1
|
Potel H, Niatou Singa FS, Cipolletta C, Neba Fuh T, Bardino G, Konyal E, Strampelli P, Henschel P, Masi S. Lethal combats in the forest among wild western gorillas. iScience 2024; 27:109437. [PMID: 38523787 PMCID: PMC10960106 DOI: 10.1016/j.isci.2024.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Lethal intergroup encounters occur in many species because of sexual selection. While documented in mountain gorillas, they are absent in western gorillas as, instead, it is predicted by their higher feeding (frugivory) and mate competition (single-vs. multi-male groups). We investigate whether the injuries on three dead silverbacks and one adult female from four groups of western gorillas in the Central African Republic, resulted from interactions with gorillas or leopards. We identified two distinct injury patterns caused by gorillas (isolated lacerations, round wounds) and leopards (punctures clustered on head/neck) by analyzing injuries caused by mountain gorillas and leopards to gorillas and non-gorilla species, respectively. The western gorilla injury pattern is similar to that of mountain gorillas suggesting that lethal encounters occur, albeit infrequently, as predicted by sexual selection in a one-male society. While sexual dimorphism and polygynous sociality favored the evolution of violent encounters, multiple males in groups may influence their frequency.
Collapse
Affiliation(s)
- Hugo Potel
- Ecoanthropologie, Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, University Paris Diderot, Sorbonne Paris Cité, Musée de l’Homme, Paris, France
| | | | - Chloé Cipolletta
- Dzanga-Sangha Protected Areas, World Wide Fund for Nature, Bangui, Central African Republic
| | - Terence Neba Fuh
- Dzanga-Sangha Protected Areas, World Wide Fund for Nature, Bangui, Central African Republic
| | - Giulia Bardino
- Ecoanthropologie, Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, University Paris Diderot, Sorbonne Paris Cité, Musée de l’Homme, Paris, France
- “La Sapienza” University, Department of Environmental and Evolutionary Biology, Rome, Italy
| | - Emmanuel Konyal
- Dzanga-Sangha Protected Areas, World Wide Fund for Nature, Bangui, Central African Republic
| | | | | | - Shelly Masi
- Ecoanthropologie, Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, University Paris Diderot, Sorbonne Paris Cité, Musée de l’Homme, Paris, France
| |
Collapse
|
2
|
Bowmer A, Ssembatya J, Okot M, Bagyenyi R, Rubanga SV, Kalema-Zikusoka G. Determining the acceptability of a novel One Health vaccine for Rift Valley Fever prior to phase II/III clinical trials in Uganda. One Health 2023; 16:100470. [DOI: 10.1016/j.onehlt.2022.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
|
3
|
Zimmerman DM, Hardgrove E, Sullivan S, Mitchell S, Kambale E, Nziza J, Ssebide B, Shalukoma C, Cranfield M, Pandit PS, Troth SP, Callicrate T, Miller P, Gilardi K, Lacy RC. Projecting the impact of an ebola virus outbreak on endangered mountain gorillas. Sci Rep 2023; 13:5675. [PMID: 37029156 PMCID: PMC10082040 DOI: 10.1038/s41598-023-32432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Ebola virus is highly lethal for great apes. Estimated mortality rates up to 98% have reduced the global gorilla population by approximately one-third. As mountain gorillas (Gorilla beringei beringei) are endangered, with just over 1000 individuals remaining in the world, an outbreak could decimate the population. Simulation modeling was used to evaluate the potential impact of an Ebola virus outbreak on the mountain gorilla population of the Virunga Massif. Findings indicate that estimated contact rates among gorilla groups are high enough to allow rapid spread of Ebola, with less than 20% of the population projected to survive at 100 days post-infection of just one gorilla. Despite increasing survival with vaccination, no modeled vaccination strategy prevented widespread infection. However, the model projected that survival rates greater than 50% could be achieved by vaccinating at least half the habituated gorillas within 3 weeks of the first infectious individual.
Collapse
Affiliation(s)
- Dawn M Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT, USA.
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA.
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA.
| | - Emily Hardgrove
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Sara Sullivan
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| | - Stephanie Mitchell
- Center for Species Survival, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC, USA
| | | | | | | | - Chantal Shalukoma
- Institut Congolais Pour La Conservation de Nature, Kinshasa, Democratic Republic of Congo
| | | | - Pranav S Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | | | - Taylor Callicrate
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| | - Philip Miller
- IUCN SSC Conservation Planning Specialist Group US, Apple Valley, MN, USA
| | - Kirsten Gilardi
- Gorilla Doctors (MGVP, Inc.), Davis, CA, USA
- School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, University of California, Davis, CA, USA
| | - Robert C Lacy
- Species Conservation Toolkit Initiative, Chicago Zoological Society, Brookfield, IL, USA
| |
Collapse
|
4
|
Sanz CM, Strait D, Eyana Ayina C, Massamba JM, Ebombi TF, Ndassoba Kialiema S, Ngoteni D, Mbebouti G, Koni Boue DR, Brogan S, Funkhouser JA, Morgan DB. Interspecific interactions between sympatric apes. iScience 2022; 25:105059. [PMID: 36147956 PMCID: PMC9485909 DOI: 10.1016/j.isci.2022.105059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Gorillas reside in sympatry with chimpanzees over the majority of their range. Compiling all known reports of overlap between apes and augmenting these with observations made over twenty years in the Ndoki Forest, we examine the potential predation-related, foraging, and social contexts of interspecific associations between gorillas and chimpanzees. We reveal a greater diversity of interactions than previously recognized, which range from play to lethal aggression. Furthermore, there are indications that interactions between ape species may serve multiple functions. Interactions between gorillas and chimpanzees were most common during foraging activities, but they also overlapped in several other contexts. From a social perspective, we provide evidence of consistent relationships between particular chimpanzee-gorilla dyads. In addition to providing new insights into extant primate community dynamics, the diversity of interactions between apes points to an entirely new field of study in early human origins as early hominins also likely had opportunities to associate. First evidence of social relationships between chimpanzees and gorillas is reported Social ties between chimpanzees and gorillas persisted over years and across contexts Ape species engaged in a wide range of interactions, from play to aggression Coexisting great apes may inform us about interactions between some early hominins
Collapse
Affiliation(s)
- Crickette M Sanz
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA.,Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - David Strait
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, Gauteng, South Africa
| | - Crepin Eyana Ayina
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Thierry Fabrice Ebombi
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Delon Ngoteni
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Sean Brogan
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jake A Funkhouser
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - David B Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL 60614, USA
| |
Collapse
|
5
|
Southern LM, Deschner T, Pika S. Lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on gorillas (Gorilla gorilla gorilla) in the wild. Sci Rep 2021; 11:14673. [PMID: 34282175 PMCID: PMC8290027 DOI: 10.1038/s41598-021-93829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Intraspecies violence, including lethal interactions, is a relatively common phenomenon in mammals. Contrarily, interspecies violence has mainly been investigated in the context of predation and received most research attention in carnivores. Here, we provide the first information of two lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on another hominid species, western lowland gorillas (Gorilla gorilla gorilla), that occur sympatrically in the Loango National Park in Gabon. In both events, the chimpanzees significantly outnumbered the gorillas and victims were infant gorillas. We discuss these observations in light of the two most widely accepted theoretical explanations for interspecific lethal violence, predation and competition, and combinations of the two-intraguild predation and interspecific killing. Given these events meet conditions proposed to trigger coalitional killing of neighbours in chimpanzees, we also discuss them in light of chimpanzees' intraspecific interactions and territorial nature. Our findings may spur further research into the complexity of interspecies interactions. In addition, they may aid in combining field data from extant models with the Pliocene hominid fossil record to better understand behavioural adaptations and interspecific killing in the hominin lineage.
