1
|
Ahmed M, Fischer S, Robert KL, Lange KI, Stuck MW, Best S, Johnson CA, Pazour GJ, Blacque OE, Nandadasa S. Two functional forms of the Meckel-Gruber syndrome protein TMEM67 generated by proteolytic cleavage by ADAMTS9 mediate Wnt signaling and ciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611229. [PMID: 39282264 PMCID: PMC11398388 DOI: 10.1101/2024.09.04.611229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sydney Fischer
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karyn L. Robert
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen I. Lange
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael W. Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Colin A. Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Oliver E. Blacque
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sumeda Nandadasa
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
2
|
Sekar T, Sebire NJ. Renal Pathology of Ciliopathies. Pediatr Dev Pathol 2024; 27:411-425. [PMID: 38616607 DOI: 10.1177/10935266241242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.
Collapse
Affiliation(s)
- Thivya Sekar
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| | - Neil J Sebire
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| |
Collapse
|
3
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
4
|
Nandadasa S, Martin D, Deshpande G, Robert KL, Stack MS, Itoh Y, Apte SS. Degradomic Identification of Membrane Type 1-Matrix Metalloproteinase as an ADAMTS9 and ADAMTS20 Substrate. Mol Cell Proteomics 2023; 22:100566. [PMID: 37169079 PMCID: PMC10267602 DOI: 10.1016/j.mcpro.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Imaging Core Facility, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Karyn L Robert
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry and Harper Cancer Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yoshifumi Itoh
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Koller S, Beltraminelli T, Maggi J, Wlodarczyk A, Feil S, Baehr L, Gerth-Kahlert C, Menghini M, Berger W. Functional Analysis of a Novel, Non-Canonical RPGR Splice Variant Causing X-Linked Retinitis Pigmentosa. Genes (Basel) 2023; 14:genes14040934. [PMID: 37107692 PMCID: PMC10137330 DOI: 10.3390/genes14040934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is one of the most severe forms of RP due to its early onset and intractable progression. Most cases have been associated with genetic variants within the purine-rich exon ORF15 region of this gene. RPGR retinal gene therapy is currently being investigated in several clinical trials. Therefore, it is crucial to report and functionally characterize (all novel) potentially pathogenic DNA sequence variants. Whole-exome sequencing (WES) was performed for the index patient. The splicing effects of a non-canonical splice variant were tested on cDNA from whole blood and a minigene assay. WES revealed a rare, non-canonical splice site variant predicted to disrupt the wildtype splice acceptor and create a novel acceptor site 8 nucleotides upstream of RPGR exon 12. Reverse-transcription PCR analyses confirmed the disruption of the correct splicing pattern, leading to the insertion of eight additional nucleotides in the variant transcript. Transcript analyses with minigene assays and cDNA from peripheral blood are useful tools for the characterization of splicing defects due to variants in the RPGR and may increase the diagnostic yield in RP. The functional analysis of non-canonical splice variants is required to classify those variants as pathogenic according to the ACMG's criteria.
Collapse
Affiliation(s)
- Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Tim Beltraminelli
- Department of Ophthalmology, Institute of Clinical Neurosciences of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6962 Lugano, Switzerland
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Agnès Wlodarczyk
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Luzy Baehr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Moreno Menghini
- Department of Ophthalmology, Institute of Clinical Neurosciences of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6962 Lugano, Switzerland
- Department of Ophthalmology, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
7
|
Sambharia M, Freese ME, Donato F, Bathla G, Abukhiran IMM, Dantuma MI, Mansilla MA, Thomas CP. Suspected Autosomal Recessive Polycystic Kidney Disease but Cerebellar Vermis Hypoplasia, Oligophrenia Ataxia, Coloboma, and Hepatic Fibrosis (COACH) Syndrome in Retrospect, A Delayed Diagnosis Aided by Genotyping and Reverse Phenotyping: A Case Report and A Review of the Literature. Nephron Clin Pract 2023; 148:264-272. [PMID: 36617405 DOI: 10.1159/000527991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
The clinical features of cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis (COACH) characterize the rare autosomal recessive multisystem disorder called COACH syndrome. COACH syndrome belongs to the spectrum of Joubert syndrome and related disorders (JSRDs) and liver involvement distinguishes COACH syndrome from the rest of the JSRD spectrum. Developmental delay and oculomotor apraxia occur early but with time, these can improve and may not be readily apparent or no longer need active medical management. Congenital hepatic fibrosis and renal disease, on the other hand, may develop late, and the temporal incongruity in organ system involvement may delay the recognition of COACH syndrome. We present a case of a young adult presenting late to a Renal Genetics Clinic for evaluation of renal cystic disease with congenital hepatic fibrosis, clinically suspected to have autosomal recessive polycystic kidney disease. Following genetic testing, a reevaluation of his medical records from infancy, together with reverse phenotyping and genetic phasing, led to a diagnosis of COACH syndrome.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret E Freese
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francisco Donato
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | | | - Maisie I Dantuma
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - M Adela Mansilla
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Christie P Thomas
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Srivastava S, Manisha R, Dwivedi A, Agarwal H, Saxena D, Agrawal V, Mandal K. Meckel Gruber and Joubert Syndrome Diagnosed Prenatally: Allelism between the Two Ciliopathies, Complexities of Mutation Types and Digenic Inheritance. Fetal Pediatr Pathol 2022; 41:1041-1051. [PMID: 34821546 DOI: 10.1080/15513815.2021.2007434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background: Antenatally detected occipital encephalocele and polycystic kidneys are a common presentation of ciliopathies like Joubert syndrome and Meckel Gruber syndrome which have considerable genetic and phenotypic overlap. Case reports: We describe 3 cases of antenatally diagnosed occipital encephalocele and enlarged kidneys with fetal autopsy, histopathology & exome sequencing results. A novel nonsense variant in the CEP290 gene was reported in first case (Meckel syndrome). The second case shows the importance of fetal exome where the parents were carriers for 2 ciliopathy genes (TMEM138 & SDCCAG8). Diagnosis in this case was confirmed by fetal exome sequencing (Joubert syndrome). Multiexon deletion in TMEM67 and KIF14 present in trans was identified in the third case (Meckel syndrome), likely resulting in digenic inheritance. Conclusion: We report 2 cases of Meckel syndrome with a novel variant and multiexon deletion, and 1 case of Joubert syndrome which depicts the limitations of preconceptional carrier screening in ciliopathies due to overlapping phenotypes.
Collapse
Affiliation(s)
- Somya Srivastava
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Rani Manisha
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Aradhana Dwivedi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Harshita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Vinita Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
| |
Collapse
|
9
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
10
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
11
|
Qiu YL, Wang L, Huang M, Lian M, Wang F, Gong Y, Ma X, Hao CZ, Zhang J, Li ZD, Xing QH, Cao M, Wang JS. Association of novel TMEM67 variants with mild phenotypes of high gamma-glutamyl transpeptidase cholestasis and congenital hepatic fibrosis. J Cell Physiol 2022; 237:2713-2723. [PMID: 35621037 DOI: 10.1002/jcp.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
TMEM67 (mecklin or MKS3) locates in the transition zone of cilia. Dysfunction of TMEM67 disrupts cilia-related signaling and leads to developmental defects of multiple organs in humans. Typical autosomal recessive TMEM67 defects cause partial overlapping phenotypes, including abnormalities in the brain, eyes, liver, kidneys, bones, and so forth. However, emerging reports of isolated nephronophthisis suggest the possibility of a broader phenotype spectrum. In this study, we analyzed the genetic data of cholestasis patients with no obvious extrahepatic involvement but with an unexplained high level of gamma-glutamyl transpeptidase (GGT). We identified five Han Chinese patients from three unrelated families with biallelic nonnull low-frequency TMEM67 variants. All variants were predicted pathogenic in silico, of which p. Arg820Ile and p. Leu144del were previously unreported. In vitro studies revealed that the protein levels of the TMEM67 variants were significantly decreased; however, their interaction with MKS1 remained unaffected. All the patients, aged 7-39 years old, had silently progressive cholestasis with elevated GGT but had normal bilirubin levels. Histological studies of liver biopsy of patients 1, 3, and 5 showed the presence of congenital hepatic fibrosis. We conclude that variants in TMEM67 are associated with a mild phenotype of unexplained, persistent, anicteric, and high GGT cholestasis without typical symptoms of TMEM67 defects; this possibility should be considered by physicians in gastroenterology and hepatology.
