1
|
Lu C, Liu D, Wu Q, Zeng J, Xiong Y, Luo T. EphA2 blockage ALW-II-41-27 alleviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism. NPJ Biofilms Microbiomes 2024; 10:108. [PMID: 39426981 PMCID: PMC11490535 DOI: 10.1038/s41522-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE-/- mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
3
|
Shaqran TM, Almutairi RS, Zurayyir EJ, AlOlayan S, Salamah Alfuhaid H, Alalawi FSA, Al-Haddad HA, Buhasan HY, Husain JJ, Isa FM, Mahdi BA. Prevalence of Myocardial Infarction in Saudi Arabia: A Systematic Review. Cureus 2024; 16:e64761. [PMID: 39156449 PMCID: PMC11329297 DOI: 10.7759/cureus.64761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Myocardial infarction (MI), frequently referred to as a heart attack, happens when the blood supply to a region of the myocardium is reduced. It might be quiet or devastating, causing hemodynamic decline and rapid death. The most common cause of MI is coronary artery disease, which is the leading cause of mortality in the United States. Prolonged lack of oxygen can lead to myocardial cell loss and necrosis. Patients may report chest pain, pressure, and electrocardiogram alterations. Management of MI relies greatly on the interprofessional team. The purpose of this study was to determine the incidence of MI in Saudi Arabia. Between 2000 and 2024, English-language papers were gathered to demonstrate the prevalence of MI in Saudi Arabia. Overall, there were four articles. Surveys and studies of national databases were the most utilized methods (n=4). We found that heart attacks are a significant health issue in Saudi Arabia, with certain lifestyle choices and medical conditions increasing the risk. Heart attacks are a major health concern in Saudi Arabia. To lower the number of heart attacks, it's important for people to make healthier lifestyle choices.
Collapse
Affiliation(s)
- Tariq M Shaqran
- Family Medicine, King Salman Armed Forces Hospital, Tabuk, SAU
| | - Renad S Almutairi
- College of Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | | | | | | | | | | | | | - Janan J Husain
- College of Medicine, Southeast University (SEU), Nanjing, CHN
| | - Fatema M Isa
- College of Medicine, Southeast University (SEU), Nanjing, CHN
| | | |
Collapse
|
4
|
Papageorgiou N, Sohrabi C, Bakogiannis C, Tsarouchas A, Kukendrarajah K, Matiti L, Srinivasan NT, Ahsan S, Sporton S, Schilling RJ, Hunter RJ, Muthumala A, Creta A, Chow AW, Providencia R. Blood groups and Rhesus status as potential predictors of outcomes in patients with cardiac resynchronisation therapy. Sci Rep 2024; 14:8371. [PMID: 38600217 PMCID: PMC11006901 DOI: 10.1038/s41598-024-58747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cardiac resynchronisation therapy (CRT) improves prognosis in patients with heart failure (HF) however the role of ABO blood groups and Rhesus factor are poorly understood. We hypothesise that blood groups may influence clinical and survival outcomes in HF patients undergoing CRT. A total of 499 patients with HF who fulfilled the criteria for CRT implantation were included. Primary outcome of all-cause mortality and/or heart transplant/left ventricular assist device was assessed over a median follow-up of 4.6 years (IQR 2.3-7.5). Online repositories were searched to provide biological context to the identified associations. Patients were divided into blood (O, A, B, and AB) and Rhesus factor (Rh-positive and Rh-negative) groups. Mean patient age was 66.4 ± 12.8 years with a left ventricular ejection fraction of 29 ± 11%. There were no baseline differences in age, gender, and cardioprotective medication. In a Cox proportional hazard multivariate model, only Rh-negative blood group was associated with a significant survival benefit (HR 0.68 [0.47-0.98], p = 0.040). No association was observed for the ABO blood group (HR 0.97 [0.76-1.23], p = 0.778). No significant interaction was observed with prevention, disease aetiology, and presence of defibrillator. Rhesus-related genes were associated with erythrocyte and platelet function, and cholesterol and glycated haemoglobin levels. Four drugs under development targeting RHD were identified (Rozrolimupab, Roledumab, Atorolimumab, and Morolimumab). Rhesus blood type was associated with better survival in HF patients with CRT. Further research into Rhesus-associated pathways and related drugs, namely whether there is a cardiac signal, is required.
Collapse
Affiliation(s)
- Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Catrin Sohrabi
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | | | | | - Kishore Kukendrarajah
- The Farr Institute of Health Informatics Research, University College London, London, UK
| | - Luso Matiti
- Broomfield Hospital, Mid and South Essex NHS Foundation Trust, Essex, UK
| | - Neil T Srinivasan
- Department of Cardiac Electrophysiology, Essex Cardiothoracic Centre, Basildon, UK
- Circulatory Health Research Group, Medical Technology Research Centre, School of Medicine, Anglia Ruskin University, Chelmsford, UK
| | - Syed Ahsan
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Simon Sporton
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Richard J Schilling
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Ross J Hunter
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Amal Muthumala
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Antonio Creta
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Anthony W Chow
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Rui Providencia
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK.
- Institute of Cardiovascular Science, University College London, London, UK.
| |
Collapse
|
5
|
Zeng J, Wu Q, Xiong S, Lu C, Zhang Z, Huang H, Xiong Y, Luo T. Inhibition of EphA2 protects against atherosclerosis by synergizing with statins to mitigate macrophage inflammation. Biomed Pharmacother 2023; 169:115885. [PMID: 37984301 DOI: 10.1016/j.biopha.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Statins are highly prevalent in patients with coronary artery disease. Statins exert their anti-inflammatory effects on the vascular wall and circulating levels of pro-inflammatory cytokines. However, increasing attention revealed the exacerbation of macrophage inflammation induced by statins, and a clear mechanistic explanation of whether the detrimental effects of statins on macrophage inflammatory phenotypes outweigh the beneficial effects is has not yet been established. Here, RNA-sequencing and RT-qPCR analyses demonstrated that statins significantly upregulated EphA2, Nlrp3, IL-1β and TNF-α expression in macrophages. Mechanistically, we found that atorvastatin reduced KLF4 binding to the EphA2 promoter using KLF4-chromatin immunoprecipitation, suppressed HDAC11-mediated deacetylation and subsequently led to enhanced EphA2 transcription. The 4D-label-free proteomics analysis further confirmed the upregulated EphA2 and inflammatory signals. Furthermore, the proinflammatory effect of atorvastatin was neutralized by an addition of recombinant Fc-ephrinA1, a selective Eph receptor tyrosine kinase inhibitor (ALW-II-41-27) or EphA2-silencing adenovirus (siEphA2). In vivo, EphA2 was identified a proatherogenic factor and apoE-/- mice placed on a high-fat diet following gastric gavage with atorvastatin exhibited a consistent elevation in EphA2 expression. We further observed that the transfection with siEphA2 in atorvastatin-treated mice significantly attenuated atherosclerotic plaque formation and abrogated statin-orchestrated macrophages proinflammatory genes expression as compared to that in atorvastatin alone. Increased plaque stability index was also observed following the addition of siEphA2, as evidenced by increased collagen and smooth muscle content and diminished lipid accumulation and macrophage infiltration. The data suggest that blockage of EphA2 provides an additional therapeutic benefit for further improving the anti-atherogenic effects of statins.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Shiqiang Xiong
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Zheng Zhang
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hui Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China.
| |
Collapse
|
6
|
Calvier L, Herz J, Hansmann G. Interplay of Low-Density Lipoprotein Receptors, LRPs, and Lipoproteins in Pulmonary Hypertension. JACC Basic Transl Sci 2022; 7:164-180. [PMID: 35257044 PMCID: PMC8897182 DOI: 10.1016/j.jacbts.2021.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022]
Abstract
The low-density lipoprotein receptor (LDLR) gene family includes LDLR, very LDLR, and LDL receptor-related proteins (LRPs) such as LRP1, LRP1b (aka LRP-DIT), LRP2 (aka megalin), LRP4, and LRP5/6, and LRP8 (aka ApoER2). LDLR family members constitute a class of closely related multifunctional, transmembrane receptors, with diverse functions, from embryonic development to cancer, lipid metabolism, and cardiovascular homeostasis. While LDLR family members have been studied extensively in the systemic circulation in the context of atherosclerosis, their roles in pulmonary arterial hypertension (PAH) are understudied and largely unknown. Endothelial dysfunction, tissue infiltration of monocytes, and proliferation of pulmonary artery smooth muscle cells are hallmarks of PAH, leading to vascular remodeling, obliteration, increased pulmonary vascular resistance, heart failure, and death. LDLR family members are entangled with the aforementioned detrimental processes by controlling many pathways that are dysregulated in PAH; these include lipid metabolism and oxidation, but also platelet-derived growth factor, transforming growth factor β1, Wnt, apolipoprotein E, bone morpohogenetic proteins, and peroxisome proliferator-activated receptor gamma. In this paper, we discuss the current knowledge on LDLR family members in PAH. We also review mechanisms and drugs discovered in biological contexts and diseases other than PAH that are likely very relevant in the hypertensive pulmonary vasculature and the future care of patients with PAH or other chronic, progressive, debilitating cardiovascular diseases.