Collapse
Affiliation(s)
- Lara M Southern
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Artilleriestrasse 34, 49076, Osnabrück, Germany.,Max Planck Institute for Evolutionary Anthropology, Interim Group Primatology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Interim Group Primatology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Simone Pika
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Artilleriestrasse 34, 49076, Osnabrück, Germany.
| |
Collapse
|
6
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
7
|
Factors Influencing Density and Distribution of Great Ape Nests in the Absence of Human Activities. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
van der Hoek Y, Binyinyi E, Ngobobo U, Stoinski TS, Caillaud D. Daily Travel Distances of Unhabituated Grauer's Gorillas (Gorilla beringei graueri) in a Low Elevation Forest. Folia Primatol (Basel) 2021; 92:112-125. [PMID: 33756464 DOI: 10.1159/000514626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
To accurately determine the space use of animals, we need to follow animal movements over prolonged periods, which is especially challenging for the critically endangered Grauer's gorillas (Gorilla beringei graueri) in eastern Democratic Republic of the Congo (DRC). As a consequence, we know little about Grauer's gorillas, particularly from the lower elevational parts of their range. Between 2016 and 2018, we tracked unhabituated Grauer's gorillas in lowland forests (500-1,000 m a.s.l.), at the community-managed Nkuba Conservation Area in Nord Kivu (DRC) to provide estimates of daily travel distances (DTD), daily displacement distances (DDD), and the linearity of recorded paths expressed as the Linearity Index (LI): DDD/DTD. We found an average DTD of ∼1.3 km (range 0.05-5.0 km), with temporal variation among monthly averages; specifically, an increase in travel distance over the June-August dry season resulting in peak travel distances at the beginning of the September-December wet season. Daily displacements showed similar temporal variation, which resulted in a lack of obvious temporal patterns in LI. We conclude that the movement patterns of Grauer's gorillas in lowland forests, which are characterized by larger DTD than those of Grauer's gorillas that inhabit highland habitats, show similarity to travel distances of other predominantly frugivorous gorillas. Moreover, the observed temporal patterns in space use may be tentatively linked to temporal changes in fruit availability or consumption. These observations have consequences for our understanding of the ecological role that Grauer's gorillas play and provide baseline data to estimate current and future distributions, abundances, and carrying capacities of this highly threatened animal.
Collapse
Affiliation(s)
| | | | - Urbain Ngobobo
- The Dian Fossey Gorilla Fund International, Musanze, Rwanda
| | | | - Damien Caillaud
- Department of Anthropology, University of California, Davis, California, USA
| |
Collapse
|
9
|
Lester JD, Vigilant L, Gratton P, McCarthy MS, Barratt CD, Dieguez P, Agbor A, Álvarez-Varona P, Angedakin S, Ayimisin EA, Bailey E, Bessone M, Brazzola G, Chancellor R, Cohen H, Danquah E, Deschner T, Egbe VE, Eno-Nku M, Goedmakers A, Granjon AC, Head J, Hedwig D, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kehoe L, Kienast I, Langergraber KE, Lapuente J, Laudisoit A, Lee K, Marrocoli S, Mihindou V, Morgan D, Muhanguzi G, Neil E, Nicholl S, Orbell C, Ormsby LJ, Pacheco L, Piel A, Robbins MM, Rundus A, Sanz C, Sciaky L, Siaka AM, Städele V, Stewart F, Tagg N, Ton E, van Schijndel J, Vyalengerera MK, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Zuberbuehler K, Boesch C, Kühl HS, Arandjelovic M. Recent genetic connectivity and clinal variation in chimpanzees. Commun Biol 2021; 4:283. [PMID: 33674780 PMCID: PMC7935964 DOI: 10.1038/s42003-021-01806-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Much like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated.
Collapse
Affiliation(s)
- Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paolo Gratton
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Maureen S McCarthy
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paula Álvarez-Varona
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | | | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Jessica Junker
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Ammie K Kalan
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany
| | - Ivonne Kienast
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, Tempe, AZ, USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Côte d'Ivoire
| | - Anne Laudisoit
- Ecohealth Alliance, New York, NY, USA
- University of Antwerp, Campus Drie Eiken, lokaal D.133, Universiteitsplein 1 - 2610, Antwerpen, Belgium
| | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sergio Marrocoli
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Vianet Mihindou
- Agence National des Parcs Nationaux (ANPN) Batterie 4, Libreville, Gabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement, Chargé du Plan Climat, des Objectifs de Développement Durable et du Plan d'Affectation des Terres, Libreville, Gabon
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Liliana Pacheco
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Alex Piel
- Department of Anthropology, University College London, London, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Aaron Rundus
- West Chester University, Department of Psychology, West Chester, PA, USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Alhaji M Siaka
- National Protected Area Authority, Freetown, Sierra Leone
| | - Veronika Städele
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Fiona Stewart
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Els Ton
- Chimbo Foundation, Amsterdam, Netherlands
| | | | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Pan Verus Project Outamba-Kilimi National Park, Freetown, Sierra Leone
| | - Klaus Zuberbuehler
- Budongo Conservation Field Station, Masindi, Uganda
- Université de Neuchâtel, Institut de Biologie, Neuchâtel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Hjalmar S Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| |
Collapse
|
10
|
Narat V, Amato KR, Ranger N, Salmona M, Mercier-Delarue S, Rupp S, Ambata P, Njouom R, Simon F, Giles-Vernick T, LeGoff J. A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Sci Rep 2020; 10:19107. [PMID: 33154444 PMCID: PMC7645722 DOI: 10.1038/s41598-020-75847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Comparisons of mammalian gut microbiota across different environmental conditions shed light on the diversity and composition of gut bacteriome and suggest consequences for human and animal health. Gut bacteriome comparisons across different environments diverge in their results, showing no generalizable patterns linking habitat and dietary degradation with bacterial diversity. The challenge in drawing general conclusions from such studies lies in the broad terms describing diverse habitats ("wild", "captive", "pristine"). We conducted 16S ribosomal RNA gene sequencing to characterize intestinal microbiota of free-ranging sympatric chimpanzees and gorillas in southeastern Cameroon and sympatric chimpanzees and gorillas in a European zoo. We conducted participant-observation and semi-structured interviews among people living near these great apes to understand better their feeding habits and habitats. Unexpectedly, bacterial diversity (ASV, Faith PD and Shannon) was higher among zoo gorillas than among those in the Cameroonian forest, but zoo and Cameroonian chimpanzees showed no difference. Phylogeny was a strong driver of species-specific microbial composition. Surprisingly, zoo gorilla microbiota more closely resembled that of zoo chimpanzees than of Cameroonian gorillas. Zoo living conditions and dietary similarities may explain these results. We encourage multidisciplinary approach integrating environmental sampling and anthropological evaluation to characterize better diverse environmental conditions of such investigations.
Collapse
Affiliation(s)
- Victor Narat
- Eco-anthropologie, UMR7206 CNRS/MNHN/Université de Paris, Site du Musée de L'Homme, Paris, France
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, USA
- Humans and the Microbiome, CIFAR, Toronto, Canada
| | - Noémie Ranger
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Maud Salmona
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | | | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, New York, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaounde, Cameroon
| | | | - François Simon
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Tamara Giles-Vernick
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France.
- Humans and the Microbiome, CIFAR, Toronto, Canada.
| | - Jérôme LeGoff
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France.
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| |
Collapse
|
11
|
Ryu H, Hill DA, Sakamaki T, Garai C, Tokuyama N, Furuichi T. Occurrence and transmission of flu-like illness among neighboring bonobo groups at Wamba. Primates 2020; 61:775-784. [PMID: 32562165 DOI: 10.1007/s10329-020-00832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases constitute one of the major threats to African great apes. Bonobos (Pan paniscus) may be particularly vulnerable to the transmission of infectious diseases because of their cohesive grouping and frequent social and sexual interactions between groups. Here we report two cases of a flu-like illness and possible transmission of the illness among neighboring wild bonobo groups at Wamba, DR Congo. The first flu-like outbreak started in the PE group on July 28, 2013, 2 days after they had encounters with the BI and PW groups. All PE members, except for one infant, subsequently developed flu-like symptoms, including coughing and running nose. The second flu-like outbreak occurred in the E1 group on October 14, 2013, after E1 had encountered the PE group and the two groups stayed together from October 7 to 11. Eleven out of the 15 observed party members developed symptoms over the next 4 days. The pathogens underlying the two outbreaks may have been related as two temporary immigrant females, who had previously shown symptoms while in the PE group, stayed briefly in the E1 group during the second outbreak, but did not show any symptoms.