Collapse
Affiliation(s)
- Yi-Ling Qiu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Li Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ying Gong
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Chen-Zhi Hao
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhong-Die Li
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qing-He Xing
- Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-She Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
13
|
Kanamaru T, Neuner A, Kurtulmus B, Pereira G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J 2022; 41:e108843. [PMID: 34981518 PMCID: PMC8724769 DOI: 10.15252/embj.2021108843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.
Collapse
Affiliation(s)
- Taishi Kanamaru
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Annett Neuner
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| |
Collapse
|
14
|
Liu Y, Wang H, Jin X, Shao Q, Pan Q. Molecular Diagnosis and Prenatal Phenotype Analysis of Eight Fetuses With Ciliopathies. Front Genet 2021; 12:705808. [PMID: 34675960 PMCID: PMC8523853 DOI: 10.3389/fgene.2021.705808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Human ciliopathies are hereditary conditions caused by variants in ciliary-associated genes. Ciliopathies are often characterized by multiple system defects. However, it is not easy to make a definite diagnosis in the prenatal period only based on the imageology. In this report, eight new prenatal cases from five unrelated families diagnosed with ciliopathies were systematically examined. The clinical manifestations of these fetuses showed such prenatal diagnostic features as occipital encephalocele, and polydactyly and polycystic kidneys. Situs inversus caused by CPLANE1 variant was first reported. In Family 1 and Family 3, homozygous variants of CPLANE1 and NPHP4 caused by consanguineous marriage and uniparental disomy were detected by whole-exome sequencing, respectively. In Family 2, Family 4 and Family 5, compound heterozygotes of TMEM67 and DYNC2H1 including two novel missense variants and one novel nonsense variant were identified. The distribution of pathogenic missense variants along TMEM67 gene mainly clustered in the extracellular cysteine rich region, extracellular area with unknown structure, and the transmembrane regions. Genotype-phenotype relationship between CPLANE1 and TMEM67 genes was concluded. This report describes new clinical manifestations and novel variants in CPLANE1, TMEM67, NPHP4, and DYNC2H1.
Collapse
Affiliation(s)
- Yuefang Liu
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Xin Jin
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| | - Qiong Pan
- Department of Clinical Genetics, Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
15
|
Zhu P, Qiu Q, Harris PC, Xu X, Lin X. mtor Haploinsufficiency Ameliorates Renal Cysts and Cilia Abnormality in Adult Zebrafish tmem67 Mutants. J Am Soc Nephrol 2021; 32:822-836. [PMID: 33574160 PMCID: PMC8017545 DOI: 10.1681/asn.2020070991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although zebrafish embryos have been used to study ciliogenesis and model polycystic kidney disease (PKD), adult zebrafish remain unexplored. METHODS Transcription activator-like effector nucleases (TALEN) technology was used to generate mutant for tmem67, the homolog of the mammalian causative gene for Meckel syndrome type 3 (MKS3). Classic 2D and optical-clearing 3D imaging of an isolated adult zebrafish kidney were used to examine cystic and ciliary phenotypes. A hypomorphic mtor strain or rapamycin was used to inhibit mTOR activity. RESULTS Adult tmem67 zebrafish developed progressive mesonephric cysts that share conserved features of mammalian cystogenesis, including a switch of cyst origin with age and an increase in proliferation of cyst-lining epithelial cells. The mutants had shorter and fewer distal single cilia and greater numbers of multiciliated cells (MCCs). Absence of a single cilium preceded cystogenesis, and expansion of MCCs occurred after pronephric cyst formation and was inversely correlated with the severity of renal cysts in young adult zebrafish, suggesting a primary defect and an adaptive action, respectively. Finally, the mutants exhibited hyperactive mTOR signaling. mTOR inhibition ameliorated renal cysts in both the embryonic and adult zebrafish models; however, it only rescued ciliary abnormalities in the adult mutants. CONCLUSIONS Adult zebrafish tmem67 mutants offer a new vertebrate model for renal cystic diseases, in which cilia morphology can be analyzed at a single-nephron resolution and mTOR inhibition proves to be a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Peter C. Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Luo M, He R, Lin Z, Shen Y, Zhang G, Cao Z, Lu C, Meng D, Zhang J, Ma X, Cao M. Novel Compound Heterozygous Variants in MKS1 Leading to Joubert Syndrome. Front Genet 2020; 11:576235. [PMID: 33193692 PMCID: PMC7592398 DOI: 10.3389/fgene.2020.576235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Joubert syndrome (JBTS) and Meckel-Gruber syndrome (MKS) are rare recessive disorders caused by defects of cilia, and they share overlapping clinical features and allelic loci. Mutations of MKS1 contribute approximately 7% to all MKS cases and are found in some JBTS patients. Here, we describe a JBTS patient with two novel mutations of MKS1. Whole exome sequencing (WES) revealed c.191-1G > A and c.1058delG compound heterozygous variants. The patient presented with typical cerebellar vermis hypoplasia, hypotonia, and developmental delay, but without other renal/hepatic involvement or polydactyly. Functional studies showed that the c.1058delG mutation disrupts the B9 domain of MKS1, attenuates the interactions with B9D2, and impairs its ciliary localization at the transition zone (TZ), indicating that the B9 domain of MKS1 is essential for the integrity of the B9 protein complex and localization of MKS1 at the TZ. This work expands the mutation spectrum of MKS1 and elucidates the clinical heterogeneity of MKS1-related ciliopathies.
Collapse
Affiliation(s)
- Minna Luo
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Guangyu Zhang
- Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Dan Meng
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Liu Y, Cao S, Yu M, Hu H. TMEM216 Deletion Causes Mislocalization of Cone Opsin and Rhodopsin and Photoreceptor Degeneration in Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32687549 PMCID: PMC7425700 DOI: 10.1167/iovs.61.8.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Mutations in TMEM216, a ciliary transition zone tetraspan transmembrane protein, are linked to Joubert syndrome and Meckel syndrome. Photoreceptor degeneration is a prominent phenotype in Joubert syndrome. How TMEM216 contributes to photoreceptor health is poorly understood. Methods We have generated tmem216 knockout zebrafish by CRISPR genome editing. The impact of TMEM216 deletion on photoreceptors was evaluated by immunofluorescence staining and electron microscopy. Results Homozygous tmem216 knockout zebrafish died before 21 days after fertilization. Their retina exhibited reduced immunoreactivity to rod photoreceptor outer segment marker 4D2 and cone photoreceptor outer segment marker G protein subunit α transducin 2 (GNAT2). Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) revealed an increase in TUNEL-positive nuclei in the knockout retina, indicating photoreceptor degeneration. The tmem216 mutation resulted in shortened photoreceptor ciliary axoneme, as revealed by acetylated α-tubulin immunostaining. Photoreceptors in knockout zebrafish exhibited mislocalization of outer segment proteins such as rhodopsin, GNAT2, and red opsin to the inner segment and cell bodies. Additionally, electron microscopy revealed that the mutant photoreceptors elaborated outer segment with abnormal disc morphology such as shortened discs and vesicles/vacuoles within the outer segment. Conclusion Our results indicate that TMEM216 is essential for normal genesis of outer segment disc structures, transport of outer segment materials, and survival of photoreceptors in zebrafish. These tmem216 knockout zebrafish will be useful in studying how transition zone proteins regulate photoreceptor outer segment formation and maintenance.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, New York, United States
| | - Shuqin Cao
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, New York, United States
| | - Miao Yu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, New York, United States
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
18
|
Bui TPH, Nguyen NT, Ngo VD, Nguyen HN, Ly TTH, Do HD, Huynh MT. Novel compound heterozygous TMEM67 variants in a Vietnamese family with Joubert syndrome: a case report. BMC MEDICAL GENETICS 2020; 21:18. [PMID: 32000717 PMCID: PMC6993522 DOI: 10.1186/s12881-020-0962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022]
Abstract
Background Joubert syndrome is a genetically heterogeneous autosomal recessive ciliopathy characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles and a deep interpeduncular fossa, known as “molar tooth sign” associated with hypotonia, respiratory control disturbances and abnormal eye movements. To date, pathogenic variants in over 35 genes are known to cause autosomal recessive Joubert Syndrome, while one gene is associated with X-linked recessive inheritance. Case presentation We describe here a non-consanguineous Vietnamese family with Joubert syndrome, a fetus and 10-year-old developmentally delayed boy. Ultrasonography showed ventriculomegaly at 26 + 6 weeks of gestation in the fetus. The 10-year-old-boy was diagnosed with cerebral palsy of unknown origin. Clinical physical examination at the age of 10, he showed clinical features of Joubert syndrome including typical facial dysmorphism, ataxia, severe psychomotor delay, oculomotor apraxia and molar tooth sign on brain MRI. Whole exome sequencing analysis identified a novel compound heterozygous c.725A > G p.Asn242Ser and c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant in the proband and the affected fetus. These two variants were inherited from each parent and confirmed by Sanger sequencing. The variant c.725A > G p.Asn242Ser was previously documented in patients with JS, the novel splice-site c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant produced an aberrant transcript with the loss of four nucleotides of exon 03. Conclusion This study confirms the diagnosis of Joubert syndrome in a Vietnamese family and expands the mutational spectrum of TMEM67 sequence variations. We also highlight the importance of molecular approaches to unravel underlying mechanisms of human genetic disorders. Early precise diagnosis could help provide further accurate genetic counseling for recurrence-risk assessment, future diagnostic option, management as well as treatment guidance for rare disorders.