Collapse
Key Words
- ApoE, apolipoprotein E
- Apoer2
- BMP
- BMPR, bone morphogenetic protein receptor
- BMPR2
- COPD, chronic obstructive pulmonary disease
- CTGF, connective tissue growth factor
- HDL, high-density lipoprotein
- KO, knockout
- LDL receptor related protein
- LDL, low-density lipoprotein
- LDLR
- LDLR, low-density lipoprotein receptor
- LRP
- LRP, low-density lipoprotein receptor–related protein
- LRP1
- LRP1B
- LRP2
- LRP4
- LRP5
- LRP6
- LRP8
- MEgf7
- Mesd, mesoderm development
- PAH
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PDGF
- PDGFR-β, platelet-derived growth factor receptor-β
- PH, pulmonary hypertension
- PPARγ
- PPARγ, peroxisome proliferator-activated receptor gamma
- PVD
- RV, right ventricle/ventricular
- RVHF
- RVSP, right ventricular systolic pressure
- TGF-β1
- TGF-β1, transforming growth factor β1
- TGFBR, transforming growth factor β1 receptor
- TNF, tumor necrosis factor receptor
- VLDLR
- VLDLR, very low density lipoprotein receptor
- VSMC, vascular smooth muscle cell
- Wnt
- apolipoprotein E receptor 2
- endothelial cell
- gp330
- low-density lipoprotein receptor
- mRNA, messenger RNA
- megalin
- monocyte
- multiple epidermal growth factor-like domains 7
- pulmonary arterial hypertension
- pulmonary vascular disease
- right ventricle heart failure
- smooth muscle cell
- very low density lipoprotein receptor
- β-catenin
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S, Zheng XL. PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Triggers Vascular Smooth Muscle Cell Senescence and Apoptosis: Implication of Its Direct Role in Degenerative Vascular Disease. Arterioscler Thromb Vasc Biol 2021; 42:67-86. [PMID: 34809446 DOI: 10.1161/atvbaha.121.316902] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.
Collapse
Affiliation(s)
- Yanan Guo
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Zhihan Tang
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Binjie Yan
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Hao Yin
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Now with Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada (H.Y.)
| | - Shi Tai
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yuting Cui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Darrell Belke
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| |
Collapse
|
8
|
Dai J, Leung M, Guan W, Guo HT, Krasnow RE, Wang TJ, El-Rifai W, Zhao Z, Reed T. Whole-Genome Differentially Hydroxymethylated DNA Regions among Twins Discordant for Cardiovascular Death. Genes (Basel) 2021; 12:genes12081183. [PMID: 34440357 PMCID: PMC8392630 DOI: 10.3390/genes12081183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death independent of germline and common environment. Male twin pairs middle-aged in 1969–1973 and discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation was quantified in buffy coat DNA collected in 1986–1987. The 1893 differentially hydroxymethylated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among 12 monozygotic (MZ) pairs (Benjamini–Hochberg False Discovery Rate < 0.01), of which the 102 DhMRs were confirmed with directionally consistent log2-fold changes and p < 0.01 among additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent to that generated from MZ via the 2D transformation. Computational bioinformatics discovered pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydroxymethylation was a pathophysiological mechanism underlying cardiovascular death that might be influenced by genetic factors and warranted further investigations of mechanisms of these signature regions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, Des Moines, IA 50312, USA
- Correspondence: ; Tel.: +1-515-271-1367
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA;
| | - Han-Tian Guo
- Bioinformatics and Computational Biology Undergraduate Program, Iowa State University, Ames, IA 50011, USA;
| | - Ruth E. Krasnow
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Thomas J. Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
9
|
Diagnostic Value of Circulating Progranulin and Its Receptor EphA2 in Predicting the Atheroma Burden in Patients with Coronary Artery Disease. DISEASE MARKERS 2021; 2021:6653501. [PMID: 33968283 PMCID: PMC8084646 DOI: 10.1155/2021/6653501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Background Progranulin (PGRN) and its potential receptor Eph-receptor tyrosine kinase-type A2 (EphA2) are inflammation-related molecules that present on the atherosclerotic plaques. However, the roles of circulating PGRN and EphA2 in coronary artery disease (CAD) remain unclear. Objective To study the clinical significance of circulating PGRN and EphA2 levels in Chinese patients undergoing coronary angiography. Methods Levels of circulating EphA2 fragments and PGRN were examined in 201 consecutive individuals who underwent coronary angiography for suspected CAD in our center from Jan 2020 to Oct 2020. Demographic characteristics, results of biochemical and auxiliary examinations, and other relevant information were collected. The coronary atheroma burden was quantified by the Gensini score and the existence of chronic total occlusion (CTO). Univariate analysis and multivariate logistic regression analysis were used to analyze the risk factors for acute coronary syndrome (ACS). In patients with ACS and SAP, a receiver operating characteristic (ROC) curve was generated to detect the accuracy and discriminative ability of levels of EphA2 and PGRN, the Gensini score, and cardiac injury biomarkers as surrogate endpoints for CTO. Results Circulating EphA2 levels were significantly higher in patients with ACS than in subjects with stable angina pectoris (SAP) or control subjects (p < 0.001). A positive linear correlation was verified between EphA2 levels and the Gensini score (r = 0.306, p < 0.001), and negative correlation was detected with the left ventricular ejection fraction (LVEF) (r = −0.405, p < 0.001). Both PGRN and EphA2 were positively associated with cardiac injury biomarkers (i.e., NT-proBNP, cTnT, and hs-CRP) (p < 0.05). The area under the ROC curve of PGRN and EphA2 was 0.604 and 0.686, respectively (p < 0.01). Conclusions Higher circulating EphA2 and PGRN levels were detected in patients with ACS than in patients with SAP. Circulating EphA2 and PGRN levels might be diagnostic factors for predicting the atheroma burden in patients with CAD.
Collapse
|
10
|
Calvier L, Xian X, Lee R, Sacharidou A, Mineo C, Shaul PW, Kounnas MZ, Tsai S, Herz J. Reelin Depletion Protects Against Atherosclerosis by Decreasing Vascular Adhesion of Leukocytes. Arterioscler Thromb Vasc Biol 2021; 41:1309-1318. [PMID: 33626909 PMCID: PMC7990715 DOI: 10.1161/atvbaha.121.316000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- CX3C Chemokine Receptor 1/genetics
- Cell Adhesion/drug effects
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Coculture Techniques
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- LDL-Receptor Related Proteins/metabolism
- Leukocyte Rolling/drug effects
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice, Transgenic
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Oligonucleotides, Antisense/pharmacology
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Reelin Protein
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Signal Transduction
- U937 Cells
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc. San Diego CA, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | | | - Shirling Tsai
- Department of Surgery, UT Southwestern Medical Center, Dallas TX, USA
- Dallas VA Medical Center, Dallas TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas TX, USA
| |
Collapse
|
11
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
12
|
Babapour B, Doustkami H, Avesta L, Moradi A, Saadat S, Piralaei K, Aslani MR. Correlation of Serum Adipolin with Epicardial Fat Thickness and Severity of Coronary Artery Diseases in Acute Myocardial Infarction and Stable Angina Pectoris Patients. Med Princ Pract 2021; 30:52-61. [PMID: 32438366 PMCID: PMC7923895 DOI: 10.1159/000508834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adipolin/C1q/TNF-related protein-12 is a family of CTRPs highly expressed in adipose tissue with glucose-lowering and anti-inflammatory effects. Various risk factors have been suggested in the incidence of cardiovascular diseases, such as a decrease in anti-inflammatory or an increase in inflammatory factors. The purpose of the present study was to investigate the correlation of adipolin with anthropometric, angiographic, echocardiographic, and biochemical parameters. SUBJECT AND METHODS A total of 90 patients who were candidates for angiography were included in the study and divided into 3 groups: 30 patients with acute myocardial infarction (AMI), 30 patients with stable angina pectoris (SAP), and 30 subjects as a control group with a history of chest pain but normal angiography. Anthropometric, angiographic, echocardiographic, and biochemical parameters were measured in all subjects. RESULTS Serum adipolin levels were significantly decreased in patients with AMI compared with the SAP and control groups (p < 0.001 for both). In addition, there was a negative association between serum levels of adipolin and epicardial fat thickness (EFT) and Gensini score in CAD patients. The results of multivariate linear regression analysis revealed that EFT values were independently associated with serum adipolin levels. CONCLUSION The current study showed an independent association of adipolin with EFT for the first time in patients with AMI. Decreased adipolin levels in patients with AMI may be involved in the process of atherosclerosis, which requires further study.
Collapse
Affiliation(s)
- Behzad Babapour
- Department of Cardiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Doustkami
- Department of Cardiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leli Avesta
- Department of Cardiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Moradi
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiavash Piralaei
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran,
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,
| |
Collapse
|
13
|
Zhang H, Bredewold EOW, Vreeken D, Duijs JMGJ, de Boer HC, Kraaijeveld AO, Jukema JW, Pijls NH, Waltenberger J, Biessen EA, van der Veer EP, van Zonneveld AJ, van Gils JM. Prediction Power on Cardiovascular Disease of Neuroimmune Guidance Cues Expression by Peripheral Blood Monocytes Determined by Machine-Learning Methods. Int J Mol Sci 2020; 21:ijms21176364. [PMID: 32887275 PMCID: PMC7503551 DOI: 10.3390/ijms21176364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is the underlying pathology in a major part of cardiovascular disease, the leading cause of mortality in developed countries. The infiltration of monocytes into the vessel walls of large arteries is a key denominator of atherogenesis, making monocytes accountable for the development of atherosclerosis. With the development of high-throughput transcriptome profiling platforms and cytometric methods for circulating cells, it is now feasible to study in-depth the predicted functional change of circulating monocytes reflected by changes of gene expression in certain pathways and correlate the changes to disease outcome. Neuroimmune guidance cues comprise a group of circulating- and cell membrane-associated signaling proteins that are progressively involved in monocyte functions. Here, we employed the CIRCULATING CELLS study cohort to classify cardiovascular disease patients and healthy individuals in relation to their expression of neuroimmune guidance cues in circulating monocytes. To cope with the complexity of human datasets featured by noisy data, nonlinearity and multidimensionality, we assessed various machine-learning methods. Of these, the linear discriminant analysis, Naïve Bayesian model and stochastic gradient boost model yielded perfect or near-perfect sensibility and specificity and revealed that expression levels of the neuroimmune guidance cues SEMA6B, SEMA6D and EPHA2 in circulating monocytes were of predictive values for cardiovascular disease outcome.