Collapse
Affiliation(s)
- Heungjin Ryu
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan. .,Ulsan National Institute of Science and Technology, UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - David A Hill
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Tetsuya Sakamaki
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,The Antwerp Zoo Foundation of the VZW Royal Zoological Society Antwerp, Koningin Astridplein 26, 2018, Antwerpen, Belgium
| | - Cintia Garai
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,Wildlife Messengers, 5645 Hard Rock Place, Richmond, VA, 23230, USA
| | - Nahoko Tokuyama
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan.,Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Takeshi Furuichi
- Primate Research Institute of Kyoto University, Kanrin 41-2 Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
12
|
Cooksey K, Sanz C, Ebombi TF, Massamba JM, Teberd P, Magema E, Abea G, Peralejo JSO, Kienast I, Stephens C, Morgan D. Socioecological Factors Influencing Intergroup Encounters in Western Lowland Gorillas (Gorilla gorilla gorilla). INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00147-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
O'Donnell K, Marzi A. The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Rev Vaccines 2020; 19:267-277. [PMID: 32129120 DOI: 10.1080/14760584.2020.1738225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: For over 40 years, ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates across western and central Africa. In December 2013, an unprecedented Ebola virus (EBOV) epidemic began in West Africa and resulted in the largest outbreak to date. The past and current epidemics in West Africa and the Democratic Republic of the Congo has focused attention on the potential vaccine platforms developed over the past 20 years.Areas covered: This review summarizes the extraordinary progress using a variety of vaccination platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, incorporating the primary antigen of EBOV, the glycoprotein. These vaccine constructs have shown varying degrees of protective efficacy in the 'gold-standard' nonhuman primate model for EBOV infections and were immunogenic in human clinical trials.Expert commentary: A number of these vaccine platforms have moved into phase III clinical trials over the past years and with the recent approval of the first EBOV vaccine in the European Union and the USA there is a strong potential to prevent future outbreaks/epidemics of EBOV infections on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Kyle O'Donnell
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
14
|
Weber A, Kalema-Zikusoka G, Stevens NJ. Lack of Rule-Adherence During Mountain Gorilla Tourism Encounters in Bwindi Impenetrable National Park, Uganda, Places Gorillas at Risk From Human Disease. Front Public Health 2020; 8:1. [PMID: 32117846 PMCID: PMC7031198 DOI: 10.3389/fpubh.2020.00001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mountain gorillas (Gorilla beringei beringei) are an endangered primate species, with ~43% of the 1,063 individuals that remain on the planet today residing in Bwindi Impenetrable National Park (BINP) in southwestern Uganda. These primates are at the heart of a growing tourism industry that has incentivized their continued protection, but close proximity between humans and gorillas during such encounters presents well-documented risks for disease transmission. The Uganda Wildlife Authority (UWA) has developed rules to help protect the health of the gorillas, limiting each habituated gorilla group to a single 60 min visit each day by a group of no more than 8 tourists, and emphasizing that humans maintain a >7 m distance from gorillas at all times. A number of studies have documented that not all tour groups respect these rules. This project assesses rule-adherence during gorilla tourism encounters at BINP using both observational and survey-based data collected during the tourism high season between May and August, 2014. Observational data from 53 treks reveal that groups of 1-11 tourists engaged in gorilla viewing encounters between 46 and 98 min in duration. Although 96% of pre-trek briefings conducted by park rangers emphasized the need to maintain >7 m human-gorilla spacing, the 7 m distance rule was violated in over 98% (52 out of 53) of the tours examined in this study. Observational data were collected at 2 min intervals during gorilla-viewing encounters, documenting the nearest distance between any tourist and a gorilla (n = 1,604), of which 1,094 observations (68.2%) took place at a distance less than or equal to 7 m. Importantly, the 7 m rule was violated in visits to all of the gorilla groups habituated during the time of the study. In 224 observations (~14%, per 1,604 total), human-gorilla spacing was 3 m or less. Survey data (n = 243) revealed promising opportunities to improve tourist understanding of and adherence to park rules, with 73.6% of respondents indicating that they would be willing to utilize a precautionary measure of wearing a face-mask during encounters to protect gorilla health.
Collapse
Affiliation(s)
- Annalisa Weber
- Applied Research and Evaluation, Division of Global Health Protection, Center for Disease Control, Atlanta, GA, United States
- Environmental Studies Program, Voinovich School for Leadership and Public Affairs, Ohio University, Athens, OH, United States
| | | | - Nancy J. Stevens
- Environmental Studies Program, Voinovich School for Leadership and Public Affairs, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
15
|
Schmidt JP, Maher S, Drake JM, Huang T, Farrell MJ, Han BA. Ecological indicators of mammal exposure to Ebolavirus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180337. [PMID: 31401967 PMCID: PMC6711296 DOI: 10.1098/rstb.2018.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much of the basic ecology of Ebolavirus remains unresolved despite accumulating disease outbreaks, viral strains and evidence of animal hosts. Because human Ebolavirus epidemics have been linked to contact with wild mammals other than bats, traits shared by species that have been infected by Ebolavirus and their phylogenetic distribution could suggest ecological mechanisms contributing to human Ebolavirus spillovers. We compiled data on Ebolavirus exposure in mammals and corresponding data on life-history traits, movement, and diet, and used boosted regression trees (BRT) to identify predictors of exposure and infection for 119 species (hereafter hosts). Mapping the phylogenetic distribution of presumptive Ebolavirus hosts reveals that they are scattered across several distinct mammal clades, but concentrated among Old World fruit bats, primates and artiodactyls. While sampling effort was the most important predictor, explaining nearly as much of the variation among hosts as traits, BRT models distinguished hosts from all other species with greater than 97% accuracy, and revealed probable Ebolavirus hosts as large-bodied, frugivorous, and with slow life histories. Provisionally, results suggest that some insectivorous bat genera, Old World monkeys and forest antelopes should receive priority in Ebolavirus survey efforts. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- John Paul Schmidt
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Sean Maher
- Department of Biology, Missouri State University, 901 S. National Ave, Springfield, MO 65897, USA
| | - John M Drake
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Tao Huang
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - Maxwell J Farrell
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| |
Collapse
|
16
|
Murthy S, O'Brien K, Agbor A, Angedakin S, Arandjelovic M, Ayimisin EA, Bailey E, Bergl RA, Brazzola G, Dieguez P, Eno-Nku M, Eshuis H, Fruth B, Gillespie TR, Ginath Y, Gray M, Herbinger I, Jones S, Kehoe L, Kühl H, Kujirakwinja D, Lee K, Madinda NF, Mitamba G, Muhindo E, Nishuli R, Ormsby LJ, Petrzelkova KJ, Plumptre AJ, Robbins MM, Sommer V, Ter Heegde M, Todd A, Tokunda R, Wessling E, Jarvis MA, Leendertz FH, Ehlers B, Calvignac-Spencer S. Cytomegalovirus distribution and evolution in hominines. Virus Evol 2019; 5:vez015. [PMID: 31384482 PMCID: PMC6671425 DOI: 10.1093/ve/vez015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.
