; 33:499-508. [PMID: 19150498 DOI: 10.1016/j.nbd.2008.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/13/2008] [Accepted: 12/04/2008] [Indexed: 01/18/2023] Open
Abstract
Analysis of naturally occurring mutations that cause seizures in rodents has advanced understanding of the molecular mechanisms underlying epilepsy. Abnormalities of I(h) and h channel expression have been found in many animal models of absence epilepsy. We characterized a novel spontaneous mutant mouse, apathetic (ap/ap), and identified the ap mutation as a 4 base pair insertion within the coding region of Hcn2, the gene encoding the h channel subunit 2 (HCN2). We demonstrated that Hcn2(ap) mRNA is reduced by 90% compared to wild type, and the predicted truncated HCN2(ap) protein is absent from the brain tissue of mice carrying the ap allele. ap/ap mice exhibited ataxia, generalized spike-wave absence seizures, and rare generalized tonic-clonic seizures. ap/+ mice had a normal gait, occasional absence seizures and an increased severity of chemoconvulsant-induced seizures. These findings help elucidate basic mechanisms of absence epilepsy and suggest HCN2 may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- Wendy K Chung
- Division of Molecular Genetics and the Naomi Berrie Diabetes Center, Columbia University Medical College, Russell Berrie Medical Science Pavilion, Room 620, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. J Neurosci 2008; 28:10905-17. [PMID: 18945898 DOI: 10.1523/jneurosci.2237-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.
Collapse
|
24
|
Jackson AC, Bean BP. State-dependent enhancement of subthreshold A-type potassium current by 4-aminopyridine in tuberomammillary nucleus neurons. J Neurosci 2007; 27:10785-96. [PMID: 17913912 PMCID: PMC6672835 DOI: 10.1523/jneurosci.0935-07.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A-type potassium current (I(A)) both activates and inactivates at subthreshold voltages. We asked whether there is steady-state I(A) at subthreshold voltages, using dissociated mouse tuberomammillary nucleus neurons, pacemaking neurons with large I(A) currents in which subthreshold I(A) might regulate firing frequency. With slow depolarizing voltage ramps (20 mV/s), there was no discernible component of steady-state outward current in the range of -70 to -40 mV. However, faster ramps of 50-100 mV/s, similar to the rate of spontaneous depolarization during pacemaking, did evoke subthreshold outward currents. Ramp-evoked current at subthreshold voltages was unaffected by 10 mM tetraethylammonium and likely represents I(A), because its voltage dependence overlaps that of I(A) activation (midpoint near -44 mV) and inactivation (midpoint near -85 mV). However, although 4-aminopyridine (4-AP) inhibited peak I(A) activated by step depolarizations as expected (IC50, approximately 1 mM), ramp-evoked current was instead dramatically enhanced (current at -40 mV evoked by 50 mV/s ramp enhanced >15-fold by 10 mM 4-AP). In cell-attached recordings of spontaneous pacemaking, 10 mM 4-AP slowed rather than speeded firing, consistent with enhancement of subthreshold I(A). Also consistent with such enhancement, 4-AP also greatly increased the latency to first spike after long hyperpolarizations. The striking enhancement of I(A) during depolarizing ramps can be explained by a model in which 4-AP binds tightly to closed channels but must unbind before channels can inactivate. Thus, the state dependence of 4-AP binding to the channels underlying I(A) can result in effects on firing patterns opposite to those expected from simple block of I(A).
Collapse
Affiliation(s)
| | - Bruce P. Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
25
|
Claydon TW, Vaid M, Rezazadeh S, Kehl SJ, Fedida D. 4-aminopyridine prevents the conformational changes associated with p/c-type inactivation in shaker channels. J Pharmacol Exp Ther 2007; 320:162-72. [PMID: 17015639 DOI: 10.1124/jpet.106.110411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of 4-aminopyridine (4-AP) on Kv channel activation has been extensively investigated, but its interaction with inactivation is less well understood. Voltage-clamp fluorimetry was used to directly monitor the action of 4-AP on conformational changes associated with slow inactivation of Shaker channels. Tetramethylrhodamine-5-maleimide was used to fluorescently label substituted cysteine residues in the S3-S4 linker (A359C) and pore (S424C). Activation- and inactivation-induced changes in fluorophore microenvironment produced fast and slow phases of fluorescence that were modified by 4-AP. In Shaker A359C, 4-AP block reduced the slow-phase contribution from 61 +/- 3 to 28 +/- 5%, suggesting that binding inhibits the conformational changes associated with slow inactivation and increased the fast phase that reports channel activation from 39 +/- 3 to 72 +/- 5%. In addition, 4-AP enhanced both fast and slow phases of fluorescence return upon repolarization (tau reduced from 87 +/- 15 to 40 +/- 1 ms and from 739 +/- 83 to 291 +/- 21 ms, respectively), suggesting that deactivation and recovery from inactivation were enhanced. In addition, the effect of 4-AP on the slow phase of fluorescence was dramatically reduced in channels with either reduced (T449V) or permanent P-type (W434F) inactivation. Interestingly, the slow phase of fluorescence return of W434F channels was enhanced by 4-AP, suggesting that 4-AP prevents the transition to C-type inactivation in these channels. These data directly demonstrate that 4-AP prevents slow inactivation of Kv channels and that 4-AP can bind to P-type-inactivated channels and selectively inhibit the onset of C-type inactivation.
