1
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
2
|
Lee H, Jiang X, Perwaiz I, Yu P, Wang J, Wang Y, Hüttemann M, Felder RA, Sibley DR, Polster BM, Rozyyev S, Armando I, Yang Z, Qu P, Jose PA. Dopamine D 5 receptor-mediated decreases in mitochondrial reactive oxygen species production are cAMP and autophagy dependent. Hypertens Res 2021; 44:628-641. [PMID: 33820956 PMCID: PMC8369611 DOI: 10.1038/s41440-021-00646-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023]
Abstract
Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D5 receptor (D5R) is known to decrease ROS production, but the mechanism is not completely understood. In HEK293 cells overexpressing D5R, fenoldopam, an agonist of the two D1-like receptors, D1R and D5R, decreased the production of mitochondria-derived ROS (mito-ROS). The fenoldopam-mediated decrease in mito-ROS production was mimicked by Sp-cAMPS but blocked by Rp-cAMPS. In human renal proximal tubule cells with DRD1 gene silencing to eliminate the confounding effect of D1R, fenoldopam still decreased mito-ROS production. By contrast, Sch23390, a D1R and D5R antagonist, increased mito-ROS production in the absence of D1R, D5R is constitutively active. The fenoldopam-mediated inhibition of mito-ROS production may have been related to autophagy because fenoldopam increased the expression of the autophagy hallmark proteins, autophagy protein 5 (ATG5), and the microtubule-associated protein 1 light chain (LC)3-II. In the presence of chloroquine or spautin-1, inhibitors of autophagy, fenoldopam further increased ATG5 and LC3-II expression, indicating an important role of D5R in the positive regulation of autophagy. However, when autophagy was inhibited, fenoldopam was unable to inhibit ROS production. Indeed, the levels of these autophagy hallmark proteins were decreased in the kidney cortices of Drd5-/- mice. Moreover, ROS production was increased in mitochondria isolated from the kidney cortices of Drd5-/- mice, relative to Drd5+/+ littermates. In conclusion, D5R-mediated activation of autophagy plays a role in the D5R-mediated inhibition of mito-ROS production in the kidneys.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA,Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Imran Perwaiz
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Jin Wang
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics and Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian M. Polster
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Selim Rozyyev
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Ines Armando
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Pedro A. Jose
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA,Department of Pharmacology and Physiology, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, Yin K, Wang S, Hu Y, Jose PA, Zhou Z, Xu F, Yang Z. Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003706. [PMID: 33717857 PMCID: PMC7927605 DOI: 10.1002/advs.202003706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Indexed: 05/12/2023]
Abstract
Left ventricular hypertrophy and fibrosis are major risk factors for heart failure, which require timely and effective treatment. Genetic therapy has been shown to ameliorate hypertrophic cardiac damage. In this study, it is found that in mice, the dopamine D5 receptor (D5R) expression in the left ventricle (LV) progressively decreases with worsening of transverse aortic constriction-induced left ventricular hypertrophy. Then, a reversible treatment of left ventricular hypertrophy with Drd5 nucleic acids delivered by tobramycin-based hyperbranched polyaminoglycoside (SS-HPT) is studied. The heart-specific increase in D5R expression by SS-HPT/Drd5 plasmid in the early stage of left ventricular hypertrophy attenuates cardiac hypertrophy and fibrosis by preventing oxidative and endoplasmic reticulum (ER) stress and ameliorating autophagic dysregulation. By contrast, SS-HPT/Drd5 siRNA promotes the progression of left ventricular hypertrophy and accelerates the deterioration of myocardial function into heart failure. The reduction in cardiac D5R expression and dysregulated autophagy are observed in patients with hypertrophic cardiomyopathy and heart failure. The data show a cardiac-specific beneficial effect of SS-HPT/Drd5 plasmid on myocardial remodeling and dysfunction, which may provide an effective therapy of patients with left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Meiyu Shao
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xu Zhang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Yuming Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Shuiyun Wang
- Department of Cardiovascular SurgeryState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Pedro A Jose
- Department of Pharmacology and PhysiologyThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
- Department of MedicineDivision of Kidney Diseases & HypertensionThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| |
Collapse
|
4
|
Ekici AB, Hackenbeck T, Morinière V, Pannes A, Buettner M, Uebe S, Janka R, Wiesener A, Hermann I, Grupp S, Hornberger M, Huber TB, Isbel N, Mangos G, McGinn S, Soreth-Rieke D, Beck BB, Uder M, Amann K, Antignac C, Reis A, Eckardt KU, Wiesener MS. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int 2014; 86:589-99. [PMID: 24670410 DOI: 10.1038/ki.2014.72] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/09/2022]
Abstract
For decades, ill-defined autosomal dominant renal diseases have been reported, which originate from tubular cells and lead to tubular atrophy and interstitial fibrosis. These diseases are clinically indistinguishable, but caused by mutations in at least four different genes: UMOD, HNF1B, REN, and, as recently described, MUC1. Affected family members show renal fibrosis in the biopsy and gradually declining renal function, with renal failure usually occurring between the third and sixth decade of life. Here we describe 10 families and define eligibility criteria to consider this type of inherited disease, as well as propose a practicable approach for diagnosis. In contrast to what the frequently used term 'Medullary Cystic Kidney Disease' implies, development of (medullary) cysts is neither an early nor a typical feature, as determined by MRI. In addition to Sanger and gene panel sequencing of the four genes, we established SNaPshot minisequencing for the predescribed cytosine duplication within a distinct repeat region of MUC1 causing a frameshift. A mutation was found in 7 of 9 families (3 in UMOD and 4 in MUC1), with one indeterminate (UMOD p.T62P). On the basis of clinical and pathological characteristics we propose the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' as an improved terminology. This should enhance recognition and correct diagnosis of affected individuals, facilitate genetic counseling, and stimulate research into the underlying pathophysiology.
Collapse
Affiliation(s)
- Arif B Ekici
- Institute for Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Hackenbeck
- 1] Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany [2] Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vincent Morinière
- Department of Genetics, Assistance Publique-Hopitaux de Paris, Necker Hospital, Paris, France
| | - Andrea Pannes
- Institute for Human Genetics, University of Cologne, Cologne, Germany
| | - Maike Buettner
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute for Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antje Wiesener
- Institute for Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Hermann
- 1] Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany [2] Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sina Grupp
- 1] Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany [2] Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Hornberger
- Department of Nephrology and Hypertension, Hospital of Offenburg, Offenburg, Germany
| | - Tobias B Huber
- 1] Renal Division, University Hospital Freiburg, Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Nikky Isbel
- Department of Renal Medicine, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - George Mangos
- Department of Renal Medicine, St George Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Stella McGinn
- Department of Renal Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Bodo B Beck
- Institute for Human Genetics, University of Cologne, Cologne, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Corinne Antignac
- 1] Inserm, U983, Necker Hospital, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - André Reis
- Institute for Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael S Wiesener
- 1] Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany [2] Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1. Hypertens Res 2013; 36:684-90. [PMID: 23425954 DOI: 10.1038/hr.2013.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 02/07/2023]
Abstract
D5 dopamine receptor (D5R) knock-out mice (D5(-/-)) have a higher blood pressure (BP) and higher reactive oxygen species (ROS) production than their D5R wild-type littermates (D5(+/+)). We tested the hypothesis that the high BP and increased ROS production in D5(-/-) mice may be caused by decreased heme oxygenase-1 (HO-1) expression and activity. We found that renal HO-1 protein expression and HO enzyme activity were decreased (65 and 50%, respectively) in D5(-/-) relative to D5(+/+) mice. A 24 h of administration of hemin, an HO-1 inducer, increased HO-1 expression and HO activity (6.8- and 1.9-fold, respectively) and normalized the increased ROS production and BP in D5(-/-) mice. Expression of HO-1 protein and HO activity were increased (2.3- and 1.5-fold, respectively) in HEK cells that heterologously expressed human wild-type D5R (HEK-hD5R), but not the empty vector-transfected HEK-293 cells. Fenoldopam (Fen), a D5R agonist, increased HO activity (3 h), HO-1 protein expression, HO-1 and D5R colocalization and co-immunoprecipitation in HEK-hD5R cells. Cellular NADPH oxidase activity was decreased by 35% in HEK-hD5R that was abrogated with silencing of the heme oxygenase 1 gene (HMOX1). HMOX1 siRNA also impaired the ability of Fen to decrease NADPH oxidase activity in HEK-hD5R cells. In summary, the D5R positively regulates HO-1 through direct protein/protein interaction in the short-term and by increasing HO-1 protein expression in the long-term. The impaired D5R regulation of HO-1 and ROS production contributes to the pathogenesis of hypertension in D5(-/-) mice.