Collapse
Affiliation(s)
- Huayu Zhang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Edwin O. W. Bredewold
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Jacques. M. G. J. Duijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Hetty C. de Boer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Adriaan O. Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan, 1003584 CX Utrecht, The Netherlands;
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands;
| | - Nico H. Pijls
- Department of Cardiology, Catharina Hospital, Michelangelolaan, 25623 EJ Eindhoven, The Netherlands;
| | - Johannes Waltenberger
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan, 256202 AZ Maastricht, The Netherlands;
| | - Erik A.L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel, 506229 ER Maastricht, The Netherlands;
| | - Eric P. van der Veer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
| | - Janine M. van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef, 22333 ZA Leiden, The Netherlands; (H.Z.); (E.O.W.B.); (D.V.); (J.M.G.J.D.); (H.C.d.B.); (E.P.v.d.V.); (A.J.v.Z.)
- Correspondence:
| |
Collapse
|
14
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
15
|
Cho H, Li Y, Archacki S, Wang F, Yu G, Chakrabarti S, Guo Y, Chen Q, Wang QK. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease. RNA Biol 2020; 17:1391-1401. [PMID: 32602777 DOI: 10.1080/15476286.2020.1771519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each gene typically has multiple alternatively spliced transcripts. Different transcripts are assumed to play a similar biological role; however, some transcripts may simply lose their function due to loss of important functional domains. Here, we show that two different transcripts of lncRNA gene ANRIL associated with coronary artery disease (CAD) play antagonizing roles against each other. We previously reported that DQ485454, the short transcript, is downregulated in coronary arteries from CAD patients, and reduces monocyte adhesion to endothelial cells (ECs) and transendothelial monocyte migration (TEM). Interestingly, the longest transcript NR_003529 is significantly upregulated in coronary arteries from CAD patients. Overexpression of ANRIL transcript NR_003529 increases monocyte adhesion to ECs and TEM, whereas knockdown of NR_003529 expression reduces monocyte adhesion to ECs and TEM. Much more dramatic effects were observed for the combination of overexpression of NR_003529 and knockdown of DQ485454 or the combination of knockdown of NR_003529 and overexpression of DQ485454. The antagonizing effects of ANRIL transcripts NR_003529 and DQ485454 were associated with their opposite effects on expression of downstream target genes EZR, CXCL11 or TMEM106B. Our results demonstrate that different transcripts of lncRNA can exert antagonizing effects on biological functions, thereby providing important insights into the biology of lncRNA. The data further support the hypothesis that ANRIL is the causative gene at the 9p21 CAD susceptibility locus.
Collapse
Affiliation(s)
- Hyosuk Cho
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yabo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Stephen Archacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Gang Yu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Susmita Chakrabarti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yang Guo
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qing Kenneth Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| |
Collapse
|
16
|
Vreeken D, Bruikman CS, Cox SML, Zhang H, Lalai R, Koudijs A, van Zonneveld AJ, Hovingh GK, van Gils JM. EPH receptor B2 stimulates human monocyte adhesion and migration independently of its EphrinB ligands. J Leukoc Biol 2020; 108:999-1011. [PMID: 32337793 PMCID: PMC7496365 DOI: 10.1002/jlb.2a0320-283rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
The molecular basis of atherosclerosis is not fully understood and mice studies have shown that Ephrins and EPH receptors play a role in the atherosclerotic process. We set out to assess the role for monocytic EPHB2 and its Ephrin ligands in human atherosclerosis and show a role for EPHB2 in monocyte functions independently of its EphrinB ligands. Immunohistochemical staining of human aortic sections at different stages of atherosclerosis showed that EPHB2 and its ligand EphrinB are expressed in atherosclerotic plaques and that expression proportionally increases with plaque severity. Functionally, stimulation with EPHB2 did not affect endothelial barrier function, nor did stimulation with EphrinB1 or EphrinB2 affect monocyte‐endothelial interactions. In contrast, reduced expression of EPHB2 in monocytes resulted in decreased monocyte adhesion to endothelial cells and a decrease in monocyte transmigration, mediated by an altered morphology and a decreased ability to phosphorylate FAK. Our results suggest that EPHB2 expression in monocytes results in monocyte accumulation by virtue of an increase of transendothelial migration, which can subsequently contribute to atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Suzanne Bruikman
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huayu Zhang
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Reshma Lalai
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Kornelis Hovingh
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine Maria van Gils
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Bhattacharya D, Bhattacharya S. Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach. BRAZ J PROBAB STAT 2020. [DOI: 10.1214/18-bjps413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
First-degree relatives with similar phenotypic characterisation of acute myocardial infarction: a case report and review of the literature. BMC Cardiovasc Disord 2019; 19:314. [PMID: 31881949 PMCID: PMC6935097 DOI: 10.1186/s12872-019-01303-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic susceptibility to the development of coronary artery disease (CAD) and myocardial infarction (MI) is well established. However, lack of replication, and difficulty in the identification of specific genes that underlie impressive linkage peaks remain challenges at the molecular level due to the heterogeneity of phenotype and their associated genotypes. We present two cases of first-degree family members of acute myocardial infarction (AMI) having similar clinical and angiographic features of obstructive coronary lesions at same anatomic locations. CASE PRESENTATION The father presented with significant chest discomfort and loss of consciousness. The electrocardiogram (ECG) showed an acute anterior ST-segment-elevation myocardial infarction (STEMI). Coronary angiogram demonstrated a subtotal occlusion in the mid-left anterior descending (LAD) coronary artery. One week later, the son presented after an in-hospital cardiac arrest with pulseless electric activity preceded by significant chest pain and loss of consciousness. His ECG also showed an acute anterior STEMI. Catheterization revealed strikingly similar angiographic characteristics with his father: subtotal occlusion in the proximal to mid-LAD coronary artery. CONCLUSIONS More considerations should be given to patients with similar phenotypic characterization in genetic studies of CAD/MI in the future.
Collapse
|
19
|
Komaravolu RK, Waltmann MD, Konaniah E, Jaeschke A, Hui DY. ApoER2 (Apolipoprotein E Receptor-2) Deficiency Accelerates Smooth Muscle Cell Senescence via Cytokinesis Impairment and Promotes Fibrotic Neointima After Vascular Injury. Arterioscler Thromb Vasc Biol 2019; 39:2132-2144. [PMID: 31412739 PMCID: PMC6761011 DOI: 10.1161/atvbaha.119.313194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Genome-wide studies showed that mutation in apoER2 (apolipoprotein E receptor-2) is additive with ε4 polymorphism in the APOE gene on cardiovascular disease risk in humans. ApoE or apoER2 deficiency also accelerates atherosclerosis lesion necrosis in hypercholesterolemic mice and promotes neointima formation after vascular injury. This study tests the hypothesis that apoE and apoER2 modulate vascular occlusive diseases through distinct mechanisms. Approach and Results: Carotid endothelial denudation induced robust neointima formation in both apoE-/- and apoER2-deficient Lrp8-/- mice. The intima in apoE-/- mice was rich in smooth muscle cells, but the intima in Lrp8-/- mice was cell-poor and rich in extracellular matrix. Vascular smooth muscle cells isolated from apoE-/- mice were hyperplastic whereas Lrp8-/- smooth muscle cells showed reduced proliferation but responded robustly to TGF (transforming growth factor)-β-induced fibronectin synthesis indicative of a senescence-associated secretory phenotype, which was confirmed by increased β-galactosidase activity, p16INK4a immunofluorescence, and number of multinucleated cells. Western blot analysis of cell cycle-associated proteins showed that apoER2 deficiency promotes cell cycle arrest at the metaphase/anaphase. Coimmunoprecipitation experiments revealed that apoER2 interacts with the catalytic subunit of protein phosphatase 2A. In the absence of apoER2, PP2A-C (protein phosphatase 2A catalytic subunit) failed to interact with CDC20 (cell-division cycle protein 20) thus resulting in inactive anaphase-promoting complex and impaired cell cycle exit. CONCLUSIONS This study showed that apoER2 participates in APC (anaphase-promoting complex)/CDC20 complex formation during mitosis, and its absence impedes cytokinesis abscission thereby accelerating premature cell senescence and vascular disease. This mechanism is distinct from apoE deficiency, which causes smooth muscle cell hyperplasia to accelerate vascular disease.