Collapse
Affiliation(s)
- Thomas W Claydon
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
26
|
Vatanparast J, Janahmadi M, Asgari AR. The functional consequences of paraoxon exposure in central neurones of land snail, Caucasotachea atrolabiata, are partly mediated through modulation of Ca2+ and Ca2+-activated K+-channels. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143:464-72. [PMID: 16820325 DOI: 10.1016/j.cbpc.2006.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/15/2006] [Accepted: 04/22/2006] [Indexed: 11/25/2022]
Abstract
Toxicity of paraoxon has been attributed to inhibition of cholinesterase, but little is known about its direct action on ionic channels. The effects of paraoxon (0.3 microM-0.6 microM) were studied on the firing behaviour of snail neurones. Paraoxon significantly increased the frequency of spontaneously generated action potentials, shortened the afterhyperpolarization (AHP) and decreased the precision of firing. Short periods of high frequency-evoked trains of action potentials led to an accumulation in the depth and duration of post-train AHPs that was evidenced as an increase in time to resumption of autonomous activity. The delay time in autonomous activity initiation was linearly related to the frequency of spikes in the preceding train and the slope of the curve significantly decreased by paraoxon. The paraoxon induced hyperexcitability and its depressant effect on the AHP and the post-train AHP were not blocked by atropine and hexamethonium. Calcium spikes were elicited in a Na+ free Ringer containing voltage dependent potassium channel blockers. Paraoxon significantly decreased the duration of calcium spikes and following AHP and increased the frequency of spikes. These findings suggest that a reduction in calcium influx during action potential may decrease the activation of calcium dependent potassium channels that participate in AHP generation and act as a mechanism of paraoxon induced hyperexcitability.
Collapse
Affiliation(s)
- Jafar Vatanparast
- Neuroscience Research Center and Department of Physiology, Faculty of Medicine, Shaheed Beheshti Medical Sciences University, Evin, P.O.Box 19835-181, Tehran, Iran
| | | | | |
Collapse
|
27
|
Judge SIV, Bever CT. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006; 111:224-59. [PMID: 16472864 DOI: 10.1016/j.pharmthera.2005.10.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K(+)) channel blockers as a symptomatic treatment. To date, only 2 broad-spectrum K(+) channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been tested in MS patients. Although both 4-AP and 3,4-DAP produce clear neurologic benefits, their use has been limited by toxicity. Here we review the current status of basic science and clinical research related to the therapeutic targeting of voltage-gated K(+) channels (K(v)) in MS. By bringing together 3 distinct but interrelated disciplines, we aim to provide perspective on a vast body of work highlighting the lengthy and ongoing process entailed in translating fundamental K(v) channel knowledge into new clinical treatments for patients with MS and other demyelinating diseases. Covered are (1) K(v) channel nomenclature, structure, function, and pharmacology; (2) classic and current experimental morphology and neurophysiology studies of demyelination and conduction deficits; and (3) a comprehensive overview of clinical trials utilizing 4-AP and 3,4-DAP in MS patients.
Collapse
Affiliation(s)
- Susan I V Judge
- MS Center of Excellence-East, Research and Neurology Services, VA Maryland Health Care System, USA.
| | | |
Collapse
|
28
|
Cho S, Meriney SD. The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction. Eur J Neurosci 2006; 23:3200-8. [PMID: 16820010 DOI: 10.1111/j.1460-9568.2006.04849.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium (Ca2+) influx through presynaptic calcium channels triggers transmitter release, and any alterations in the gating of these calcium channels results in changes in the magnitude of transmitter released. We used (R)-roscovitine, a cyclin-dependent kinase inhibitor that also appears to act directly on calcium channels, as a tool to modulate presynaptic calcium influx and study effects on transmitter release. We show that this compound increased the quantal content of acetylcholine released from the Rana frog motor nerve terminal (by 149%) without changing paired-pulse facilitation (under low calcium conditions). In contrast, exposure to 3,4-diaminopyridine (DAP; which similarly affects transmitter release by partially blocking potassium channels, altering the shape of the presynaptic action potential, and indirectly increasing calcium entry) increased paired-pulse facilitation (by 23%). In addition, we show that (R)-roscovitine predominately slowed deactivation kinetics of calcium current (by 427%) recorded from Xenopus frog motoneurons, and as a result, increased the integral of calcium channel current evoked by a physiological action potential waveform (by 44%). Because we did not observe any significant effects of structurally related cyclin-dependent kinase inhibitors [(S)-roscovitine or olomoucine] on evoked transmitter release or calcium current kinetics, it appears that these effects of (R)-roscovitine are independent of cyclin-dependent kinases (cdks). In summary, we hypothesize that (R)-roscovitine effects on transmitter release at the adult frog neuromuscular junction (NMJ) are mediated by its effects on calcium channel gating, and these effects increase our understanding of calcium triggered secretion at this synapse.
Collapse
Affiliation(s)
- Soyoun Cho
- Department of Neuroscience, Center for Neuroscience, 446 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
29
|
Vatanparast J, Janahmadi M, Asgari AR, Sepehri H, Haeri-Rohani A. Paraoxon suppresses Ca2+ spike and afterhyperpolarization in snail neurons: Relevance to the hyperexcitability induction. Brain Res 2006; 1083:110-7. [PMID: 16566905 DOI: 10.1016/j.brainres.2006.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
The effects of organophosphate (OP) paraoxon, active metabolite of parathion, were studied on the Ca(2+) and Ba(2+) spikes and on the excitability of the neuronal soma membranes of land snail (Caucasotachea atrolabiata). Paraoxon (0.3 muM) reversibly decreased the duration and amplitude of Ca(2+) and Ba(2+) spikes. It also reduced the duration and the amplitude of the afterhyperpolarization (AHP) that follows spikes, leading to a significant increase in the frequency of Ca(2+) spikes. Pretreatment with atropine and hexamethonium, selective blockers of muscarinic and nicotinic receptors, respectively, did not prevent the effects of paraoxon on Ca(2+) spikes. Intracellular injection of the calcium chelator BAPTA dramatically decreased the duration and amplitude of AHP and increased the duration and frequency of Ca(2+) spikes. In the presence of BAPTA, paraoxon decreased the duration of the Ca(2+) spikes without affecting their frequency. Apamin, a neurotoxin from bee venom, known to selectively block small conductance of calcium-activated potassium channels (SK), significantly decreased the duration and amplitude of the AHP, an effect that was associated with an increase in spike frequency. In the presence of apamin, bath application of paraoxon reduced the duration of Ca(2+) spike and AHP and increased the firing frequency of nerve cells. In summary, these data suggest that exposure to submicromolar concentration of paraoxon may directly affect membrane excitability. Suppression of Ca(2+) entry during the action potential would down regulate Ca(2+)-activated K(+) channels leading to a reduction of the AHP and an increase in cell firing.