Collapse
|
6
|
Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, Townsend RR, Roman RJ, Garrett MR. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 2012; 60:1157-68. [PMID: 22987919 DOI: 10.1161/hypertensionaha.112.199240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.
Collapse
Affiliation(s)
- Jan M Williams
- University of Mississippi Medical Center, Department of Pharmacology and Toxicology, 2500 North State St, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bollée G, Dahan K, Flamant M, Morinière V, Pawtowski A, Heidet L, Lacombe D, Devuyst O, Pirson Y, Antignac C, Knebelmann B. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 2011; 6:2429-38. [PMID: 21868615 DOI: 10.2215/cjn.01220211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND UMOD mutations cause familial juvenile hyperuricemic nephropathy (FJHN) and medullary cystic kidney disease (MCKD), although these phenotypes are nonspecific. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We reviewed cases of UMOD mutations diagnosed in the genetic laboratories of Necker Hospital (Paris, France) and of Université Catholique de Louvain (Brussels, Belgium). We also analyzed patients with MCKD/FJHN but no UMOD mutation. To determine thresholds for hyperuricemia and uric-acid excretion fraction (UAEF) according to GFR, these parameters were analyzed in 1097 patients with various renal diseases and renal function levels. RESULTS Thirty-seven distinct UMOD mutations were found in 109 patients from 45 families, all in exon 4 or 5 except for three novel mutations in exon 8. Median renal survival was 54 years. The type of mutation had a modest effect on renal survival, and intrafamilial variability was high. Detailed data available in 70 patients showed renal cysts in 24 (34.3%) of nonspecific localization in most patients. Uricemia was >75th percentile in 31 (71.4%) of 42 patients not under dialysis or allopurinol therapy. UAEF (n = 27) was <75th percentile in 70.4%. Among 136 probands with MCKD/FJHN phenotype, UMOD mutation was found in 24 (17.8%). Phenotype was not accurately predictive of UMOD mutation. Six probands had HNF1B mutations. CONCLUSIONS Hyperuricemia disproportionate to renal function represents the hallmark of renal disease caused by UMOD mutation. Renal survival is highly variable in patients with UMOD mutation. Our data also add novel insights into the interpretation of uricemia and UAEF in patients with chronic kidney diseases.
Collapse
Affiliation(s)
- Guillaume Bollée
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Asico L, Zhang X, Jiang J, Cabrera D, Escano CS, Sibley DR, Wang X, Yang Y, Mannon R, Jones JE, Armando I, Jose PA. Lack of renal dopamine D5 receptors promotes hypertension. J Am Soc Nephrol 2010; 22:82-9. [PMID: 21051739 DOI: 10.1681/asn.2010050533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruption of the dopamine D(5) receptor gene in mice increases BP and causes salt sensitivity. To determine the role of renal versus extrarenal D(5) receptors in BP regulation, we performed cross-renal transplantation experiments. BP was similar between wild-type mice and wild-type mice transplanted with wild-type kidneys, indicating that the transplantation procedure did not affect BP. BP was lower among D(5)(-/-) mice transplanted with wild-type kidneys than D(5)(-/-) kidneys, demonstrating that the renal D(5) receptors are important in BP control. BP was higher in wild-type mice transplanted with D(5)(-/-) kidneys than wild-type kidneys but not significantly different from syngenic transplanted D(5)(-/-) mice, indicating the importance of the kidney in the development of hypertension. On a high-salt diet, all mice with D(5)(-/-) kidneys excreted less sodium than mice with wild-type kidneys. Transplantation of a wild-type kidney into a D(5)(-/-) mouse decreased the renal expression of AT(1) receptors and Nox-2. Conversely, transplantation of a D(5)(-/-) kidney into a wild-type mouse increased the expression of both, suggesting that both renal and extrarenal factors are important in the regulation of AT(1) receptor and Nox-2 expression. These results highlight the role of renal D(5) receptors in BP homeostasis and the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Laureano Asico
- Children's National Medical Center, Children's Research Institute, 111 Michigan Avenue NW, Washington, D.C., USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen Y, Salem RM, Rao F, Fung MM, Bhatnagar V, Pandey B, Mahata M, Waalen J, Nievergelt CM, Lipkowitz MS, Hamilton BA, Mahata SK, O'Connor DT. Common charge-shift mutation Glu65Lys in K+ channel β₁-Subunit KCNMB1: pleiotropic consequences for glomerular filtration rate and progressive renal disease. Am J Nephrol 2010; 32:414-24. [PMID: 20861615 DOI: 10.1159/000320131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/09/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Glomerular filtration rate (GFR) is a heritable trait, and hyperfiltration (GFR increment in remnant nephrons) may accelerate renal functional decline in chronic kidney disease (CKD). Mesangial and vascular smooth myocytes control GFR by contraction, dependent on voltage-gated Ca(2+) influx, which is controlled by the regulatory β₁-subunit (KCNMB1) of large-conductance heteromeric K+ ('BK') channels. KCNMB1 gain-of-function variant Glu65Lys results in generalized vasorelaxation and thus protection against systemic hypertension. Here we asked whether the Glu65Lys variant influences GFR, in the basal state or during progressive renal decline. METHODS We explored Glu65Lys effects on GFR in three populations spanning two ethnicities and two diseases (hypertension and nephrosclerosis). GFR was either estimated (eGFR from serum creatinine) or directly measured (iothalamate clearance). RESULTS The 65Lys variant was relatively common, occurring on ∼5-10% of chromosomes in different biogeographic ancestry groups, and 65Lys carriers exhibited higher eGFR in two primary care populations: extreme BP values in Kaiser clinics (p = 0.029, accounting for ∼0.2% of trait variance), or treated hypertensives in VA clinics (p = 0.017, accounting for ∼0.9% of trait variance). In blacks with progressive renal disease (NIDDK AASK), 65Lys carriers displayed a steeper slope in GFR chronic decline (p = 0.030, accounting for ∼0.4% of trait variance), and Glu65Lys genotype also predicted time of onset of renal failure (log rank p = 0.019). CONCLUSIONS Common KCNMB1 gain-of-function variant Glu65Lys influences GFR, and 65Lys carriers exhibit not only elevated baseline GFR, but also more rapid GFR decline (and consequent development of renal failure) in CKD. The results suggest that profiling patients at Glu65Lys can assist in gauging renal prognosis as well as selection of rational therapy in hypertension with progressive renal disease.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicine, University of California at San Diego, Calif., USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Luo Y, Escano CS, Yang Z, Asico L, Li H, Jones JE, Armando I, Lu Q, Sibley DR, Eisner GM, Jose PA. Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice. Hypertension 2010; 55:1431-7. [PMID: 20404220 DOI: 10.1161/hypertensionaha.109.148643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
D(5) dopamine receptor (D(5)R)-deficient (D(5)(-/-)) mice have hypertension that is aggravated by an increase in sodium intake. The present experiments were designed to test the hypothesis that a dysregulation of renal sodium transporters is related to the salt sensitivity in D(5)(-/-) mice. D(5)R was expressed in the renal proximal tubule, thick ascending limb, distal convoluted tubule, and cortical and outer medullary collecting ducts in D(5)(+/+) mice. On a control Na(+) diet, renal protein expressions of NKCC2 (sodium-potassium-2 chloride cotransporter), sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel were greater in D(5)(-/-) than in D(5)(+/+) mice. Renal renin abundance and urine aldosterone levels were similar but renal angiotensin II type 1 receptor (AT(1)R) protein expression was increased in D(5)(-/-) mice. An elevated Na(+) diet increased further the elevated blood pressure of D(5)(-/-) mice but did not affect the normal blood pressure of D(5)(+/+) mice. The increased levels of NKCC2, sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel persisted with the elevated Na(+) diet and unaffected by chronic AT(1)R blockade (losartan) in D(5)(-/-) mice. The expressions of proximal sodium transporters NHE3 (sodium hydrogen exchanger type 3) and NaPi2 (sodium phosphate cotransporter type 2) were increased by the elevated Na(+) diet in D(5)(-/-) mice; the increased expression of NHE3 but not NaPi2 was abolished by AT(1)R blockade. Our findings suggest that the increased protein expression of sodium transporters/channels in distal nephron segments may be the direct consequence of the disruption of D(5)R, independent of the renin-angiotensin aldosterone system.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Deltas C, Papagregoriou G. Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 2010; 134:569-82. [PMID: 20367309 DOI: 10.5858/134.4.569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Cystic diseases of the kidney are a very heterogeneous group of renal inherited conditions, with more than 33 genes involved and encompassing X-linked, autosomal dominant, and autosomal recessive inheritance. Although mostly monogenic with mendelian inheritance, there are clearly examples of oligogenic inheritance, such as 3 mutations in 2 genes, while the existence of genetic modifiers is perhaps the norm, based on the extent of variable expressivity and the broad spectrum of symptoms. OBJECTIVES To present in the form of a mini review the major known cystic diseases of the kidney for which genes have been mapped or cloned and characterized, with some information on their cellular and molecular biology and genetics, and to pay special attention to commenting on the issues of molecular diagnostics, in view of the genetic and allelic heterogeneity. Data Sources.-We used major reviews that make excellent detailed presentation of the various diseases, as well as original publications. CONCLUSIONS There is already extensive genetic heterogeneity in the group of cystic diseases of the kidney; however, there are still many more genes awaiting to be discovered that are implicated or mutated in these diseases. In addition, the synergism and interaction among this repertoire of gene products is largely unknown, while a common unifying aspect is the expression of nearly all of them at the primary cilium or the basal body. A major interplay of functions is anticipated, while mutations in all converge in the unifying phenotype of cyst formation.
