1
|
Hutchings AJ, Hambrecht B, Veh A, Giridhar NJ, Zare A, Angerer C, Ohnesorge T, Schenke M, Selvaraj BT, Chandran S, Sterneckert J, Petri S, Seeger B, Briese M, Stigloher C, Bischler T, Hermann A, Damme M, Sendtner M, Lüningschrör P. Plekhg5 controls the unconventional secretion of Sod1 by presynaptic secretory autophagy. Nat Commun 2024; 15:8622. [PMID: 39366938 PMCID: PMC11452647 DOI: 10.1038/s41467-024-52875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Increasing evidence suggests an essential function for autophagy in unconventional protein secretion (UPS). However, despite its relevance for the secretion of aggregate-prone proteins, the mechanisms of secretory autophagy in neurons have remained elusive. Here we show that the lower motoneuron disease-associated guanine exchange factor Plekhg5 drives the UPS of Sod1. Mechanistically, Sod1 is sequestered into autophagosomal carriers, which subsequently fuse with secretory lysosomal-related organelles (LROs). Exocytosis of LROs to release Sod1 into the extracellular milieu requires the activation of the small GTPase Rab26 by Plekhg5. Deletion of Plekhg5 in mice leads to the accumulation of Sod1 in LROs at swollen presynaptic sites. A reduced secretion of toxic ALS-linked SOD1G93A following deletion of Plekhg5 in SOD1G93A mice accelerated disease onset while prolonging survival due to an attenuated microglia activation. Using human iPSC-derived motoneurons we show that reduced levels of PLEKHG5 cause an impaired secretion of ALS-linked SOD1. Our findings highlight an unexpected pathophysiological mechanism that converges two motoneuron disease-associated proteins into a common pathway.
Collapse
Affiliation(s)
- Amy-Jayne Hutchings
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bita Hambrecht
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Neha Jadhav Giridhar
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christina Angerer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorben Ohnesorge
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maren Schenke
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, USA
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080, Würzburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section Albrecht-Kossel, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Popov IK, Tao J, Chang C. The RhoGEF protein Plekhg5 self-associates via its PH domain to regulate apical cell constriction. Mol Biol Cell 2024; 35:ar134. [PMID: 39196644 PMCID: PMC11481697 DOI: 10.1091/mbc.e24-04-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/30/2024] Open
Abstract
RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene plekhg5 controls apical constriction of bottle cells at the blastopore lip during Xenopus gastrulation, but the detailed mechanism of plekhg5 action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.
Collapse
Affiliation(s)
- Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
3
|
Ye Y, Dai L, Gu H, Yang L, Xu Z, Li Z. The causal relationship between immune cells and diabetic retinopathy: a Mendelian randomization study. Front Immunol 2024; 15:1381002. [PMID: 39290701 PMCID: PMC11406504 DOI: 10.3389/fimmu.2024.1381002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose This article explored the causal relationship between immune cells and diabetic retinopathy (DR) using single nucleotide polymorphisms (SNPs) as an instrumental variable and Mendelian randomization (MR). Methods Statistical data were collected from a publicly available genome-wide association study (GWAS), and SNPs that were significantly associated with immune cells were used as instrumental variables (IVs). Inverse variance weighted (IVW) and MR-Egger regression were used for MR analysis. A sensitivity analysis was used to test the heterogeneity, horizontal pleiotropy, and stability of the results. Results We investigated the causal relationship between 731 immune cells and DR risk. All the GWAS data were obtained from European populations and from men and women. The IVW analysis revealed that HLA DR on CD14+ CD16- monocytes, HLA DR on CD14+ monocytes, HLA DR on CD33-HLA DR+, HLA DR on CD33+ HLA DR+ CD14- on CD33+ HLA DR+ CD14dim, and HLA DR on myeloid dendritic cells may increase the risk of DR (P<0.05). HLA DR to CD14-CD16- cells, the monocytic myeloid-derived suppressor cell absolute count, the SSC-A count of CD4+ T cells, and terminally differentiated CD4+ T cells may be protective factors against DR (P<0.05). The sensitivity analysis indicated no heterogeneity or pleiotropy among the selected SNPs. Furthermore, gene annotation of the SNPs revealed significant associations with 10 genes related to the risk of developing PDR and potential connections with 12 other genes related to PDR. Conclusion Monocytes and T cells may serve as new biomarkers or therapeutic targets, leading to the development of new treatment options for managing DR.
Collapse
Affiliation(s)
- Yunyan Ye
- Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| | - Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| | - Hong Gu
- Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| | - Lan Yang
- Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| | - Zhangxing Xu
- Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| | - Zhiguo Li
- Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Libonati L, Cambieri C, Colavito D, Moret F, D'Andrea E, Del Giudice E, Leon A, Inghilleri M, Ceccanti M. Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication. J Neurol 2024; 271:1921-1936. [PMID: 38112783 DOI: 10.1007/s00415-023-12142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with an elusive etiology. While environmental factors have been considered, familial ALS cases have raised the possibility of genetic involvement. This genetic connection is increasingly evident, even in patients with sporadic ALS. We allowed access to the genetic test to all patients attending our clinic to identify the prevalence and the role of genetic variants in the development of the disease and to identify patients with potentially treatable forms of the disease. MATERIALS AND METHODS 194 patients with probable or definite ALS, were enrolled. A comprehensive genetic testing was performed, including sequencing all exons of the SOD1 gene and testing for hexanucleotide intronic repeat expansions (G4C2) in the C9orf72 gene using fluorescent repeat-primed PCR (RP-PCR). Whole Exome NGS Sequencing (WES) was performed, followed by an in silico multigene panel targeting neuromuscular diseases, spastic paraplegia, and motor distal neuropathies. We conducted statistical analyses to compare different patient groups. RESULTS Clinically significant pathogenetic variants were detected in 14.43% of cases. The highest prevalence of pathogenetic variants was observed in fALS patients, but a substantial proportion of sALS patients also displayed at least one variant, either pathogenetic or of uncertain significance (VUS). The most observed pathogenetic variant was the expansion of the C9orf72 gene, which was associated with a shorter survival. SOD1 variants were found in 1.6% of fALS and 2.5% of sALS patients. DISCUSSION The study reveals a significant number of ALS patients carrying pathogenic or likely pathogenic variants, with a higher prevalence in familial ALS cases. The expansion of the C9orf72 gene emerges as the most common genetic cause of ALS, affecting familial and sporadic cases. Additionally, SOD1 variants are detected at an unexpectedly higher rate, even in patients without a familial history of ALS, underscoring the crucial role of genetic testing in treatment decisions and potential participation in clinical trials. We also investigated variants in genes such as TARDBP, FUS, NEK1, TBK1, and DNAJC7, shedding light on their potential involvement in ALS. These findings underscore the complexity of interpreting variants of uncertain significance (VUS) and their ethical implications in patient communication and genetic counseling for patients' relatives. CONCLUSION This study emphasizes the diverse genetic basis of ALS and advocates for integrating comprehensive genetic testing into diagnostic protocols. The evolving landscape of genetic therapies requires identifying all eligible patients transcending traditional familial boundaries. The presence of VUS highlights the multifaceted nature of ALS genetics, prompting further exploration of complex interactions among genetic variants, environmental factors, and disease development.
Collapse
Affiliation(s)
- Laura Libonati
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy.
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Davide Colavito
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Federica Moret
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Edoardo D'Andrea
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | | | - Alberta Leon
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
5
|
Cutrupi AN, Narayanan RK, Perez-Siles G, Grosz BR, Lai K, Boyling A, Ellis M, Lin RCY, Neumann B, Mao D, Uesugi M, Nicholson GA, Vucic S, Saporta MA, Kennerson ML. Novel gene-intergenic fusion involving ubiquitin E3 ligase UBE3C causes distal hereditary motor neuropathy. Brain 2023; 146:880-897. [PMID: 36380488 PMCID: PMC9976978 DOI: 10.1093/brain/awac424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.