Collapse
Affiliation(s)
- Sripriya Murthy
- Division 12 "Measles, Mumps, Rubella and Viruses Affecting Immune-Compromised Patients" Robert Koch Institute, Berlin, Germany
| | - Kathryn O'Brien
- School of Biomedical and Healthcare Sciences, University of Plymouth, Devon, UK
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,African Parks Network, Lonehill, Republic of South Africa
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Henk Eshuis
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Barbara Fruth
- Faculty of Science, School of Natural Sciences and hPsychology, Liverpool John Moores University, Liverpool, UK.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology, and Evolutionary Biology, Emory University, Atlanta, USA
| | - Yisa Ginath
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Maryke Gray
- International Gorilla Conservation Programme, Kigali, Rwanda.,Batavia Coast Maritime Institute, Geraldton, WA, Australia
| | | | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Royal Holloway, University of London, Egham, UK
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany.,Department of Biology, University of Victoria, Victoria, Canada.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | - Hjalmar Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | | | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,School of Human Evolution and Social Change, Arizona State University, Tempe, USA
| | - Nadège F Madinda
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | | | | | - Radar Nishuli
- Réserve de Faune à Okapis, Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of the Congo
| | - Lucy J Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.,Liberec Zoo, Liberec, Czech Republic
| | - Andrew J Plumptre
- Wildlife Conservation Society, NY, USA.,KBA Secretariat, c/o BirdLife International, Cambridge, UK.,Zoology Department, Conservation Science Group, University of Cambridge, Cambridge, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Volker Sommer
- Gashaka Primate Project, Nigeria c/o Department of Anthropology, University College London, London, UK
| | - Martijn Ter Heegde
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Angelique Todd
- Dzanga Sangha Protected Areas, WWF Central African Republic, Bangui, Central African Republic
| | - Raymond Tokunda
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic
| | - Erin Wessling
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Dzanga Sangha Protected Areas, WWF Central African Republic, Bangui, Central African Republic
| | - Michael A Jarvis
- School of Biomedical and Healthcare Sciences, University of Plymouth, Devon, UK
| | - Fabian H Leendertz
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella and Viruses Affecting Immune-Compromised Patients" Robert Koch Institute, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany.,Viral Evolution, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
17
|
Herrera J, Nunn CL. Behavioural ecology and infectious disease: implications for conservation of biodiversity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180054. [PMID: 31352881 DOI: 10.1098/rstb.2018.0054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Behaviour underpins interactions among conspecifics and between species, with consequences for the transmission of disease-causing parasites. Because many parasites lead to declines in population size and increased risk of extinction for threatened species, understanding the link between host behaviour and disease transmission is particularly important for conservation management. Here, we consider the intersection of behaviour, ecology and parasite transmission, broadly encompassing micro- and macroparasites. We focus on behaviours that have direct impacts on transmission, as well as the behaviours that result from infection. Given the important role of parasites in host survival and reproduction, the effects of behaviour on parasitism can scale up to population-level processes, thus affecting species conservation. Understanding how conservation and infectious disease control strategies actually affect transmission potential can therefore often only be understood through a behavioural lens. We highlight how behavioural perspectives of disease ecology apply to conservation by reviewing the different ways that behavioural ecology influences parasite transmission and conservation goals. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- James Herrera
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA.,Duke Global Health Institute, Duke University, 103 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
18
|
Morrison RE, Groenenberg M, Breuer T, Manguette ML, Walsh PD. Hierarchical social modularity in gorillas. Proc Biol Sci 2019; 286:20190681. [PMID: 31288709 PMCID: PMC6650716 DOI: 10.1098/rspb.2019.0681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022] Open
Abstract
Modern human societies show hierarchical social modularity (HSM) in which lower-order social units like nuclear families are nested inside increasingly larger units. It has been argued that this HSM evolved independently and after the chimpanzee-human split due to greater recognition of, and bonding between, dispersed kin. We used network modularity analysis and hierarchical clustering to quantify community structure within two western lowland gorilla populations. In both communities, we detected two hierarchically nested tiers of social structure which have not been previously quantified. Both tiers map closely to human social tiers. Genetic data from one population suggested that, as in humans, social unit membership was kin structured. The sizes of gorilla social units also showed the kind of consistent scaling ratio between social tiers observed in humans, baboons, toothed whales, and elephants. These results indicate that the hierarchical social organization observed in humans may have evolved far earlier than previously asserted and may not be a product of the social brain evolution unique to the hominin lineage.
Collapse
Affiliation(s)
- Robin E. Morrison
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Milou Groenenberg
- Mbeli Bai Study, Wildlife Conservation Society - Congo Program, B.P. 14537 Brazzaville, Republic of Congo
| | - Thomas Breuer
- Mbeli Bai Study, Wildlife Conservation Society - Congo Program, B.P. 14537 Brazzaville, Republic of Congo
- World Wide Fund for Nature, Reinhardtstrasse 18, 10117 Berlin, Germany
| | - Marie L. Manguette
- Mbeli Bai Study, Wildlife Conservation Society - Congo Program, B.P. 14537 Brazzaville, Republic of Congo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Peter D. Walsh
- Apes Incorporated, 5301 Westbard Circle, Bethesda, MD 20816, USA
| |
Collapse
|
19
|
Porter A, Eckardt W, Vecellio V, Guschanski K, Niehoff PP, Ngobobo-As-Ibungu U, Nishuli Pekeyake R, Stoinski T, Caillaud D. Behavioral responses around conspecific corpses in adult eastern gorillas ( Gorilla beringei spp.). PeerJ 2019; 7:e6655. [PMID: 30972250 PMCID: PMC6450378 DOI: 10.7717/peerj.6655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/20/2019] [Indexed: 11/20/2022] Open
Abstract
Humans were once considered unique in having a concept of death but a growing number of observations of animal responses to dying and dead conspecifics suggests otherwise. Complex arrays of behaviors have been described ranging from corpse removal and burial among social insects to quiet attendance and caregiving among elephants and primates. Less frequently described, however, are behavioral responses of individuals from different age/sex classes or social position toward the death of conspecifics. We describe behavioral responses of mountain gorillas (Gorilla beringei beringei) to the deaths of a dominant silverback and a dominant adult female from the same social group in Volcanoes National Park in Rwanda and the responses of Grauer’s gorillas (Gorilla b. graueri) to the corpse of an extra-group silverback in Kahuzi-Biega National Park, Democratic Republic of Congo. In gorillas, interactions between groups or with a lone silverback often result in avoidance or aggression. We predicted that: (i) more individuals should interact with the corpses of same-group members than with the corpse of the extra-group silverback; (ii) adult females with infants should avoid the corpse of the extra-group silverback; and (iii) in the mountain gorilla cases, individuals that shared close social relationships with the dead individual should spend more time with the corpse than other individuals in the group. We used a combination of detailed qualitative reports, photos, and videos to describe all occurrences of affiliative/investigative and agonistic behaviors observed at the corpses. We observed similar responses toward the corpses of group and extra-group individuals. Animals in all three cases showed a variety of affiliative/investigative and agonistic behaviors directed to the corpses. Animals of all age/sex classes interacted with the corpses in affiliative/investigative ways but there was a notable absence of all adult females at the corpse of the extra-group silverback. In all three cases, we observed only silverbacks and blackbacks being agonistic around and/or toward the corpses. In the mountain gorilla cases, the individuals who spent the most time with the corpses were animals who shared close social relationships with the deceased. We emphasize the similarity in the behavioral responses around the corpses of group and extra-group individuals, and suggest that the behavioral responses were influenced in part by close social relationships between the deceased and certain group members and by a general curiosity about death. We further discuss the implications close interactions with corpses have for disease transmission within and between gorilla social groups.