Collapse
|
12
|
Garrett MR, Pezzolesi MG, Korstanje R. Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease. J Am Soc Nephrol 2010; 21:398-405. [PMID: 20133484 PMCID: PMC4473253 DOI: 10.1681/asn.2009080881] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The increasing numbers of patients with chronic kidney disease combined with no satisfying interventions for preventing or curing the disease emphasize the need to better understand the genes involved in the initiation and progression of complex renal diseases, their interactions with other host genes, and the environment. Linkage and association studies in human, rat, and mouse have been successful in identifying genetic loci for various disease-related phenotypes but have thus far not been very successful identifying underlying genes. The purpose of this review is to summarize the progress in human, rat, and mouse genetic studies to show the concordance between the loci among the different species. The collective utilization of human and nonhuman mammalian datasets and resources can lead to a more rapid narrowing of disease loci and the subsequent identification of candidate genes. In addition, genes identified through these methods can be further characterized and investigated for interactions using animal models, which is not possible in humans.
Collapse
Affiliation(s)
- Michael R. Garrett
- *Department of Medicine and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcus G. Pezzolesi
- The Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
13
|
Turner ST, Fornage M, Jack CR, Mosley TH, Knopman DS, Kardia SLR, Boerwinkle E, de Andrade M. Genomic susceptibility Loci for brain atrophy, ventricular volume, and leukoaraiosis in hypertensive sibships. ACTA ACUST UNITED AC 2009; 66:847-57. [PMID: 19597086 DOI: 10.1001/archneurol.2009.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To localize susceptibility genes for alterations in brain structure associated with risk of stroke and dementia. We conducted genomewide linkage analyses for magnetic resonance imaging (MRI) measures of brain atrophy, ventricular, and subcortical white matter hyperintensity (leukoaraiosis) in 689 non-Hispanic white (673 sibling pairs; median age, 61 years) and 544 non-Hispanic black participants (503 sibling pairs; median age, 64 years) from sibships with at least 2 members with essential hypertension. DESIGN, SETTING, AND PATIENTS We determined brain, ventricular, and leukoaraiosis volumes from axial fluid-attenuated inversion recovery MRI; we calculated brain atrophy as the difference between total intracranial and brain volumes. Microsatellite markers (n = 451) distributed across the 22 autosomes were genotyped, and we used variance components methods to estimate heritability and assess evidence of genetic linkage for each MRI measure. MAIN OUTCOME MEASURES Brain atrophy ventricular volume, and leukoaraiosis determined from fluid-attenuated inversion recovery MRI. RESULTS In both races, the heritability of each MRI measure was statistically greater than 0 (P < .001), ranging in magnitude from 0.42 (for ventricular volume in blacks) to 0.69 (for brain atrophy in blacks). Based on multipoint logarithm of odds scores (MLS), the strongest evidence of genetic linkage was observed for brain atrophy on chromosomes 1 (MLS, 3.49 at 161 cM; P < .001) and 17 (MLS, 3.08 at 18 cM; P < .001) in whites; for ventricular volume on chromosome 12 (MLS, 3.67 at 49 cM; P < .001) in blacks and chromosome 10 (MLS, 2.47 at 110 cM; P < .001) in whites; and for leukoaraiosis on chromosome 11 (MLS, 2.21 at 118 cM; P < .001) in whites and chromosome 22 (MLS, 2.02 at 36 cM; P = .001) in blacks. CONCLUSIONS The MRI measures of structural brain injury are heritable in non-Hispanic black and white sibships ascertained through hypertensive sibling pairs. The susceptibility loci for brain atrophy, ventricular volume, and leukoaraiosis identified by linkage analyses differ among MRI measures and between races.
Collapse
Affiliation(s)
- Stephen T Turner
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Klein R, Knudtson MD, Lee KE, Klein BEK. Serum cystatin C level, kidney disease markers, and incidence of age-related macular degeneration: the Beaver Dam Eye Study. ACTA ACUST UNITED AC 2009; 127:193-9. [PMID: 19204238 DOI: 10.1001/archophthalmol.2008.551] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To examine the associations of the serum cystatin C level and chronic kidney disease with the incidence of age-related macular degeneration (AMD) over 15 years. METHODS In this population-based cohort study of 4926 individuals aged 43 to 86 years at baseline, 3779 participated in 1 or more follow-up examinations. Age-related macular degeneration was determined by grading photographs of the macula. Individuals were defined as having mild or moderate to severe chronic kidney disease based on a value of more than 45 mL/min/1.73 m(2) to 60 mL/min/1.73 m(2) or less and 45 mL/min/1.73 m(2) or less, respectively, according to the Modification of Diet in Renal Disease Study equation. RESULTS While controlling for age and other risk factors, the level of serum cystatin C at baseline was associated with the incidence of early AMD (odds ratio per log standard deviation [95% confidence interval], 1.16 [1.01-1.35]) and exudative AMD (1.42 [1.03-1.96]) but not geographic atrophy (0.89 [0.56-1.41]) or progression of AMD (1.02 [0.88-1.18]). Mild chronic kidney disease was associated with the 15-year cumulative incidence of early AMD (odds ratio per log standard deviation, 1.36 [95% confidence interval, 1.00-1.86]) but not the incidence of other AMD end points. CONCLUSION There is a relationship between the level of serum cystatin C and chronic kidney disease with the incidence of AMD. The underlying biological processes remain to be determined.
