1
|
Furuichi M, Ohnishi T, Yaginuma M, Yamada Y, Hoshino K, Nakayama T, Shinjoh M. Live-attenuated vaccine failure after liver transplantation: A 20-year cohort study. Vaccine 2025; 43:126527. [PMID: 39547018 DOI: 10.1016/j.vaccine.2024.126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND A recent conditional recommendation suggests considering live-attenuated vaccines for solid organ transplant recipients, yet the conditions of their safe and effective administration remain unclear. METHODS This prospective study was conducted at Keio University Hospital from 2002 to August 2023. We gave a live-attenuated vaccine to liver transplant (LT) recipients fulfilling criteria for live-attenuated vaccines, including criteria for humoral and cell-mediated immunity. Patient background information, immunization date, vaccine strain, immunosuppressive agents at the time of vaccination, and antibody titers were collected. Factors related to primary and secondary vaccine failure were evaluated to enhance the effectiveness of the live-attenuated vaccine program after LT. RESULTS Among 67 LT recipients, 54, 55, 47, and 55 received at least one dose of live-attenuated vaccine for measles, rubella, varicella, and mumps, respectively. The difference in vaccine strains, but not the use of two or more immunosuppressive agents, was associated with a lower risk of vaccine failures. Measles vaccine with the AIK-C strain exhibited significantly lower primary and secondary failure rates than the CAM-70 strain (1/38 vs. 4/16, odds ratio: 0.08, 95 % confidence interval [CI]: 0.01-0.80, p = 0.02, and hazard ratio: 0.54, 95 % CI: 0.34-0.85, p = 0.01, respectively). No primary failures were observed with the TO-336 strain of rubella, whereas 4 of 10 LT recipients with the Matsuura strain of rubella did not seroconvert. For mumps, the Hoshino strain showed lower primary failure rates than the Torii strain (15/52 vs. 3/3, p = 0.03). CONCLUSION According to a 20-year long-term study, vaccine strains are the most critical factor influencing primary and secondary vaccine failure in post-transplant live-attenuated vaccination.
Collapse
Affiliation(s)
- Munehiro Furuichi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | - Takuma Ohnishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Yaginuma
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Yamada
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ken Hoshino
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Nakayama
- Kitasato University, Ömura Satoshi Memorial Institute, Laboratory of Virus Infection, Tokyo, Japan
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Al Jurdi A, Kotton CN. The Next Outbreak Looms on the Horizon: Measles and Potential Impacts on Transplant Recipients. Transplantation 2024; 108:2012-2014. [PMID: 39320451 DOI: 10.1097/tp.0000000000005083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Affiliation(s)
- Ayman Al Jurdi
- Division of Nephrology, Massachusetts General Hospital, Boston, MA
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
3
|
Garg RK, Suresh V, Suvirya S, Rizvi I, Kumar N, Pandey S. Clinical features, pathogenesis, pathology, neuroimaging, clinical course and outcome of measles inclusion-body encephalitis: a systematic review of published case reports and case series. Neurol Sci 2024; 45:3069-3091. [PMID: 38512528 DOI: 10.1007/s10072-024-07480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Measles inclusion-body encephalitis (MIBE) is rare, with insights largely from case studies. We systematically analyzed subacute Sclerosing Panencephalitis (SSPE) cases in immunocompromised patients, identifying distinctive clinical and neuroimaging features. These findings could facilitate MIBE diagnosis without the need for brain biopsies. Our systematic review on MIBE and HIV-related SSPE adhered to PRISMA guidelines and was registered with PROSPERO. We searched multiple databases and followed a detailed inclusion process with independent reviews and quality assessment. Data on patient demographics, clinical features, and outcomes were compiled. A review of 39 studies on 49 MIBE patients and 8 reports on HIV-positive SSPE patients was conducted. Acute lymphoblastic leukemia, HIV, organ transplants, and malignancies were common precursors to MIBE. Perinatal HIV was prevalent among SSPE cases. Seizures were the primary symptom in MIBE, often drug-resistant and progressing to status epilepticus or epilepsia partialis continua, whereas periodic myoclonus was universal in SSPE. Neuroimaging showed distinct patterns for each group, and histopathology confirmed measles virus presence in 39% of MIBE cases. MIBE patients typically progressed to coma and death. In conclusion, MIBE and SSPE in HIV-infected patients present with distinct clinical pictures but identical brain pathological abnormalities.
Collapse
Affiliation(s)
- Ravindra Kumar Garg
- Department of Neurology, King George's Medical University, Lucknow, 226003, India.
| | - Vinay Suresh
- Department of Neurology, King George's Medical University, Lucknow, 226003, India
- Department of Dermatology, Venereology And Leprosy, King George's Medical University, Lucknow, 226003, India
| | - Swastika Suvirya
- Department of Neurology, King George's Medical University, Lucknow, 226003, India
| | - Imran Rizvi
- Department of Neurology, King George's Medical University, Lucknow, 226003, India
| | - Neeraj Kumar
- Department of Neurology, King George's Medical University, Lucknow, 226003, India
| | - Shweta Pandey
- Department of Neurology, King George's Medical University, Lucknow, 226003, India
| |
Collapse
|
4
|
Kushner LE, Kamens J, Bertaina A, Shyr D, Gans HA. Vaccine Associated Measles Complicated by Suspected Measles Inclusion Body Encephalitis in a Pediatric Leukemia Patient and Stem Cell Transplant Recipient: A Focus on Clinical Evolution and Management. Pediatr Infect Dis J 2024; 43:582-586. [PMID: 38380931 DOI: 10.1097/inf.0000000000004299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
BACKGROUND Immunocompromised individuals are at increased risk for severe disease and complications from viral infections, highlighting the importance of vaccination. However, in extremely rare situations, vaccine associated viral infections can be associated with disseminated disease and complications in immunocompromised hosts. CASE Herein, we present a case of a 1-year-old child diagnosed with acute myeloid leukemia less than 2 weeks after receiving live viral vaccines who developed acute vaccine-strain measles virus disease, later complicated by central nervous system involvement following hematopoietic stem cell transplantation. A brain biopsy specimen was positive for vaccine-strain measles virus detected by reverse transcriptase polymerase chain reaction. MANAGEMENT AND OUTCOME She was treated with intravenous ribavirin, inosine pranobex, intrathecal interferon-alpha and donor lymphocyte infusion following measles-mumps-rubella vaccine boost. Despite these measures, the patient suffered neurologic decline and dysautonomia, expiring after compassionate extubation. Management and ideal risk mitigation strategies are discussed within the context of existing literature for this rare complication.