Collapse
Affiliation(s)
- Amy Porter
- The Dian Fossey Gorilla Fund International, Atlanta, GA, United States of America
| | - Winnie Eckardt
- The Dian Fossey Gorilla Fund International, Atlanta, GA, United States of America
| | - Veronica Vecellio
- The Dian Fossey Gorilla Fund International, Atlanta, GA, United States of America
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala Universitet, Uppsala, Sweden
| | - Peter Philip Niehoff
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala Universitet, Uppsala, Sweden
| | | | - Radar Nishuli Pekeyake
- Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of Congo
| | - Tara Stoinski
- The Dian Fossey Gorilla Fund International, Atlanta, GA, United States of America
| | - Damien Caillaud
- The Dian Fossey Gorilla Fund International, Atlanta, GA, United States of America.,Department of Anthropology, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
20
|
Forcina G, Vallet D, Le Gouar PJ, Bernardo-Madrid R, Illera G, Molina-Vacas G, Dréano S, Revilla E, Rodríguez-Teijeiro JD, Ménard N, Bermejo M, Vilà C. From groups to communities in western lowland gorillas. Proc Biol Sci 2019; 286:20182019. [PMID: 30963928 PMCID: PMC6408619 DOI: 10.1098/rspb.2018.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/14/2019] [Indexed: 11/12/2022] Open
Abstract
Social networks are the result of interactions between individuals at different temporal scales. Thus, sporadic intergroup encounters and individual forays play a central role in defining the dynamics of populations in social species. We assessed the rate of intergroup encounters for three western lowland gorilla ( Gorilla gorilla gorilla) groups with daily observations over 5 years, and non-invasively genotyped a larger population over four months. Both approaches revealed a social system much more dynamic than anticipated, with non-aggressive intergroup encounters that involved social play by immature individuals, exchanges of members between groups likely modulated by kinship, and absence of infanticide evidenced by infants not fathered by the silverback of the group where they were found. This resulted in a community composed of groups that interacted frequently and not-aggressively, contrasting with the more fragmented and aggressive mountain gorilla ( G. beringei beringei) societies. Such extended sociality can promote the sharing of behavioural and cultural traits, but might also increase the susceptibility of western lowland gorillas to infectious diseases that have decimated their populations in recent times.
Collapse
Affiliation(s)
- Giovanni Forcina
- Departments of Integrative Ecology and Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Dominique Vallet
- UMR 6553 - EcoBio (Ecosystèmes, Biodiversité, Évolution), CNRS, Univ Rennes, F-35000 Rennes, France
| | - Pascaline J. Le Gouar
- UMR 6553 - EcoBio (Ecosystèmes, Biodiversité, Évolution), CNRS, Univ Rennes, F-35000 Rennes, France
| | - Rubén Bernardo-Madrid
- Departments of Integrative Ecology and Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
| | - Germán Illera
- Odzala-Lossi Conservation/Research Program, SPAC Foundation gGmbH, Berlin, Germany
| | - Guillem Molina-Vacas
- Odzala-Lossi Conservation/Research Program, SPAC Foundation gGmbH, Berlin, Germany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Stéphane Dréano
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Eloy Revilla
- Departments of Integrative Ecology and Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
| | | | - Nelly Ménard
- UMR 6553 - EcoBio (Ecosystèmes, Biodiversité, Évolution), CNRS, Univ Rennes, F-35000 Rennes, France
| | - Magdalena Bermejo
- Odzala-Lossi Conservation/Research Program, SPAC Foundation gGmbH, Berlin, Germany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Carles Vilà
- Departments of Integrative Ecology and Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
| |
Collapse
|
21
|
Breuer T, Manguette M, Groenenberg M. Gorilla
Gorilla
spp conservation – from zoos to the field and back: examples from the Mbeli Bai Study. ACTA ACUST UNITED AC 2018. [DOI: 10.1111/izy.12181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T. Breuer
- Global Conservation Program Wildlife Conservation Society 2300 Southern Boulevard Bronx New York 10460 USA
| | - M. Manguette
- Department of Primatology Max Planck Institute for Evolutionary Anthropology Deutscher Platz 6 04103 Leipzig Germany
- Mbeli Bai Study Nouabalé‐Ndoki National Park Wildlife Conservation Society B.P. 14537 Brazzaville Congo
| | - M. Groenenberg
- Mbeli Bai Study Nouabalé‐Ndoki National Park Wildlife Conservation Society B.P. 14537 Brazzaville Congo
| |
Collapse
|
22
|
Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci Rep 2017; 7:14291. [PMID: 29085050 PMCID: PMC5662765 DOI: 10.1038/s41598-017-14727-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5–>19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.
Collapse
|
23
|
Pilosof S, Greenbaum G, Krasnov BR, Zelnik YR. Asymmetric disease dynamics in multihost interconnected networks. J Theor Biol 2017; 430:237-244. [PMID: 28735858 DOI: 10.1016/j.jtbi.2017.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022]
Abstract
Epidemic spread in single-host systems strongly depends on the population's transmission network. However, little is known regarding the spread of epidemics across networks representing populations of multiple hosts. We explored cross-species transmission in a multilayer network where layers represent populations of two distinct hosts, and disease can spread across intralayer (within-host) and interlayer (between-host) edges. We developed an analytic framework for the SIR epidemic model to examine the effect of (i) source of infection and (ii) between-host asymmetry in infection probabilities, on disease risk. We measured risk as outbreak probability and outbreak size in a focal host, represented by one network layer. Numeric simulations were used to validate the analytic formulations. We found that outbreak probability is determined by a complex interaction between source of infection and between-host infection probabilities, whereas outbreak size is mainly affected by the non-focal host to focal host infection probability. Hence, inter-specific asymmetry in infection probabilities shapes disease dynamics in multihost networks. These results highlight the importance of considering multiple measures of disease risk and advance our understanding of disease spread in multihost systems. The study provides a flexible way to model disease dynamics in multiple hosts while considering contact heterogeneity within and between species. We strongly encourage empirical studies that include information on both cross-species infection rates and network structure of multiple hosts. Such studies are necessary to corroborate our theoretical results and to improve our understanding of multihost epidemiology.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, 1103 E 57 st, Chicago, 60637, USA.
| | - Gili Greenbaum
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel; Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Yuval R Zelnik
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| |
Collapse
|
24
|
Leendertz SAJ, Wich SA, Ancrenaz M, Bergl RA, Gonder MK, Humle T, Leendertz FH. Ebola in great apes - current knowledge, possibilities for vaccination, and implications for conservation and human health. Mamm Rev 2016. [DOI: 10.1111/mam.12082] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siv Aina J. Leendertz
- Great Apes Survival Partnership (GRASP); United Nations Environment Programme; P.O. Box 30552 Nairobi Kenya
- Research Group Epidemiology of Highly Pathogenic Microorganisms; Robert Koch-Institute; Seestrasse 10 13353 Berlin Germany
| | - Serge A. Wich
- Liverpool John Moore's University; 70 Mount Pleasant; Liverpool L3 5UA Merseyside UK
| | - Marc Ancrenaz
- Borneo Futures; Taman Kinanty, Lorong Angsa 12, House 61D 88300 Kota Kinabalu Sabah Malaysia
| | - Richard A. Bergl
- North Carolina Zoo; 4401 Zoo Parkway Asheboro North Carolina USA
| | - Mary K. Gonder
- Department of Biology; Drexel University; 3245 Chestnut Street Philadelphia PA 19104 USA
| | - Tatyana Humle
- Durrell Institute of Conservation and Ecology; School of Anthropology and Conservation; University of Kent; Canterbury CT2 7NR UK
| | - Fabian H. Leendertz
- Research Group Epidemiology of Highly Pathogenic Microorganisms; Robert Koch-Institute; Seestrasse 10 13353 Berlin Germany
| |
Collapse
|
25
|
Pigott DM, Millear AI, Earl L, Morozoff C, Han BA, Shearer FM, Weiss DJ, Brady OJ, Kraemer MU, Moyes CL, Bhatt S, Gething PW, Golding N, Hay SI. Updates to the zoonotic niche map of Ebola virus disease in Africa. eLife 2016; 5. [PMID: 27414263 PMCID: PMC4945152 DOI: 10.7554/elife.16412] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers. DOI:http://dx.doi.org/10.7554/eLife.16412.001
Collapse
Affiliation(s)
- David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Anoushka I Millear
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States
| | - Lucas Earl
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States
| | - Chloe Morozoff
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, New York, United States
| | - Freya M Shearer
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Daniel J Weiss
- Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Oliver J Brady
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Moritz Ug Kraemer
- Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Catherine L Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Samir Bhatt
- Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter W Gething
- Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nick Golding
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom.,Department of BioSciences, University of Melbourne, Parkville, Australia
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| |
Collapse
|
26
|
Hoppe E, Pauly M, Gillespie TR, Akoua-Koffi C, Hohmann G, Fruth B, Karhemere S, Madinda NF, Mugisha L, Muyembe JJ, Todd A, Petrzelkova KJ, Gray M, Robbins M, Bergl RA, Wittig RM, Zuberbühler K, Boesch C, Schubert G, Leendertz FH, Ehlers B, Calvignac-Spencer S. Multiple Cross-Species Transmission Events of Human Adenoviruses (HAdV) during Hominine Evolution. Mol Biol Evol 2015; 32:2072-84. [PMID: 25862141 DOI: 10.1093/molbev/msv090] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human adenoviruses (HAdV; species HAdV-A to -G) are highly prevalent in the human population, and represent an important cause of morbidity and, to a lesser extent, mortality. Recent studies have identified close relatives of these viruses in African great apes, suggesting that some HAdV may be of zoonotic origin. We analyzed more than 800 fecal samples from wild African great apes and humans to further investigate the evolutionary history and zoonotic potential of hominine HAdV. HAdV-B and -E were frequently detected in wild gorillas (55%) and chimpanzees (25%), respectively. Bayesian ancestral host reconstruction under discrete diffusion models supported a gorilla and chimpanzee origin for these viral species. Host switches were relatively rare along HAdV evolution, with about ten events recorded in 4.5 My. Despite presumably rare direct contact between sympatric populations of the two species, transmission events from gorillas to chimpanzees were observed, suggesting that habitat and dietary overlap may lead to fecal-oral cross-hominine transmission of HAdV. Finally, we determined that two independent HAdV-B transmission events to humans occurred more than 100,000 years ago. We conclude that HAdV-B circulating in humans are of zoonotic origin and have probably affected global human health for most of our species lifetime.