Collapse
Affiliation(s)
- Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 610 N Walnut St, Room 417 WARF, Madison, WI 53726-2336, USA.
| | | | | | | |
Collapse
|
15
|
Bleyer AJ. Improving the recognition of hereditary interstitial kidney disease. J Am Soc Nephrol 2008; 20:11-3. [PMID: 19056873 DOI: 10.1681/asn.2007121330] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease is characterized by the poorly recognized inheritance of slowly progressive renal failure leading to ESRD in later life. Patients with this condition have bland urinary sediment, and renal ultrasound typically reveals normal to small kidneys, with occasional individuals having small medullary cysts. Diagnosis relies on the clinical acumen of the nephrologist. Obtaining a thorough family history and records of affected family members is especially helpful. Kidney biopsy is frequently unhelpful, whereas genetic linkage studies or mutations in the UMOD gene may identify the problem.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest University School of Medicine, Medical Center Boulevard Winston Salem, NC 27157, USA.
| |
Collapse
|
16
|
Puppala S, Arya R, Thameem F, Arar NH, Bhandari K, Lehman DM, Schneider J, Fowler S, Farook VS, Diego VP, Almasy L, Blangero J, Stern MP, Duggirala R, Abboud HE. Genotype by diabetes interaction effects on the detection of linkage of glomerular filtration rate to a region on chromosome 2q in Mexican Americans. Diabetes 2007; 56:2818-28. [PMID: 17698600 DOI: 10.2337/db06-0984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Glomerular filtration rate (GFR) is used to assess the progression of renal disease. We performed linkage analysis to localize genes that influence GFR using estimated GFR data from the San Antonio Family Diabetes/Gallbladder Study. We also examined the effect of genotype by diabetes interaction (G x DM) on the detection of linkage to address whether genetic effects on GFR differ in diabetic and nondiabetic subjects. RESEARCH DESIGN AND METHODS GFR (N = 453) was estimated using the recently recalculated Cockcroft-Gault (GFR-CGc) and the simplified Modification of Diet in Renal Disease (GFR-4VMDRD) formulae. Both estimates of GFR exhibited significant heritabilities, but only GFR-CGc showed significant G x DM interaction. We therefore performed multipoint linkage analyses on both GFR measures using models that did not include G x DM interaction effects (Model 1) and that included G x DM interaction effects (Model 2, in the case of GFR-CGc). RESULTS The strongest evidence for linkage (Model 1) of both GFR-CGc (logarithm of odds [LOD] 2.9) and GFR-4VMDRD (LOD 2.6) occurred between markers D9S922 and D9S1120 on chromosome 9q. However, using Model 2, the strongest evidence for linkage of GFR-CGc on chromosome 2q was found near marker D2S427 (corrected LOD score [LOD(C)] 3.3) compared with the LOD score of 2.7 based on Model 1. Potential linkages (LOD or LOD(C) >or=1.2) were found only for GFR-CGc on chromosomes 3p, 3q, 4p, 8q, 11q, and 14q. CONCLUSIONS We found a major locus on chromosome 2q that differentially influences GFR in diabetic and nondiabetic environments in the Mexican-American population.
Collapse
Affiliation(s)
- Sobha Puppala
- Southwest Foundation for Biomedical Research, Department of Genetics, P.O. Box 760549, San Antonio, TX 78254, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hwang SJ, Yang Q, Meigs JB, Pearce EN, Fox CS. A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study. BMC MEDICAL GENETICS 2007; 8 Suppl 1:S10. [PMID: 17903292 PMCID: PMC1995611 DOI: 10.1186/1471-2350-8-s1-s10] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glomerular filtration rate (GFR) and urinary albumin excretion (UAE) are markers of kidney function that are known to be heritable. Many endocrine conditions have strong familial components. We tested for association between the Affymetrix GeneChip Human Mapping 100K single nucleotide polymorphism (SNP) set and measures of kidney function and endocrine traits. METHODS Genotype information on the Affymetrix GeneChip Human Mapping 100K SNP set was available on 1345 participants. Serum creatinine and cystatin-C (cysC; n = 981) were measured at the seventh examination cycle (1998-2001); GFR (n = 1010) was estimated via the Modification of Diet in Renal Disease (MDRD) equation; UAE was measured on spot urine samples during the sixth examination cycle (1995-1998) and was indexed to urinary creatinine (n = 822). Thyroid stimulating hormone (TSH) was measured at the third and fourth examination cycles (1981-1984; 1984-1987) and mean value of the measurements were used (n = 810). Age-sex-adjusted and multivariable-adjusted residuals for these measurements were used in association with genotype data using generalized estimating equations (GEE) and family-based association tests (FBAT) models. We presented the results for association tests using additive allele model. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg Equilibrium p-value > or = 0.001, and call rates of at least 80%. RESULTS The top SNPs associated with these traits using the GEE method were rs2839235 with GFR (p-value 1.6*10(-05)), rs1158167 with cysC (p-value 8.5*10(-09)), rs1712790 with UAE (p-value 1.9*10(-06)), and rs6977660 with TSH (p-value 3.7*10(-06)), respectively. The top SNPs associated with these traits using the FBAT method were rs6434804 with GFR(p-value 2.4*10(-5)), rs563754 with cysC (p-value 4.7*10(-5)), rs1243400 with UAE (p-value 4.8*10(-6)), and rs4128956 with TSH (p-value 3.6*10(-5)), respectively. Detailed association test results can be found at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite. Four SNPs in or near the CST3 gene were highly associated with cysC levels (p-value 8.5*10(-09) to 0.007). CONCLUSION Kidney function traits and TSH are associated with SNPs on the Affymetrix GeneChip Human Mapping 100K SNP set. These data will serve as a valuable resource for replication as more SNPs associated with kidney function and endocrine traits are identified.
Collapse
Affiliation(s)
- Shih-Jen Hwang
- National Heart Lung and Blood Institutes, Bethesda, MD, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James B Meigs
- Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
| | | | - Caroline S Fox
- National Heart Lung and Blood Institutes, Bethesda, MD, USA
- Department of Endocrinology, Diabetes, and Hypertension, the Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Garrett MR, Gunning WT, Radecki T, Richard A. Dissection of a genetic locus influencing renal function in the rat and its concordance with kidney disease loci on human chromosome 1q21. Physiol Genomics 2007; 30:322-34. [PMID: 17504948 PMCID: PMC3153419 DOI: 10.1152/physiolgenomics.00001.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we conducted a genome scan on a population derived from the Dahl salt-sensitive hypertensive (S) and the spontaneously hypertensive rat (SHR) using urinary albumin excretion (UAE) as our primary measure of renal function. We identified 10 quantitative trait loci (QTL) linked to several renal and/or cardiovascular traits. In particular, linkage and subsequent congenic strain analysis demonstrated that the loci on chromosome 2 had a large and significant effect on UAE compared with the S rat. The present work sought to characterize the chromosome 2 congenic strain [S.SHR] by conducting a time-course analysis (week 4-20), including evaluating additional renal parameters, histology, electron microscopy, and gene expression/ pathway analysis. Throughout the time course the congenic strain consistently maintained a threefold reduction in UAE compared with S rats and was supported by the histological findings of significantly reduced glomerular, tubular and interstitial changes. Gene expression/pathway analysis performed at week 4, 12, and 20 revealed that pathways involved in cellular assembly and organization, cellular movement, and immune response were controlled differently between the S and congenic. When all the data are considered, the chromosome 2 congenic appears to attenuate renal damage primarily through an altered fibrotic response. Recombinant progeny testing was employed to reduce the QTL to approximately 1.5 cM containing several interesting candidate genes. The concordance of this rat QTL with renal disease loci on human chromosome 1q21 demonstrate that elucidating the causative gene and mechanism of the rat QTL may be of particular importance for understanding kidney disease in humans.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, University of Toledo, Health Science Campus, Toledo, Ohio, USA.
| | | | | | | |
Collapse
|
19
|
Thompson CL, Klein BEK, Klein R, Xu Z, Capriotti J, Joshi T, Leontiev D, Lee KE, Elston RC, Iyengar SK. Complement factor H and hemicentin-1 in age-related macular degeneration and renal phenotypes. Hum Mol Genet 2007; 16:2135-48. [PMID: 17591627 DOI: 10.1093/hmg/ddm164] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the associations of complement factor H (CFH) and hemicentin-1 (HMCN1) with age-related macular degeneration (AMD) and renal function. Three scales, measuring the course of AMD and drusen development, were examined in two samples: the Family Age-Related Macular degeneration Study (FARMS), consisting of families ascertained through a single individual with severe AMD, and an unascertained population-based family cohort, the Beaver Dam Eye Study (BDES), which was also used to assess longitudinal changes in AMD and associations with renal function. Associations were performed by a regression accounting for known risk factors as well as familial and sibling effects. Strong evidence of the association of rs1061170 (Y402H) variation with AMD was confirmed (P = 9.15 x 10(-5) in BDES, P = 0.016 in FARMS). This association was observed in multiple AMD scales, suggesting that its role is not phenotype-specific. Polymorphisms in both CFH and HMCN1 appeared to influence the longitudinal rate of change of AMD. The rs1061170 polymorphism was also associated with a reduction in estimated glomerular filtration rate (eGFR) (P = 0.046). Another CFH polymorphism, rs800292, was similarly associated with eGFR [beta = -0.90 (P = 0.022)]. Associations between rs743137 (P = 0.05) and rs680638 (P = 0.022) in HMCN1 with calculated creatinine clearance progression were also observed. Both genes appear to play a role in both AMD and renal pathophysiology. These findings support evidence for common pathways influencing ocular and renal function and suggest that further work is required on their common determinants.