Collapse
Affiliation(s)
- Jafar Vatanparast
- Department of Physiology and Neuroscience Research Center, Faculty of Medicine, Shaheed Beheshti Medical Sciences University, PO Box 19835-181, Evin, Tehran, Iran
| | | | | | | | | |
Collapse
|
30
|
Rosenkranz JA, Johnston D. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 2006; 26:3229-44. [PMID: 16554474 PMCID: PMC6674109 DOI: 10.1523/jneurosci.4333-05.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/20/2006] [Accepted: 02/13/2006] [Indexed: 11/21/2022] Open
Abstract
The entorhinal cortex (EC) is a significant component of the systems that underlie certain forms of memory formation and recall. Evidence has been emerging that the dopaminergic system in the EC facilitates these and other functions of the EC. The effects of dopamine (DA) on membrane properties and excitability of EC neurons, however, are not known. We used in vitro whole-cell patch-clamp recordings from layer V pyramidal neuronal somata and dendrites of the adult rat lateral EC to investigate the effects of DA on the excitability of these neurons. We found that brief application of DA caused a reduction in the excitability of layer V EC pyramidal neurons. This effect was attributable to voltage-dependent modification of membrane properties that can best be explained by an increase in a hyperpolarization-activated conductance. Furthermore, the effects of DA were blocked by pharmacological blockade of h-channels, but not by any of a number of other ion channels. These actions were produced by a D1 receptor-mediated increase of cAMP but were independent of protein kinase A. A portion of the actions of DA can be attributed to effects in the apical dendrites. The data suggest that DA can directly influence the membrane properties of layer V EC pyramidal neurons by modulation of h-channels. These actions may underlie some of the effects of DA on memory formation.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
31
|
Winkelman DLB, Beck CL, Ypey DL, O'Leary ME. Inhibition of the A-type K+ channels of dorsal root ganglion neurons by the long-duration anesthetic butamben. J Pharmacol Exp Ther 2005; 314:1177-86. [PMID: 15923341 DOI: 10.1124/jpet.105.087759] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
n-Butyl-p-aminobenzoate (BAB; butamben) is a long-duration anesthetic used for the treatment of chronic pain. Epidural administration of BAB is thought to reduce the electrical excitability of dorsal root nociceptor fibers by inhibiting voltage-gated ion channels. To further investigate this mechanism, we examined the effects of BAB on the potassium currents of acutely dissociated neurons from the rat dorsal root ganglion (DRG). These neurons express a rapidly inactivating A-type K(+) current (I(A)) that is resistant to tetraethylammonium (20 mM) but inhibited by 4-aminopyridine (5 mM). At low concentrations, BAB (< or =1 microM) selectively inhibited the I(A) component of DRG K(+) current. The voltage dependence of activation and inactivation, kinetics of recovery from inactivation, and the pharmacology of the DRG I(A) were similar to those of the Kv4 family of K(+) channels. Reverse transcription-polymerase chain reaction was used to establish that the messages encoding for all three of the mammalian Kv4 channel subunits (Kv4.1-Kv4.3) were present in the rat DRG. BAB produced a high-affinity, partial inhibition of heterologously expressed Kv4.2 channels (K(D) = 59 nM) but did not alter the kinetics or voltage sensitivity of gating. Substituting polar threonines for conserved hydrophobic residues of the S6 segment weakened BAB binding but did not alter the voltage-dependent gating of the Kv4.2 channel. At physiological pH, BAB is uncharged, suggesting that hydrophobic interactions may contribute to drug binding. The data support a mechanism in which BAB binds near the narrow cytoplasmic entrance of Kv4 channels and inhibits current by a pore blocking mechanism.
Collapse
Affiliation(s)
- D L B Winkelman
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
32
|
Perkins GL, Derfoul A, Ast A, Hall DJ. An inhibitor of the stretch-activated cation receptor exerts a potent effect on chondrocyte phenotype. Differentiation 2005; 73:199-211. [PMID: 16026542 DOI: 10.1111/j.1432-0436.2005.00024.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rat chondrosarcoma (RCS) cells are unusual in that they display a stable chondrocyte phenotype in monolayer culture. This phenotype is reflected by a rounded cellular morphology with few actin-containing stress fibers and production of an extracellular matrix rich in sulfated proteoglycans, with high-level expression of aggrecan, COMP, Sox9, and collagens type II, IX, and XI. Additionally, these cells do not express collagen type I. Here it is shown that in the absence of any mechanical stimulation, treatment of RCS cells with gadolinium chloride (Gd3+), a stretch-activated cation channel blocker, caused the cells to undergo de-differentiation, adopting a flattened fibroblast phenotype with the marked appearance of actin stress fibers and vinculin-containing focal contacts. This change was accompanied by a dramatic reduction in the expression of aggrecan, Sox9, collagen types II, IX, and XI, with a corresponding increase in the expression of collagen type I and fibronectin. These effects were found to be reversible by simple removal of Gd3+ from the medium. Gd3+ also had a similar effect on expression of chondrocyte marker genes in freshly isolated human chondrocytes. These data suggest that mechanoreceptor signaling plays a key role in maintenance of the chondrocyte phenotype, even in the absence of mechanical stimulation. Further, treatment of RCS cells with Gd3+ provides a tractable system for assessing the molecular events underlying the reversible differentiation of chondrocytes.