Collapse
Affiliation(s)
- Thi Phuong Hoa Bui
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Ngoc Tu Nguyen
- Fetal Medicine Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Van Doan Ngo
- Diagnostic Imaging Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Hoai-Nghia Nguyen
- Center for Molecular Medicine, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Thi Thanh Ha Ly
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Huy Duong Do
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Minh-Tuan Huynh
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam.
| |
Collapse
|
19
|
Liang N, Jiang X, Zeng L, Li Z, Liang D, Wu L. 28 novel mutations identified from 33 Chinese patients with cilia-related kidney disorders. Clin Chim Acta 2019; 501:207-215. [PMID: 31730820 DOI: 10.1016/j.cca.2019.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cilia play an important role in cellular signaling pathways. Defective ciliary function causes a variety of disorders involve retina, skeleton, liver, kidney or others. Cilia-related kidney disorders are characterized by cystic renal disease, nephronophthisis and renal failure in general. METHODS In this study, we collected 33 families clinically suspected of cilia-related kidney disorders. Capture-based next-generation sequencing (NGS) of 88 related genes, Sanger sequencing, pedigree analysis and functional study were performed to analyze their genetic cause. RESULTS 40 mutations in PKD1, PKD2, PKHD1, DYNC2H1 and TMEM67 genes were identified from 27 of 33 affected families. 70% (28/40) of the mutations were first found in patients. We reported a very early-onset autosomal dominant polycystic kidney disease (ADPKD) family caused by a novel heterozygous PKD1 mutation; another fetus with DYNC2H1 compound heterozygous missense mutations showed mainly kidney dysplasia instead of skeletal abnormalities; and a novel PKD1 mutation, c.12445-3C > G, was confirmed to cause two wrong splicing modes. As for previously reported mutations, such as PKD1, c.6395 T > G (p.F2132C) and c.6868G > T (p.D2290Y), we had new and different findings. CONCLUSION The findings provided new references for genotype-phenotype analyses and broadened the mutation spectrum of detected genes, which were significantly valuable for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Nana Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xuanyu Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Lanlan Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
20
|
Bachmann-Gagescu R, Dempsey JC, Bulgheroni S, Chen ML, D'Arrigo S, Glass IA, Heller T, Héon E, Hildebrandt F, Joshi N, Knutzen D, Kroes HY, Mack SH, Nuovo S, Parisi MA, Snow J, Summers AC, Symons JM, Zein WM, Boltshauser E, Sayer JA, Gunay-Aygun M, Valente EM, Doherty D. Healthcare recommendations for Joubert syndrome. Am J Med Genet A 2019; 182:229-249. [PMID: 31710777 DOI: 10.1002/ajmg.a.61399] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.
Collapse
Affiliation(s)
- Ruxandra Bachmann-Gagescu
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maida L Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elise Héon
- Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Nirmal Joshi
- Department of Anesthesia, Deaconess Hospital, Evansville, Indiana.,Anesthesia Dynamics, LLC, Evansville, Indiana
| | - Dana Knutzen
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,The Children's Hospital of San Antonio, San Antonio, Texas
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephen H Mack
- Joubert Syndrome and Related Disorders Foundation, Petaluma, California
| | - Sara Nuovo
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Melissa A Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Angela C Summers
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.,Department of Psychology, Fordham University, Bronx, New York
| | - Jordan M Symons
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Nephrology, Seattle Children's Hospital, Seattle, Washington
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (emeritus), Children's University Hospital, Zürich, Switzerland
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Enza Maria Valente
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
21
|
Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity. ACTA ACUST UNITED AC 2019; 4:25-49. [PMID: 31763177 PMCID: PMC6864416 DOI: 10.3233/trd-190041] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare, typically autosomal recessive disorder characterized by cerebellar vermis hypoplasia and a distinctive malformation of the cerebellum and brainstem identified as the “molar tooth sign” on brain MRI. Other universal features include hypotonia with later ataxia and intellectual disability/developmental delay, with additional features consisting of oculomotor apraxia and abnormal respiratory pattern. Notably, other, more variable features include renal cystic disease, typically nephronophthisis, retinal dystrophy, and congenital hepatic fibrosis; skeletal changes such as polydactyly and findings consistent with short-rib skeletal dysplasias are also seen in many subjects. These pleiotropic features are typical of a number of disorders of the primary cilium, and make the identification of causal genes challenging given the significant overlap between JS and other ciliopathy conditions such as nephronophthisis and Meckel, Bardet-Biedl, and COACH syndromes. This review will describe the features of JS, characterize the 35 known genes associated with the condition, and describe some of the genetic conundrums of JS, such as the heterogeneity of founder effects, lack of genotype-phenotype correlations, and role of genetic modifiers. Finally, aspects of JS and related ciliopathies that may pave the way for development of therapeutic interventions, including gene therapy, will be described.
Collapse
Affiliation(s)
- Melissa A Parisi
- Chief, Intellectual & Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
22
|
Abdelhamed ZA, Abdelmottaleb DI, El-Asrag ME, Natarajan S, Wheway G, Inglehearn CF, Toomes C, Johnson CA. The ciliary Frizzled-like receptor Tmem67 regulates canonical Wnt/β-catenin signalling in the developing cerebellum via Hoxb5. Sci Rep 2019; 9:5446. [PMID: 30931988 PMCID: PMC6445493 DOI: 10.1038/s41598-019-41940-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Primary cilia defects result in a group of related pleiotropic malformation syndromes known as ciliopathies, often characterised by cerebellar developmental and foliation defects. Here, we describe the cerebellar anatomical and signalling defects in the Tmem67tm1(Dgen)/H knockout mouse. At mid-gestation, Tmem67 mutant cerebella were hypoplastic and had aberrantly high canonical Wnt/β-catenin signalling, proliferation and apoptosis. Later in development, mutant cerebellar hemispheres had severe foliation defects and inferior lobe malformation, characterized by immature Purkinje cells (PCs). Early postnatal Tmem67 mutant cerebellum had disrupted ciliogenesis and reduced responsiveness to Shh signalling. Transcriptome profiling of Tmem67 mutant cerebella identified ectopic increased expression of homeobox-type transcription factors (Hoxa5, Hoxa4, Hoxb5 and Hoxd3), normally required for early rostral hindbrain patterning. HOXB5 protein levels were increased in the inferior lobe, and increased canonical Wnt signalling, following loss of TMEM67, was dependent on HOXB5. HOXB5 occupancy at the β-catenin promoter was significantly increased by activation of canonical Wnt signalling in Tmem67-/- mutant cerebellar neurones, suggesting that increased canonical Wnt signalling following mutation or loss of TMEM67 was directly dependent on HOXB5. Our results link dysregulated expression of Hox group genes with ciliary Wnt signalling defects in the developing cerebellum, providing new mechanistic insights into ciliopathy cerebellar hypoplasia phenotypes.