Collapse
Affiliation(s)
- Cheryl L Thompson
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin–angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors regulate blood pressure by influencing the central and/or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. This review summarizes the physiology of the different dopamine receptors in the regulation of blood pressure, and the relationship between dopamine receptor subtypes and hypertension.
Collapse
MESH Headings
- Blood Pressure/physiology
- Dopamine/metabolism
- Gastrointestinal Tract/metabolism
- Gastrointestinal Tract/physiopathology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/metabolism
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City, People's Republic of China.
| | | | | | | | | |
Collapse
|
21
|
Chen G, Adeyemo AA, Zhou J, Chen Y, Doumatey A, Lashley K, Huang H, Amoah A, Agyenim-Boateng K, Eghan BA, Okafor G, Acheampong J, Oli J, Fasanmade O, Johnson T, Rotimi C. A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. Am J Kidney Dis 2007; 49:394-400. [PMID: 17336700 DOI: 10.1053/j.ajkd.2006.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 12/11/2006] [Indexed: 11/11/2022]
Abstract
BACKGROUND Reduced renal function often is a major consequence of diabetes and hypertension. Although several indices of renal function (eg, creatinine clearance) are clearly heritable and show linkage to several genomic regions, the specific underlying genetic determinants are still being sought. The purpose of this study is to conduct a genome-wide search for regions linked to 3 renal function phenotypes, serum creatinine, creatinine clearance, and glomerular filtration rate (GFR), in persons with type 2 diabetes. METHODS A genome-wide panel of 372 autosomal short tandem repeat markers at an average spacing of 9 centimorgan were typed in 691 patients with type 2 diabetes (321 sib pairs and 36 half-sib pairs) in an affected sib pair study in West Africa. Linkage analysis was conducted with the 3 phenotypes by using a multipoint variance components linkage method. RESULTS Creatinine clearance showed higher logarithm of odds (LOD) score than the other 2 phenotypes. Linkage to creatinine clearance was observed on chromosomes 16 (marker D16S539, LOD score of 3.56, empirical P = 0.0001), 17 (D17S1298, LOD score of 2.08, empirical P = 0.0018), and 7 (D7S1818, LOD score of 1.84, nominal P = 0.00181, empirical P = 0.0022). Maximum LOD scores for serum creatinine were observed on chromosomes 10 (D10S1432, LOD score of 2.53, empirical P = 0.0001) and 3 (D3S2418, LOD score of 2.21, empirical P = 0.0003) and for GFR on chromosomes 6 (D6S1040, LOD score of 2.08, empirical P = 0.0001) and 8 (D8S256, LOD score of 1.80, empirical P = 0.0001). Several of these results are replications of significant findings from other genome scans. CONCLUSION A genome-wide scan for serum creatinine, creatinine clearance, and GFR in a West African sample showed linkage regions that may harbor genes influencing variation in these phenotypes. Potential candidate genes in these regions that have been implicated in diabetic nephropathy and/or renal damage in models of hypertension include CYBA (or P22PHOX) (16q24), NOX1 (10q22), and NOX3 (6q25.1-q26).
Collapse
Affiliation(s)
- Guanjie Chen
- National Human Genome Center at Howard University, College of Medicine, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wolf MTF, Mucha BE, Hennies HC, Attanasio M, Panther F, Zalewski I, Karle SM, Otto EA, Deltas CC, Fuchshuber A, Hildebrandt F. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet 2006; 119:649-58. [PMID: 16738948 DOI: 10.1007/s00439-006-0176-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/22/2006] [Indexed: 01/24/2023]
Abstract
Medullary cystic kidney disease type 1 (MCKD1) is an autosomal dominant, tubulo-interstitial nephropathy that causes renal salt wasting and end-stage renal failure in the fourth to seventh decade of life. MCKD1 was localized to chromosome 1q21. We demonstrated haplotype sharing and confirmed the telomeric border by a recombination of D1S2624 in a Belgian kindred. Since the causative gene has been elusive, high resolution haplotype analysis was performed in 16 kindreds. Clinical data and blood samples of 257 individuals (including 75 affected individuals) from 26 different kindreds were collected. Within the defined critical region mutational analysis of 37 genes (374 exons) in 23 MCKD1 patients was performed. In addition, for nine kindreds RT-PCR analysis for the sequenced genes was done to screen for mutations activating cryptic splice sites. We found consistency with the haplotype sharing hypothesis in an additional nine kindreds, detecting three different haplotype subsets shared within a region of 1.19 Mb. Mutational analysis of all 37 positional candidate genes revealed sequence variations in 3 different genes, AK000210, CCT3, and SCAMP3, that were segregating in each affected kindred and were not found in 96 healthy individuals, indicating, that a single responsible gene causing MCKD1 remains elusive. This may point to involvement of different genes within the MCKD1 critical region.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109-0646, USA, and University Children's Hospital, Freiburg University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang Z, Asico LD, Yu P, Wang Z, Jones JE, Escano CS, Wang X, Quinn MT, Sibley DR, Romero GG, Felder RA, Jose PA. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol 2006; 290:R96-R104. [PMID: 16352863 DOI: 10.1152/ajpregu.00434.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-) and wild-type (D5+/+) mice. NADPH oxidase protein expression (gp91(phox), p47(phox), and Nox 4) and activity in kidney and brain, as well as plasma thiobarbituric acid-reactive substances (TBARS) were higher in D5-/- than in D5+/+ mice. Furthermore, apocynin, an NADPH oxidase inhibitor, normalized blood pressure, renal NADPH oxidase activity, and plasma TBARS in D5-/- mice. In HEK-293 cells that heterologously expressed human D5 receptor, its agonist fenoldopam decreased NADPH oxidase activity, expression of one of its subunits (gp91(phox)), and ROS production. The inhibitory effect of the D5 receptor activation on NADPH oxidase activity was independent of cAMP/PKA but was partially dependent on phospholipase D2. The ability of D5 receptor stimulation to decrease ROS production may explain, in part, the antihypertensive action of D5 receptor activation.
Collapse
Affiliation(s)
- Zhiwei Yang
- Department of Pediatrics and Physiology, Georgetown University Medical Center, 3800 Reservoir Rd., NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hodanová K, Majewski J, Kublová M, Vyletal P, Kalbácová M, Stibůrková B, Hůlková H, Chagnon YC, Lanouette CM, Marinaki A, Fryns JP, Venkat-Raman G, Kmoch S. Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41. Kidney Int 2005; 68:1472-82. [PMID: 16164624 DOI: 10.1111/j.1523-1755.2005.00560.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autosomal-dominant juvenile hyperuricemia, gouty arthritis, medullary cysts, and progressive renal insufficiency are features associated with familial juvenile hyperuricemic nephropathy (FJHN), medullary cystic kidney disease type 1 (MCKD1) and type 2 (MCKD2). MCKD1 has been mapped to chromosome 1q21. FJHN and MCKD2 have been mapped to chromosome 16p11.2. FJHN and MCKD2 are allelic, result from uromodulin (UMOD) mutations and the term uromodulin-associated kidney disease (UAKD) has been proposed for them. Linkage studies also reveal families that do not show linkage to any of the identified loci. To identify additional UAKD loci, we analyzed one of these families, with features suggestive of FJHN. METHODS Clinical, biochemical, and immunohistochemical investigations were used for phenotype characterization. Genotyping, linkage and haplotype analyses were employed to identify the candidate disease region. Bioinformatics and sequencing were used for candidate gene selection and analyses. RESULTS We identified a new candidate UAKD locus on chromosome 1q41, bounded by markers D1S3470 and D1S1644. We analyzed and found no linkage to this region in eight additional families, who did not map to the previously established loci. We noted that affected individuals showed, in addition to the characteristic urate hypoexcretion, significant reductions in urinary excretion of calcium and UMOD. Immunohistochemical analysis showed that low UMOD excretion resulted from its reduced expression, which is a different mechanism to intracellular UMOD accumulation observed in cases with UMOD mutations. CONCLUSION We have mapped a new candidate UAKD locus and shown that UAKD may be a consequence of various defects affecting uromodulin biology.