Collapse
Affiliation(s)
- Gryphon L Perkins
- Cartilage Molecular Genetics Group, Cartilage Biology and Orthopaedics Branch, Department of Health and Human Services, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
33
|
Abstract
4-Aminopyridine (4-AP or fampridine) is a potassium channel-blocking agent that has been shown to restore conduction in focally demyelinated axons. A sustained-release matrix tablet form of 4-AP (fampridine-SR) is currently undergoing multicenter clinical trials in patients with multiple sclerosis or chronic spinal cord injury. This review describes the pharmacology and mechanisms of action of 4-AP, its pharmacokinetics in human subjects, and the outcomes of clinical trials employing either immediate-release or sustained-release formulations of the drug. The randomized clinical trials that have been completed to date indicate that K+ channel blockade may prove to be a useful strategy for ameliorating central conduction deficits due to demyelination. Diverse neurological gains have been reported for both motor and sensory domains. At the present time, however, the clinical trials have not provided sufficiently robust or definitive evidence of efficacy to gain regulatory approval for the symptomatic management of patients with either multiple sclerosis or spinal cord injury.
Collapse
Affiliation(s)
- Keith C Hayes
- Department of Physical Medicine & Rehabilitation, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
34
|
Stewart T, Beyak MJ, Vanner S. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol 2003; 552:797-807. [PMID: 12923214 PMCID: PMC2343449 DOI: 10.1113/jphysiol.2003.046409] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intestinal inflammation induces hyperexcitability of dorsal root ganglia sensory neurons, which has been implicated in increased pain sensation. This study examined whether alteration of sodium (Na+) and/or potassium (K+) currents underlies this hyperexcitability. Ileitis was induced in guinea pig ileum with trinitrobenzene sulphonic acid (TBNS) and dorsal root ganglion neurons innervating the site of inflammation were identified by Fast Blue or DiI fluorescence labelling. Whole cell recordings were made from acutely dissociated small-sized neurons at 7-10 days. Neurons exhibited transient A-type and sustained outward rectifier K+ currents. Compared to control, both A-type and sustained K+ current densities were significantly reduced (42 and 34%, respectively; P < 0.05) in labelled neurons from the inflamed intestine but not in non-labelled neurons. A-type current voltage dependence of inactivation was negatively shifted in labelled inflamed intestine neurons. Neurons also exhibited tetrodotoxin-sensitive and resistant Na+ currents. Tetrodotoxin-resistant sodium currents were increased by 37% in labelled neurons from the inflamed intestine compared to control (P < 0.01), whereas unlabelled neurons were unaffected. The activation and inactivation curves of these currents were unchanged by inflammation. These data suggest ileitis increases excitability of intestinal sensory neurons by modulating multiple ionic channels. The lack of effect in non-labelled neurons suggests signalling originated at the nerve terminal rather than through circulating mediators and, given that Na+ currents are enhanced whereas K+ currents are suppressed, one or more signalling pathways may be involved.
Collapse
Affiliation(s)
- Timothy Stewart
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
35
|
Ohishi Y, Matsutomi T, Zheng T, Kakimura JI, Maruyama H, Ogata N. Use-dependent removal of the 4-aminopyridine-induced block of the transient K+ current in rat dorsal root ganglia. J Pharmacol Sci 2003; 92:296-300. [PMID: 12890896 DOI: 10.1254/jphs.92.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Effects of 4-aminopyridine (4-AP) on the transient K(+) current (I(A)) was studied in rat sensory neurons using the whole cell patch-clamp technique. The amplitude of I(A) was reduced by 4-AP. The steady-state inactivation curve for I(A) was shifted in the positive direction by 4-AP, suggesting that the blocking action of 4-AP may be attenuated by membrane depolarization. When two I(A)s were evoked with variable intervals, the peak amplitude of the I(A) induced by the second pulse was augmented in the presence of 4-AP. These results indicate that the action of 4-AP can be modulated by concurrent neuronal activities.
Collapse
Affiliation(s)
- Yoshiaki Ohishi
- Department of Neurophysiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Scott KD, Stafford JL, Galvez F, Belosevic M, Goss GG. Plasma membrane depolarization reduces nitric oxide (NO) production in P388D.1 macrophage-like cells during Leishmania major infection. Cell Immunol 2003; 222:58-68. [PMID: 12798308 DOI: 10.1016/s0008-8749(03)00077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we compare changes in host cell plasma membrane potential (V(m)), K(+) fluxes, and NO production during K(+) channel blockade with those changes that occur during infection with Leishmania major. Infection of P388D.1 cells with L. major promastigotes or treatment with K(+) channel blockers (either 1mM 4-AP, 10mM TEA, or 200 microM quinine) suppressed NO production. Inhibition of NO production correlated with depolarization of the P388D.1 cell V(m). Infection of P388D.1 cells with L. major increased the unidirectional influx of rubidium (86Rb), a tracer for K(+) flux, that was comparable to that induced by K(+) channel blockade by 1mM 4-AP. The similar effects of K(+) channel blockers and L. major on NO production, K(+) influx, and V(m) suggest that K(+) channel activity and the maintenance of V(m) is important for NO production in these cells. We suggest that intracellular parasites employ a strategy to inhibit NO production by disrupting V(m) during the invasion/infection process by altering host cell K(+) channel activity.