Collapse
Affiliation(s)
- Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramesh K Narayanan
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Kaitao Lai
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ruby C Y Lin
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Brent Neumann
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Di Mao
- Institute for Integrated Cell-Material Sciences and Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences and Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Steve Vucic
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| |
Collapse
|
6
|
Zambon AA, Pini V, Bosco L, Falzone YM, Munot P, Muntoni F, Previtali SC. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain 2022; 146:806-822. [PMID: 36445400 PMCID: PMC9976982 DOI: 10.1093/brain/awac452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.
Collapse
Affiliation(s)
- Alberto A Zambon
- Correspondence to: Alberto A. Zambon Neuromuscular Repair Unit InSpe and Division of Neuroscience IRCCS Ospedale San Raffaele, Milan, Italy E-mail:
| | - Veronica Pini
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Luca Bosco
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Yuri M Falzone
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Pinki Munot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Stefano C Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
7
|
Beijer D, Polavarapu K, Preethish-Kumar V, Bardhan M, Dohrn MF, Rebelo A, Züchner S, Nalini A. [CASE REPORT] Homozygous N-terminal missense variant in PLEKHG5 associated with intermediate CMT: a case report. J Neuromuscul Dis 2021; 9:347-351. [PMID: 34897098 DOI: 10.3233/jnd-210716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in PLEKHG5, a pleckstrin homology domain containing member of the GEF family, are associated with distal spinal muscular atrophy and intermediate Charcot-Marie-Tooth disease. Here, we describe an isolated case with distal intermediate neuropathy with scapular winging. By whole exome sequencing, we identified the homozygous PLEKHG5 Arg97Gln missense mutation, located in the N-terminal region of the protein. This mutation resides between a zinc-finger motif and a RBD domain, involved in binding rnd3, a RhoA effector protein. We conclude that based on the characteristic phenotype presented by the patient and the supportive genetic findings, the PLEKHG5 mutation is the causative variant.
Collapse
Affiliation(s)
- Danique Beijer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario ResearchInstitute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Veeramani Preethish-Kumar
- Children's Hospital of Eastern Ontario ResearchInstitute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
8
|
Villar-Quiles RN, Le VT, Leonard-Louis S, Trang NT, Huong NT, Laddada L, Francou B, Maisonobe T, Azzedine H, Stojkovic T. Leukoencephalopathy and conduction blocks in PLEKHG5-associated intermediate CMT disease. Neuromuscul Disord 2021; 31:756-764. [PMID: 34244018 DOI: 10.1016/j.nmd.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Biallelic variants in PLEKHG5 have been reported so far associated with different clinical phenotypes including Lower motor neuron disease (LMND) [also known as distal hereditary motor neuropathies (dHMN or HMN) or distal spinal muscular atrophy (DSMA4)] and intermediate Charcot-Marie-Tooth disease (CMT). We report four patients from two families presenting with intermediate CMT and atypical clinical and para-clinical findings. Patients presented with predominant distal weakness with none or mild sensory involvement and remain ambulant at last examination (22-36 years). Nerve conduction studies revealed, in all patients, intermediate motor nerve conduction velocities, reduced sensory amplitudes and multiple conduction blocks in upper limbs, outside of typical nerve compression sites. CK levels were strikingly elevated (1611-3867 U/L). CSF protein content was mildly elevated in two patients. Diffuse bilateral white matter lesions were detected in one patient. Genetic analysis revealed three novel frameshift variants c.1835_1860del and c.2308del (family 1) and c.104del (family 2). PLEKHG5-associated disease ranges from pure motor phenotypes with predominantly proximal involvement to intermediate CMT with predominant distal motor involvement and mild sensory symptoms. Leukoencephalopathy, elevated CK levels and the presence of conduction blocks associated with intermediate velocities in NCS are part of the phenotype and may arise suspicion of the disease, thus avoiding misdiagnosis and unnecessary therapeutics in these patients.
Collapse
Affiliation(s)
- Rocio-Nur Villar-Quiles
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France
| | - Van Thuy Le
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam
| | - Sarah Leonard-Louis
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France
| | - Nguyen Thi Trang
- Genetics department, Hanoi Medical University Hospital, Hanoi Medical University Hanoi, Viet Nam
| | - Nguyen Thi Huong
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam; Vinmec International Hospital, Hanoi, Viet Nam
| | - Lilia Laddada
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France; Plateforme d'expertise maladies rares AP-HP. Université Paris-Saclay(,) Le Kremlin Bicêtre(,) France
| | - Bruno Francou
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France
| | - Thierry Maisonobe
- Department of Neurophysiology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Hamid Azzedine
- Department of Pathology and Neuropathology, AMC, Amsterdam, Netherlands
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France.
| |
Collapse
|
9
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
10
|
Senderek J. PLEKHG5: Merging phenotypes and disease mechanisms in Charcot-Marie-Tooth neuropathy and lower motor neuron disease. Eur J Neurol 2021; 28:1106-1107. [PMID: 33492783 DOI: 10.1111/ene.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Senderek
- Department of Neurology, Friedrich Baur Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Sharifi Z, Taheri M, Fallah MS, Abiri M, Golnabi F, Bagherian H, Zeinali R, Farahzadi H, Alborji M, Tehrani PG, Amini M, Asnavandi S, Hashemi M, Forouzesh F, Zeinali S. Comprehensive Mutation Analysis and Report of 12 Novel Mutations in a Cohort of Patients with Spinal Muscular Atrophy in Iran. J Mol Neurosci 2021; 71:2281-2298. [PMID: 33481221 DOI: 10.1007/s12031-020-01789-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophies (SMAs) are a heterogeneous group of neuromuscular diseases characterized by loss of motor neurons, muscle weakness, hypotonia and muscle atrophy, with different modes of inheritance; however, the survival motor neuron 1 (SMN1) gene is predominantly involved. The aims of the current study were to clarify the genetic basis of SMA and determine the mutation spectrum of SMN1 and other associated genes, in order to provide molecular information for more accurate diagnosis and future prospects for treatment. We performed a comprehensive analysis of 5q SMA in 1765 individuals including 528 patients from 432 unrelated families with at least one child with suspected clinical presentation of SMA. Copy number variations of the SMN1 and SMN2 genes and linkage analysis were performed using multiplex ligation-dependent probe amplification (MLPA) and short tandem repeat (STR) markers linked to the SMN1 gene. Cases without mutation in the SMA locus on 5q were analyzed for the DNAJB2, IGHMBP2, SIGMAR1 and PLEKHG5 genes using linked STR markers. Sanger sequencing of whole genes was performed for cases with homozygous haplotypes. Whole-genome sequencing (WGS) and whole-exome analysis was conducted for some of the remaining cases. Mutations in the SMN1 gene were identified in 287 (66.43%) families including 269 patients (62.26%) with homozygous deletion of the entire SMN1 gene. Only one of the patients had a homozygous point mutation in the SMN1 gene. Among the remaining families, three families showed mutations in either the DNAJB2, SIGMAR1 or PLEKHG5 genes, which were linked using STR analysis and Sanger sequencing. From 10 families who underwent WGS, we found six homozygous point mutations in six families for either the TNNT1, TPM3, TTN, SACS or COL6A2 genes. Two mutations in the PLA2G6 gene were also found in another patient as compound heterozygous. This rather large cohort allowed us to identify genotype patterns in Iranian 5q SMA patients. The process of identifying 11 mutations (9 novel) in 9 different genes among non-5q SMA patients shows the diversity of genes involved in non-5q SMA in Iranians. Genotyping of patients with SMA is essential for prenatal and preimplantation genetic diagnosis (PGD), and may be very helpful for guiding treatment, with the advent of new, more effective, albeit very expensive, therapies. Also, combining linkage analysis was shown to be beneficial in many ways, including sample authenticity and segregation analysis, and for ruling out maternal cell contamination during prenatal diagnosis (PND).