Collapse
Affiliation(s)
- Katerina Hodanová
- Center for Applied Genomics, Institute for Inherited Metabolic Disorders, Charles University 1st School of Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2005; 19:233-46. [PMID: 15548830 DOI: 10.1152/physiolgenomics.00127.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex. The uncoupling is receptor specific, organ selective, nephron-segment specific, precedes the onset of hypertension, and cosegregates with the hypertensive phenotype. The defective transduction of the renal dopaminergic signal is caused by activating variants of G protein-coupled receptor kinase type 4 (GRK4: R65L, A142V, A486V). The GRK4 locus is linked to and GRK4 gene variants are associated with human essential hypertension, especially in salt-sensitive hypertensive subjects. Indeed, the presence of three or more GRK4 variants impairs the natriuretic response to dopaminergic stimulation in humans. In genetically hypertensive rats, renal inhibition of GRK4 expression ameliorates the hypertension. In mice, overexpression of GRK4 variants causes hypertension either with or without salt sensitivity according to the variant. GRK4 gene variants, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic factors (e.g., angiotensin II type 1 receptor) to predominate, may be responsible for salt sensitivity. Subclasses of hypertension may occur because of additional perturbations caused by variants of other genes, the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Kennedy J, Jackson G, Ramsden S, Taylor J, Newman W, Wright MJ, Donnai D, Elles R, Briggs MD. COMP mutation screening as an aid for the clinical diagnosis and counselling of patients with a suspected diagnosis of pseudoachondroplasia or multiple epiphyseal dysplasia. Eur J Hum Genet 2005; 13:547-55. [PMID: 15756302 PMCID: PMC2673054 DOI: 10.1038/sj.ejhg.5201374] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The skeletal dysplasias are a clinically and genetically heterogeneous group of conditions affecting the development of the osseous skeleton and fall into the category of rare genetic diseases in which the diagnosis can be difficult for the nonexpert. Two such diseases are pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), which result in varying degrees of short stature, joint pain and stiffness and often resulting in early onset osteoarthritis. PSACH and some forms of MED result from mutations in the cartilage oligomeric matrix protein (COMP) gene and to aid the clinical diagnosis and counselling of patients with a suspected diagnosis of PSACH or MED, we developed an efficient and accurate molecular diagnostic service for the COMP gene. In a 36-month period, 100 families were screened for a mutation in COMP and we identified disease-causing mutations in 78% of PSACH families and 36% of MED families. Furthermore, in several of these families, the identification of a disease-causing mutation provided information that was immediately used to direct reproductive decision-making.
Collapse
Affiliation(s)
- Jason Kennedy
- National Genetics Reference Laboratory (Manchester), Regional Genetics Services, St. Mary’s Hospital, Manchester, UK
| | - Gail Jackson
- National Genetics Reference Laboratory (Manchester), Regional Genetics Services, St. Mary’s Hospital, Manchester, UK
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Simon Ramsden
- National Genetics Reference Laboratory (Manchester), Regional Genetics Services, St. Mary’s Hospital, Manchester, UK
| | - Jacky Taylor
- National Genetics Reference Laboratory (Manchester), Regional Genetics Services, St. Mary’s Hospital, Manchester, UK
| | | | - Michael J Wright
- Institute of Human Genetics, International Centre for Life, Newcastle-upon-Tyne, UK
| | - Dian Donnai
- Medical Genetics, St Mary’s Hospital, Manchester, UK
| | - Rob Elles
- National Genetics Reference Laboratory (Manchester), Regional Genetics Services, St. Mary’s Hospital, Manchester, UK
| | - Michael D Briggs
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
- Correspondence: Dr Michael D Briggs, Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK. Tel: + 44 161 275 5642; Fax: + 44 161 275 5082; E-mail:
| |
Collapse
|
27
|
Fox CS, Yang Q, Guo CY, Cupples LA, Wilson PWF, Levy D, Meigs JB. Genome-wide linkage analysis to urinary microalbuminuria in a community-based sample: the Framingham Heart Study. Kidney Int 2005; 67:70-4. [PMID: 15610229 DOI: 10.1111/j.1523-1755.2005.00056.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Microalbuminuria is a powerful risk factor for cardiovascular disease. It is not known whether genetic factors play a role in the expression of microalbuminuria in population-based samples. METHODS Genome-wide variance components linkage-analysis using 401 markers spaced at approximately 10 cM was performed on subjects from 330 extended families of the Framingham Heart Study; a subanalysis was performed on families enriched for hypertension. Urinary microalbumin was indexed to urinary creatinine [urine albumin/creatinine ratio (UACR)] and was log-transformed for analysis. Residuals of log-transformed UACR adjusted for age, gender, body mass index, diabetes, systolic blood pressure, hypertension treatment, smoking, and serum creatinine were used in the linkage analysis. RESULTS Among 1055 subjects (52% women), mean age 56 years, median UACR was 5.8 mg/g (11% >30 mg/g). The unadjusted heritability for UACR was 0.20; after multivariable adjustment, heritability was 0.16. The peak multivariable-adjusted multipoint logarithm of odds (LOD) score was 2.22 on chromosome 8 at 135 cM (marker D8S1179); one LOD support interval = 129 - 145 cM. In the subanalysis in families enriched for hypertension (N= 676), the peak multivariable-adjusted LOD score of 2.11 was observed at the same location. CONCLUSION We found suggestive linkage to urinary microalbumin on chromosome 8. At least one potential candidate gene implicated in the pathogenesis of nephropathy (HAS2) lies in this region. Further research is warranted to understand the genetic basis of microalbuminuria.
Collapse
Affiliation(s)
- Caroline S Fox
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wolf MTF, van Vlem B, Hennies HC, Zalewski I, Karle SM, Puetz M, Panther F, Otto E, Fuchshuber A, Lameire N, Loeys B, Hildebrandt F. Telomeric refinement of the MCKD1 locus on chromosome 1q21. Kidney Int 2004; 66:580-5. [PMID: 15253709 DOI: 10.1111/j.1523-1755.2004.00799.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Autosomal-dominant medullary cystic kidney disease type 1 (MCKD1) is a tubulointerstitial nephropathy that causes renal salt wasting and end-stage renal failure in the sixth decade of life. The chromosomal locus for MCKD1 was localized to chromosome 1q21 in a Cyprotic kindred. In this report we describe further refinement of the critical genetic region by a recombination in a Belgian kindred. METHODS Clinical data and blood samples of 33 individuals from a large Belgian kindred were collected and high-resolution haplotype analysis was performed. RESULTS In the Belgian kindred linkage to the MCKD1 locus on chromosome 1q21 was found with a logarithm of odds (LOD) score significant for linkage. A recombination in individual III:7 for marker D1S2624 refines the critical genetic region to 2.1 Mb. In this kindred a wide variety of clinical symptoms and age of onset of renal failure was detected. CONCLUSION We confirm the MCKD1 locus on chromosome 1q21 and show further refinement of the MCKD1 locus to 2.1 Mb. This allowed us to exclude another 17 genes as positional candidate genes.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-0646, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buchner DA, Trudeau M, George AL, Sprunger LK, Meisler MH. High-resolution mapping of the sodium channel modifier Scnm1 on mouse chromosome 3 and identification of a 1.3-kb recombination hot spot. Genomics 2004; 82:452-9. [PMID: 13679025 DOI: 10.1016/s0888-7543(03)00152-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Variation between inbred strains of mice can be used to identify modifier genes affecting the susceptibility to inherited disease. The medJ allele of the sodium channel Scn8a contains a splice site mutation that results in sodium channel deficiency. The severity of the neurological disorder is determined by the modifier locus Scnm1. The wild-type allele of the modifier results in correct splicing of 10% of Scn8amedJ pre-mRNA and a dystonic phenotype. The susceptible allele of the modifier in strain C57BL/6J results in 5% correctly spliced transcripts and a lethal phenotype. A mapping cross with C3H using 26 new markers and 2304 affected F2 animals localized the modifier gene to a 950-kb interval on mouse chromosome 3. Fine mapping of recombination breakpoints revealed a recombination hot spot of 1.3 kb. The ratio of genetic to physical distance in the hot spot is 85 cM/Mb, two orders of magnitude higher than the mouse genome average of 0.5 cM/Mb. The role of the modifier in other disorders in human and mouse can be tested with linked markers described here.