Collapse
Affiliation(s)
- Eileen Hoppe
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany
| | - Maude Pauly
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Chantal Akoua-Koffi
- Centre de Recherche pour le Développement, Université Alassane Ouattara de Bouake, Bouake, Côte d'Ivoire
| | - Gottfried Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Fruth
- Division of Neurobiology, Ludwig-Maximilians-University, Munich, Germany Centre for Research and Conservation, Royal Zooological Society of Antwerp, Antwerp, Belgium
| | - Stomy Karhemere
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Nadège F Madinda
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Angelique Todd
- World Wildlife Foundation (WWF), Dzanga Sangha Protected Areas, Bangui, Central African Republic
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic Liberec Zoo, Liberec, Czech Republic
| | - Maryke Gray
- International Gorilla Conservation Program, Kigali, Rwanda
| | - Martha Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Klaus Zuberbühler
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland Budongo Conservation Field Station, Masindi, Uganda School of Psychology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Grit Schubert
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Fabian H Leendertz
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
27
|
Pilosof S, Morand S, Krasnov BR, Nunn CL. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS One 2015; 10:e0117909. [PMID: 25748947 PMCID: PMC4352066 DOI: 10.1371/journal.pone.0117909] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/05/2015] [Indexed: 12/24/2022] Open
Abstract
Epidemiological networks are commonly used to explore dynamics of parasite transmission among individuals in a population of a given host species. However, many parasites infect multiple host species, and thus multi-host networks may offer a better framework for investigating parasite dynamics. We investigated the factors that influence parasite sharing--and thus potential transmission pathways--among rodent hosts in Southeast Asia. We focused on differences between networks of a single host species and networks that involve multiple host species. In host-parasite networks, modularity (the extent to which the network is divided into subgroups of rodents that interact with similar parasites) was higher in the multi-species than in the single-species networks. This suggests that phylogeny affects patterns of parasite sharing, which was confirmed in analyses showing that it predicted affiliation of individuals to modules. We then constructed "potential transmission networks" based on the host-parasite networks, in which edges depict the similarity between a pair of individuals in the parasites they share. The centrality of individuals in these networks differed between multi- and single-species networks, with species identity and individual characteristics influencing their position in the networks. Simulations further revealed that parasite dynamics differed between multi- and single-species networks. We conclude that multi-host networks based on parasite sharing can provide new insights into the potential for transmission among hosts in an ecological community. In addition, the factors that determine the nature of parasite sharing (i.e. structure of the host-parasite network) may impact transmission patterns.
Collapse
Affiliation(s)
- Shai Pilosof
- Mitrani Department of Desert Ecology, Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- * E-mail:
| | - Serge Morand
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Unité de Recherche Animal et Gestion Intégrée des Risques, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
- Centre d'Infectiologie Christophe Mérieux du Laos (CICML), Ministry of Health of Lao PDR, Vientiane, Lao PDR
| | - Boris R. Krasnov
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Charles L. Nunn
- Department of Evolutionary Anthropology & Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
28
|
Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc Natl Acad Sci U S A 2015; 112:E1343-52. [PMID: 25733890 DOI: 10.1073/pnas.1502022112] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1, the cause of AIDS, is composed of four phylogenetic lineages, groups M, N, O, and P, each of which resulted from an independent cross-species transmission event of simian immunodeficiency viruses (SIVs) infecting African apes. Although groups M and N have been traced to geographically distinct chimpanzee communities in southern Cameroon, the reservoirs of groups O and P remain unknown. Here, we screened fecal samples from western lowland (n = 2,611), eastern lowland (n = 103), and mountain (n = 218) gorillas for gorilla SIV (SIVgor) antibodies and nucleic acids. Despite testing wild troops throughout southern Cameroon (n = 14), northern Gabon (n = 16), the Democratic Republic of Congo (n = 2), and Uganda (n = 1), SIVgor was identified at only four sites in southern Cameroon, with prevalences ranging from 0.8-22%. Amplification of partial and full-length SIVgor sequences revealed extensive genetic diversity, but all SIVgor strains were derived from a single lineage within the chimpanzee SIV (SIVcpz) radiation. Two fully sequenced gorilla viruses from southwestern Cameroon were very closely related to, and likely represent the source population of, HIV-1 group P. Most of the genome of a third SIVgor strain, from central Cameroon, was very closely related to HIV-1 group O, again pointing to gorillas as the immediate source. Functional analyses identified the cytidine deaminase APOBEC3G as a barrier for chimpanzee-to-gorilla, but not gorilla-to-human, virus transmission. These data indicate that HIV-1 group O, which spreads epidemically in west central Africa and is estimated to have infected around 100,000 people, originated by cross-species transmission from western lowland gorillas.
Collapse
|
29
|
Barnett T, Seeley J, Levin J, Katongole J. Hope: a new approach to understanding structural factors in HIV acquisition. Glob Public Health 2015; 10:417-37. [PMID: 25648679 DOI: 10.1080/17441692.2015.1007154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This paper presents the first empirical results of a long-term project exploring the use of hope as a concept summarising people's experience of the social, economic and cultural world they inhabit. The work has its roots in attempts to understand socio-economic aspects of HIV/AIDS epidemiology through recourse to the term 'structural drivers'. In this paper, we recognise the distinguished contribution made by that body of work but adopt a different theoretical approach, one based on the idea of emergent social properties. This is an idea derived from the Durkheim's notion of a 'social current'. One such emergent property is hope and its potential use and applicability as an epidemiological variable is described. The variable is measured using the Snyder scale developed by the late Rick Snyder for quite other purposes in the USA. We use data from the long-standing UK MRC/UVRI General Cohort Study in Uganda together with a smaller study of some fishing communities. The results show that the Snyder scale (1) does measure a real variable, (2) does mean something to Ugandan rural populations and (3) can be used to explore some known risk factors for HIV acquisition.
Collapse
Affiliation(s)
- Tony Barnett
- a Department of Global Health and Development , London School of Hygiene and Tropical Medicine , London , UK
| | | | | | | |
Collapse
|
30
|
Capps B, Lederman Z. One Health, Vaccines and Ebola: The Opportunities for Shared Benefits. JOURNAL OF AGRICULTURAL & ENVIRONMENTAL ETHICS 2015; 28:1011-1032. [PMID: 32214867 PMCID: PMC7088325 DOI: 10.1007/s10806-015-9574-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 05/05/2023]
Abstract
The 2013 Ebola virus outbreak in West Africa, as of writing, is declining in reported human cases and mortalities. The resulting devastation caused highlights how health systems, in particular in West Africa, and in terms of global pandemic planning, are ill prepared to react to zoonotic pathogens. In this paper we propose One Health as a strategy to prevent zoonotic outbreaks as a shared goal: that human and Great Ape vaccine trials could benefit both species. Only recently have two phase 2/3 Ebola human vaccine trials been started in West Africa. This paper argues for a conceptual change in pandemic preparedness. We first discuss the ethics of One Health. Next, we focus on the current Ebola outbreak and defines its victims. Third, we present the notion of a 'shared benefit' approach, grounded in One Health, and argue for the vaccination of wild apes in order to protect both apes and humans. We believe that a creation of such inter-species immunity is an exemplar of One Health, and that it is worth pursuing as a coextensive public health approach.