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Sadegh Fallah
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Golnabi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Razieh Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hossein Farahzadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Alborji
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | | | - Masoume Amini
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Sadaf Asnavandi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran. .,Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Chen Z, Maroofian R, Başak AN, Shingavi L, Karakaya M, Efthymiou S, Gustavsson EK, Meier L, Polavarapu K, Vengalil S, Preethish-Kumar V, Nandeesh BN, Gökçe Güneş N, Akan O, Candan F, Schrank B, Zuchner S, Murphy D, Kapoor M, Ryten M, Wirth B, Reilly MM, Nalini A, Houlden H, Sarraf P. Novel variants broaden the phenotypic spectrum of PLEKHG5-associated neuropathies. Eur J Neurol 2020; 28:1344-1355. [PMID: 33220101 DOI: 10.1111/ene.14649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants in PLEKHG5 have been reported to date to be causative in three unrelated families with autosomal recessive intermediate Charcot-Marie-Tooth disease (CMT) and in one consanguineous family with spinal muscular atrophy (SMA). PLEKHG5 is known to be expressed in the human peripheral nervous system, and previous studies have shown its function in axon terminal autophagy of synaptic vesicles, lending support to its underlying pathogenetic mechanism. Despite this, there is limited knowledge of the clinical and genetic spectrum of disease. METHODS We leverage the diagnostic utility of exome and genome sequencing and describe novel biallelic variants in PLEKHG5 in 13 individuals from nine unrelated families originating from four different countries. We compare our phenotypic and genotypic findings with a comprehensive review of cases previously described in the literature. RESULTS We found that patients presented with variable disease severity at different ages of onset (8-25 years). In our cases, weakness usually started proximally, progressing distally, and can be associated with intermediate slow conduction velocities and minor clinical sensory involvement. We report three novel nonsense and four novel missense pathogenic variants associated with these PLEKHG5-associated neuropathies, which are phenotypically spinal muscular atrophy (SMA) or intermediate Charcot-Marie-Tooth disease. CONCLUSIONS PLEKHG5-associated neuropathies should be considered as an important differential in non-5q SMAs even in the presence of mild sensory impairment and a candidate causative gene for a wide range of hereditary neuropathies. We present this series of cases to further the understanding of the phenotypic and molecular spectrum of PLEKHG5-associated diseases.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK.,Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - A Nazlı Başak
- School of Medicine, Neurodegeneration Research Laboratory, KUTTAM-NDAL, Koç University, Istanbul, Turkey
| | - Leena Shingavi
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Emil K Gustavsson
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Leyla Meier
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Bevinahalli N Nandeesh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Nalan Gökçe Güneş
- Neurology Department, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Onur Akan
- Neurology Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Fatma Candan
- Neurology Department, Göztepe Training and Research Hospital, Medeniyet University, Istanbul, Turkey
| | - Bertold Schrank
- Department of Neurology, DKD Helios Kliniken, Wiesbaden, Germany
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miler School of Medicine, Miami, Florida, USA
| | - David Murphy
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Mahima Kapoor
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mary M Reilly
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Payam Sarraf
- Department of Neuromuscular Diseases, Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Witte KE, Slotta C, Lütkemeyer M, Kitke A, Coras R, Simon M, Kaltschmidt C, Kaltschmidt B. PLEKHG5 regulates autophagy, survival and MGMT expression in U251-MG glioblastoma cells. Sci Rep 2020; 10:21858. [PMID: 33318498 PMCID: PMC7736842 DOI: 10.1038/s41598-020-77958-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
A signalling pathway involving PLEKHG5 (guanine exchange factor) for the Ras superfamily member RAB26 to transcription factor NF-κB was discovered in autophagy. PLEKHG5 was reported in glioblastoma multiforme (GBM) and correlates with patient survival. Thus, the generation of a cellular model for understanding PLEKHG5 signalling is the study purpose. We generated a CRISPR/Cas9-mediated knockout of PLEKHG5 in U251-MG glioblastoma cells and analysed resulting changes. Next, we used a mRFP-GFP-LC3+ reporter for visualisation of autophagic defects and rescued the phenotype of PLEKHG5 wildtype via transduction of a constitutively active RAB26QL-plasmid. Effects of overexpressing RAB26 were investigated and correlated with the O6-methylguanine-DNA methyltransferase (MGMT) and cellular survival. PLEKHG5 knockout showed changes in morphology, loss of filopodia and higher population doubling times. Accumulation of autolysosomes was resulted by decreased LAMP-1 in PLEKHG5-deficient cells. Rescue of PLEKHG5-/- restored the downregulation of RhoA activity, showed faster response to tumour necrosis factor and better cellular fitness. MGMT expression was activated after RAB26 overexpression compared to non-transduced cells. Survival of PLEKHG5 knockout was rescued together with sensitivity to temozolomide by RAB26QL. This study provides new insights in the PLEKHG5/RAB26 signalling within U251-MG cells, which suggests potential therapeutic strategies in other glioma cells and further in primary GBM.
Collapse
Affiliation(s)
- Kaya Elisa Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Melanie Lütkemeyer
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Matthias Simon
- Department of Neurosurgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| |
Collapse
|
14
|
Gonzalez-Quereda L, Pagola I, Fuentes Prior P, Bernal S, Rodriguez MJ, Torné L, Salgado Garrido J, Gallano P, Jericó I. Novel PLEKHG5 mutations in a patient with childhood-onset lower motor neuron disease. Ann Clin Transl Neurol 2020; 8:294-299. [PMID: 33275839 PMCID: PMC7818229 DOI: 10.1002/acn3.51265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023] Open
Abstract
The PLEKHG5 gene encodes a protein that activates the nuclear factor kappa B (NFκB) signaling pathway. Mutations in this gene have been associated with distal spinal muscular atrophy IV and intermediate axonal neuropathy C, both with an autosomal recessive mode of inheritance. Two families with low motor neuron disease (LMND) caused by mutations in PLEKHG5 have been reported to date. We present a third LMND family, the first nonconsanguineous, due to two not previously reported PLEKHG5 mutations. Our results confirm and extend previous findings linking PLEKHG5 mutations to lower motor neuron diseases.
Collapse
Affiliation(s)
- Lidia Gonzalez-Quereda
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Inmaculada Pagola
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| | - Pablo Fuentes Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08041, Spain
| | - Sara Bernal
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Jose Rodriguez
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain
| | - Laura Torné
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| | - Josefa Salgado Garrido
- Genomic Medicine, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdisNa, Pamplona, 31008, Spain
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Ivonne Jericó
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| |
Collapse
|
15
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Lüningschrör P, Slotta C, Heimann P, Briese M, Weikert UM, Massih B, Appenzeller S, Sendtner M, Kaltschmidt C, Kaltschmidt B. Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves. Front Cell Neurosci 2020; 14:185. [PMID: 32733205 PMCID: PMC7358705 DOI: 10.3389/fncel.2020.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4+ and CD8+ T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich M Weikert
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Bita Massih
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
17
|
Tunca C, Şeker T, Akçimen F, Coşkun C, Bayraktar E, Palvadeau R, Zor S, Koçoğlu C, Kartal E, Şen NE, Hamzeiy H, Özoğuz Erimiş A, Norman U, Karakahya O, Olgun G, Akgün T, Durmuş H, Şahin E, Çakar A, Başar Gürsoy E, Babacan Yıldız G, İşak B, Uluç K, Hanağası H, Bilgiç B, Turgut N, Aysal F, Ertaş M, Boz C, Kotan D, İdrisoğlu H, Soysal A, Uzun Adatepe N, Akalın MA, Koç F, Tan E, Oflazer P, Deymeer F, Taştan Ö, Çiçek AE, Kavak E, Parman Y, Başak AN. Revisiting the complex architecture of ALS in Turkey: Expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat 2020; 41:e7-e45. [PMID: 32579787 DOI: 10.1002/humu.24055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).