Collapse
Affiliation(s)
- David A Buchner
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | |
Collapse
|
30
|
Qi H, Gervais ML, Li W, DeCaprio JA, Challis JR, Ohh M. Molecular Cloning and Characterization of the von Hippel-Lindau-Like Protein. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.43.2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
von Hippel-Lindau (VHL) tumor suppressor protein—inactivated in VHL disease and sporadic kidney cancer—is a component of an E3 ubiquitin ligase complex that selectively ubiquitinates the α subunit of the hypoxia-inducible factor (HIF) transcription factor for subsequent destruction by the 26S proteasome. Here, we report the identification and characterization of the first VHL homologue, VHL-like protein (VLP), located on chromosome 1q21.2. A 676-bp partial cDNA encoding a 139-amino acid protein that is 78% similar to VHL was isolated by reverse transcription-PCR from human brain cerebellum and several cancer cell lines. The expression of VLP transcript is most abundant in the placenta. Like VHL, VLP contains a β domain capable of binding HIFα. However, unlike VHL, it does not contain a recognizable α domain, which is required for nucleating the multiprotein E3 ubiquitin ligase complex. The increased expression of VLP in the presence of VHL attenuated the ubiquitination of HIFα and led to the accumulation of downstream HIF target genes. These results taken together indicate that VLP functions as a dominant-negative VHL to serve as a protector of HIFα.
Collapse
Affiliation(s)
- Heng Qi
- 1Department of Laboratory Medicine and Pathobiology and
| | | | - Wei Li
- 2Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; and
| | - James A. DeCaprio
- 3Department of Molecular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - John R.G. Challis
- 2Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; and
| | - Michael Ohh
- 1Department of Laboratory Medicine and Pathobiology and
| |
Collapse
|
31
|
Chung KW, Ferrell RE, Ellis D, Barmada M, Moritz M, Finegold DN, Jaffe R, Vats A. African American hypertensive nephropathy maps to a new locus on chromosome 9q31-q32. Am J Hum Genet 2003; 73:420-9. [PMID: 12840782 PMCID: PMC1180380 DOI: 10.1086/377184] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/28/2003] [Indexed: 12/17/2022] Open
Abstract
Hypertensive nephropathy (HN) and focal segmental glomerulosclerosis (FSGS) are significant causes of end-stage renal disease (ESRD), but no genes or loci have been associated with this phenotype among African Americans, a group at high risk. We performed a genomewide linkage scan with approximately 400 microsatellite markers on 23 individuals of a large four-generation African American family with 18 affected individuals (7 with ESRD), in which the 13-year-old proband (also with ESRD) presented with hypertension and proteinuria (2-4 g/day) and underwent a kidney biopsy that revealed FSGS-like lesions with arteriolar thickening. A genomewide scan revealed LOD scores of >2.5 for markers on chromosomes 3 and 9, and fine mapping was performed on 5 additional members (total 28 members) that showed a maximum multipoint LOD score of 5.4 in the 9q31-q32 region, under an autosomal dominant model with 99% penetrance. This 8-cM (6-Mb) region is flanked by markers D9S172 and D9S105, and further candidate gene sequencing studies excluded the coding regions of three genes (ACTL7A, ACTL7B, and CTNNAL1). To our knowledge, this is the first report of a locus, denoted as "HNP1," for the HN/FSGS phenotype in a large African American family with dominantly inherited nephropathy characterized by ESRD, hypertension, and some features of FSGS.
Collapse
Affiliation(s)
- Ki Wha Chung
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Robert E. Ferrell
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Demetrius Ellis
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Michael Barmada
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Michael Moritz
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - David N. Finegold
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Ronald Jaffe
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Abhay Vats
- Departments of Pediatrics and Pathology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| |
Collapse
|
32
|
Alebiosu CO. An update on 'progression promoters' in renal diseases. J Natl Med Assoc 2003; 95:30-42. [PMID: 12656448 PMCID: PMC2594375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
AIM This paper reviews progression in renal diseases. METHODS An English language literature search using Medline (1980 January-2001 July) was done to assess research and review articles on progression in renal diseases. RESULTS Factors that increase the risk of progression in renal diseases are hypertension, dyslipidaemia, underlying nephropathy, high dietary protein intake and proteinuria. Others are smoking, hyperglycemia, low birth weight, obesity, metabolic syndrome X, genetic factors such as angiotensin converting enzyme 'DD' genotype and chromosome 1q21, and exposure to lead. Hypertension induces arteriolar nephrosclerosis. The mechanisms whereby lipids contribute to vascular and renal injury are incompletely understood. Glomerular hyperperfusion and increased proteinuria may explain the adverse effects of increased protein intake on renal disease progression. Proteinuria contains numerous toxic/inflammatory systems that promote progression. Cigarette smoking has vasoconstrictive, thrombotic and direct toxic effects on the vascular epithelium. Hyperglycemia is strongly implicated in the progression of complications in diabetics. Oligonephropathy in low birth weight has been suggested to increase the risk for systemic and glomerular hypertension in adult life. In obesity, the combination of hyperfiltration, glomerular hypertrophy and glomerular hypertension is a primary initiating event for glomerular injury manifesting as glomerulomegally and focal and segmental glomerulosclerosis and proteinuria. Angiotensin I, with enzyme insertion/deletion polymorphism, especially the "DD" genotype, predisposes to a rapid decline in renal function. Finally, long-term exposure to low levels of environmental lead affects renal function. CONCLUSION The control of hypertension, dyslipidaemia, proteinuria, obesity, avoidance of low birth weight, smoking and heavy metals such as lead are intervention strategies for preventing progression of renal diseases.
Collapse
Affiliation(s)
- C O Alebiosu
- Department of Medicine, Olabisi Onabanjo University Teaching Hospital, Ogun State, Ibadan, Nigeria.
| |
Collapse
|
33
|
Stavrou C, Koptides M, Tombazos C, Psara E, Patsias C, Zouvani I, Kyriacou K, Hildebrandt F, Christofides T, Pierides A, Deltas CC. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int 2002; 62:1385-94. [PMID: 12234310 DOI: 10.1111/j.1523-1755.2002.kid581.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Autosomal-dominant medullary cystic kidney disease (ADMCKD), a hereditary chronic interstitial nephropathy, recently attracted attention because of the cloning or mapping of certain gene loci, namely NPHP1, NPHP2 and NPHP3 for familial juvenile nephronophthisis (NPH) and MCKD1 and MCKD2 for the adult form of medullary cystic kidney disease. Our aim was to present and discuss the clinical, biochemical, sonographic and histopathological findings in six large Cypriot families in whom molecular analysis has confirmed linkage to the MCKD1 locus on chromosome 1q21. METHODS The clinical, biochemical, sonographic and histopathological findings in 186 members of six large Cypriot families with ADMCKD-1 are presented. Creatinine clearance was calculated according to the Cockroft-Gault formula and was corrected to a body surface area (BSA) of 1.73 m2. DNA linkage analysis was performed with previously identified flanking polymorphic markers. RESULTS This disease is characterized by the absence of urinary findings in the vast majority of patients, leading to end-stage renal failure (ESRF) at a mean age of 53.7 years. Hypertension and hyperuricemia are common, especially in males, the former encountered more frequently in advanced chronic renal failure (CRF). Gout has been noted in a small percentage of male patients. Loss of urinary concentrating ability was not a prominent early feature of the disease, while severe natriuresis was observed in a few males toward ESRF. Renal cysts are mainly corticomedullary or medullary, and they are present in about 40.3% of patients and appear more frequently near ESRF. CONCLUSION ADMCKD type 1 is a common cause of ESRF among our dialysis population. The disease is difficult to diagnose clinically, particularly in the early stage when renal cysts are not usually present, making them a weak diagnostic finding. A dominant pattern of inheritance and DNA linkage analysis are helpful in the diagnosis of this disease.