Collapse
Affiliation(s)
- Ravi K. Komaravolu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Meaghan D. Waltmann
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Eddy Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| |
Collapse
|
20
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
21
|
Lee S, Choi S, Qiao D, Cho M, Silverman EK, Park T, Won S. WISARD: workbench for integrated superfast association studies for related datasets. BMC Med Genomics 2018; 11:39. [PMID: 29697360 PMCID: PMC5918457 DOI: 10.1186/s12920-018-0345-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A Mendelian transmission produces phenotypic and genetic relatedness between family members, giving family-based analytical methods an important role in genetic epidemiological studies-from heritability estimations to genetic association analyses. With the advance in genotyping technologies, whole-genome sequence data can be utilized for genetic epidemiological studies, and family-based samples may become more useful for detecting de novo mutations. However, genetic analyses employing family-based samples usually suffer from the complexity of the computational/statistical algorithms, and certain types of family designs, such as incorporating data from extended families, have rarely been used. RESULTS We present a Workbench for Integrated Superfast Association studies for Related Data (WISARD) programmed in C/C++. WISARD enables the fast and a comprehensive analysis of SNP-chip and next-generation sequencing data on extended families, with applications from designing genetic studies to summarizing analysis results. In addition, WISARD can automatically be run in a fully multithreaded manner, and the integration of R software for visualization makes it more accessible to non-experts. CONCLUSIONS Comparison with existing toolsets showed that WISARD is computationally suitable for integrated analysis of related subjects, and demonstrated that WISARD outperforms existing toolsets. WISARD has also been successfully utilized to analyze the large-scale massive sequencing dataset of chronic obstructive pulmonary disease data (COPD), and we identified multiple genes associated with COPD, which demonstrates its practical value.
Collapse
Affiliation(s)
- Sungyoung Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Sungkyoung Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea. .,Department of Statistics, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, South Korea.
| | - Sungho Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea. .,Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 151-742, South Korea. .,Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
22
|
Naji DH, Tan C, Han F, Zhao Y, Wang J, Wang D, Fa J, Li S, Chen S, Chen Q, Xu C, Wang QK. Significant genetic association of a functional TFPI variant with circulating fibrinogen levels and coronary artery disease. Mol Genet Genomics 2017; 293:119-128. [PMID: 28894953 DOI: 10.1007/s00438-017-1365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
The tissue factor pathway inhibitor (TFPI) gene encodes a protease inhibitor with a critical role in regulation of blood coagulation. Some genomic variants in TFPI were previously associated with plasma TFPI levels, however, it remains to be further determined whether TFPI variants are associated with other coagulation factors. In this study, we carried out a large population-based study with 2313 study subjects for blood coagulation data, including fibrinogen levels, prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT). We identified significant association of TFPI variant rs10931292 (a functional promoter variant with reduced transactivation) with increased plasma fibrinogen levels (P = 0.017 under a recessive model), but not with PT, APTT or TT (P > 0.05). Using a large case-control association study population with 4479 CAD patients and 3628 controls, we identified significant association between rs10931292 and CAD under a recessive model (OR 1.23, P = 0.005). For the first time, we show that a TFPI variant is significantly associated with fibrinogen levels and risk of CAD. Our finding contributes significantly to the elucidation of the genetic basis and biological pathways responsible for fibrinogen levels and development of CAD.
Collapse
Affiliation(s)
- Duraid Hamid Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fabin Han
- The Institute for Translational Medicine, The Second Affiliated Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junhan Wang
- University Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China. .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine/CCLCM, Case Western Reserve University, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
23
|
Genome-Wide Linkage Analysis of Large Multiple Multigenerational Families Identifies Novel Genetic Loci for Coronary Artery Disease. Sci Rep 2017; 7:5472. [PMID: 28710368 PMCID: PMC5511258 DOI: 10.1038/s41598-017-05381-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death, and genetic factors contribute significantly to risk of CAD. This study aims to identify new CAD genetic loci through a large-scale linkage analysis of 24 large and multigenerational families with 433 family members (GeneQuest II). All family members were genotyped with markers spaced by every 10 cM and a model-free nonparametric linkage (NPL-all) analysis was carried out. Two highly significant CAD loci were identified on chromosome 17q21.2 (NPL score of 6.20) and 7p22.2 (NPL score of 5.19). We also identified four loci with significant NPL scores between 4.09 and 4.99 on 2q33.3, 3q29, 5q13.2 and 9q22.33. Similar analyses in individual families confirmed the six significant CAD loci and identified seven new highly significant linkages on 9p24.2, 9q34.2, 12q13.13, 15q26.1, 17q22, 20p12.3, and 22q12.1, and two significant loci on 2q11.2 and 11q14.1. Two loci on 3q29 and 9q22.33 were also successfully replicated in our previous linkage analysis of 428 nuclear families. Moreover, two published risk variants, SNP rs46522 in UBE2Z and SNP rs6725887 in WDR12 by GWAS, were found within the 17q21.2 and 2q33.3 loci. These studies lay a foundation for future identification of causative variants and genes for CAD.
Collapse
|
24
|
Finney AC, Funk SD, Green JM, Yurdagul A, Rana MA, Pistorius R, Henry M, Yurochko A, Pattillo CB, Traylor JG, Chen J, Woolard MD, Kevil CG, Orr AW. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Circulation 2017; 136:566-582. [PMID: 28487392 DOI: 10.1161/circulationaha.116.026644] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/03/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Atherosclerotic plaque formation results from chronic inflammation and fibroproliferative remodeling in the vascular wall. We previously demonstrated that both human and mouse atherosclerotic plaques show elevated expression of EphA2, a guidance molecule involved in cell-cell interactions and tumorigenesis. METHODS Here, we assessed the role of EphA2 in atherosclerosis by deleting EphA2 in a mouse model of atherosclerosis (Apoe-/-) and by assessing EphA2 function in multiple vascular cell culture models. After 8 to 16 weeks on a Western diet, male and female mice were assessed for atherosclerotic burden in the large vessels, and plasma lipid levels were analyzed. RESULTS Despite enhanced weight gain and plasma lipid levels compared with Apoe-/- controls, EphA2-/-Apoe-/- knockout mice show diminished atherosclerotic plaque formation, characterized by reduced proinflammatory gene expression and plaque macrophage content. Although plaque macrophages express EphA2, EphA2 deletion does not affect macrophage phenotype, inflammatory responses, and lipid uptake, and bone marrow chimeras suggest that hematopoietic EphA2 deletion does not affect plaque formation. In contrast, endothelial EphA2 knockdown significantly reduces monocyte firm adhesion under flow. In addition, EphA2-/-Apoe-/- mice show reduced progression to advanced atherosclerotic plaques with diminished smooth muscle and collagen content. Consistent with this phenotype, EphA2 shows enhanced expression after smooth muscle transition to a synthetic phenotype, and EphA2 depletion reduces smooth muscle proliferation, mitogenic signaling, and extracellular matrix deposition both in atherosclerotic plaques and in vascular smooth muscle cells in culture. CONCLUSIONS Together, these data identify a novel role for EphA2 in atherosclerosis, regulating both plaque inflammation and progression to advanced atherosclerotic lesions. Cell culture studies suggest that endothelial EphA2 contributes to atherosclerotic inflammation by promoting monocyte firm adhesion, whereas smooth muscle EphA2 expression may regulate the progression to advanced atherosclerosis by regulating smooth muscle proliferation and extracellular matrix deposition.
Collapse
Affiliation(s)
- Alexandra C Finney
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Steven D Funk
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Jonette M Green
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Arif Yurdagul
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Mohammad Atif Rana
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Rebecca Pistorius
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Miriam Henry
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Andrew Yurochko
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Christopher B Pattillo
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - James G Traylor
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Jin Chen
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Matthew D Woolard
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - Christopher G Kevil
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.)
| | - A Wayne Orr
- From Departments of Cell Biology and Anatomy (A.C.F., S.D.F., J.M.G., A. Yurdagul, C.G.K., A.W.O.), Pathology and Translational Pathobiology (J.M.G., A. Yurdagul, R.P., M.H., J.G.T., C.G.K., A.W.O.), Cardiology (M.A.R.), Microbiology and Immunology (A. Yurochko, M.D.W.), and Molecular and Cellular Physiology (C.B.P., C.G.K., A.W.O.), Louisiana State University Health Sciences Center-Shreveport; Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN (J.C.); and Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville (J.C.).