Collapse
Affiliation(s)
- Benjamin Capps
- Department of Bioethics, Faculty of Medicine, Dalhousie University, 5849 University Avenue, Room C-312, CRC Bldg, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Zohar Lederman
- Sourasky Medical Center, Tel Aviv, Israel
- Centre for Biomedical Ethics, Loo Long Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, Singapore
| |
Collapse
|
31
|
Olival KJ, Hayman DTS. Filoviruses in bats: current knowledge and future directions. Viruses 2014; 6:1759-88. [PMID: 24747773 PMCID: PMC4014719 DOI: 10.3390/v6041759] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Filoviruses, including Ebolavirus and Marburgvirus, pose significant threats to public health and species conservation by causing hemorrhagic fever outbreaks with high mortality rates. Since the first outbreak in 1967, their origins, natural history, and ecology remained elusive until recent studies linked them through molecular, serological, and virological studies to bats. We review the ecology, epidemiology, and natural history of these systems, drawing on examples from other bat-borne zoonoses, and highlight key areas for future research. We compare and contrast results from ecological and virological studies of bats and filoviruses with those of other systems. We also highlight how advanced methods, such as more recent serological assays, can be interlinked with flexible statistical methods and experimental studies to inform the field studies necessary to understand filovirus persistence in wildlife populations and cross-species transmission leading to outbreaks. We highlight the need for a more unified, global surveillance strategy for filoviruses in wildlife, and advocate for more integrated, multi-disciplinary approaches to understand dynamics in bat populations to ultimately mitigate or prevent potentially devastating disease outbreaks.
Collapse
Affiliation(s)
- Kevin J Olival
- EcoHealth Alliance, 460 W. 34th Street, New York, NY 10001, USA.
| | - David T S Hayman
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
32
|
Nunn CL, Thrall PH, Kappeler PM. Shared resources and disease dynamics in spatially structured populations. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J Virol 2013; 87:4952-64. [PMID: 23408633 DOI: 10.1128/jvi.03361-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
Collapse
|
34
|
Wood JLN, Leach M, Waldman L, Macgregor H, Fooks AR, Jones KE, Restif O, Dechmann D, Hayman DTS, Baker KS, Peel AJ, Kamins AO, Fahr J, Ntiamoa-Baidu Y, Suu-Ire R, Breiman RF, Epstein JH, Field HE, Cunningham AA. A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study. Philos Trans R Soc Lond B Biol Sci 2013; 367:2881-92. [PMID: 22966143 PMCID: PMC3427567 DOI: 10.1098/rstb.2012.0228] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.
Collapse
Affiliation(s)
- James L N Wood
- Disease Dynamics Unit, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inogwabini BI, Leader-Williams N. Effects of epidemic diseases on the distribution of bonobos. PLoS One 2012; 7:e51112. [PMID: 23251431 PMCID: PMC3521019 DOI: 10.1371/journal.pone.0051112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
This study examined how outbreaks and the occurrence of Anthrax, Ebola, Monkeypox and Trypanosomiasis may differentially affect the distribution of bonobos (Pan paniscus). Using a combination of mapping, Jaccard overlapping coefficients and binary regressions, the study determined how each disease correlated with the extent of occurrence of, and the areas occupied by, bonobos. Anthrax has only been reported to occur outside the range of bonobos and so was not considered further. Ebola, Monkeypox and Trypanosomiasis were each reported within the area of occupancy of bonobos. Their respective overlap coefficients were: J = 0.10; Q(α = 0.05) = 2.00 (odds ratios = 0.0001, 95% CI = 0.0057; Z = -19.41, significant) for Ebola; J = 1.00; Q(α = 0.05) = 24.0 (odds ratios = 1.504, 95% CI = 0.5066-2.6122) for Monkeypox; and, J = 0.33; Q(α = 0.05) = 11.5 (Z = 1.14, significant) for Trypanosomiasis. There were significant relationships for the presence and absence of Monkeypox and Trypanosomiasis and the known extent of occurrence of bonobos, based on the equations y = 0.2368Ln(x)+0.8006 (R(2) = 0.9772) and y = -0.2942Ln(x)+0.7155 (R(2) = 0.698), respectively. The positive relationship suggested that bonobos tolerated the presence of Monkeypox. In contrast, the significant negative coefficient suggested that bonobos were absent in areas where Trypanosomiasis is endemic. Our results suggest that large rivers may have prevented Ebola from spreading into the range of bonobos. Meanwhile, Trypanosomiasis has been recorded among humans within the area of occurrence of bonobos, and appears the most important disease in shaping the area of occupancy of bonobos within their overall extent of occupancy.
Collapse
Affiliation(s)
- Bila-Isia Inogwabini
- Durrell Institute for Conservation and Ecology, University of Kent, Canterbury, United Kingdom.
| | | |
Collapse
|
36
|
Masi S, Chauffour S, Bain O, Todd A, Guillot J, Krief S. Seasonal effects on great ape health: a case study of wild chimpanzees and Western gorillas. PLoS One 2012; 7:e49805. [PMID: 23227152 PMCID: PMC3515584 DOI: 10.1371/journal.pone.0049805] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/16/2012] [Indexed: 01/02/2023] Open
Abstract
Among factors affecting animal health, environmental influences may directly or indirectly impact host nutritional condition, fecundity, and their degree of parasitism. Our closest relatives, the great apes, are all endangered and particularly sensitive to infectious diseases. Both chimpanzees and western gorillas experience large seasonal variations in fruit availability but only western gorillas accordingly show large changes in their degree of frugivory. The aim of this study is to investigate and compare factors affecting health (through records of clinical signs, urine, and faecal samples) of habituated wild ape populations: a community (N = 46 individuals) of chimpanzees (Pan troglodytes) in Kanyawara, Kibale National Park (Uganda), and a western gorilla (G. gorilla) group (N = 13) in Bai Hokou in the Dzanga-Ndoki National Park (Central African Republic). Ape health monitoring was carried out in the wet and dry seasons (chimpanzees: July-December 2006; gorillas: April-July 2008 and December 2008-February 2009). Compared to chimpanzees, western gorillas were shown to have marginally greater parasite diversity, higher prevalence and intensity of both parasite and urine infections, and lower occurrence of diarrhea and wounds. Parasite infections (prevalence and load), but not abnormal urine parameters, were significantly higher during the dry season of the study period for western gorillas, who thus appeared more affected by the large temporal changes in the environment in comparison to chimpanzees. Infant gorillas were the most susceptible among all the age/sex classes (of both apes) having much more intense infections and urine blood concentrations, again during the dry season. Long term studies are needed to confirm the influence of seasonal factors on health and parasitism of these great apes. However, this study suggest climate change and forest fragmentation leading to potentially larger seasonal fluctuations of the environment may affect patterns of ape parasitism and further exacerbate health impacts on great ape populations that live in highly seasonal habitats.