Collapse
Affiliation(s)
- Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Tuncay Şeker
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Fulya Akçimen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Cemre Coşkun
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Elif Bayraktar
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Robin Palvadeau
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seyit Zor
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Ece Kartal
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Nesli Ece Şen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslıhan Özoğuz Erimiş
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Utku Norman
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Oğuzhan Karakahya
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Gülden Olgun
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Tahsin Akgün
- Department of Anesthesiology and Reanimation, American Hospital, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Erdi Şahin
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Esra Başar Gürsoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Gülsen Babacan Yıldız
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Barış İşak
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Kayıhan Uluç
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Nilda Turgut
- Department of Neurology, Namık Kemal University School of Medicine, Tekirdağ, Turkey
| | - Fikret Aysal
- Department of Neurology, Medipol University School of Medicine, Istanbul, Turkey
| | - Mustafa Ertaş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Cavit Boz
- Department of Neurology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Dilcan Kotan
- Department of Neurology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Halil İdrisoğlu
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, Istanbul, Turkey
| | - Nurten Uzun Adatepe
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Ali Akalın
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Filiz Koç
- Department of Neurology, Çukurova University Medical School, Adana, Turkey
| | - Ersin Tan
- Department of Neurology, Hacettepe University Medical School, Ankara, Turkey
| | - Piraye Oflazer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Feza Deymeer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Öznur Taştan
- Department of Computer Science and Engineering, Sabancı University, Istanbul, Turkey
| | - A Ercüment Çiçek
- Department of Computer Engineering, Bilkent University, Ankara, Turkey.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Erşen Kavak
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
18
|
Autophagy in motor neuron diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:157-202. [PMID: 32620242 DOI: 10.1016/bs.pmbts.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.
Collapse
|
19
|
Cabrera AP, Mankad RN, Marek L, Das R, Rangasamy S, Monickaraj F, Das A. Genotypes and Phenotypes: A Search for Influential Genes in Diabetic Retinopathy. Int J Mol Sci 2020; 21:E2712. [PMID: 32295293 PMCID: PMC7215289 DOI: 10.3390/ijms21082712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Although gene-environment interactions are known to play an important role in the inheritance of complex traits, it is still unknown how a genotype and the environmental factors result in an observable phenotype. Understanding this complex interaction in the pathogenesis of diabetic retinopathy (DR) remains a big challenge as DR appears to be a disease with heterogenous phenotypes with multifactorial influence. In this review, we examine the natural history and risk factors related to DR, emphasizing distinct clinical phenotypes and their natural course in retinopathy. Although there is strong evidence that duration of diabetes and metabolic factors play a key role in the pathogenesis of DR, accumulating new clinical studies reveal that this disease can develop independently of duration of diabetes and metabolic dysfunction. More recently, studies have emphasized the role of genetic factors in DR. However, linkage analyses, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. Our recently initiated genomics study, the Diabetic Retinopathy Genomics (DRGen) Study, aims to examine the contribution of rare and common variants in the development DR, and how they can contribute to clinical phenotype, rate of progression, and response to available therapies. Our preliminary findings reveal a novel set of genetic variants associated with proangiogenic and inflammatory pathways that may contribute to DR pathogenesis. Further investigation of these variants is necessary and may lead to development of novel biomarkers and new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Rushi N. Mankad
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Lauren Marek
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Ryan Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Sampath Rangasamy
- Translational & Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Finny Monickaraj
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| | - Arup Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
20
|
Cabrera AP, Monickaraj F, Rangasamy S, Hobbs S, McGuire P, Das A. Do Genomic Factors Play a Role in Diabetic Retinopathy? J Clin Med 2020; 9:E216. [PMID: 31947513 PMCID: PMC7019561 DOI: 10.3390/jcm9010216] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Although there is strong clinical evidence that the control of blood glucose, blood pressure, and lipid level can prevent and slow down the progression of diabetic retinopathy (DR) as shown by landmark clinical trials, it has been shown that these factors only account for 10% of the risk for developing this disease. This suggests that other factors, such as genetics, may play a role in the development and progression of DR. Clinical evidence shows that some diabetics, despite the long duration of their diabetes (25 years or more) do not show any sign of DR or show minimal non-proliferative diabetic retinopathy (NPDR). Similarly, not all diabetics develop proliferative diabetic retinopathy (PDR). So far, linkage analysis, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. We recently initiated a genomics study, the Diabetic Retinopathy Genetics (DRGen) Study, to examine the contribution of rare and common variants in the development of different phenotypes of DR, as well as their responsiveness to anti-VEGF treatment in diabetic macular edema (DME). Our preliminary findings reveal a novel set of genetic variants involved in the angiogenesis and inflammatory pathways that contribute to DR progression or protection. Further investigation of variants can help to develop novel biomarkers and lead to new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Finny Monickaraj
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
| | | | - Sam Hobbs
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Paul McGuire
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| | - Arup Das
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| |
Collapse
|
21
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Mehta D, Pelzer ES, Bruenig D, Lawford B, McLeay S, Morris CP, Gibson JN, Young RM, Voisey J, Harvey W, Romaniuk M, Crawford D, Colquhoun D, Young RM, Dwyer M, Gibson J, O'Sullivan R, Cooksley G, Strakosch C, Thomson R, Voisey J, Lawford B. DNA methylation from germline cells in veterans with PTSD. J Psychiatr Res 2019; 116:42-50. [PMID: 31195163 DOI: 10.1016/j.jpsychires.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
In this study we investigated genome-wide sperm DNA methylation patterns in trauma-exposed Vietnam veterans. At the genome-wide level, we identified 3 CpG sites associated with PTSD in sperm including two intergenic and one CpG within the CCDC88C gene. Of those associated with PTSD in sperm at a nominal level, 1868 CpGs were also associated with PTSD in peripheral blood (5.6% overlap) including the RORA, CRHR1 and DOCK2 genes that have been previously implicated in PTSD. A total of 10 CpG sites were significantly associated with a reported history of a diagnosed mental health condition in children and reached genome-wide significance. CpGs associated with a history of a reported mental health condition in children were also enriched (90% of tested genes) for genes previously reported to be resistant to demethylation, making them strong candidates for transgenerational inheritance. In conclusion, our findings identify a unique sperm-specific DNA methylation pattern that is associated with PTSD.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia.
| | - Elise S Pelzer
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Dagmar Bruenig
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, QLD, 4120, Australia
| | - Bruce Lawford
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Sarah McLeay
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, QLD, 4120, Australia
| | - Charles P Morris
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - John N Gibson
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, QLD, 4120, Australia
| | - Ross McD Young
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, QLD, 4120, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Feng SY, Li LY, Feng SM, Zou ZY. A novel VRK1 mutation associated with recessive distal hereditary motor neuropathy. Ann Clin Transl Neurol 2018; 6:401-405. [PMID: 30847374 PMCID: PMC6389749 DOI: 10.1002/acn3.701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Vaccinia‐related kinase 1 (VRK1) mutations can cause motor phenotypes including axonal sensorimotor neuropathy, distal hereditary motor neuropathy (dHMN), spinal muscular atrophy, and amyotrophic lateral sclerosis. Here, we identify a novel homozygous VRK1 p.W375X mutation causing recessive dHMN. The proband presented with juvenile onset of weakness in the distal lower extremities, slowly progressing to the distal upper limbs, with bilateral pes cavus and no upper motor or sensory neuron involvement. Nerve conduction studies showed a pure motor axonal neuropathy. Our findings extend the ethnic distribution of VRK1 mutations, indicating that these mutations should be included in genetic diagnostic testing for dHMN.