Collapse
Affiliation(s)
- Zakia A Abdelhamed
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
- Division of Human Genetics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Dina I Abdelmottaleb
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Mohammed E El-Asrag
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Subaashini Natarajan
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Chris F Inglehearn
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
| | - Carmel Toomes
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK
| | - Colin A Johnson
- Divison of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, LS9 7TF, Leeds, UK.
| |
Collapse
|
23
|
Khan TN, Khan K, Sadeghpour A, Reynolds H, Perilla Y, McDonald MT, Gallentine WB, Baig SM, Davis EE, Katsanis N. Mutations in NCAPG2 Cause a Severe Neurodevelopmental Syndrome that Expands the Phenotypic Spectrum of Condensinopathies. Am J Hum Genet 2019; 104:94-111. [PMID: 30609410 PMCID: PMC6323578 DOI: 10.1016/j.ajhg.2018.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/26/2018] [Indexed: 01/29/2023] Open
Abstract
The use of whole-exome and whole-genome sequencing has been a catalyst for a genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an ncapg2 zebrafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apoptosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to nephronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-suppressed nphp1 and ncapg2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and they highlight the potential utility of examining candidate pathogenic lesions beyond the primary disease locus.
Collapse
Affiliation(s)
- Tahir N Khan
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Hannah Reynolds
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA; Furman University, Greenville, SC 29613, USA
| | - Yezmin Perilla
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Marie T McDonald
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - William B Gallentine
- Department of Pediatrics, Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.
| |
Collapse
|
24
|
Hanke-Gogokhia C, Chiodo VA, Hauswirth WW, Frederick JM, Baehr W. Rescue of cone function in cone-only Nphp5 knockout mouse model with Leber congenital amaurosis phenotype. Mol Vis 2018; 24:834-846. [PMID: 30713422 PMCID: PMC6334983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Purpose Recessive mutations in the human IQCB1/NPHP5 gene are associated with Senior-Løken syndrome (SLS), a ciliopathy presenting with nephronophthisis and Leber congenital amaurosis (LCA). Nphp5-knockout mice develop LCA without nephronophthisis. Mutant rods rapidly degenerate while mutant cones survive for months. The purpose of this study was to reinitiate cone ciliogenesis in a Nphp5 -/-; Nrl -/- mouse with viral expression of full-length NPHP5 and rescue function. Methods Nphp5 -/- mice were mated with Nrl -/- mice to generate Nphp5-/-; Nrl-/- double-knockouts. Nphp5-/-; Nrl-/- mice and Nphp5+/-; Nrl-/- controls were phenotyped with confocal microscopy from postnatal day 10 (P10) until 6 months of age. Nphp5-/-; Nrl-/- mice and Nphp5+/-; Nrl-/- controls were injected at P15 with self-complementary adenoassociated virus 8 (Y733F) (AAV8(Y733F)) expressing GRK1-FL-cNPHP5. Expression of mutant NPHP5 was verified with confocal microscopy and electroretinography (ERG). Results In the Nphp5 -/- and cone-only Nphp5 -/-; Nrl -/- mice, cone outer segments did not form, but mutant cones continued to express cone pigments in the inner segments without obvious signs of cone cell death. The mutant cone outer nuclear layer (ONL) and the inner segments were stable for more than 6 months in the cone-only Nphp5 -/-; Nrl -/- retinas. Viral expression of NPHP5 initiated after eye opening showed that connecting cilia and RP1-positive axonemes were formed. Furthermore, cone pigments and other cone outer segment proteins (cone transducin and cone PDE6) were present in the nascent mutant cone outer segments, and rescued mutant cones exhibited a significant photopic b-wave (30% of Nphp5 +/-; Nrl -/- controls). Conclusions Nphp5-/-; Nrl-/- cones persistently express cone pigments in the inner segments without obvious degeneration, providing an extended duration interval for viral gene expression. Viral expression of full-length NPHP5 initiates ciliogenesis between P15 and P60, and mutant cones are, in part, functional, encouraging future retina gene replacement therapy.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, UT
| | - Vince A. Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | | | - Jeanne M. Frederick
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, UT
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, UT,Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, UT,Department of Biology, University of Utah, Salt Lake City, UT
| |
Collapse
|
25
|
Huynh JM, Galindo M, Laukaitis CM. Missense variants in TMEM67 in a patient with Joubert syndrome. Clin Case Rep 2018; 6:2189-2192. [PMID: 30455918 PMCID: PMC6230611 DOI: 10.1002/ccr3.1748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/30/2018] [Accepted: 07/08/2018] [Indexed: 11/11/2022] Open
Abstract
We present a patient with a clinical diagnosis of Joubert syndrome with COACH phenotype who carries two TMEM67 variants of uncertain significance (VUS). One VUS can be reclassified as "likely pathogenic" by adding clinical data. As genetic testing becomes more accessible, more VUS will require clinical correlation for accurate classification.
Collapse
Affiliation(s)
| | | | - Christina M. Laukaitis
- Department of MedicineCenter for Applied Genetics and GenomicsCollege of MedicineUniversity of Arizona Cancer CenterUniversity of ArizonaTucsonArizona
| |
Collapse
|
26
|
Brancati F, Camerota L, Colao E, Vega-Warner V, Zhao X, Zhang R, Bottillo I, Castori M, Caglioti A, Sangiuolo F, Novelli G, Perrotti N, Otto EA. Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome. Eur J Hum Genet 2018; 26:1266-1271. [PMID: 29891882 DOI: 10.1038/s41431-018-0183-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
A rare syndrome was first described in 1997 in a 17-year-old male patient presenting with Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia (RHYNS). In the single reported familial case, two brothers were affected, arguing for X-linked or recessive mode of inheritance. Up to now, the underlying genetic basis of RHYNS syndrome remains unknown. Here we applied whole-exome sequencing in the originally described family with RHYNS to identify compound heterozygous variants in the ciliary gene TMEM67. Sanger sequencing confirmed a paternally inherited nonsense c.622A > T, p.(Arg208*) and a maternally inherited missense variant c.1289A > G, p.(Asp430Gly), which perturbs the correct splicing of exon 13. Overall, TMEM67 showed one of the widest clinical continuum observed in ciliopathies ranging from early lethality to adults with liver fibrosis. Our findings extend the spectrum of phenotypes/syndromes resulting from biallelic TMEM67 variants to now eight distinguishable clinical conditions including RHYNS syndrome.
Collapse
Affiliation(s)
- Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy. .,Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy.
| | - Letizia Camerota
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Virginia Vega-Warner
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Alfredo Caglioti
- Nephrology and Dialysis Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Perrotti
- Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
27
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Arrigoni F, Romaniello R, Peruzzo D, De Luca A, Parazzini C, Valente EM, Borgatti R, Triulzi F. Anterior Mesencephalic Cap Dysplasia: Novel Brain Stem Malformative Features Associated with Joubert Syndrome. AJNR Am J Neuroradiol 2017; 38:2385-2390. [PMID: 28838911 DOI: 10.3174/ajnr.a5360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 11/07/2022]
Abstract
In Joubert syndrome, the "molar tooth" sign can be associated with several additional supra- and infratentorial malformations. Here we report on 3 subjects (2 siblings, 8-14 years of age) with Joubert syndrome, showing an abnormal thick bulging of the anterior profile of the mesencephalon causing a complete obliteration of the interpeduncular fossa. DTI revealed that the abnormal tissue consisted of an ectopic white matter tract with a laterolateral transverse orientation. Tractographic reconstructions support the hypothesis of impaired axonal guidance mechanisms responsible for the malformation. The 2 siblings were compound heterozygous for 2 missense variants in the TMEM67 gene, while no mutations in a panel of 120 ciliary genes were detected in the third patient. The name "anterior mesencephalic cap dysplasia," referring to the peculiar aspect of the mesencephalon on sagittal MR imaging, is proposed for this new malformative feature.