| |
Collapse
|
25
|
Foks AC, Kuiper J. Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 2017; 174:3940-3955. [PMID: 28369782 DOI: 10.1111/bph.13802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
The immune system provides a large variety of immune checkpoint proteins, which involve both costimulatory and inhibitory proteins. Costimulatory proteins can promote cell survival, cell cycle progression and differentiation to effector and memory cells, whereas inhibitory proteins terminate these processes to halt ongoing inflammation. Immune checkpoint proteins play a pivotal role in atherosclerosis by regulating the activation and proliferation of various immune and non-immune cells, such as T-cells, macrophages and platelets. Upon activation within the atherosclerotic lesions or in secondary lymphoid organs, these cells produce large amounts of pro-atherogenic cytokines that contribute to the growth and destabilization of lesions, which can result in rupture of the lesion causing acute coronary syndromes, such as a myocardial infarction. Given the presence and regulatory capacity of immune checkpoint proteins in the circulation and atherosclerotic lesions of cardiovascular patients, modulation of these proteins by, for example, the use of monoclonal antibodies, offers unique opportunities to regulate pro-inflammatory immune responses in atherosclerosis. In this review, we highlight the latest advances on the role of immune checkpoint proteins, such as OX40-OX40L, CTLA-4 and TIM proteins, in atherosclerosis and discuss their therapeutic potential as promising immunotherapies to treat or prevent cardiovascular disease. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- A C Foks
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| | - J Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
26
|
Sacharidou A, Shaul PW, Mineo C. New Insights in the Pathophysiology of Antiphospholipid Syndrome. Semin Thromb Hemost 2017; 44:475-482. [PMID: 28129662 DOI: 10.1055/s-0036-1597286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disorder characterized by an elevated risk for arterial and venous thrombosis and pregnancy-related morbidity. Since the discovery of the disease in 1980s, numerous studies in cell culture systems, in animal models, and in patient populations have been reported, leading to a deeper understanding of the pathogenesis of APS. These studies have determined that circulating autoantibodies, collectively called antiphospholipid antibodies (aPL), the majority of which recognize cell surface proteins attached to the plasma membrane phospholipids, play a causal role in the development of the disease. The binding of aPL to the cell surface antigens triggers interaction of the complex with transmembrane receptors to initiate intracellular signaling in critical cell types, including platelets, monocytes, endothelial cells, and trophoblasts. Subsequent alteration of various cell functions results in inflammation, thrombus formation, and pregnancy complications. Apolipoprotein E receptor 2 (apoER2), a lipoprotein receptor family member, has been implicated as a mediator for aPL actions in platelets and endothelial cells. Nitric oxide (NO) is a signaling molecule known to exert potent antithrombotic, anti-inflammatory, and anti-atherogenic effects. NO insufficiency and oxidative stress have been linked to APS pathogenesis. This review will focus on the recent findings on how apoER2 and dysregulation of NO production contribute to aPL-mediated pathologies in APS.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chieko Mineo
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
Integrative mutation, haplotype and G × G interaction evidence connects ABGL4, LRP8 and PCSK9 genes to cardiometabolic risk. Sci Rep 2016; 6:37375. [PMID: 27853278 PMCID: PMC5112603 DOI: 10.1038/srep37375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022] Open
Abstract
This study is expected to investigate the association of ATP/GTP binding protein-like 4 (AGBL4), LDL receptor related protein 8 (LRP8) and proprotein convertase subtilisin/kexin type 9 (PCSK9) gene single nucleotide variants (SNVs) with lipid metabolism in 2,552 individuals (Jing, 1,272 and Han, 1,280). We identified 12 mutations in this motif. The genotype and allele frequencies of these variants were different between the two populations. Multiple-locus linkage disequilibrium (LD) elucidated the detected sites are not statistically independent. Possible integrative haplotypes and gene-by-gene (G × G) interactions, comprising mutations of the AGBL4, LRP8 and PCSK9 associated with total cholesterol (TC, AGBL4 G-G-A, PCSK9 C-G-A-A and G-G-A-A-C-A-T-T-T-G-G-A), triglyceride (TG, AGBL4 G-G-A, LRP8 G-A-G-C-C, PCSK9 C-A-A-G, A-A-G-G-A-G-C-C-C-A-A-G and A-A-G-G-A-G-C-C-C-G-A-A), HDL cholesterol (HDL-C, AGBL4 A-A-G and A-A-G-A-A-G-T-C-C-A-A-G) and the apolipoprotein(Apo)A1/ApoB ratio (A1/B, PCSK9 C-A-A-G) in Jing minority. However, in the Hans, with TG (AGBL4 G-G-A, LRP8 G-A-G-C-C, PCSK9 C-A-A-G, A-A-G-G-A-G-C-C-C-A-A-G and A-A-G-G-A-G-C-C-C-G-A-A), HDL-C (LRP8 A-A-G-T-C), LDL-C (LRP8 A-A-G-T-C and A-A-G-A-A-G-T-C-C-A-A-G) and A1/B (LRP8 A-C-A-T-T and PCSK9 C-A-A-G). Association analysis based on haplotype clusters and G × G interactions probably increased power over single-locus tests especially for TG.
Collapse
|
28
|
Zhang MC, Shen Y, Xue A, He M, Cresswell N, Li L, Zhao Z, Jiang Y, Burke A. Morphologic features of culprit lesions in sudden coronary death with family history of premature coronary artery disease. Forensic Sci Int 2016; 266:412-415. [PMID: 27419614 DOI: 10.1016/j.forsciint.2016.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022]
Abstract
The morphologic features of familial coronary artery disease (CAD) resulting in sudden coronary death (SCD) are poorly studied. The presence and type of culprit lesions may have important implications in the genetic basis for familial heart disease. Autopsies of SCD victims over a 5-year period from a statewide medical examiner's office were studied. Premature familial disease was defined as sudden death at ≤50 years in women and ≤45 years in men, with premature SCD or acute coronary syndrome in a first-degree relative. Culprit lesion was defined as acute plaque rupture, plaque erosion, and severe narrowing without thrombus (stable plaque). There were 174 acute plaque ruptures (age 49±10 years, 9% women), 49 plaque erosions (age 45±8 years, 37% women), and 213 stable plaques (age 53±11 years, 22% women). There were 8 plaque rupture with family history. There were 9 plaque erosions with family history. There were 7 stable plaques with family history. The rate of familial history in premature coronary disease was 18.4% in erosions, 4.6% in ruptures (p=.02 vs. erosion), and 3.3% in stable plaque (p=.002 vs. erosion). We concluded that the frequency of family history of premature sudden death due to CAD may be higher in plaque erosion as compared to patients dying with acute plaque rupture or stable plaque.
Collapse
Affiliation(s)
- Ming Chang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aimin Xue
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng He
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Nathaniel Cresswell
- Department of Pathology, Georgetown University Hospital, Washington, DC 20007, USA
| | - Ling Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; University of Maryland Medical System, Baltimore, MD 20201, USA
| | - Ziqin Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Allen Burke
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; University of Maryland Medical System, Baltimore, MD 20201, USA.
| |
Collapse
|
29
|
Luo C, Wang F, Qin S, Chen Q, Wang QK. Coronary artery disease susceptibility gene ADTRP regulates cell cycle progression, proliferation, and apoptosis by global gene expression regulation. Physiol Genomics 2016; 48:554-64. [PMID: 27235449 DOI: 10.1152/physiolgenomics.00028.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The ADTRP gene encodes the androgen-dependent TFPI-regulating protein and is a susceptibility gene for contrary artery disease (CAD). We performed global gene expression profiling for ADTRP knock-down using microarrays in human HepG2 cells. Follow-up real-time RT-PCR analysis demonstrated that ADTRP knock-down regulates a diverse set of genes, including upregulation of seven histone genes, downregulation of multiple cell cycle genes (CCND1, CDK4, and CDKN1A), and upregulation of apoptosis genes (CASP7 and PDCD2) in HepG2 cells and endothelial cells. Consistently, ADTRP increases the number of S phase cells during cell cycle, promotes cell proliferation, and inhibits apoptosis. Our study provides novel insights into the function of ADTRP and biological pathways involving ADTRP, which may be involved in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Chunyan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Wang
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Subo Qin
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Qing K Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
30
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.
Collapse
Affiliation(s)
- Peter Kovacs
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, Medical Faculty, University of Leipzig, Liebigstr. 21, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
31
|
Gao H, Li L, Rao S, Shen G, Xi Q, Chen S, Zhang Z, Wang K, Ellis SG, Chen Q, Topol EJ, Wang QK. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families. PLoS One 2014; 9:e113935. [PMID: 25485937 PMCID: PMC4259362 DOI: 10.1371/journal.pone.0113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL = 5.49) and 3q29 (NPL = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.
Collapse
Affiliation(s)
- Hanxiang Gao
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Lin Li
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shaoqi Rao
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Institute of Medical Systems Biology and School of Public Health, Guangdong Medical College, Dongguan, Guangdong, 523808, P. R. China
| | - Gongqing Shen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Quansheng Xi
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shenghan Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Zheng Zhang
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kai Wang
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Stephen G. Ellis
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Eric J. Topol
- Scripps Translational Science Institute, Scripps Research Institute, Scripps Clinic, La Jolla, California, 92037, United States of America
- * E-mail: (EJT); (QKW)
| | - Qing K. Wang
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Sleep Medicine, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (EJT); (QKW)
| |
Collapse
|
32
|
Svendstrup M, Vestergaard H. The potential role of inhibitor of differentiation-3 in human adipose tissue remodeling and metabolic health. Mol Genet Metab 2014; 113:149-54. [PMID: 25239768 DOI: 10.1016/j.ymgme.2014.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022]
Abstract
Metabolic health in obesity is known to differ among individuals, and the distribution of visceral (VAT) and subcutaneous adipose tissue (SAT) plays an important role in this regard. Adipose tissue expansion is dependent on new blood vessel formation in order to prevent hypoxia and inflammation in the tissue. Regulation of angiogenesis in SAT and VAT in response to diet is therefore crucial for the metabolic outcome in obesity. Knowledge about the underlying genetic mechanisms determining metabolic health in obesity is very limited. We aimed to review the literature of the inhibitor of differentiation-3 (ID3) gene in relation to adipose tissue and angiogenesis in humans in order to determine whether ID3 could be involved in the regulation of adipose tissue expansion and metabolic health in human obesity. We find evidence that ID3 is involved in regulatory mechanisms in adipose tissue and regulates angiogenesis in many tissues including adipose tissue. We discuss how this might influence obesity and metabolic health in obesity and further discuss some potential mechanisms by which ID3 might regulate visceral and subcutaneous adipose tissue expansion. The combined results from the reviewed literature suggest ID3 to play a potential role in the underlying regulatory mechanisms of metabolic health in human obesity. The literature is still sparse and further studies focusing on human ID3 in relation to the nature of obesity are warranted.
Collapse
Affiliation(s)
- Mathilde Svendstrup
- The Danish Diabetes Academy and Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark; The Danish Diabetes Academy and Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark.