Collapse
Affiliation(s)
- Shu-Yan Feng
- Department of Neurophysiology Henan Provincial People's Hospital Zhenzhou 450003 China
| | - Liu-Yi Li
- Department of Neurophysiology Henan Provincial People's Hospital Zhenzhou 450003 China
| | - Shu-Man Feng
- Department of Neurology Henan Provincial People's Hospital Zhenzhou 450003 China
| | - Zhang-Yu Zou
- Department of Neurology Fujian Medical University Union Hospital Fuzhou 350001 China
| |
Collapse
|
25
|
Lüningschrör P, Binotti B, Dombert B, Heimann P, Perez-Lara A, Slotta C, Thau-Habermann N, R von Collenberg C, Karl F, Damme M, Horowitz A, Maystadt I, Füchtbauer A, Füchtbauer EM, Jablonka S, Blum R, Üçeyler N, Petri S, Kaltschmidt B, Jahn R, Kaltschmidt C, Sendtner M. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun 2017; 8:678. [PMID: 29084947 PMCID: PMC5662736 DOI: 10.1038/s41467-017-00689-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. Accumulating evidence suggests that disruption of autophagy is associated with neurodegeneration. Here the authors show that Plekhg5 acts as a GEF for Rab26, a small GTPase that promotes the autophagy of synaptic vesicles in neurons; mice lacking Plekgh5 develop late-onset motoneuron degeneration.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany.,Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Beyenech Binotti
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Benjamin Dombert
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Angel Perez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | | | - Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Franziska Karl
- Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Arie Horowitz
- Cardeza Vascular Biology Center, Departments of Medicine and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041, Gosselies, Belgium
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx) Hannover, Hannover Medical School, 30625, Hannover, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
26
|
Cukier HN, Kunkle BK, Hamilton KL, Rolati S, Kohli MA, Whitehead PL, Jaworski J, Vance JM, Cuccaro ML, Carney RM, Gilbert JR, Farrer LA, Martin ER, Beecham GW, Haines JL, Pericak-Vance MA. Exome Sequencing of Extended Families with Alzheimer's Disease Identifies Novel Genes Implicated in Cell Immunity and Neuronal Function. ACTA ACUST UNITED AC 2017; 7. [PMID: 29177109 PMCID: PMC5698805 DOI: 10.4172/2161-0460.1000355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Alzheimer’s disease (AD) is a neurodegenerative disorder for which more than 20 genetic loci have been implicated to date. However, studies demonstrate not all genetic factors have been identified. Therefore, in this study we seek to identify additional rare variants and novel genes potentially contributing to AD. Methods Whole exome sequencing was performed on 23 multi-generational families with an average of eight affected subjects. Exome sequencing was filtered for rare, nonsynonymous and loss-of-function variants. Alterations predicted to have a functional consequence and located within either a previously reported AD gene, a linkage peak (LOD>2), or clustering in the same gene across multiple families, were prioritized. Results Rare variants were found in known AD risk genes including AKAP9, CD33, CR1, EPHA1, INPP5D, NME8, PSEN1, SORL1, TREM2 and UNC5C. Three families had five variants of interest in linkage regions with LOD>2. Genes with segregating alterations in these peaks include CD163L1 and CLECL1, two genes that have both been implicated in immunity, CTNNA1, which encodes a catenin in the cerebral cortex and MIEF1, a gene that may induce mitochondrial dysfunction and has the potential to damage neurons. Four genes were identified with alterations in more than one family include PLEKHG5, a gene that causes Charcot-Marie-Tooth disease and THBS2, which promotes synaptogenesis. Conclusion Utilizing large families with a heavy burden of disease allowed for the identification of rare variants co-segregating with disease. Variants were identified in both known AD risk genes and in novel genes.
Collapse
Affiliation(s)
- H N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B K Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K L Hamilton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Rolati
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Kohli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - P L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Jaworski
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R M Carney
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Mental Health and Behavioral Sciences Service, Miami Veterans Affairs, Miami, FL, USA
| | - J R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - L A Farrer
- Departments of Medicine, Neurology, Ophthalmology, Genetics and Genomics, Epidemiology and Biostatistics, Boston University, Boston, MA, USA
| | - E R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - M A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Intermediate Charcot–Marie–Tooth disease: an electrophysiological reappraisal and systematic review. J Neurol 2017; 264:1655-1677. [DOI: 10.1007/s00415-017-8474-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
|
28
|
Yuan JH, Hashiguchi A, Yoshimura A, Yaguchi H, Tsuzaki K, Ikeda A, Wada-Isoe K, Ando M, Nakamura T, Higuchi Y, Hiramatsu Y, Okamoto Y, Takashima H. Clinical diversity caused by novel IGHMBP2 variants. J Hum Genet 2017; 62:599-604. [PMID: 28202949 DOI: 10.1038/jhg.2017.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 11/09/2022]
Abstract
Immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). From June 2014 to December 2015, we collected 408 cases, who referred to our genetic laboratory for genetic analysis, suspected with CMT disease or other inherited peripheral neuropathies (IPNs) on the basis of clinical manifestations and electrophysiological studies. Mutation screening was performed using Ion AmpliSeq Custom Panels, which comprise 72 disease-causing or candidate genes of IPNs. We identified novel homozygous or compound heterozygous variants of IGHMBP2 in four patients. Three patients presented with childhood-onset axonal predominant sensorimotor polyneuropathies, whereas the other case was diagnosed with SMARD1, manifesting as low birth weight, weak cry, reduced spontaneous movement and developed respiratory distress 4 months after birth. We present the original report of CMT type 2S in Japan, and illustrate that recessive IGHMBP2 variants account for ~1.6% of axonal CMT in our cohort.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Yaguchi
- Department of Neurology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Koji Tsuzaki
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan
| | - Azusa Ikeda
- Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Wada-Isoe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|
29
|
Landouré G, Samassékou O, Traoré M, Meilleur KG, Guinto CO, Burnett BG, Sumner CJ, Fischbeck KH. Genetics and genomic medicine in Mali: challenges and future perspectives. Mol Genet Genomic Med 2016; 4:126-34. [PMID: 27066513 PMCID: PMC4799869 DOI: 10.1002/mgg3.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 11/14/2022] Open
Abstract
Genetics and genomic medicine in Mali: challenges and future perspectives.