Collapse
Affiliation(s)
- Kristine D Scott
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Alberta, T6G 2H7, Edmonton, Canada
| | | | | | | | | |
Collapse
|
37
|
Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 2003; 6:258-66. [PMID: 12592408 DOI: 10.1038/nn1019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/10/2003] [Indexed: 11/09/2022]
Abstract
Neurons with the capacity to discharge at high rates--'fast-spiking' (FS) neurons--are critical participants in central motor and sensory circuits. It is widely accepted that K+ channels with Kv3.1 or Kv3.2 subunits underlie fast, delayed-rectifier (DR) currents that endow neurons with this FS ability. Expression of these subunits in heterologous systems, however, yields channels that open at more depolarized potentials than do native Kv3 family channels, suggesting that they differ. One possibility is that native channels incorporate a subunit that modifies gating. Molecular, electrophysiological and pharmacological studies reported here suggest that a splice variant of the Kv3.4 subunit coassembles with Kv3.1 subunits in rat brain FS neurons. Coassembly enhances the spike repolarizing efficiency of the channels, thereby reducing spike duration and enabling higher repetitive spike rates. These results suggest that manipulation of K3.4 subunit expression could be a useful means of controlling the dynamic range of FS neurons.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Department of Physiology, Feinberg School of Medicine, 303 E. Chicago Ave., Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
38
|
Eder C, Ficker E, Gündel J, Heinemann U. Outward Currents in Rat Entorhinal Cortex Stellate Cells Studied with Conventional and Perforated Patch Recordings. Eur J Neurosci 2002; 3:1271-1280. [PMID: 12106225 DOI: 10.1111/j.1460-9568.1991.tb00060.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have studied outward currents of neurons acutely isolated from superficial layers of the entorhinal cortex with whole-cell patch-clamp recordings. If cells were held more negative than -50 mV, depolarizing voltage commands activated a transient A-type current together with a sustained outward current. Both currents were sensitive to 4-aminopyridine, while only the sustained current was blocked by tetraethylammonium. The sustained outward current showed a considerable rundown in amplitude over prolonged recording periods. At the same time its half-maximal inactivation shifted from -74 to -114 mV. Nystatin perforated patch recordings were used to minimize these perfusion effects. Under such conditions the amplitude and the steady-state inactivation properties of the sustained outward current remained stable for more than 1 h. Pharmacological investigations revealed that only a small part of the sustained outward current could be attributed to a calcium-activated potassium current. Therefore most of the rundown has to be due to changes in the delayed rectifier outward current. These results may suggest that the delayed rectifier current is under considerable metabolic control.
Collapse
Affiliation(s)
- C. Eder
- Institut für Neurobiologie und Hirnforschung, Brenneckestrasse 6, 3090 Magdeburg, FRG
| | | | | | | |
Collapse
|
39
|
Funahashi M, Mitoh Y, Matsuo R. Two distinct types of transient outward currents in area postrema neurons in rat brain slices. Brain Res 2002; 942:31-45. [PMID: 12031850 DOI: 10.1016/s0006-8993(02)02651-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the electrophysiological properties of the area postrema neurons in acutely prepared rat brain slices using the whole-cell patch-clamp technique. Two different types of transient outward potassium current (I(to)), fast and slow, were found in the area postrema. Both the decay time constant and rise time were significantly faster in the fast I(to) than in the slow I(to). Both current-clamp and voltage-clamp recordings revealed that the activation of fast and slow I(to) contributes to generation of the different spiking patterns, late spiking and interrupted spiking, respectively. The activation and inactivation of both I(to) were strongly voltage-dependent. Curve fitting by the Boltzmann equation revealed no significant difference in the activation and inactivation curves for each I(to) except that the slope factor of inactivation was larger for fast I(to). Both I(to) were suppressed dose-dependently by application of 4-aminopyridine. Each spiking pattern was enhanced when cells were held at a more hyperpolarized membrane potential, i.e. a longer latency of the first spike or longer interspike interval between the first and second spikes. The voltage-dependent modulation of the spiking pattern was consistent with the voltage-dependent activation of I(to). The present study shows significant subdivisions of the area postrema neurons distinguished by a difference in the kinetics of I(to) and spiking patterns. We discuss the role of I(to) as the ionic current underlying neuronal excitability.
Collapse
Affiliation(s)
- Makoto Funahashi
- Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | | | |
Collapse
|
40
|
Kiss T, László Z, Szabadics J. Mechanism of 4-aminopyridine block of the transient outward K-current in identified Helix neuron. Brain Res 2002; 927:168-79. [PMID: 11821010 DOI: 10.1016/s0006-8993(01)03351-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The block of the transient outward K-current, I(K(A)) by 4-aminopyridine (4-AP) and blood-depressing substances (BDS) was investigated in identified Helix pomatia neurons (LPa3) using the two microelectrode voltage-clamp technique. The present study shows that 4-AP inhibits I(K(A)) in snail neurons in a voltage- and concentration-dependent manner. The 4-AP block of I(K(A)) involves the block of both open and closed states of the channel, however binding to open channels is preferred. It is suggested that 4-AP have two binding sites on the identified Helix neuron. One site causes an open channel block, which affects the N-type inactivation, and binding to the second site induces closed channel block, which affects C-type inactivation. In control solution the inactivating phase of the current is biexponential, suggesting simultaneous presence of two types of inactivation. The counterplay of these mechanisms results in the crossover of the current traces recorded from control and 4-AP blocked channels. It is assumed that use-dependence does not occur through blocker 'trapping', but rather by a different mechanism. BDS had no effect on Helix I(K(A)), suggesting that transient potassium channels in LPa3 neuron are not Kv3.4 type channels.