Collapse
Affiliation(s)
- Christoforos Stavrou
- Department of Nephrology, Ministry of Health, The Cyprus Institute of Neurology, 6 International Airport Avenue, Ayios Dhometios, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Genetic isolates, as shown empirically by the Finnish, Old Order Amish, Hutterites, Sardinian and Jewish communities among others, represent a most important and powerful tool in genetically mapping inherited disorders. The main features associated with that genetic power are the existence of multigenerational pedigrees which are mostly descended from a small number of founders a short number of generations ago, environmental and phenotypic homogeneity, restricted geographical distribution, the presence of exhaustive and detailed records correlating individuals in very well ascertained pedigrees, and inbreeding as a norm. On the other hand, the presence of a multifounder effect or admixture among divergent populations in the founder time (e.g. the Finnish and the Paisa community from Colombia) will theoretically result in increased linkage disequilibrium among adjacent loci. The present review evaluates the historical context and features of some genetic isolates with emphasis on the basic population genetic concepts of inbreeding and genetic drift, and also the state-of-the-art in mapping traits, both Mendelian and complex, on genetic isolates.
Collapse
Affiliation(s)
- M Arcos-Burgos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1852, USA
| | | |
Collapse
|
35
|
Koptides M, Mean R, Stavrou C, Pierides A, Demetriou K, Nakayama T, Hildebrandt F, Fuchshuber A, Deltas CC. Novel NPR1 polymorphic variants and its exclusion as a candidate gene for medullary cystic kidney disease (ADMCKD) type 1. Mol Cell Probes 2001; 15:357-61. [PMID: 11851379 DOI: 10.1006/mcpr.2001.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autosomal dominant medullary cystic kidney disease (ADMCKD) is an adult-onset heterogeneous genetic nephropathy characterized by salt wasting and end-stage renal failure. The gene responsible for ADMCKD-1 was mapped on chromosome 1q21 and it is flanked proximally by marker D1S498 and distally by D1S2125, encompassing a region of approximately 8 cm. Within this region there are a large number of transcribed genes including NPR1 that encodes the atrial natriuretic peptide receptor 1. This receptor plays a crucial role in regulation of blood pressure by facilitating salt excretion. Based on its function we hypothesized this gene as a reasonable candidate for the MCKD1 locus. DNA mutation screening was performed on the entire NPR1 gene-coding sequence and some of the 5' prime-UTR and 3'-UTR sequences. The samples investigated belonged to patients of five large ADMCKD-1 Cypriot families. The screening revealed two novel polymorphisms, one intragenic at amino acid position 939, which was occupied by either arginine or glutamine, and a second one located in the 3' prime-UTR, 29 nucleotides downstream of the NPR1 stop codon. The latter was a single nucleotide C insertion/deletion in a stretch of three or four Cs. No relationship was present between any allele of the two polymorphisms and the disease, as both alleles were observed in both affected and healthy subjects. In addition, no association was observed between the disease and another rare 8-bp deletion polymorphism at the 5' prime-UTR of NPR1 and the disease. Based on these findings it is unlikely that NPR1 is the same as the MCKD1 gene, although it is presently unknown whether it plays a disease modifying role.
Collapse
Affiliation(s)
- M Koptides
- Department of Molecular Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hateboer N, Gumbs C, Teare MD, Coles GA, Griffiths D, Ravine D, Futreal PA, Rahman N. Confirmation of a gene locus for medullary cystic kidney disease (MCKD2) on chromosome 16p12. Kidney Int 2001; 60:1233-9. [PMID: 11576337 DOI: 10.1046/j.1523-1755.2001.00932.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal-dominant medullary cystic kidney disease (MCKD) is an interstitial nephropathy characterized by structural renal tubular defects that result in salt wasting and a reduction in urinary concentration. The condition has clinical and morphological similarities to autosomal-recessive juvenile nephronophthisis. Two genes predisposing to MCKD have been localized. MCKD1 on chromosome 1q21 was localized in two Cypriot families, and MCKD2 on chromosome 16p12 was localized in a single Italian family. We have evaluated a large Welsh MCKD family for linkage at these two loci. METHODS Clinical data and DNA samples were collected from affected family members. Polymorphic microsatellite markers spanning the critical regions on chromosome 1 and chromosome 16 that encompass MCKD1 and MCKD2 were analyzed. Two-point and multipoint LOD scores were calculated. RESULTS The family fulfilled previously published criteria for the diagnosis of MCKD, but hyperuricemia and gout were not prominent features. Twenty-one affected individuals were identified. Mean age at death or end-stage renal disease was 47 years (37 to 60). Linkage and haplotype analysis generated strongly negative results at MCKD1 on chromosome 1q21 (two-point LOD score = -5.32). Strong evidence of linkage to MCKD2 was generated with a maximum multi-point LOD score of 3.75. CONCLUSION These results provide the first independent confirmation of a gene predisposing to MCKD on chromosome 16p12 and indicate that mutation of this gene is not restricted to a single family or population. The absence of hyperuricemia and gout in our family indicates that these are not obligatory features of MCKD2 mutations.
Collapse
Affiliation(s)
- N Hateboer
- Institute of Nephrology, Department of Histopathology, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Auranen M, Ala-Mello S, Turunen JA, Järvelä I. Further evidence for linkage of autosomal-dominant medullary cystic kidney disease on chromosome 1q21. Kidney Int 2001; 60:1225-32. [PMID: 11576336 DOI: 10.1046/j.1523-1755.2001.00931.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal-dominant medullary cystic kidney disease (ADMCKD) is characterized by the development of cysts at the corticomedullary border of the kidneys. It resembles nephronophthisis (NPH) with an autosomal-recessive mode of inheritance. Genetic linkage has been shown either on chromosome 1q21 (ADMCKD1) or 16p12 (ADMCKD2), and families exist who are not linked to the aforementioned loci. No disease-causing gene underlying this disorder has been reported. METHODS The Finnish Transplantation Register and hospital records were searched to identify all of the ADMCKD families in the Finnish population. Detailed clinical information of the patients was collected. Linkage analysis was used to study whether the Finnish families originating from a homogeneous population showed genetic linkage to the ADMCKD1 or ADMCKD2 loci. Also, the coding region of a strong candidate gene, natriuretic peptide receptor A (NPRA), located on the chromosome 1q21 critical region, was sequenced using polymerase chain reaction sequencing with an ABI 377XL Automated DNA sequencer (Applera Corp., Norwalk, CT, USA). RESULTS Five of the six families showed linkage to the previously identified region of chromosome 1q21. Family 6 with hyperuricemia as a prominent clinical feature was linked to neither of the ADMCKD loci. Wide interfamiliar and intrafamiliar variability in the clinical picture of the patients was detected. The NPRA gene mutation was excluded as a causative gene by sequencing. CONCLUSION This study locates the gene for ADMCKD1 close to a marker D1S1595 in a region <5 cM, and further confirms the existence of at least three loci for the medullary cystic kidney disease. Heterogeneity of the symptoms complicates the clinical diagnosis and classification of the patients. Further studies are needed to identify the disease-causing gene.
Collapse
Affiliation(s)
- M Auranen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland.
| | | | | | | |
Collapse
|