Collapse
Affiliation(s)
- Guida Landouré
- Service de NeurologieCentre Hospitalier Universitaire du Point "G"BamakoMali; Neurogenetics BranchNational Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMaryland
| | - Oumar Samassékou
- Manitoba Institute of cell BiologyUniversity of ManibotaWinnipegCanada; Service de cytogenetique et de biologie reproductiveInstitut National de Recherche en Santé Publique (INRSP)BamakoMali
| | - Mahamadou Traoré
- Service de cytogenetique et de biologie reproductive Institut National de Recherche en Santé Publique (INRSP) Bamako Mali
| | - Katherine G Meilleur
- Tissue Injury Branch National Institute of Nursing Research (NINR) NIH Bethesda Maryland
| | - Cheick Oumar Guinto
- Service de Neurologie Centre Hospitalier Universitaire du Point "G" Bamako Mali
| | - Barrington G Burnett
- Departments of Anatomy, Physiology and Genetics Uniformed Services University of the Health Sciences (USUHS) Bethesda Maryland
| | | | - Kenneth H Fischbeck
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH) Bethesda Maryland
| |
Collapse
|
30
|
Li X, Hu Z, Liu L, Xie Y, Zhan Y, Zi X, Wang J, Wu L, Xia K, Tang B, Zhang R. A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 2015; 84:2430-7. [PMID: 26078401 DOI: 10.1212/wnl.0000000000001680] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/06/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the underlying genetic cause in a consanguineous Chinese family segregating distal hereditary motor neuropathy (dHMN) in an autosomal recessive pattern. METHODS We used whole-exome sequencing and homozygosity mapping to detect the genetic variant in 2 affected individuals of the consanguineous Chinese family with dHMN. RNA analysis of peripheral blood leukocytes and immunofluorescence and immunoblotting of stable cell lines were performed to support the pathogenicity of the identified mutation. RESULTS We identified 3 shared novel homozygous variants in 3 shared homozygous regions of the affected individuals. Sequencing of these 3 variants in family members revealed the c.151+1G>T mutation in SIGMAR1 gene, which located in homozygous region spanning approximately 5.3 Mb at chromosome 9p13.1-p13.3, segregated with the dHMN phenotype. The mutation causes an alternative splicing event and generates a transcript variant with an in-frame deletion of 60 base pairs in exon 1 (c.92_151del), and results in an internally shortened protein σ1R(31_50del). The proteasomal inhibitor treatment increased the intracellular amount of σ1R(31_50del) and led to the formation of nuclear aggregates. Stable expressing σ1R(31_50del) induced endoplasmic reticulum stress and enhanced apoptosis. CONCLUSION The homozygous c.151+1G>T mutation in SIGMAR1 caused a novel form of autosomal recessive dHMN in a Chinese consanguineous family. Endoplasmic reticulum stress may have a role in the pathogenesis of dHMN.
Collapse
Affiliation(s)
- Xiaobo Li
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Zhengmao Hu
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Lei Liu
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Yongzhi Xie
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Yajing Zhan
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Xiaohong Zi
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Junling Wang
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Lixiang Wu
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Kun Xia
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Beisha Tang
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China
| | - Ruxu Zhang
- From the Department of Neurology, the Third Xiangya Hospital (X.L., L.L., Y.X., X.Z., R.Z.), State Key Laboratory of Medical Genetics (Z.H., J.W., K.X., B.T.), and Department of Physiology, Xiangya School of Medicine (X.L., L.W.), Central South University, Changsha, PR China.
| |
Collapse
|
31
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
33
|
The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 2015; 36:1764.e9-1764.e18. [PMID: 25681989 DOI: 10.1016/j.neurobiolaging.2014.12.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/15/2014] [Accepted: 12/26/2014] [Indexed: 11/22/2022]
Abstract
The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population.
Collapse
|
34
|
Miller NLG, Kleinschmidt EG, Schlaepfer DD. RhoGEFs in cell motility: novel links between Rgnef and focal adhesion kinase. Curr Mol Med 2014; 14:221-34. [PMID: 24467206 DOI: 10.2174/1566524014666140128110339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/08/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022]
Abstract
Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family members. GEFs act as integrators from varied intra- and extracellular sources to promote spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive functions or specificity. We will focus on a unique interaction between Rgnef (also termed Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH) domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring GEF roles in cancer will yield fundamental new information on the molecular mechanisms promoting tumor spread and metastasis.
Collapse
Affiliation(s)
| | | | - D D Schlaepfer
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, MC 0803, 3855 Health Sciences Dr., La Jolla, CA 92093 USA.
| |
Collapse
|
35
|
Intermediate Charcot-Marie-Tooth disease. Neurosci Bull 2014; 30:999-1009. [PMID: 25326399 DOI: 10.1007/s12264-014-1475-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 01/15/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a common neurogenetic disorder and its heterogeneity is a challenge for genetic diagnostics. The genetic diagnostic procedures for a CMT patient can be explored according to the electrophysiological criteria: very slow motor nerve conduction velocity (MNCV) (<15 m/s), slow MNCV (15-25 m/s), intermediate MNCV (25-45 m/s), and normal MNCV (>45 m/s). Based on the inheritance pattern, intermediate CMT can be divided into dominant (DI-CMT) and recessive types (RI-CMT). GJB1 is currently considered to be associated with X-linked DI-CMT, and MPZ, INF2, DNM2, YARS, GNB4, NEFL, and MFN2 are associated with autosomal DI-CMT. Moreover, GDAP1, KARS, and PLEKHG5 are associated with RI-CMT. Identification of these genes is not only important for patients and families but also provides new information about pathogenesis. It is hoped that this review will lead to a better understanding of intermediate CMT and provide a detailed diagnostic procedure for intermediate CMT.
Collapse
|
36
|
Shiba N, Daza RAM, Shaffer LG, Barkovich AJ, Dobyns WB, Hevner RF. Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathol Commun 2013; 1:45. [PMID: 24252393 PMCID: PMC3893467 DOI: 10.1186/2051-5960-1-45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022] Open
Abstract
Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited “festooned” (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis.
Collapse
|
37
|
Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 2013; 8:104. [PMID: 23844677 PMCID: PMC3728151 DOI: 10.1186/1750-1172-8-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the Pleckstrin homology domain-containing, family G member 5 (PLEKHG5) gene has been reported in a family harboring an autosomal recessive lower motor neuron disease (LMND). However, the PLEKHG5 mutation has not been described to cause Charcot-Marie-Tooth disease (CMT). Methods To identify the causative mutation in an autosomal recessive intermediate CMT (RI-CMT) family with childhood onset, whole exome sequencing (WES), histopathology, and lower leg MRIs were performed. Expression and activity of each mutant protein were analyzed. Results We identified novel compound heterozygous (p.Thr663Met and p.Gly820Arg) mutations in the PLEKHG5 gene in the present family. The patient revealed clinical manifestations of sensory neuropathy. Fatty replacements in the distal lower leg muscles were more severe than in the thigh muscles. Although the symptoms and signs of this patient harboring slow nerve conduction velocities suggested the possibility of demyelinating neuropathy, a distal sural nerve biopsy was compatible with axonal neuropathy. Immunohistochemical analysis revealed that the patient has a low level of PLEKHG5 in the distal sural nerve and an in vitro assay suggested that the mutant proteins have a defect in activating the NF-κB signaling pathway. Conclusions This study identifies compound heterozygous PLEKHG5 mutations as the cause of RI-CMT. We suggest that PLEKHG5 might play a role in the peripheral motor and sensory nervous system. This study expands the phenotypic spectrum of PLEKHG5 mutations.
Collapse
|
38
|
DeGeer J, Lamarche-Vane N. Rho GTPases in neurodegeneration diseases. Exp Cell Res 2013; 319:2384-94. [PMID: 23830879 DOI: 10.1016/j.yexcr.2013.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized. Herein we discuss our current knowledge of the role and function of Rho GTPases and regulators during neurodegeneration, and highlight their potential as targets for therapeutic intervention in common neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan DeGeer
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada H3A 0C7
| | | |
Collapse
|
39
|
Azzedine H, Zavadakova P, Planté-Bordeneuve V, Vaz Pato M, Pinto N, Bartesaghi L, Zenker J, Poirot O, Bernard-Marissal N, Arnaud Gouttenoire E, Cartoni R, Title A, Venturini G, Médard JJ, Makowski E, Schöls L, Claeys KG, Stendel C, Roos A, Weis J, Dubourg O, Leal Loureiro J, Stevanin G, Said G, Amato A, Baraban J, LeGuern E, Senderek J, Rivolta C, Chrast R. PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease. Hum Mol Genet 2013; 22:4224-32. [PMID: 23777631 DOI: 10.1093/hmg/ddt274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.