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark.
| |
Collapse
|
33
|
Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A 2014; 111:13493-8. [PMID: 25197062 DOI: 10.1073/pnas.1402106111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is poorly understood why there is greater cardiovascular disease risk associated with the apolipoprotein E4 (apoE) allele vs. apoE3, and also greater risk with the LRP8/apolipoprotein E receptor 2 (ApoER2) variant ApoER2-R952Q. Little is known about the function of the apoE-ApoER2 tandem outside of the central nervous system. We now report that in endothelial cells apoE3 binding to ApoER2 stimulates endothelial NO synthase (eNOS) and endothelial cell migration, and it also attenuates monocyte-endothelial cell adhesion. However, apoE4 does not stimulate eNOS or endothelial cell migration or dampen cell adhesion, and alternatively it selectively antagonizes apoE3/ApoER2 actions. The contrasting endothelial actions of apoE4 vs. apoE3 require the N-terminal to C-terminal interaction in apoE4 that distinguishes it structurally from apoE3. Reconstitution experiments further reveal that ApoER2-R952Q is a loss-of-function variant of the receptor in endothelium. Carotid artery reendothelialization is decreased in ApoER2(-/-) mice, and whereas adenoviral-driven apoE3 expression in wild-type mice has no effect, apoE4 impairs reendothelialization. Moreover, in a model of neointima formation invoked by carotid artery endothelial denudation, ApoER2(-/-) mice display exaggerated neointima development. Thus, the apoE3/ApoER2 tandem promotes endothelial NO production, endothelial repair, and endothelial anti-inflammatory properties, and it prevents neointima formation. In contrast, apoE4 and ApoER2-R952Q display dominant-negative action and loss of function, respectively. Thus, genetic variants of apoE and ApoER2 impact cardiovascular health by differentially modulating endothelial function.
Collapse
|
34
|
Maiwald S, Sivapalaratnam S, Motazacker MM, van Capelleveen JC, Bot I, de Jager SC, van Eck M, Jolley J, Kuiper J, Stephens J, Albers CA, Vosmeer CR, Kruize H, Geerke DP, van der Wal AC, van der Loos CM, Kastelein JJP, Trip MD, Ouwehand WH, Dallinga-Thie GM, Hovingh GK. Mutation in KERA identified by linkage analysis and targeted resequencing in a pedigree with premature atherosclerosis. PLoS One 2014; 9:e98289. [PMID: 24879339 PMCID: PMC4039470 DOI: 10.1371/journal.pone.0098289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 01/29/2023] Open
Abstract
AIMS Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. METHODS AND RESULTS Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe-/- mice (r2 = 0.69; p<0.0001). CONCLUSION A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Stephanie Maiwald
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Mahdi M. Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Saskia C. de Jager
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jennifer Jolley
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jonathon Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Cornelius A. Albers
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - C. Ruben Vosmeer
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Heleen Kruize
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Daan P. Geerke
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | | | | | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Mieke D. Trip
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Geesje M. Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Shen GQ, Girelli D, Li L, Rao S, Archacki S, Olivieri O, Martinelli N, Park JE, Chen Q, Topol EJ, Wang QK. A novel molecular diagnostic marker for familial and early-onset coronary artery disease and myocardial infarction in the LRP8 gene. ACTA ACUST UNITED AC 2014; 7:514-20. [PMID: 24867879 DOI: 10.1161/circgenetics.113.000321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Many single-nucleotide polymorphisms have been associated with coronary artery disease (CAD)/myocardial infarction (MI) by genome-wide association studies, but the diagnostic value of these variants is limited. Functional single-nucleotide polymorphism R952Q in LRP8 is associated with familial and early-onset CAD/MI. The objective of this study is to test whether fine mapping and haplotype analysis for single-nucleotide polymorphisms flanking R952Q may identify a haplotype that may serve as a molecular diagnostic marker for familial and early-onset CAD/MI. METHODS AND RESULTS Five single-nucleotide polymorphisms (rs7546246, rs2297660, rs3737983, R952Q, and rs5177) were genotyped and analyzed in GeneQuest (381 patients with familial, early-onset CAD and 183 patients with MI versus 560 controls) and the Italian population (248 patients with familial MI versus 308 controls). One novel risk haplotype, TACGC, was found only in patients with CAD and MI but not in controls. It was significantly associated with CAD (P=7.4×10(-7)) and MI (P=2.2×10(-9)) in GeneQuest. The finding was replicated in the Italian cohort (P=0.041). Sib-transmission disequilibrium test analysis showed a significant association between haplotype TACGC and CAD in GeneQuest II (P=0.039). Haplotype TACGC was not present in a South Korean population of 611 patients with CAD and 294 normal controls. TACGC/TACGC homozygotes tended to develop CAD/MI earlier and showed higher low-density lipoprotein cholesterol levels than heterozygotes (P<0.05). CONCLUSIONS The rare haplotype TACGC in LRP8 confers a significant risk of familial, early-onset CAD/MI. Because the risk haplotype exists only in patients with familial and early-onset CAD/MI, we propose that it may be a molecular diagnostic marker for diagnosis of familial, early-onset CAD/MI in some white populations.
Collapse
Affiliation(s)
- Gong-Qing Shen
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Domenico Girelli
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Lin Li
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Shaoqi Rao
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Stephen Archacki
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Oliviero Olivieri
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Nicola Martinelli
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Jeong Euy Park
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Qiuyun Chen
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Eric J Topol
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.)
| | - Qing K Wang
- From the Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, OH (G.-Q.S., L.L., S.R., S.A., Q.C., Q.K.W.); Department of Medicine, University of Verona, Verona, Italy (D.G., O.O., N.M.); Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.E.P.); The Scripps Research Institute, Scripps Clinic, La Jolla, CA (E.J.T.); and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.K.W.).
| |
Collapse
|
36
|
Waltmann MD, Basford JE, Konaniah ES, Weintraub NL, Hui DY. Apolipoprotein E receptor-2 deficiency enhances macrophage susceptibility to lipid accumulation and cell death to augment atherosclerotic plaque progression and necrosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1395-405. [PMID: 24840660 DOI: 10.1016/j.bbadis.2014.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/29/2023]
Abstract
Genome-wide association studies have linked LRP8 polymorphisms to premature coronary artery disease and myocardial infarction in humans. However, the mechanisms by which dysfunctions of apolipoprotein E receptor-2 (apoER2), the protein encoded by LRP8 gene, influence atherosclerosis have not been elucidated completely. The current study focused on the role of apoER2 in macrophages, a cell type that plays an important role in atherosclerosis. Results showed that apoER2-deficient mouse macrophages accumulated more lipids and were more susceptible to oxidized LDL (oxLDL)-induced death compared to control cells. Consistent with these findings, apoER2 deficient macrophages also displayed defective serum-induced Akt activation and higher levels of the pro-apoptotic protein phosphorylated p53. Furthermore, the expression and activation of peroxisome proliferator-activated receptor γ (PPARγ) were increased in apoER2-deficient macrophages. Deficiency of apoER2 in hypercholesterolemic LDL receptor-null mice (Lrp8(-/-)Ldlr(-/-) mice) also resulted in accelerated atherosclerosis with more complex lesions and extensive lesion necrosis compared to Lrp8(+/+)Ldlr(-/-) mice. The atherosclerotic plaques of Lrp8(-/-)Ldlr(-/-) mice displayed significantly higher levels of p53-positive macrophages, indicating that the apoER2-deficient macrophages contribute to the accelerated atherosclerotic lesion necrosis observed in these animals. Taken together, this study indicates that apoER2 in macrophages limits PPARγ expression and protects against oxLDL-induced cell death. Thus, abnormal apoER2 functions in macrophages may at least in part contribute to the premature coronary artery disease and myocardial infarction in humans with LRP8 polymorphisms. Moreover, the elevated PPARγ expression in apoER2-deficient macrophages suggests that LRP8 polymorphism may be a genetic modifier of cardiovascular risk with PPARγ therapy.
Collapse
Affiliation(s)
- Meaghan D Waltmann
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joshua E Basford
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Eddy S Konaniah
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Neal L Weintraub
- Department of Internal Medicine, Division of Cardiovascular Disease, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA.
| |
Collapse
|
37
|
A functionally significant polymorphism in ID3 is associated with human coronary pathology. PLoS One 2014; 9:e90222. [PMID: 24603695 PMCID: PMC3946163 DOI: 10.1371/journal.pone.0090222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 01/25/2023] Open
Abstract
Aims We previously identified association between the ID3 SNP rs11574 and carotid intima-media thickness in the Diabetes Heart Study, a predominantly White diabetic population. The nonsynonymous SNP rs11574 results in an amino acid substitution in the C-terminal region of ID3, attenuating the dominant negative function of ID3 as an inhibitor of basic HLH factor E12-mediated transcription. In the current investigation, we characterize the association between the functionally significant polymorphism in ID3, rs11574, with human coronary pathology. Methods and Results The Multi-Ethnic Study of Atherosclerosis (MESA) is a longitudinal study of subclinical cardiovascular disease, including non-Hispanic White (n = 2,588), African American (n = 2,560) and Hispanic (n = 2,130) participants with data on coronary artery calcium (CAC). The Coronary Assessment in Virginia cohort (CAVA) included 71 patients aged 30–80 years, undergoing a medically necessary cardiac catheterization and intravascular ultrasound (IVUS) at the University of Virginia. ID3 SNP rs11574 risk allele was associated with the presence of CAC in MESA Whites (P = 0.017). In addition, the risk allele was associated with greater atheroma burden and stenosis in the CAVA cohort (P = 0.003, P = 0.04 respectively). The risk allele remained predictive of atheroma burden in multivariate analysis (Model 1: covariates age, gender, and LDL, regression coefficient = 9.578, SE = 3.657, p = 0.0110; Model 2: covariates Model 1, presence of hypertension, presence of diabetes, regression coefficient = 8.389, SE = 4.788, p = 0.0163). Conclusions We present additional cohorts that demonstrate association of ID3 SNP rs11574 directly with human coronary artery pathology as measured by CAC and IVUS: one a multiethnic, relatively healthy population with low levels of diabetes and the second a predominantly White population with a higher incidence of T2DM referred for cardiac catheterization.