Collapse
Affiliation(s)
- Shelly Masi
- Muséum National d'Histoire Naturelle, Département Hommes, Natures, Sociétés UMR 7206 Éco-Anthropologie et Ethnobiologie, Paris, France.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
It is now well established that simian immunodeficiency viruses (SIVs) from chimpanzees (SIVcpz) and gorillas (SIVgor) from west Central Africa are at the origin of HIV-1/AIDS. Apes are also infected with other retroviruses, notably simian T-cell lymphotropic viruses (STLVs) and simian foamy viruses (SFVs), that can be transmitted to humans. We discuss the actual knowledge on SIV, STLV and SFV infections in chimpanzees, gorillas, and bonobos. We especially elaborate on how the recent development of non-invasive methods has allowed us to identify the reservoirs of the HIV-1 ancestors in chimpanzees and gorillas, and increased our knowledge of the natural history of SIV infections in chimpanzees. Multiple cross-species events with retroviruses from apes to humans have occurred, but only one transmission of SIVcpz from chimpanzees in south-eastern Cameroon spread worldwide, and is responsible for the actual HIV pandemic. Frequent SFV transmissions have been recently reported, but no human-to-human transmission has been documented yet. Because humans are still in contact with apes, identification of pathogens in wild ape populations can signal which pathogens may be cause risk for humans, and allow the development of serological and molecular assays with which to detect transmissions to humans. Finally, non-invasive sampling also allows the study of the impact of retroviruses and other pathogens on the health and survival of endangered species such as chimpanzees, gorillas, and bonobos.
Collapse
Affiliation(s)
- M Peeters
- UMI 233, TransVIHMI, Institut de Recherche pour le Développement, Montpellier, France.
| | | |
Collapse
|
38
|
Masi S, Gustafsson E, Saint Jalme M, Narat V, Todd A, Bomsel MC, Krief S. Unusual feeding behavior in wild great apes, a window to understand origins of self-medication in humans: role of sociality and physiology on learning process. Physiol Behav 2011; 105:337-49. [PMID: 21888922 DOI: 10.1016/j.physbeh.2011.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
Abstract
Certain toxic plants are beneficial for health if small amounts are ingested infrequently and in a specific context of illness. Among our closest living relatives, chimpanzees are found to consume plants with pharmacological properties. Providing insight on the origins of human self-medication, this study investigates the role social systems and physiology (namely gut specialization) play on learning mechanisms involved in the consumption of unusual and potentially bioactive foods by two great ape species. We collected data from a community of 41-44 wild chimpanzees in Uganda (11 months, 2008), and a group of 11-13 wild western gorillas in Central African Republic (10 months, 2008-2009). During feeding, we recorded food consumed, its availability, and social interactions (including observers watching conspecifics and the observers' subsequent activity). Unusual food consumption in chimpanzees was twice higher than in gorillas. Additionally chimpanzees relied more on social information with vertical knowledge transmission on unusual foods by continually acquiring information during their life through mostly observing the fittest (pre-senescent) adults. In contrast, in gorillas observational learning primarily occurred between related immatures, showing instead the importance of horizontal knowledge transmission. As chimpanzees' guts are physiologically less specialized than gorillas (more capable of detoxifying harmful compounds), unusual-food consumption may be more risky for chimpanzees and linked to reasons other than nutrition (like self-medication). Our results show that differences in sociality and physiology between the two species may influence mechanisms that discriminate between plants for nutrition and plants with potential therapeutic dietary components. We conclude that self-medication may have appeared in our ancestors in association with high social tolerance and lack of herbivorous gut specialization.
Collapse
Affiliation(s)
- Shelly Masi
- Muséum national d'histoire naturelle, Département Hommes, Natures, Sociétés UMR 7206 Éco-anthropologie et Ethnobiologie, CP 135, 43 rue Buffon, 75 005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pratt WD, Wang D, Nichols DK, Luo M, Woraratanadharm J, Dye JM, Holman DH, Dong JY. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:572-81. [PMID: 20181765 PMCID: PMC2849326 DOI: 10.1128/cvi.00467-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/18/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022]
Abstract
Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.
Collapse
Affiliation(s)
- William D Pratt
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO. A meta-analysis of resource pulse–consumer interactions. ECOL MONOGR 2010. [DOI: 10.1890/08-1996.1] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Le Gouar PJ, Vallet D, David L, Bermejo M, Gatti S, Levréro F, Petit EJ, Ménard N. How Ebola impacts genetics of Western lowland gorilla populations. PLoS One 2009; 4:e8375. [PMID: 20020045 PMCID: PMC2791222 DOI: 10.1371/journal.pone.0008375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. Methodology/Principal Findings We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Conclusions/Significance Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.
Collapse
|
42
|
Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J Virol 2009; 84:1464-76. [PMID: 19906908 DOI: 10.1128/jvi.02129-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimpanzees and gorillas are the only nonhuman primates known to harbor viruses closely related to HIV-1. Phylogenetic analyses showed that gorillas acquired the simian immunodeficiency virus SIVgor from chimpanzees, and viruses from the SIVcpz/SIVgor lineage have been transmitted to humans on at least four occasions, leading to HIV-1 groups M, N, O, and P. To determine the geographic distribution, prevalence, and species association of SIVgor, we conducted a comprehensive molecular epidemiological survey of wild gorillas in Central Africa. Gorilla fecal samples were collected in the range of western lowland gorillas (n = 2,367) and eastern Grauer gorillas (n = 183) and tested for SIVgor antibodies and nucleic acids. SIVgor antibody-positive samples were identified at 2 sites in Cameroon, with no evidence of infection at 19 other sites, including 3 in the range of the Eastern gorillas. In Cameroon, based on DNA and microsatellite analyses of a subset of samples, we estimated the prevalence of SIVgor to be 1.6% (range, 0% to 4.6%), which is significantly lower than the prevalence of SIVcpzPtt in chimpanzees (5.9%; range, 0% to 32%). All newly identified SIVgor strains formed a monophyletic lineage within the SIVcpz radiation, closely related to HIV-1 groups O and P, and clustered according to their field site of origin. At one site, there was evidence for intergroup transmission and a high intragroup prevalence. These isolated hot spots of SIVgor-infected gorilla communities could serve as a source for human infection. The overall low prevalence and sporadic distribution of SIVgor could suggest a decline of SIVgor in wild populations, but it cannot be excluded that SIVgor is still more prevalent in other parts of the geographical range of gorillas.
Collapse
|
43
|
Takehisa J, Kraus MH, Ayouba A, Bailes E, Van Heuverswyn F, Decker JM, Li Y, Rudicell RS, Learn GH, Neel C, Ngole EM, Shaw GM, Peeters M, Sharp PM, Hahn BH. Origin and biology of simian immunodeficiency virus in wild-living western gorillas. J Virol 2009; 83:1635-48. [PMID: 19073717 PMCID: PMC2643789 DOI: 10.1128/jvi.02311-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/02/2008] [Indexed: 01/17/2023] Open
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are infected with a simian immunodeficiency virus (SIVgor) that is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively) in west central Africa. Although existing data suggest a chimpanzee origin for SIVgor, a paucity of available sequences has precluded definitive conclusions. Here, we report the molecular characterization of one partial (BQ664) and three full-length (CP684, CP2135, and CP2139) SIVgor genomes amplified from fecal RNAs of wild-living gorillas at two field sites in Cameroon. Phylogenetic analyses showed that all SIVgor strains clustered together, forming a monophyletic lineage throughout their genomes. Interestingly, the closest relatives of SIVgor were not SIVcpzPtt strains from west central African chimpanzees (Pan troglodytes troglodytes) but human viruses belonging to HIV-1 group O. In trees derived from most genomic regions, SIVgor and HIV-1 group O formed a sister clade to the SIVcpzPtt lineage. However, in a tree derived from 5' pol sequences ( approximately 900 bp), SIVgor and HIV-1 group O fell within the SIVcpzPtt radiation. The latter was due to two SIVcpzPtt strains that contained mosaic pol sequences, pointing to the existence of a divergent SIVcpzPtt lineage that gave rise to SIVgor and HIV-1 group O. Gorillas appear to have acquired this lineage at least 100 to 200 years ago. To examine the biological properties of SIVgor, we synthesized a full-length provirus from fecal consensus sequences. Transfection of the resulting clone (CP2139.287) into 293T cells yielded infectious virus that replicated efficiently in both human and chimpanzee CD4(+) T cells and used CCR5 as the coreceptor for viral entry. Together, these results provide strong evidence that P. t. troglodytes apes were the source of SIVgor. These same apes may also have spawned the group O epidemic; however, the possibility that gorillas served as an intermediary host cannot be excluded.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|