Collapse
|
40
|
Peeters K, Litvinenko I, Asselbergh B, Almeida-Souza L, Chamova T, Geuens T, Ydens E, Zimoń M, Irobi J, De Vriendt E, De Winter V, Ooms T, Timmerman V, Tournev I, Jordanova A. Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. Am J Hum Genet 2013; 92:955-64. [PMID: 23664119 PMCID: PMC3675262 DOI: 10.1016/j.ajhg.2013.04.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022] Open
Abstract
The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.Ser107Leu) mutation in bicaudal D homolog 2 (Drosophila) (BICD2). Further analysis of BICD2 in a cohort of 119 individuals with non-5q SMA identified a second de novo BICD2 mutation, c.2321A>G (p.Glu774Gly), in a simplex case. Detailed clinical and electrophysiological investigations revealed that both families are affected by a very similar disease course, characterized by early childhood onset, predominant involvement of lower extremities, and very slow disease progression. The amino acid substitutions are located in two interaction domains of BICD2, an adaptor protein linking the dynein molecular motor with its cargo. Our immunoprecipitation and localization experiments in HeLa and SH-SY5Y cells and affected individuals' lymphoblasts demonstrated that p.Ser107Leu causes increased dynein binding and thus leads to accumulation of BICD2 at the microtubule-organizing complex and Golgi fragmentation. In addition, the altered protein had a reduced colocalization with RAB6A, a regulator of vesicle trafficking between the Golgi and the endoplasmic reticulum. The interaction between p.Glu744Gly altered BICD2 and RAB6A was impaired, which also led to their reduced colocalization. Our study identifies BICD2 mutations as a cause of non-5q linked SMA and highlights the importance of dynein-mediated motility in motor neuron function in humans.
Collapse
Affiliation(s)
- Kristien Peeters
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Ivan Litvinenko
- Clinic of Child Neurology, Department of Pediatrics, Medical University-Sofia, Sofia 1000, Bulgaria
| | - Bob Asselbergh
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Centralized Service Facility, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Leonardo Almeida-Souza
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Teodora Chamova
- Department of Neurology, Medical University-Sofia, Sofia 1000, Bulgaria
| | - Thomas Geuens
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Elke Ydens
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Magdalena Zimoń
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Joy Irobi
- Centralized Service Facility, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Vicky De Winter
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Tinne Ooms
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Vincent Timmerman
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
| | - Ivailo Tournev
- Department of Neurology, Medical University-Sofia, Sofia 1000, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia 1618, Bulgaria
| | - Albena Jordanova
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp 2610, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
41
|
Rekik I, Boukhris A, Ketata S, Amri M, Essid N, Feki I, Mhiri C. Deletion analysis of SMN and NAIP genes in Tunisian patients with spinal muscular atrophy. Ann Indian Acad Neurol 2013; 16:57-61. [PMID: 23661964 PMCID: PMC3644783 DOI: 10.4103/0972-2327.107704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/10/2012] [Accepted: 08/19/2012] [Indexed: 11/13/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder involving degeneration of anterior horn cells of spinal cord, resulting in progressive muscle weakness and atrophy. Aims: The purpose of our study was to determine the frequency of SMN and NAIP deletions in Tunisian SMA patients. Materials and Methods: Polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was used to detect the deletion of exon 7 and exon 8 of SMN1 gene, as well as multiplex PCR for exon 5 and 13 of NAIP gene. Results: Fifteen (45.4%) out of 33 SMA patients were homozygously deleted for exons 7 and/or 8 of SMN1. Homozygous deletion of NAIP gene was observed in 20% (3 / 15) of patients. Conclusions: The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis, and pre-implantation genetic diagnosis of SMA.
Collapse
Affiliation(s)
- Imen Rekik
- Department of Neurology, HabibBourguiba University Hospital, Faculté de medecine de Sfax, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
42
|
Shulha HP, Cheung I, Guo Y, Akbarian S, Weng Z. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood. PLoS Genet 2013; 9:e1003433. [PMID: 23593028 PMCID: PMC3623761 DOI: 10.1371/journal.pgen.1003433] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/20/2013] [Indexed: 11/21/2022] Open
Abstract
Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type–specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation—H3 with trimethylated lysine 4 (H3K4me3)—in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax) and multiple Signal Transducer and Activator of Transcription (STAT) motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1) recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal cortex from the late prenatal period to early adolescence, which is linked to cis-regulatory sequences around transcription start sites. Prolonged maturation of the human cerebral cortex, which extends into the third decade of life, is critical for proper development of executive functions such as higher-order problem-solving and complex cognition. Little is known about changes of post-mitotic neurons during this prolonged maturation period, including changes in epigenetic regulation, and more broadly, in genome organization and function. Such knowledge is critical for a deeper understanding of human development, cognitive abilities, and psychiatric diseases. Here, we identify 1,157 genomic loci in neuronal cells from the prefrontal cortex that show developmental changes in a chromatin mark, histone H3 trimethylated at lysine 4 (H3K4me3), which has been associated with regulation of gene expression. Interestingly, the overwhelming majority of these developmentally regulated H3K4me3 peaks were defined by rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by slower changes during early and later childhood and minimal changes thereafter. The genomic sequences showing these dynamic changes in H3K4me3 were enriched with distinct transcription factor motifs. Our findings suggest that there is highly regulated, pre-programmed remodeling of neuronal histone methylation landscapes in the human brain that begins before birth and continues into adolescence.
Collapse
Affiliation(s)
- Hennady P. Shulha
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yin Guo
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (SA); (ZW)
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SA); (ZW)
| |
Collapse
|
43
|
Abstract
Hereditary neuropathies (HN) with onset in childhood are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission and, in selected cases, pathological findings. Especially relevant to pediatrics are the items "secondary" versus "primary" neuropathy, "syndromic versus nonsyndromic," and "period of life." Different combinations of these parameters frequently point toward specific monogenic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first concern in pediatrics. As a rule, metabolic diseases include additional, orienting symptoms or signs, and their biochemical diagnosis is based on logical algorithms. Primary, motor sensory are the most frequent HN and are dominated by demyelinating autosomal dominant (AD) forms (CMT1). Other forms include demyelinating autosomal recessive (AR) forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Peripheral motor neuron disorders are dominated by AR SMN-linked spinal muscular atrophies. (Distal) hereditary motor neuropathies represent <10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN involves five classic subtypes, each one related to specific genes. However, genetic heterogeneity is larger than initially suspected. Syndromic HN distinguish "purely neurological syndromes", which are multisystemic, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral neuropathy is possibly the presenting feature, including in childhood. Autosomal recessive forms, on average, start more frequently in childhood. "Multiorgan syndromes", on the other hand, are more specific to Pediatrics. AR forms, which are clearly degenerative, prompt the investigation of a large set of pleiotropic genes. Other syndromes expressed in the perinatal period are mainly developmental disorders, and can sometimes be related to specific transcription factors. Systematic malformative workup and ethical considerations are necessary. Altogether, >40 genes with various biological functions have been found to be responsible for primary HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait, and some for various types of transmission.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Pediatric Neurology, CHU Paris sud, Hôpital Bicêtre, Paris, France.