Collapse
Affiliation(s)
- F Arrigoni
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
| | - R Romaniello
- Neuropsychiatry and Neurorehabilitation Unit (R.R., R.B.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Eugenio Medea, Bosisio Parini, Italy
| | - D Peruzzo
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
| | - A De Luca
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
- Department of Information Engineering (A.D.L.), University of Padova, Padova, Italy
| | - C Parazzini
- Department of Pediatric Radiology and Neuroradiology (C.P.), "V. Buzzi" Children's Hospital, Milan, Italy
| | - E M Valente
- Department of Molecular Medicine (E.M.V.), University of Pavia, Pavia, Italy
- Neurogenetics Unit (E.M.V.), Istituto Di Ricovero e Cura a Carattere Scientific Santa Lucia Foundation, Rome, Italy
| | - R Borgatti
- Neuropsychiatry and Neurorehabilitation Unit (R.R., R.B.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Eugenio Medea, Bosisio Parini, Italy
| | - F Triulzi
- Department of Neuroradiology (F.T.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Cà Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
29
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
30
|
Van De Weghe JC, Rusterholz TD, Latour B, Grout ME, Aldinger KA, Shaheen R, Dempsey JC, Maddirevula S, Cheng YHH, Phelps IG, Gesemann M, Goel H, Birk OS, Alanzi T, Rawashdeh R, Khan AO, Bamshad MJ, Nickerson DA, Neuhauss SC, Dobyns WB, Alkuraya FS, Roepman R, Bachmann-Gagescu R, Doherty D, Doherty D. Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. Am J Hum Genet 2017. [PMID: 28625504 DOI: 10.1016/j.ajhg.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
31
|
Srivastava S, Molinari E, Raman S, Sayer JA. Many Genes-One Disease? Genetics of Nephronophthisis (NPHP) and NPHP-Associated Disorders. Front Pediatr 2017; 5:287. [PMID: 29379777 PMCID: PMC5770800 DOI: 10.3389/fped.2017.00287] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPHP) is a renal ciliopathy and an autosomal recessive cause of cystic kidney disease, renal fibrosis, and end-stage renal failure, affecting children and young adults. Molecular genetic studies have identified more than 20 genes underlying this disorder, whose protein products are all related to cilia, centrosome, or mitotic spindle function. In around 15% of cases, there are additional features of a ciliopathy syndrome, including retinal defects, liver fibrosis, skeletal abnormalities, and brain developmental disorders. Alongside, gene identification has arisen molecular mechanistic insights into the disease pathogenesis. The genetic causes of NPHP are discussed in terms of how they help us to define treatable disease pathways including the cyclic adenosine monophosphate pathway, the mTOR pathway, Hedgehog signaling pathways, and DNA damage response pathways. While the underlying pathology of the many types of NPHP remains similar, the defined disease mechanisms are diverse, and a personalized medicine approach for therapy in NPHP patients is likely to be required.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Unit, City Hospitals Sunderland and South Tyneside NHS Foundation Trust, Sunderland, United Kingdom
| | - Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shreya Raman
- Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
32
|
Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel-Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances. Front Pediatr 2017; 5:244. [PMID: 29209597 PMCID: PMC5701918 DOI: 10.3389/fped.2017.00244] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive congenital anomaly syndrome caused by mutations in genes encoding proteins that are structural or functional components of the primary cilium. Conditions that are caused by mutations in ciliary genes are collectively termed the ciliopathies, and MKS represents the most severe condition in this group of disorders. The primary cilium is a microtubule-based organelle, projecting from the apical surface of vertebrate cells. It acts as an "antenna" that receives and transduces chemosensory and mechanosensory signals, but also regulates diverse signaling pathways, such as Wnt and Shh, that have important roles during embryonic development. Most MKS proteins localize to a distinct ciliary compartment called the transition zone (TZ) that regulates the trafficking of cargo proteins or lipids. In this review, we provide an up-to-date summary of MKS clinical features, molecular genetics, and clinical diagnosis. MKS has a highly variable phenotype, extreme genetic heterogeneity, and displays allelism with other related ciliopathies such as Joubert syndrome, presenting significant challenges to diagnosis. Recent advances in genetic technology, with the widespread use of multi-gene panels for molecular testing, have significantly improved diagnosis, genetic counseling, and the clinical management of MKS families. These include the description of some limited genotype-phenotype correlations. We discuss recent insights into the molecular basis of disease in MKS, since the functions of some of the relevant ciliary proteins have now been determined. A common molecular etiology appears to be disruption of ciliary TZ structure and function, affecting essential developmental signaling and the regulation of secondary messengers.
Collapse
Affiliation(s)
- Verity Hartill
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Katarzyna Szymanska
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Saghira Malik Sharif
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Gabrielle Wheway
- Faculty of Health and Applied Sciences, Department of Applied Sciences, UWE Bristol, Bristol, United Kingdom
| | - Colin A Johnson
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
33
|
Suzuki T, Miyake N, Tsurusaki Y, Okamoto N, Alkindy A, Inaba A, Sato M, Ito S, Muramatsu K, Kimura S, Ieda D, Saitoh S, Hiyane M, Suzumura H, Yagyu K, Shiraishi H, Nakajima M, Fueki N, Habata Y, Ueda Y, Komatsu Y, Yan K, Shimoda K, Shitara Y, Mizuno S, Ichinomiya K, Sameshima K, Tsuyusaki Y, Kurosawa K, Sakai Y, Haginoya K, Kobayashi Y, Yoshizawa C, Hisano M, Nakashima M, Saitsu H, Takeda S, Matsumoto N. Molecular genetic analysis of 30 families with Joubert syndrome. Clin Genet 2016; 90:526-535. [PMID: 27434533 DOI: 10.1111/cge.12836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the 'molar tooth sign'. JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole-exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, 9 of 12 CEP290 disease alleles were c.6012-12T>A (75.0%), an allele that has not been reported in non-Japanese populations. Therefore c.6012-12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM138/BBS1, respectively). BBS1 is the causative gene in Bardet-Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.
Collapse
Affiliation(s)
- T Suzuki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Y Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - A Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - A Inaba
- Yokohama City University Medical Center, Children's Medical Center, Yokohama, Japan
| | - M Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - S Ito
- Department of Pediatrics, Graduate school of Medicine, Yokohama City University, Yokohama, Japan
| | - K Muramatsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - S Kimura
- Kumamoto City Child Development Support Center, Kumamoto, Japan
| | - D Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Hiyane
- Division of Child Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Okinawa, Japan
| | - H Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - K Yagyu
- Department of Child and Adolescent Psychiatry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - H Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - M Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Fueki
- Division of Rehabilitation, Nagano Children's Hospital, Nagano, Japan
| | - Y Habata
- Department of Pediatric Rehabilitation, Hokkaido Medical Center for Child Health and Rehabilitation, Hokkaido, Japan
| | - Y Ueda
- Nire-no-kai Children's Clinic, Hokkaido, Japan
| | - Y Komatsu
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Y Shitara
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - K Ichinomiya
- Department of Neonatology, Gunma Children's Medical Center, Gunma, Japan
| | - K Sameshima
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Y Tsuyusaki
- Division of Neurology, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - K Kurosawa
- Division of Medical Genetics, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Y Kobayashi
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan.,Academic Renal Unit, School of Clinical Science, University of Bristol, Bristol, UK
| | - C Yoshizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - M Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - S Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
34
|
Kang HG, Lee HK, Ahn YH, Joung JG, Nam J, Kim NKD, Ko JM, Cho MH, Shin JI, Kim J, Park HW, Park YS, Ha IS, Chung WY, Lee DY, Kim SY, Park WY, Cheong HI. Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. Exp Mol Med 2016; 48:e251. [PMID: 27491411 PMCID: PMC5007639 DOI: 10.1038/emm.2016.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Nephronophthisis-related ciliopathy (NPHP-RC) is a common genetic cause of end-stage renal failure during childhood and adolescence and exhibits an autosomal recessive pattern of inheritance. Genetic diagnosis is quite limited owing to genetic heterogeneity in NPHP-RC. We designed a novel approach involving the step-wise screening of Sanger sequencing and targeted exome sequencing for the genetic diagnosis of 55 patients with NPHP-RC. First, five NPHP-RC genes were analyzed by Sanger sequencing in phenotypically classified patients. Known pathogenic mutations were identified in 12 patients (21.8%); homozygous deletions of NPHP1 in 4 juvenile nephronophthisis patients, IQCB1/NPHP5 mutations in 3 Senior–Løken syndrome patients, a CEP290/NPHP6 mutation in 1 Joubert syndrome patient, and TMEM67/MKS3 mutations in 4 Joubert syndrome patients with liver involvement. In the remaining undiagnosed patients, we applied targeted exome sequencing of 34 ciliopathy-related genes to detect known pathogenic mutations in 7 (16.3%) of 43 patients. Another 18 likely damaging heterozygous variants were identified in 13 NPHP-RC genes in 18 patients. In this study, we report a variety of pathogenic and candidate mutations identified in 55 patients with NPHP-RC in Korea using a step-wise application of two genetic tests. These results support the clinical utility of targeted exome sequencing to resolve the issue of allelic and genetic heterogeneity in NPHP-RC.