Collapse
|
38
|
Huang Q, Yang QD, Tan XL, Feng J, Tang T, Xia J, Zhang L, Huang L, Bai YP, Liu YH. Absence of association between atherosclerotic cerebral infarction and TNFSF4/TNFRSF4 single nucleotide polymorphisms rs1234313, rs1234314 and rs17568 in a Chinese population. J Int Med Res 2014; 42:436-43. [PMID: 24595151 DOI: 10.1177/0300060514521154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To clarify the association between atherosclerotic cerebral infarction (ACI) and the single nucleotide polymorphisms (SNP) rs1234313 and rs1234314 (in TNFSF4) and rs17568 (in TNFRSF4). METHODS Genomic DNA was extracted from peripheral blood of patients with ACI and healthy control subjects. The presence of carotid plaque was determined. Rs1234313, rs1234314 and rs17568 were characterized via SNP genotyping assay and verified by DNA sequencing. RESULTS Genotype distributions were in Hardy-Weinberg equilibrium. There were no significant differences in the allele and genotype distributions of rs1234313, rs1234314 and rs17568 between patients with ACI (n = 450) and healthy control subjects (n = 378), or between patients with ACI and carotid plaque (n = 342) and controls. CONCLUSIONS There were no significant associations between rs1234313, rs1234314 and rs17568 and ACI risk in a Han Chinese population.
Collapse
Affiliation(s)
- Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang H, Li X, Zhang X, Liu Y, Huang S, Wang X. EphA2 knockdown attenuates atherosclerotic lesion development in ApoE(-/-) mice. Cardiovasc Pathol 2014; 23:169-74. [PMID: 24561077 DOI: 10.1016/j.carpath.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The inflammatory response of vascular endothelial cells plays important roles in the initiation and progression of atherosclerotic lesions. EphA2 receptor activation promotes the endothelial cell inflammatory response, and its expression is increased in the endothelial cell layer of atherosclerotic plaques. However, the association between EphA2 and atherosclerosis has not been determined. METHODS Eight-week-old male ApoE(-/-) mice were systemically infected with adenoassociated virus serotype 9 carrying a small hairpin RNA specifically targeting the EphA2 gene to knock down EphA2 expression in aortic endothelial cells. These mice were then fed a high-cholesterol diet for 12 weeks. Blood was collected for the measurement of plasma lipids. The aortas were harvested to evaluate the atherosclerotic lesion size, macrophage components, and expression of proinflammatory genes using Oil Red O staining, immunofluorescence staining, and molecular biology analysis. RESULTS The lesions formed in the entire aorta and aortic sinus of the ApoE(-/-) mice with EphA2 knockdown were significantly smaller than those in the control mice (10.7%±3.1% versus 25.1%±4.2%; 0.51±0.02mm(2) versus 0.85±0.03mm(2); n=10; P<.05). Furthermore, the lesions in the ApoE(-/-) mice with EphA2 knockdown displayed reduced inflammation compared with the control mice, as reflected by the decreased macrophage infiltration (8.2%±2.9% versus 22.7%±4%; n=10; P<.05); decreased nuclear factor-κβ activation; and diminished expression of vascular cell adhesion molecule-1, E-selectin, and monocyte chemotactic protein-1 (all P<.05). CONCLUSIONS Our data demonstrate that the EphA2 receptor silencing attenuates the extent and inflammation of atherosclerotic lesions in ApoE(-/-) mice. Thus, EphA2 knockdown in endothelial cells represents a novel therapeutic strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - Xinyun Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoli Zhang
- Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yan Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Shanying Huang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
40
|
Wu Z, Lou Y, Jin W, Liu Y, Lu L, Chen Q, Zhang R. The Connexin37 gene C1019T polymorphism and risk of coronary artery disease: a meta-analysis. Arch Med Res 2014; 45:21-30. [PMID: 24333099 DOI: 10.1016/j.arcmed.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/18/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Mounting data have emerged suggesting that the Connexin37 C1019T polymorphism increases susceptibility to coronary artery disease (CAD). However, previous studies yielded conflicting results. In the current study, a comprehensive meta-analysis was performed to investigate whether the C1019T polymorphism is associated with CAD risk. METHODS A total of 11 studies examining the C1019T polymorphism and CAD were identified using MEDLINE, Embase, CNKI, Wanfang and CBM, in which 5535 CAD patients and 5626 controls were analyzed. A random-effects model was used to calculate odd ratios and confidence intervals, while addressing between-study heterogeneity. Publication bias was weighed using the Egger's test, Begg-Mazemdar test and funnel plot. RESULTS In genetic models with striking heterogeneity, the risk of CAD was not associated with the C1019T polymorphism (allele comparison: p = 0.34, OR = 1.11, 95% CI 0.90-1.36). Stratification by disease endpoints indicated that the 1019T allele was significantly associated with myocardial infarction (MI) (allele comparison: p <0.001, OR = 1.59, 95% CI 1.24-2.03). Further meta-regression analysis indicated that a large proportion of heterogeneity was probably due to the varying proportions of diabetes mellitus (DM) across studies (p = 0.014). CONCLUSIONS Our results indicated that the C1019T polymorphism may be a moderate risk factor for MI and that DM was likely a potential source of between-study heterogeneity.
Collapse
Affiliation(s)
- Zhijun Wu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuqing Lou
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wei Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qiujing Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruiyan Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
41
|
Ichihara S, Yamamoto K, Asano H, Nakatochi M, Sukegawa M, Ichihara G, Izawa H, Hirashiki A, Takatsu F, Umeda H, Iwase M, Inagaki H, Hirayama H, Sone T, Nishigaki K, Minatoguchi S, Cho MC, Jang Y, Kim HS, Park JE, Tada-Oikawa S, Kitajima H, Matsubara T, Sunagawa K, Shimokawa H, Kimura A, Lee JY, Murohara T, Inoue I, Yokota M. Identification of a glutamic acid repeat polymorphism of ALMS1 as a novel genetic risk marker for early-onset myocardial infarction by genome-wide linkage analysis. ACTA ACUST UNITED AC 2013; 6:569-78. [PMID: 24122612 DOI: 10.1161/circgenetics.111.000027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is a leading cause of death worldwide. Given that a family history is an independent risk factor for coronary artery disease, genetic variants are thought to contribute directly to the development of this condition. The identification of susceptibility genes for coronary artery disease or MI may thus help to identify high-risk individuals and offer the opportunity for disease prevention. METHODS AND RESULTS We designed a 5-step protocol, consisting of a genome-wide linkage study followed by association analysis, to identify novel genetic variants that confer susceptibility to coronary artery disease or MI. A genome-wide affected sib-pair linkage study with 221 Japanese families with coronary artery disease yielded a statistically significant logarithm of the odds score of 3.44 for chromosome 2p13 and MI. Further association analysis implicated Alström syndrome 1 gene (ALMS1) as a candidate gene within the linkage region. Validation association analysis revealed that representative single-nucleotide polymorphisms of the ALMS1 promoter region were significantly associated with early-onset MI in both Japanese and Korean populations. Moreover, direct sequencing of the ALMS1 coding region identified a glutamic acid repeat polymorphism in exon 1, which was subsequently found to be associated with early-onset MI. CONCLUSIONS The glutamic acid repeat polymorphism of ALMS1 identified in the present study may provide insight into the pathogenesis of early-onset MI.
Collapse
|
42
|
Shen GQ, Girelli D, Li L, Olivieri O, Martinelli N, Chen Q, Topol EJ, Wang QK. Multi-allelic haplotype association identifies novel information different from single-SNP analysis: a new protective haplotype in the LRP8 gene is against familial and early-onset CAD and MI. Gene 2013; 521:78-81. [PMID: 23524007 DOI: 10.1016/j.gene.2013.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/07/2013] [Indexed: 12/13/2022]
Abstract
Our previous studies identified a functional SNP, R952Q in the LRP8 gene, that was associated with increased platelet activation and familial and early-onset coronary artery disease (CAD) and myocardial infarction (MI) in American and Italian Caucasian populations. In this study, we analyzed four additional SNPs near R952Q (rs7546246, rs2297660, rs3737983, rs5177) to identify a specific LRP8 SNP haplotype that is associated with familial and early-onset CAD and MI. We employed a case-control association design involving 381 premature CAD and MI probands and 560 controls in GeneQuest, 441 individuals from 22 large pedigrees in GeneQuest II, and 248 MI patients with family history and 308 controls in an Italian cohort. Like R952Q, LRP8 SNPs rs7546246, rs2297660, rs3737983, and rs5177 were significantly associated with early-onset CAD/MI in both population-based and family-based association studies in GeneQuest. The results were replicated in the GeneQuest II family-based population and the Italian population. We then carried out a haplotype analysis for all five SNPs including R952Q. One common haplotype (TCCGC) was significantly associated with CAD (P=4.0×10(-11)) and MI (P=6.5×10(-12)) in GeneQuest with odds ratios of 0.53 and 0.42, respectively. The results were replicated in the Italian cohort (P=0.004, OR=0.71). The sib-TDT analysis also showed significant association between the TCCGC haplotype and CAD in GeneQuest II (P=0.001). These results suggest that a common LRP8 haplotype TCCGC confers a significant protective effect on the development of familial, early-onset CAD and/or MI.