Collapse
Affiliation(s)
- Tibor Kiss
- Department of Zoology, Balaton Limnological Research Institute of the Hungarian Academy of Sciences, H-8237 Tihany, Hungary.
| | | | | |
Collapse
|
41
|
Andreasen M. Inhibition of slow Ca(2+)-activated K(+) current by 4-aminopyridine in rat hippocampal CA1 pyramidal neurones. Br J Pharmacol 2002; 135:1013-25. [PMID: 11861330 PMCID: PMC1573197 DOI: 10.1038/sj.bjp.0704533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 11/02/2001] [Accepted: 11/29/2001] [Indexed: 11/09/2022] Open
Abstract
1. The effect of 4-aminopyridine (4-AP) on the slow afterhyperpolarization (sAHP) seen after high frequency dendritic or somatic firing was investigated in rat hippocampal CA1 pyramidal neurones (PC). Intracellular recordings were obtained from the distal apical dendrites and somata and suprathreshold depolarizing current pulses were used to evoke a sAHP. The sAHP was blocked by low concentrations of carbacholine (Cch) but insensitive to high concentrations of apamin. 2. In the presence of extracellular 4-AP, the first dendritic sAHP evoked was reduced compared to a maximal sAHP evoked in the absence of 4-AP. The reduction was evident at submillimolar concentration and increased to about 80% with 4 mM 4-AP. 3. The stability of the 4-AP-induced block was affected by the type of anion used in the electrode solution. With K(+) acetate (KAc) or K(+) methylsulphate (KMeSO(4)) containing electrodes, the block was progressively removed during the initial 300 - 400 s of recordings. With KCl containing electrodes, the block remained stable and was 10% larger than that obtained with acetate. Detailed investigations showed that intracellular acetate promotes the removal of the 4-AP-induced block in an activity-dependent manner. 4. Intracellularly applied 4-AP also induced an acetate-sensitive block of the dendritic sAHP. 5. 4-AP also blocked the somatic sAHP and the stability of the block showed the same sensitivity towards anions as the dendritic sAHP. 6. Thus 4-AP appears to block the slow Ca(2+)-activated K(+) current underlying the sAHP in a complex manner which is sensitive to certain types of anions.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Physiology, University of Aarhus, DK-8000 Arhus C, Denmark.
| |
Collapse
|
42
|
Riazanski V, Becker A, Chen J, Sochivko D, Lie A, Wiestler OD, Elger CE, Beck H. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells. J Physiol 2001; 537:391-406. [PMID: 11731573 PMCID: PMC2278961 DOI: 10.1111/j.1469-7793.2001.00391.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We have investigated voltage-dependent outward K+ currents of dentate granule cells (DGCs) in acute brain slices from young and adult rats using nucleated and outside-out patch recordings. 2. In adult DGCs, the outward current pattern was dominated by a transient K+ current component. One portion of this current (approximately 60%) was blocked by micromolar concentrations of tetraethylammonium (TEA; IC50 42 microM) and BDS-I, a specific blocker of Kv3.4 subunits (2.5 microM). A second component was insensitive to tetraethylammonium (10 mM) and BDS-I. The transient outward current could be completely blocked by 4-aminopyridine (IC50 296 microM). 3. The TEA- and BDS-I-sensitive and the TEA-resistant current components were isolated pharmacologically. The current component that was blocked by BDS-I and TEA showed a depolarized threshold of activation (approximately -30 mV) reminiscent of Kv3.4 subunits, while the current component resistant to TEA activated at more hyperpolarized potentials (approximately -60 mV). 4. In nucleated patches obtained by placing the patch pipette adjacent to the apical dendrite, only small Na+ currents and small BDS-I-sensitive transient currents were detected. Nucleated patches obtained from either the cell soma (see above) or the axon hillock showed significantly larger amplitude Na+ currents as well as larger BDS-I-sensitive currents, indicating that this current was predominantly localized within the axosomatic compartment. This result was in good agreement with the distribution of Kv3.4 protein as determined by immunohistochemistry. 5. Current-clamp as well as mock action potential-clamp experiments revealed that the BDS-sensitive current component contributes to action potential repolarization. 6. A comparison of the two age groups (4-10 days and 60-100 days) revealed a marked developmental up-regulation of the BDS-I-sensitive component. These functional changes are paralleled by a developmental increase in Kv3.4 mRNA expression determined by quantitative real-time RT-PCR, as well as a pronounced up-regulation of Kv3.4 on the protein level determined by immunohistochemistry. 7. These functional and molecular results argue that Kv3.4 channels located predominantly in the axosomatic compartment underlie a transient K+ current in adult DGCs, and that these channels are functionally important for regulating spike repolarization. The marked developmental regulation suggests an important role of Kv3.4 in neuronal maturation.
Collapse
Affiliation(s)
- V Riazanski
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Saito Y, Isa T. Voltage-gated transient outward currents in neurons with different firing patterns in rat superior colliculus. J Physiol 2000; 528 Pt 1:91-105. [PMID: 11018108 PMCID: PMC2270113 DOI: 10.1111/j.1469-7793.2000.00091.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We investigated the electrophysiological properties of transient outward currents (TOCs) in neurons with different firing patterns, regular-spiking, fast-spiking and late-spiking neurons, in the intermediate layer (SGI) of the superior colliculus using the whole-cell patch clamp technique in slice preparations obtained from young rats (post-natal days 17-22). 2. Analysis of inactivation kinetics and normalized amplitude revealed that TOCs in regular-and fast-spiking neurons had fast inactivation kinetics (decay time constants (mean +/- s.e.m.) of 13.8 +/- 1.5 and 11.4 +/- 1.2 ms, respectively) and low current densities (36.6 +/- 3.3 and 32.1 +/- 4. 9 pA pF-1, respectively). TOCs in late-spiking neurons, on the other hand, displayed a wide range of both inactivation kinetics (36.7 +/- 2.4 ms, with a range from 11.3 to 147.8 ms) and current density (54. 0 +/- 2.9 pA pF-1, with a range from 9.8 to 131.2 pA pF-1). 3. In regular-, fast- and late-spiking neurons having TOCs with slow time constants (> 50 ms, class II late-spiking neurons), the TOCs were sensitive to 4-aminopyridine (4-AP), with IC50 values of 2.9, 2.4 and 1.2 mM, respectively. In late-spiking neurons having TOCs with fast decay time constants (< 30 ms, class I late-spiking neurons), the TOCs were composed of at least two 4-AP-sensitive components (IC50 values of 0.2 microM and 3.6 mM). 4. Class I late-spiking neurons displayed non-inactivating outward currents which were highly sensitive to 4-AP. They changed their firing patterns to the regular-spiking mode, not only in response to low concentrations of 4-AP (< 50 microM), but also in response to dendrotoxin (200 nM), suggesting that non-inactivating outward currents contribute to the late-spiking property. However, the components of TOCs which were highly sensitive to 4-AP were also sensitive to dendrotoxin. These results suggest that both or either of the two currents contribute to the late-spiking property of class I late-spiking neurons. 5. Although class II late-spiking neurons also displayed non-inactivating outward currents, the late-spiking property was not abolished by low concentrations of 4-AP and dendrotoxin. They changed to a regular firing pattern in response to a high concentration of 4-AP (5 mM), suggesting that TOCs contribute to late-spiking property of class II late-spiking neurons. 6. The results suggest that TOCs with different properties contribute to the different firing patterns of SGI neurons.