Collapse
Affiliation(s)
- Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Kyung Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaeyong Nam
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hye Won Park
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Seo Park
- Department of Pediatrics, Asian Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, College of Medicine, Inje University, Busan Paik Hospital, Busan, Republic of Korea
| | - Dae-Yeol Lee
- Department of Pediatrics, College of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Su Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
35
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
36
|
Suratanee A, Plaimas K. DDA: A Novel Network-Based Scoring Method to Identify Disease-Disease Associations. Bioinform Biol Insights 2015; 9:175-86. [PMID: 26673408 PMCID: PMC4674013 DOI: 10.4137/bbi.s35237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Categorizing human diseases provides higher efficiency and accuracy for disease diagnosis, prognosis, and treatment. Disease–disease association (DDA) is a precious information that indicates the large-scale structure of complex relationships of diseases. However, the number of known and reliable associations is very small. Therefore, identification of DDAs is a challenging task in systems biology and medicine. Here, we developed a novel network-based scoring algorithm called DDA to identify the relationships between diseases in a large-scale study. Our method is developed based on a random walk prioritization in a protein–protein interaction network. This approach considers not only whether two diseases directly share associated genes but also the statistical relationships between two different diseases using known disease-related genes. Predicted associations were validated by known DDAs from a database and literature supports. The method yielded a good performance with an area under the curve of 71% and outperformed other standard association indices. Furthermore, novel DDAs and relationships among diseases from the clusters analysis were reported. This method is efficient to identify disease–disease relationships on an interaction network and can also be generalized to other association studies to further enhance knowledge in medical studies.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Integrative Bioinformatics and System Biology Group, Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Srour M, Hamdan F, McKnight D, Davis E, Mandel H, Schwartzentruber J, Martin B, Patry L, Nassif C, Dionne-Laporte A, Ospina L, Lemyre E, Massicotte C, Laframboise R, Maranda B, Labuda D, Décarie JC, Rypens F, Goldsher D, Fallet-Bianco C, Soucy JF, Laberge AM, Maftei C, Boycott K, Brais B, Boucher RM, Rouleau G, Katsanis N, Majewski J, Elpeleg O, Kukolich M, Shalev S, Michaud J, Michaud JL. Joubert Syndrome in French Canadians and Identification of Mutations in CEP104. Am J Hum Genet 2015; 97:744-53. [PMID: 26477546 DOI: 10.1016/j.ajhg.2015.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques L Michaud
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
38
|
Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, Kurtulmus B, Novikov O, Spatz J, Pereira G, Hübner W, Brodski C, Tucker KL, Blaess S. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol 2015; 409:55-71. [PMID: 26542012 DOI: 10.1016/j.ydbio.2015.10.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.
Collapse
Affiliation(s)
- Mary Gazea
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marianna Tolve
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Viktoria Bosch
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Anna Kabanova
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Christian Gojak
- Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany; Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Orna Novikov
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Joachim Spatz
- Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany; Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wolfgang Hübner
- Molecular Biophotonics, University of Bielefeld, 33615 Bielefeld, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kerry L Tucker
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA.
| | - Sandra Blaess
- University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA.
| |
Collapse
|
39
|
Bayraktar Y, Yonem O, Varlı K, Taylan H, Shorbagi A, Sokmensuer C. Novel variant syndrome associated with congenital hepatic fibrosis. World J Clin Cases 2015; 3:904-910. [PMID: 26488028 PMCID: PMC4607810 DOI: 10.12998/wjcc.v3.i10.904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/03/2015] [Accepted: 07/22/2015] [Indexed: 02/05/2023] Open
Abstract
Congenital hepatic fibrosis is part of many different malformation syndromes, of which oculo-encephalo-hepato-renal syndrome is the most common. These syndromes largely overlap, and so accurate classification of individual patients may be difficult. We present herein three syndromic siblings who were products of a consanguineous marriage. We investigated in detail at least six organ systems in these patients, namely the liver, brain, eye, kidneys, skeleton, and gonads. The common features observed in these three cases were congenital hepatic fibrosis, retinitis pigmentosa, truncal obesity, rotatory nystagmus, mental retardation, advanced myopia, and high-arched palate. The clinical dysmorphology in these patients was distinct and lacked the major features of the known syndromes associated with congenital hepatic fibrosis. Although some features of these presented cases are similar to those found in Bardet-Biedl syndrome (BBS), the absence of some major criteria of BBS (polydactyly, renal abnormality, and hypogonadism) suggests that this may be a new syndrome. All three patients remain under follow-up in the departments of Gastroenterology, Ophthalmology, and Neurology at Hacettepe University.
Collapse
|
40
|
Xu M, Yang L, Wang F, Li H, Wang X, Wang W, Ge Z, Wang K, Zhao L, Li H, Li Y, Sui R, Chen R. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet 2015; 134:1069-78. [PMID: 26216056 PMCID: PMC4565766 DOI: 10.1007/s00439-015-1586-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are two genetically heterogeneous retinal degenerative disorders. Despite the identification of a number of genes involved in LCA and RP, the genetic etiology remains unknown in many patients. In this study, we aimed to identify novel disease-causing genes of LCA and RP. Retinal capture sequencing was initially performed to screen mutations in known disease-causing genes in different cohorts of LCA and RP patients. For patients with negative results, we performed whole exome sequencing and applied a series of variant filtering strategies. Sanger sequencing was done to validate candidate causative IFT140 variants. Exome sequencing data analysis led to the identification of IFT140 variants in multiple unrelated non-syndromic LCA and RP cases. All the variants are extremely rare and predicted to be damaging. All the variants passed Sanger validation and segregation tests provided that the family members' DNA was available. The results expand the phenotype spectrum of IFT140 mutations to non-syndromic retinal degeneration, thus extending our understanding of intraflagellar transport and primary cilia biology in the retina. This work also improves the molecular diagnosis of retinal degenerative disease.
Collapse
Affiliation(s)
- Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weichen Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongqi Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- The Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Alby C, Piquand K, Huber C, Megarbané A, Ichkou A, Legendre M, Pelluard F, Encha-Ravazi F, Abi-Tayeh G, Bessières B, El Chehadeh-Djebbar S, Laurent N, Faivre L, Sztriha L, Zombor M, Szabó H, Failler M, Garfa-Traore M, Bole C, Nitschké P, Nizon M, Elkhartoufi N, Clerget-Darpoux F, Munnich A, Lyonnet S, Vekemans M, Saunier S, Cormier-Daire V, Attié-Bitach T, Thomas S. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome. Am J Hum Genet 2015; 97:311-8. [PMID: 26166481 DOI: 10.1016/j.ajhg.2015.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022] Open
Abstract
KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies.