| | | |
Collapse
|
44
|
Landrieu P, Baets J, De Jonghe P. Hereditary motor-sensory, motor, and sensory neuropathies in childhood. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1413-32. [PMID: 23622364 DOI: 10.1016/b978-0-444-59565-2.00011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hereditary neuropathies (HN) are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission, age of occurrence, and, in selected cases, pathological findings. The combination of these parameters frequently orients towards specific genetic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first pediatric concern. Primary, motor-sensory are the most frequent HN and are dominated by demyelinating AD forms (CMT1). Others are demyelinating AR forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Pure motor HN represent<10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN cover five classical subtypes, each one related to specific genes. However, genetic heterogeneity is largly greater than initially suspected. Syndromic HN distinguish: "purely neurological syndromes", which are multisystemic, usually AD disorders, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral Neuropathy may be the presenting feature, including in childhood. Clearly degenerative, AR forms prompt to investigate a large set of pleiotropic genes. Other syndromes, expressed in the perinatal period and comprising malformative features, are mainly developmental disorders, sometimes related to specific transcription factors. Altogether, >40 genes with various biological functions have been found responsible for HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait: for the pediatric neurologist, phenotype/genotype correlations constitute a permanent bidirectional exercise.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Paediatric Neurology, Université Paris Sud, Bicêtre Hospital, Paris, France.
| | | | | |
Collapse
|
45
|
Lin L, Tran T, Hu S, Cramer T, Komuniecki R, Steven RM. RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans. PLoS One 2012; 7:e31499. [PMID: 22363657 PMCID: PMC3282746 DOI: 10.1371/journal.pone.0031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth.
Collapse
Affiliation(s)
- Li Lin
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Thuy Tran
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Shuang Hu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Todd Cramer
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Robert M. Steven
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. AIMS Estimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2. MATERIAL AND METHODS Our population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene. RESULTS A total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range. DISCUSSION Charcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. CONCLUSION Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN.
Collapse
Affiliation(s)
- G J Braathen
- Head and Neck Research Group, Research Centre, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
47
|
Eckart M, Guenther UP, Idkowiak J, Varon R, Grolle B, Boffi P, Van Maldergem L, Hübner C, Schuelke M, von Au K. The natural course of infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Pediatrics 2012; 129:e148-56. [PMID: 22157136 DOI: 10.1542/peds.2011-0544] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Only scarce information is available on the long-term outcome and the natural course of children with infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1) due to mutations in the IGHMBP2 gene. OBJECTIVE To describe the natural disease course, to systematically quantify the residual capacities of children with SMARD1 who survive on permanent mechanical respiration, and to identify markers predicting the disease outcome at the time of manifestation. METHODS We conducted a longitudinal study of 11 infantile SMARD1 patients over a mean observational period of 7.8 (SD 3.2) years. Disease-specific features were continuously assessed by using a semiquantitative scoring system. Additionally, we analyzed the residual enzymatic activity of 6 IGHMBP2 mutants in our patients. RESULTS After an initial rapid decline of the clinical score until the age of 2 years, residual capabilities reached a plateau or even improved. The overall clinical outcome was markedly heterogeneous, but clinical scores at the age of 3 months showed a positive linear correlation with the clinical outcome at 1 year and at 4 years of age. If expressed in an in vitro recombinant system, mutations of patients with more favorable outcomes retained residual enzymatic activity. CONCLUSIONS Despite their severe disabilities and symptoms, most SMARD1 patients are well integrated into their home environment and two thirds of them are able to attend kindergarten or school. This information will help to counsel parents at the time of disease manifestation.
Collapse
Affiliation(s)
- Maria Eckart
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yi L, Donsante A, Kennerson ML, Mercer JFB, Garbern JY, Kaler SG. Altered intracellular localization and valosin-containing protein (p97 VCP) interaction underlie ATP7A-related distal motor neuropathy. Hum Mol Genet 2011; 21:1794-807. [PMID: 22210628 DOI: 10.1093/hmg/ddr612] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ATP7A is a P-type ATPase that regulates cellular copper homeostasis by activity at the trans-Golgi network (TGN) and plasma membrane (PM), with the location normally governed by intracellular copper concentration. Defects in ATP7A lead to Menkes disease or its milder variant, occipital horn syndrome or to a newly discovered condition, ATP7A-related distal motor neuropathy (DMN), for which the precise pathophysiology has been obscure. We investigated two ATP7A motor neuropathy mutations (T994I, P1386S) previously associated with abnormal intracellular trafficking. In the patients' fibroblasts, total internal reflection fluorescence microscopy indicated a shift in steady-state equilibrium of ATP7A(T994I) and ATP7A(P1386S), with exaggerated PM localization. Transfection of Hek293T cells and NSC-34 motor neurons with the mutant alleles tagged with the Venus fluorescent protein also revealed excess PM localization. Endocytic retrieval of the mutant alleles from the PM to the TGN was impaired. Immunoprecipitation assays revealed an abnormal interaction between ATP7A(T994I) and p97/VCP, an ubiquitin-selective chaperone which is mutated in two autosomal dominant forms of motor neuron disease: amyotrophic lateral sclerosis and inclusion body myopathy with early-onset Paget disease and fronto-temporal dementia. Small-interfering RNA (SiRNA) knockdown of p97/VCP corrected ATP7A(T994I) mislocalization. Flow cytometry documented that non-permeabilized ATP7A(P1386S) fibroblasts bound a carboxyl-terminal ATP7A antibody, consistent with relocation of the ATP7A di-leucine endocytic retrieval signal to the extracellular surface and partially destabilized insertion of the eighth transmembrane helix. Our findings illuminate the mechanisms underlying ATP7A-related DMN and establish a link between p97/VCP and genetically distinct forms of motor neuron degeneration.
Collapse
Affiliation(s)
- Ling Yi
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-1853, USA
| | | | | | | | | | | |
Collapse
|
49
|
The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons. J Neurosci 2011; 31:6493-503. [PMID: 21525290 DOI: 10.1523/jneurosci.0206-11.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKβ kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKβ phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKβ, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.
Collapse
|
50
|
Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S, Cresta S, Gargiulo E, Forconi F, Guarini A, Arcaini L, Paulli M, Laurenti L, Larocca LM, Marasca R, Gattei V, Oscier D, Bertoni F, Mullighan CG, Foá R, Pasqualucci L, Rabadan R, Dalla-Favera R, Gaidano G. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. ACTA ACUST UNITED AC 2011; 208:1389-401. [PMID: 21670202 PMCID: PMC3135373 DOI: 10.1084/jem.20110921] [Citation(s) in RCA: 479] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis. The pathogenesis of chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is still largely unknown. The full spectrum of genetic lesions that are present in the CLL genome, and therefore the number and identity of dysregulated cellular pathways, have not been identified. By combining next-generation sequencing and copy number analysis, we show here that the typical CLL coding genome contains <20 clonally represented gene alterations/case, including predominantly nonsilent mutations, and fewer copy number aberrations. These analyses led to the discovery of several genes not previously known to be altered in CLL. Although most of these genes were affected at low frequency in an expanded CLL screening cohort, mutational activation of NOTCH1, observed in 8.3% of CLL at diagnosis, was detected at significantly higher frequency during disease progression toward Richter transformation (31.0%), as well as in chemorefractory CLL (20.8%). Consistent with the association of NOTCH1 mutations with clinically aggressive forms of the disease, NOTCH1 activation at CLL diagnosis emerged as an independent predictor of poor survival. These results provide initial data on the complexity of the CLL coding genome and identify a dysregulated pathway of diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Giulia Fabbri
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|