Collapse
Affiliation(s)
- Y Saito
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
44
|
A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 2000. [PMID: 10818150 DOI: 10.1523/jneurosci.20-11-04145.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During neuronal differentiation and maturation, electrical excitability is essential for proper gene expression and the formation of synapses. The expression of ion channels is crucial for this process; in particular, voltage-gated K(+) channels function as the key determinants of membrane excitability. Previously, we reported that the A-type K(+) current (I(A)) and Kv4.2 K(+) channel subunit expression increased in cultured cerebellar granule cells with time. To examine the correlation between ion currents and the action potential, in the present study, we measured developmental changes of action potentials in cultured granule cells using the whole-cell patch-clamp method. In addition to an observed increment of I(A), we found that the Na(+) current also increased during development. The increase in both currents was accompanied by a change in the membrane excitability from the nonspiking type to the repetitive firing type. Next, to elucidate whether Kv4.2 is responsible for the I(A) and to assess the effect of Kv4 subunits on action potential waveform, we transfected a cDNA encoding a dominant-negative mutant Kv4.2 (Kv4.2dn) into cultured cells. Expression of Kv4.2dn resulted in the elimination of I(A) in the granule cells. This result demonstrates that members of the Kv4 subfamily are responsible for the I(A) in developing granule cells. Moreover, elimination of I(A) resulted in shortening of latency before the first spike generation. In contrast, expression of wild-type Kv4.2 resulted in a delay in latency. This indicates that appearance of I(A) is critically required for suppression of the excitability of granule cells during their maturation.
Collapse
|
45
|
Shibata R, Nakahira K, Shibasaki K, Wakazono Y, Imoto K, Ikenaka K. A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 2000; 20:4145-55. [PMID: 10818150 PMCID: PMC6772624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
During neuronal differentiation and maturation, electrical excitability is essential for proper gene expression and the formation of synapses. The expression of ion channels is crucial for this process; in particular, voltage-gated K(+) channels function as the key determinants of membrane excitability. Previously, we reported that the A-type K(+) current (I(A)) and Kv4.2 K(+) channel subunit expression increased in cultured cerebellar granule cells with time. To examine the correlation between ion currents and the action potential, in the present study, we measured developmental changes of action potentials in cultured granule cells using the whole-cell patch-clamp method. In addition to an observed increment of I(A), we found that the Na(+) current also increased during development. The increase in both currents was accompanied by a change in the membrane excitability from the nonspiking type to the repetitive firing type. Next, to elucidate whether Kv4.2 is responsible for the I(A) and to assess the effect of Kv4 subunits on action potential waveform, we transfected a cDNA encoding a dominant-negative mutant Kv4.2 (Kv4.2dn) into cultured cells. Expression of Kv4.2dn resulted in the elimination of I(A) in the granule cells. This result demonstrates that members of the Kv4 subfamily are responsible for the I(A) in developing granule cells. Moreover, elimination of I(A) resulted in shortening of latency before the first spike generation. In contrast, expression of wild-type Kv4.2 resulted in a delay in latency. This indicates that appearance of I(A) is critically required for suppression of the excitability of granule cells during their maturation.
Collapse
Affiliation(s)
- R Shibata
- Laboratory of Neural Information, Department of Informational Physiology, Graduate University for Advanced Studies, National Institute for Physiological Sciences, Okazaki National Health Institutes, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Schmidt H, L�er K, Hevers W, Technau GM. Ionic currents ofdrosophila embryonic neurons derived from selectively cultured CNS midline precursors. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(20000915)44:4<392::aid-neu3>3.0.co;2-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Hewes RS. Voltage-dependent ionic currents in the ventromedial eclosion hormone neurons of Manduca sexta. J Exp Biol 1999; 202:2371-83. [PMID: 10441088 DOI: 10.1242/jeb.202.17.2371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ventromedial cells (VM cells) of the moth Manduca sexta belong to a peptide hormone signaling hierarchy that directs an episodic and stereotyped behavior pattern, ecdysis. The VM cells respond to declining ecdysteroid titers at the end of the final larval molt with a transcription-dependent decrease in spike threshold and the abrupt release of the previously stockpiled neuropeptide, eclosion hormone (EH). This report describes whole-cell patch-clamp recordings of acutely isolated VM cell somata made to identify membrane currents that may underlie the increase in VM cell excitability during EH release and that may contribute to abrupt peptide release. There were at least three voltage- and time-dependent conductances in the VM cells. The inward current was carried exclusively by a voltage-dependent inward Ca(2+) current (I(Ca)), and the outward currents were a combination of a Ca(2+)-dependent outward K(+) current (I(K(Ca))) and a transient, voltage-dependent outward K(+) current, the A current (I(A)). In current-clamp recordings, the currents present in the acutely isolated somata were sufficient to generate membrane properties similar to those observed in the VM cells in situ. This study represents the first step toward characterization of the mechanisms underlying the abrupt release of EH stores from the VM cells preceding ecdysis.