Collapse
Affiliation(s)
- Caroline Alby
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Kevin Piquand
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Céline Huber
- INSERM U1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - André Megarbané
- Medical Genetics Unit, Saint Joseph University, Rue de Damas, BP 175208, Mar Mikhaël, Beyrouth 1104, Lebanon
| | - Amale Ichkou
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marine Legendre
- Department of Genetics, Poitiers University Hospital, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Fanny Pelluard
- Unité de Pathologie Fœtoplacentaire, Groupe Hospitalier Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France
| | - Ferechté Encha-Ravazi
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Georges Abi-Tayeh
- Service de Gynécologie Obstétrique, Hôtel-Dieu de France, BP 166830, Achrafieh, Beyrouth 1100, Lebanon
| | - Bettina Bessières
- Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | | | - Nicole Laurent
- Génétique et Anomalies du Développement EA4271, Université de Bourgogne, 21000 Dijon, France
| | - Laurence Faivre
- Génétique et Anomalies du Développement EA4271, Université de Bourgogne, 21000 Dijon, France
| | - László Sztriha
- Department of Paediatrics, Faculty of Medicine, University of Szeged, Korányi fasor 14-15, 6725 Szeged, Hungary
| | - Melinda Zombor
- Department of Paediatrics, Faculty of Medicine, University of Szeged, Korányi fasor 14-15, 6725 Szeged, Hungary
| | - Hajnalka Szabó
- Department of Paediatrics, Faculty of Medicine, University of Szeged, Korányi fasor 14-15, 6725 Szeged, Hungary
| | - Marion Failler
- INSERM U1163, Laboratory of Inherited Kidney Diseases, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Meriem Garfa-Traore
- Cell Imaging Platform, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Christine Bole
- Genomic Core Facility, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, Paris Descartes University, Sorbonne Paris Cité, 75015 Paris, France
| | - Mathilde Nizon
- Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France; INSERM U1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Nadia Elkhartoufi
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Françoise Clerget-Darpoux
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Arnold Munnich
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Stanislas Lyonnet
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Michel Vekemans
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Sophie Saunier
- INSERM U1163, Laboratory of Inherited Kidney Diseases, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Valérie Cormier-Daire
- Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France; INSERM U1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France; Département de Génétique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Sophie Thomas
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, 75015 Paris, France.
| |
Collapse
|
42
|
Bachmann-Gagescu R, Dempsey JC, Phelps IG, O'Roak BJ, Knutzen DM, Rue TC, Ishak GE, Isabella CR, Gorden N, Adkins J, Boyle EA, de Lacy N, O'Day D, Alswaid A, Ramadevi A R, Lingappa L, Lourenço C, Martorell L, Garcia-Cazorla À, Ozyürek H, Haliloğlu G, Tuysuz B, Topçu M, Chance P, Parisi MA, Glass IA, Shendure J, Doherty D. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet 2015; 52:514-22. [PMID: 26092869 PMCID: PMC5082428 DOI: 10.1136/jmedgenet-2015-103087] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterised by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. METHODS We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next-generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion algorithm with an optimised score cut-off. RESULTS We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a 'pure JS' phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS subtypes. CONCLUSIONS This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes and enable gene-specific treatments in the future.
Collapse
Affiliation(s)
- R Bachmann-Gagescu
- Institute for Molecular Life Sciences and Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - J C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - I G Phelps
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - B J O'Roak
- Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - D M Knutzen
- Department of Oncology, Franciscan Health System, Tacoma, Washington, USA
| | - T C Rue
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - G E Ishak
- Department of Radiology, University of Washington, Seattle Children's Hospital, Seattle, Washington, USA
| | - C R Isabella
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - N Gorden
- Department of Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J Adkins
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - E A Boyle
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - N de Lacy
- Department of Psychiatry, University of Washington, Seattle, Washington, USA
| | - D O'Day
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - A Alswaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - L Lingappa
- Department of Child Neurology, Rainbow Children Hospital, Hyderabad, India
| | - C Lourenço
- Department of Neurosciences and Behavior Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - L Martorell
- Department of Genetica Molecular, Hospital Sant Joan de Deu, Barcelona, Spain
| | - À Garcia-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain
| | - H Ozyürek
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - G Haliloğlu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - B Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - M Topçu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - P Chance
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - M A Parisi
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - I A Glass
- Department of Pediatrics, University of Washington, Seattle, Washington, USA Seattle Children's Research Institute, Seattle, Washington, USA
| | - J Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - D Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
43
|
Roberson EC, Dowdle WE, Ozanturk A, Garcia-Gonzalo FR, Li C, Halbritter J, Elkhartoufi N, Porath JD, Cope H, Ashley-Koch A, Gregory S, Thomas S, Sayer JA, Saunier S, Otto EA, Katsanis N, Davis EE, Attié-Bitach T, Hildebrandt F, Leroux MR, Reiter JF. TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. ACTA ACUST UNITED AC 2015; 209:129-42. [PMID: 25869670 PMCID: PMC4395494 DOI: 10.1083/jcb.201411087] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
TMEM231, a functional component of the MKS complex at the ciliary transition zone, is mutated in orofaciodigital syndrome type 3 and Meckel syndrome. The Meckel syndrome (MKS) complex functions at the transition zone, located between the basal body and axoneme, to regulate the localization of ciliary membrane proteins. We investigated the role of Tmem231, a two-pass transmembrane protein, in MKS complex formation and function. Consistent with a role in transition zone function, mutation of mouse Tmem231 disrupts the localization of proteins including Arl13b and Inpp5e to cilia, resulting in phenotypes characteristic of MKS such as polydactyly and kidney cysts. Tmem231 and B9d1 are essential for each other and other complex components such as Mks1 to localize to the transition zone. As in mouse, the Caenorhabditis elegans orthologue of Tmem231 localizes to and controls transition zone formation and function, suggesting an evolutionarily conserved role for Tmem231. We identified TMEM231 mutations in orofaciodigital syndrome type 3 (OFD3) and MKS patients that compromise transition zone function. Thus, Tmem231 is critical for organizing the MKS complex and controlling ciliary composition, defects in which cause OFD3 and MKS.
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
| | - William E Dowdle
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Aysegul Ozanturk
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Nadia Elkhartoufi
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique/Hôpitaux de Paris, 75015 Paris, France
| | - Jonathan D Porath
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Heidi Cope
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Allison Ashley-Koch
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710 Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Simon Gregory
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Sophie Thomas
- Institut National de la Santé et de la Recherche Médicale UMR1163, 75015 Paris, France Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, England, UK Newcastle Hospitals National Health Service Foundation Trust, Newcastle upon Tyne NE7 7DN, England, UK
| | - Sophie Saunier
- Institut National de la Santé et de la Recherche Médicale UMR1163, 75015 Paris, France Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Erica E Davis
- Center for Human Disease Modeling, Department of Medicine, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 22710
| | - Tania Attié-Bitach
- Institut National de la Santé et de la Recherche Médicale UMR1163, 75015 Paris, France Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique/Hôpitaux de Paris, 75015 Paris, France
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
44
|
Aslan K, Külahçı Aslan E, Orhan A, Atalay MA. Meckel Gruber syndrome, A case report. Organogenesis 2015; 11:87-92. [PMID: 26037304 DOI: 10.1080/15476278.2015.1055431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION Meckel-Gruber Syndrome was first described by J R Meckel in 1822. It is an autosomal recessive disorder, and is caused by the failure of mesodermal induction. The typical triad of Meckel-Gruber Syndrome (MGS) involves meningo-encephalocele, polycystic kidneys and postaxial polydactyly. The worldwide incidence varies from 1 in 1.300 to 1 in 140.000 live births. CASE In this report, we present a case of MGS in which the diagnosis was made at 19 weeks of gestation based on ultrasonographic findings of the typical triad of the disease (encephalocele, polycystic kidneys, and polydactyly) These features were suggestive of the diagnosis of Meckel Gruber Syndrome (MGS). She had also placenta previa totalis. The patient was counselled regarding the lethal outcome of MGS. Unfortunately, the family did not approve the termination of pregnancy. At the 32nd week, she referred to hospital with complaints of vaginal bleeding and uterine contractions. An emergency cesarean section was perfomed due to plasental malposition. A 1380 gr, female fetus was delivered. First and 5th minute Apgar scores were 1 and 0, respectively. Consequently, the baby died after 45 minutes of neonatal resuscitation. CONCLUSION MGS is a lethal disorder. One cannot speak about survival of the fetus because of the pulmonary hypoplasia. The parents should be counseled about prognosis of the fetus and the outcome. Counselers should strictly give information about the recurrence risk for the next pregnancies.
Collapse
Affiliation(s)
- Kiper Aslan
- a Department of Obstetrics and Gynecology; Uludağ University School of Medicine; Görükle Kampüsü , Bursa , Görükle , Turkey
| | | | | | | |
Collapse
|
45
|
Zhang M, Cheng J, Liu A, Wang L, Xiong L, Chen M, Sun Y, Li J, Lu Y, Yuan H, Li Y, Lu Y. A missense mutation in TMEM67 causes Meckel-Gruber syndrome type 3 (MKS3): a family from China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5379-5386. [PMID: 26191240 PMCID: PMC4503111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive condition characterized by renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalocele), hepatic ductal dysplasia and cysts, and polydactyly. Genetic heterogeneity has been demonstrated at eleven loci, MKS1-11. Here, we present the clinical and molecular characteristics of a Chinese MKS3 family with occipital encephalocele and kidney enlargement. DNA sequencing of affected fetuses revealed a homozygous c.1645C>T substitution in exon 16 of TMEM67, leading to a p.R549C substitution in meckelin. The R549 residue is highly conserved across human, rat, mouse, zebrafish, chicken, wolf and platypus genomes. Hha I restriction analysis demonstrated that the c.1645C>T mutation was absent in 200 unrelated control chromosomes of Chinese background, supporting the hypothesis that it represents causative mutation, not rare polymorphism. Our data provide additional molecular and clinical information for establishing a better genotype-phenotype understanding of MKS.