Collapse
Affiliation(s)
- Gong-Qing Shen
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rowlan JS, Zhang Z, Wang Q, Fang Y, Shi W. New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. Physiol Genomics 2013; 45:332-42. [PMID: 23463770 PMCID: PMC3633429 DOI: 10.1152/physiolgenomics.00099.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid atherosclerosis is the primary cause of ischemic stroke. To identify genetic factors contributing to carotid atherosclerosis, we performed quantitative trait locus (QTL) analysis using female mice derived from an intercross between C57BL/6J (B6) and BALB/cJ (BALB) apolipoprotein E (Apoe−/−) mice. We started 266 F2 mice on a Western diet at 6 wk of age and fed them the diet for 12 wk. Atherosclerotic lesions in the left carotid bifurcation and plasma lipid levels were measured. We genotyped 130 microsatellite markers across the entire genome. Three significant QTLs, Cath1 on chromosome (Chr) 12, Cath2 on Chr5, and Cath3 on Chr13, and four suggestive QTLs on Chr6, Chr9, Chr17, and Chr18 were identified for carotid lesions. The Chr6 locus replicated a suggestive QTL and was named Cath4. Six QTLs for HDL, three QTLs for non-HDL cholesterol, and three QTLs for triglyceride were found. Of these, a significant QTL for non-HDL on Chr1 at 60.3 cM, named Nhdl13, and a suggestive QTL for HDL on ChrX were new. A significant locus for HDL (Hdlq5) was overlapping with a suggestive locus for carotid lesions on Chr9. A significant correlation between carotid lesion sizes and HDL cholesterol levels was observed in the F2 population (R = −0.153, P = 0.0133). Thus, we have identified several new QTLs for carotid atherosclerosis and the locus on Chr9 may exert effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S Rowlan
- Departments of Radiology & Medical Imaging and Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
44
|
Funk SD, Orr AW. Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res 2013; 67:42-52. [DOI: 10.1016/j.phrs.2012.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 01/13/2023]
|
45
|
Fishman GI, Levin RI. Gazing through the Crystal Ball of Science—Cardiovascular Disease in 2100. US CARDIOLOGY REVIEW 2012. [DOI: 10.15420/usc.2012.9.2.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recently, we had the opportunity to review the progress that has been made in the field of cardiovascular disease over the past century in The FASEB Journal and, based on those thoughts, in this article we predict what may transpire in this ‘century of biology’. Although it is true that ‘the best way to predict the future is to invent it’, we gaze through the prism of modern biomolecular science for a vision of a possible future and see cardiology practice that is transformed. In the second half of the 20th century, we developed a more fundamental understanding of atherosclerotic vascular disorders and invented life-saving therapeutics. We saw a similar development of mechanism-based pharmacotherapy to address heart failure, primarily through agents that antagonize the excessive concentration of circulating neurohumoral agents. Now we are in the midst of the device era, from stents to cardiac resynchronization therapy to transcatheter valves. The next wave of treatments will build on an increasingly sophisticated understanding of the molecular determinants of cardiovascular disorders and engineering feats that are barely perceptible now. Genomic profiling, molecular prescriptions for prevention and personalized therapeutics, regenerative medicine and the new field of cardiovascular tissue bioengineering will transform cardiovascular medicine. If the human species can survive threats of our own doing, such as the related epidemics of obesity and diabetes, by the turn of the next century, treatment of cardiovascular disease will not resemble the present in almost any way.
Collapse
Affiliation(s)
- Glenn I Fishman
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, US
| | | |
Collapse
|
46
|
Schunkert H, König IR, Erdmann J. Molecular Signatures of Cardiovascular Disease Risk. Mol Diagn Ther 2012; 12:281-7. [DOI: 10.1007/bf03256293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Wu C, Gong Y, Yuan J, Gong H, Zou Y, Ge J. Identification of shared genetic susceptibility locus for coronary artery disease, type 2 diabetes and obesity: a meta-analysis of genome-wide studies. Cardiovasc Diabetol 2012; 11:68. [PMID: 22697793 PMCID: PMC3481354 DOI: 10.1186/1475-2840-11-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/28/2012] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.
Collapse
Affiliation(s)
- Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
48
|
Shen GQ, Li L, Wang QK. Genetic variant R952Q in LRP8 is associated with increased plasma triglyceride levels in patients with early-onset CAD and MI. Ann Hum Genet 2012; 76:193-9. [PMID: 22404453 DOI: 10.1111/j.1469-1809.2012.00705.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously identified a novel locus for plasma triglyceride (TG) levels on chromosome 1p31-32 by genome-wide linkage analysis in the GeneQuest population with familial and premature coronary artery disease (CAD). Here we tested a hypothesis that variants in LRP8, a gene that is under the 1p31-32 linkage peak and associated with risk of familial and premature CAD and increased platelet activation, are associated with TG levels. Seven tagSNPs that cover the entire LRP8 gene were characterized in 358 GeneQuest Caucasian probands. Only SNP R952Q (rs5174) was associated with TG levels (P-adj = 0.0016), and this finding was replicated in one other independent population of 134 patients with early-onset myocardial infarction (males <45; females <55; P-adj = 0.0098). TG levels were higher in the group with higher body mass index (BMI ≥ 25) than in the group with lower BMI (BMI < 25). The association was significant in the overweight group (P-adj = 0.0029) or in the smoking group (P-adj = 0.0004), but not in the group with normal BMI or without smoking history. These results suggest that genetic variant R952Q of LRP8 is associated with increased plasma TG levels in patients who are overweight and have premature CAD/MI and history of smoking.
Collapse
Affiliation(s)
- Gong-Qing Shen
- Center for Cardiovascular Genetics, Cleveland Clinic, OH, USA
| | | | | |
Collapse
|
49
|
Funk SD, Yurdagul A, Albert P, Traylor JG, Jin L, Chen J, Orr AW. EphA2 activation promotes the endothelial cell inflammatory response: a potential role in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:686-95. [PMID: 22247258 DOI: 10.1161/atvbaha.111.242792] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endothelial cell activation results in altered cell-cell interactions with adjacent endothelial cells and with infiltrating leukocytes. Eph receptors and their ephrin ligands regulate cell-cell interactions during tissue remodeling, and multiple proinflammatory mediators induce endothelial EphA receptor and ephrinA ligand expression. Therefore, we sought to elucidate the role of EphA receptors and ephrinA ligands in endothelial cell activation and atherosclerosis. METHODS AND RESULTS Quantitative reverse transcription-polymerase chain reaction screening for EphA/ephrinA expression in atherosclerosis-prone macrovascular endothelium identified EphA2, EphA4, and ephrinA1 as the dominant isoforms. Endothelial activation with oxidized low-density lipoprotein and proinflammatory cytokines induced EphA2 and ephrinA1 expression and sustained EphA2 activation, whereas EphA4 expression was unaffected. Atherosclerotic plaques from mice and humans showed enhanced EphA2 and ephrinA1 expression colocalizing in the endothelial cell layer. EphA2 activation with recombinant Fc-ephrinA1 induced proinflammatory gene expression (eg vascular cell adhesion molecule-1, E-selectin) and stimulated monocyte adhesion, whereas inhibiting EphA2 (small interfering RNA, pharmacological inhibitors) abrogated both ephrinA1-induced and oxidized low-density lipoprotein-induced vascular cell adhesion molecule-1 expression. CONCLUSION The current data suggest that enhanced EphA2 signaling during endothelial cell activation perpetuates proinflammatory gene expression. Coupled with EphA2 expression in mouse and human atherosclerotic plaques, these data implicate EphA2 as a novel proinflammatory mediator and potential regulator of atherosclerotic plaque development.
Collapse
Affiliation(s)
- Steven Daniel Funk
- Department of Pathology, Louisiana State University Health Science Center, 1501 King's Hwy, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tian C, Liu T, Fang S, Du X, Jia C. Association of C47T polymorphism in SOD2 gene with coronary artery disease: a case-control study and a meta-analysis. Mol Biol Rep 2011; 39:5269-76. [PMID: 22170599 DOI: 10.1007/s11033-011-1324-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/03/2011] [Indexed: 12/31/2022]
Abstract
Oxidative damage promotes atherosclerosis. SOD2 is an important antioxidant enzyme. A case-control study and a meta-analysis were performed to assess the association of C47T polymorphism in SOD2 gene with premature, late-onset and overall coronary artery disease (CAD) risk. A hospital-based case-control study was conducted with 269 premature CAD cases, 278 late-onset CAD cases and 299 healthy controls. Polymerase chain reaction (PCR) and Pyrosequencing were used to detect the polymorphism. Multinomial logistic regression model was performed to estimate odds ratio (OR) with 95% confidence intervals (CIs) and adjust potential confounders. A meta-analysis was performed using eight outcomes including our result. Fixed or random effect pooled measure was selected on the basis of homogeneity test among studies. Heterogeneity among studies was evaluated using I (2). Meta-regression was used to explore potential sources of between-study heterogeneity. Publication bias was estimated using Peters's linear regression test. In our case-control study, compared with the TT as the reference, the mutant genotype of CC + TC was significantly associated with a reduced premature CAD risk both in univariate (OR = 0.60, 95% CI = 0.41-0.87) and multivariate (OR = 0.59, 95% CI = 0.40-0.87) logistic regressions, but not with late-onset CAD risk. After excluding one article that deviated from Hardy-Weinberg equilibrium in controls, this meta-analysis showed a significant association of the C allele with reduced risk of CAD in dominant (FEM: OR = 0.69, 95% CI = 0.61-0.78), recessive (OR = 0.64, 95% CI = 0.50-0.82), and codominant (FEM: OR = 0.73, 95% CI = 0.65-0.80) models. Our study suggested that the mutant genotype of CC + TC was significantly associated with a reduced CAD risk.
Collapse
Affiliation(s)
- Changwei Tian
- Department of Epidemiology and Health Statistics, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|