Collapse
Affiliation(s)
- R S Hewes
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
48
|
Judge SI, Monteiro MJ, Yeh JZ, Bever CT. Inactivation gating and 4-AP sensitivity in human brain Kv1.4 potassium channel. Brain Res 1999; 831:43-54. [PMID: 10411982 DOI: 10.1016/s0006-8993(99)01391-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Voltage-gated K(+) channels vary in sensitivity to block by 4-aminopyridine (4-AP) over a 1000-fold range. Most K(+) channel phenotypes with leucine at the fourth position (L4) in the leucine heptad repeat region, spanning the S4-S5 linker, exhibit low 4-AP sensitivity, while channels with phenylalanine exhibit high sensitivity. Mutational analysis on delayed rectifier type K(+) channels demonstrate increased 4-AP sensitivity upon mutation of the L4 heptad leucine to phenylalanine. This mutation can also influence inactivation gating, which is known to compete with 4-AP in rapidly inactivating A-type K(+) channels. Here, in a rapidly inactivating human brain Kv1.4 channel, we demonstrate a 400-fold increase in 4-AP sensitivity following substitution of L4 with phenylalanine. Accompanying this mutation is a slowing of inactivation, an acceleration of deactivation, and depolarizing shifts in the voltage dependence of activation and steady-state inactivation. To test the relative role of fast inactivation in modulating 4-AP block, N-terminal deletions of the fast inactivation gate were carried out in both channels. These deletions produced no change in 4-AP sensitivity in the mutant channel and approximately a six-fold increase in the wild type channel. These results support the view that changes at L4 which increase 4-AP sensitivity are largely due to 4-AP binding and may, in part, arise from alterations in channel conformation. Primarily, this study demonstrates that the fast inactivation gate is not a critical determinant of 4-AP sensitivity in Kv1.4 channels.
Collapse
Affiliation(s)
- S I Judge
- Department of Neurology, University of Maryland School of Medicine, BRB 12-040, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
49
|
Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci 1999. [PMID: 10066273 DOI: 10.1523/jneurosci.19-06-02195.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pyramidal cells in the dorsal cochlear nucleus (DCN) show three distinct temporal discharge patterns in response to sound: "pauser," "buildup," and "chopper." Similar discharge patterns are seen in vitro and depend on the voltage from which the cell is depolarized. It has been proposed that an inactivating A-type K+ current (IKI) might play a critical role in generating the three different patterns. In this study we examined the characteristics of transient currents in DCN pyramidal cells to evaluate this hypothesis. Morphologically identified pyramidal cells in rat brain slices (P11-P17) exhibited the three voltage-dependent discharge patterns. Two inactivating currents were present in outside-out patches from pyramidal cells: a rapidly inactivating (IKIF, tau approximately 11 msec) current insensitive to block by tetraethylammonium (TEA) and variably blocked by 4-aminopyridine (4-AP) with half-inactivation near -85 mV, and a slowly inactivating TEA- and 4-AP-sensitive current (IKIS, tau approximately 145 msec) with half-inactivation near -35 mV. Recovery from inactivation at 34 degrees C was described by a single exponential with a time constant of 10-30 msec, similar to the rate at which first spike latency increases with the duration of a hyperpolarizing prepulse. Acutely isolated cells also possessed a rapidly activating (<1 msec at 22 degrees C) transient current that activated near -45 mV and showed half-inactivation near -80 mV. A model demonstrated that the deinactivation of IKIF was correlated with the discharge patterns. Overall, the properties of the fast inactivating K+ current were consistent with their proposed role in shaping the discharge pattern of DCN pyramidal cells.
Collapse
|
50
|
Kanold PO, Manis PB. Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci 1999; 19:2195-208. [PMID: 10066273 PMCID: PMC6782577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Pyramidal cells in the dorsal cochlear nucleus (DCN) show three distinct temporal discharge patterns in response to sound: "pauser," "buildup," and "chopper." Similar discharge patterns are seen in vitro and depend on the voltage from which the cell is depolarized. It has been proposed that an inactivating A-type K+ current (IKI) might play a critical role in generating the three different patterns. In this study we examined the characteristics of transient currents in DCN pyramidal cells to evaluate this hypothesis. Morphologically identified pyramidal cells in rat brain slices (P11-P17) exhibited the three voltage-dependent discharge patterns. Two inactivating currents were present in outside-out patches from pyramidal cells: a rapidly inactivating (IKIF, tau approximately 11 msec) current insensitive to block by tetraethylammonium (TEA) and variably blocked by 4-aminopyridine (4-AP) with half-inactivation near -85 mV, and a slowly inactivating TEA- and 4-AP-sensitive current (IKIS, tau approximately 145 msec) with half-inactivation near -35 mV. Recovery from inactivation at 34 degrees C was described by a single exponential with a time constant of 10-30 msec, similar to the rate at which first spike latency increases with the duration of a hyperpolarizing prepulse. Acutely isolated cells also possessed a rapidly activating (<1 msec at 22 degrees C) transient current that activated near -45 mV and showed half-inactivation near -80 mV. A model demonstrated that the deinactivation of IKIF was correlated with the discharge patterns. Overall, the properties of the fast inactivating K+ current were consistent with their proposed role in shaping the discharge pattern of DCN pyramidal cells.
Collapse
Affiliation(s)
- P O Kanold
- The Center for Hearing Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|