Collapse
Affiliation(s)
- Manli Zhang
- Department of Obstetrics and Gynecology, Chinese PLA General HospitalBeijing 100853, China
| | - Jing Cheng
- Institute of Otolaryngology, Chinese PLA General HospitalBeijing 100853, China
| | - Aijun Liu
- Department of Pathology, Chinese PLA General HospitalBeijing 100853, China
| | - Longxia Wang
- Department of Ultrasound, Chinese PLA General HospitalBeijing 100853, China
| | - Lihua Xiong
- Department of Obstetrics and Gynecology, Chinese PLA General HospitalBeijing 100853, China
| | - Meixia Chen
- Department of Obstetrics and Gynecology, Chinese PLA General HospitalBeijing 100853, China
| | - Yi Sun
- Department of Otolaryngology, Wuhan General HospitalWuhan 430070, China
| | - Jianzhong Li
- Fuzhou General Hospital of Nanjing Command PLAFuzhou 350025, China
| | - Yu Lu
- Institute of Otolaryngology, Chinese PLA General HospitalBeijing 100853, China
| | - Huijun Yuan
- Institute of Otolaryngology, Chinese PLA General HospitalBeijing 100853, China
| | - Yali Li
- Department of Obstetrics and Gynecology, Chinese PLA General HospitalBeijing 100853, China
| | - Yanping Lu
- Department of Obstetrics and Gynecology, Chinese PLA General HospitalBeijing 100853, China
| |
Collapse
|
46
|
Thomas S, Cantagrel V, Mariani L, Serre V, Lee JE, Elkhartoufi N, de Lonlay P, Desguerre I, Munnich A, Boddaert N, Lyonnet S, Vekemans M, Lisgo SN, Caspary T, Gleeson J, Attié-Bitach T. Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. Eur J Hum Genet 2015; 23:621-7. [PMID: 25138100 PMCID: PMC4402632 DOI: 10.1038/ejhg.2014.156] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 12/29/2022] Open
Abstract
Joubert syndrome (JS) is a genetically heterogeneous autosomal recessive ciliopathy with 22 genes implicated to date, including a small, ciliary GTPase, ARL13B. ARL13B is required for cilia formation in vertebrates. JS patients display multiple symptoms characterized by ataxia due to the cerebellar vermis hypoplasia, and that can also include ocular abnormalities, renal cysts, liver fibrosis or polydactyly. These symptoms are shared with other ciliopathies, some of which display additional phenotypes, such as obesity. Here we identified a novel homozygous missense variant in ARL13B/JBTS8 in a JS patient who displayed retinal defects and obesity. We demonstrate the variant disrupts ARL13B function, as its expression did not rescue the mutant phenotype either in Arl13b(scorpion) zebrafish or in Arl13b(hennin) mouse embryonic fibroblasts, while the wild-type ARL13B did. Finally, we show that ARL13B is localized within the primary cilia of neonatal mouse hypothalamic neurons consistent with the known link between hypothalamic ciliary function and obesity. Thus our data identify a novel ARL13B variant that causes JS and retinopathy and suggest an extension of the phenotypic spectrum of ARL13B mutations to obesity.
Collapse
Affiliation(s)
- Sophie Thomas
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Vincent Cantagrel
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Laboratory of Neurogenetics, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Laura Mariani
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Valérie Serre
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- UMR7592CNRS, Jacques Monod Institute, Paris Diderot University, Paris, France
| | - Ji-Eun Lee
- Laboratory of Neurogenetics, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nadia Elkhartoufi
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Pascale de Lonlay
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Isabelle Desguerre
- Service de neurométabolisme, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Arnold Munnich
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nathalie Boddaert
- Radiologie Pédiatrique et INSERM U-797, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Stanislas Lyonnet
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Michel Vekemans
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Steven N Lisgo
- The MRC-Wellcome Trust Human Developmental Biology Resource (HDBR), Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph Gleeson
- Laboratory of Neurogenetics, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Tania Attié-Bitach
- INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
47
|
Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014; 30:1011-23. [DOI: 10.1051/medsci/20143011016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Ben-Salem S, Al-Shamsi AM, Gleeson JG, Ali BR, Al-Gazali L. Mutation spectrum of Joubert syndrome and related disorders among Arabs. Hum Genome Var 2014; 1:14020. [PMID: 27081510 PMCID: PMC4785524 DOI: 10.1038/hgv.2014.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 02/08/2023] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive (AR), neurological condition characterized by dysgenesis of the cerebellar vermis with the radiological hallmark of molar tooth sign, oculomotor apraxia, recurrent hyperventilation and intellectual disability. Most cases display a broad spectrum of additional features, including polydactyly, retinal dystrophy and renal abnormalities, which define different subtypes of JS-related disorders (JSRDs). To date, 23 genes have been shown to cause JSRDs, and although most of the identified genes encode proteins involved in cilia function or assembly, the molecular mechanisms associated with ciliary signaling remain enigmatic. Arab populations are ethnically diverse with high levels of consanguinity (20–60%) and a high prevalence of AR disorders. In addition, isolated communities with very-high levels of inbreeding and founder mutations are common. In this article, we review the 70 families reported thus far with JS and JSRDs that have been studied at the molecular level from all the Arabic countries and compile the mutations found. We show that JS and the related JSRDs are genetically heterogeneous in Arabs, with 53 mutations in 15 genes. Thirteen of these mutations are potentially founder mutations for the region.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - Aisha M Al-Shamsi
- Department of Paediatrics, Tawam Hospital , Al-Ain, Al-Ain, United Arab Emirates
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, University of California , San Diego, CA, USA
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
49
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
50
|
Barker AR, Renzaglia KS, Fry K, Dawe HR. Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks. BMC Genomics 2014; 15:531. [PMID: 24969356 PMCID: PMC4092220 DOI: 10.1186/1471-2164-15-531] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Cilia are critical for diverse functions, from motility to signal transduction, and ciliary dysfunction causes inherited diseases termed ciliopathies. Several ciliopathy proteins influence developmental signalling and aberrant signalling explains many ciliopathy phenotypes. Ciliary compartmentalisation is essential for function, and the transition zone (TZ), found at the proximal end of the cilium, has recently emerged as a key player in regulating this process. Ciliary compartmentalisation is linked to two protein complexes, the MKS and NPHP complexes, at the TZ that consist largely of ciliopathy proteins, leading to the hypothesis that ciliopathy proteins affect signalling by regulating ciliary content. However, there is no consensus on complex composition, formation, or the contribution of each component. Results Using bioinformatics, we examined the evolutionary patterns of TZ complex proteins across the extant eukaryotic supergroups, in both ciliated and non-ciliated organisms. We show that TZ complex proteins are restricted to the proteomes of ciliated organisms and identify a core conserved group (TMEM67, CC2D2A, B9D1, B9D2, AHI1 and a single TCTN, plus perhaps MKS1) which are present in >50% of all ciliate/flagellate organisms analysed in each supergroup. The smaller NPHP complex apparently evolved later than the larger MKS complex; this result may explain why RPGRIP1L, which forms the linker between the two complexes, is not one of the core conserved proteins. We also uncovered a striking correlation between lack of TZ proteins in non-seed land plants and loss of TZ-specific ciliary Y-links that link microtubule doublets to the membrane, consistent with the interpretation that these proteins are structural components of Y-links, or regulators of their formation. Conclusions This bioinformatic analysis represents the first systematic analysis of the cohort of TZ complex proteins across eukaryotic evolution. Given the near-ubiquity of only 6 proteins across ciliated eukaryotes, we propose that the MKS complex represents a dynamic complex built around these 6 proteins and implicated in Y-link formation and ciliary permeability. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-531) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|