Collapse
Affiliation(s)
| | - Jennifer Kamens
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | - Alice Bertaina
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | - David Shyr
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | | |
Collapse
|
5
|
Al-Hakim A, Kacar M, Savic S. The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. J Clin Med 2024; 13:1717. [PMID: 38541942 PMCID: PMC10971312 DOI: 10.3390/jcm13061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 01/05/2025] Open
Abstract
Common Variable Immunodeficiency (CVID) is a heterogeneous primary immunodeficiency disorder characterised by impaired antibody production, leading to recurrent infections and an increased susceptibility to viral pathogens. This literature review aims to provide a comprehensive overview of CVID's relationship with viral infections, encompassing disease pathogenesis, key presenting features, specific monogenic susceptibilities, the impact of COVID-19, and existing treatment options. The pathogenesis of CVID involves complex immunological dysregulation, including defects in B cell development, antibody class switching, and plasma cell differentiation. These abnormalities contribute to an impaired humoral immune response against viral agents, predisposing individuals with CVID to a broad range of viral infections. Genetic factors play a prominent role in CVID, and monogenic drivers of CVID-like disease are increasingly identified through advanced genomic studies. Some monogenic causes of the CVID-like phenotype appear to cause specific viral susceptibilities, and these are explored in the review. The emergence of the COVID-19 pandemic highlighted CVID patients' heightened predisposition to severe outcomes with viral infections. This review explores the clinical manifestations, outcomes, and potential therapeutic approaches for COVID-19 in CVID patients. It assesses the efficacy of prophylactic measures for COVID-19, including vaccination and immunoglobulin replacement therapy, as well as trialled therapies.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| | - Mark Kacar
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Allergy and Clinical Immunology Unit, University Clinic Golnik, 36 Golnik, 4204 Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| |
Collapse
|
6
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 PMCID: PMC11844209 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
7
|
Sharma S, Dhamne C, Bhosale S, Parambil B, Divatia J, Chinnaswamy G, Patil V, Joshi R, Epari S, Mahadevan A, Vaidya S, Kulkarni S, Kulkarni A, Patil V, Srinivasan S, Gollamudi VRM, Roy Moulik N, Prasad M, Narula G, Banavali S. Epilepsia Partialis Continua as a Sequelae of Measles Infection in Children With Hematolymphoid Malignancies. JCO Glob Oncol 2024; 10:e2300399. [PMID: 38422460 PMCID: PMC10914244 DOI: 10.1200/go.23.00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To share our clinical experience with the diagnosis and management of children with hematolymphoid malignancies presenting with epilepsia partialis continua (EPC) as a sequelae of measles infection. MATERIALS AND METHODS In December 2022, a series of children in our hemato-oncology unit presented with focal status epilepticus with no conclusive evidence pointing toward any underlying etiology. One such child had a typical measles rash a few weeks before the onset of this focal status epilepticus. After a series of cases with a similar presentation, a clinical pattern suspicious for measles became evident. cerebrospinal fluid polymerase chain reaction was positive for measles virus with measles immunoglobin M detected in the serum. This led to the diagnosis of measles inclusion-body encephalitis in a series of children who presented with EPC over a period of 3 months. EPC is a rare manifestation of measles that is seen only in immunocompromised patients. RESULTS Among the 18 children reported in this series, only 10 had a history of rashes. The rash was mostly transient and elicited only on retrospective history taking. Five of the 18 children who did not lose consciousness during the prolonged seizure episode survived the disease but had residual neurologic sequelae. Among the 18 children, two were unimmunized and immunization status could not be confirmed in three other children. CONCLUSION This case series highlights the threats posed by measles infection in children with cancer who are immunosuppressed because of the underlying disease and ongoing chemotherapy. Loss of herd immunity because of declining measles immunization rates secondary to vaccine hesitancy and COVID-19 lockdown pose a greater risk of measles infection and its complications for patients with deficient immune systems.
Collapse
Affiliation(s)
- Sudivya Sharma
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Chetan Dhamne
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shilpushp Bhosale
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Badira Parambil
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Jigeeshu Divatia
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vasundhara Patil
- Department of Radiology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | | | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil Vaidya
- Virus Registry and Virus Repository, National Institute of Virology, Pune, India
| | - Shilpa Kulkarni
- Department of Neurology, Wadia Children's Hospital, Mumbai, India
| | - Atul Kulkarni
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vijaya Patil
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | | | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maya Prasad
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
De Francesco MA. Measles Resurgence in Europe: An Open Breakthrough in the Field of Vaccine-Preventable Diseases. Pathogens 2023; 12:1192. [PMID: 37887708 PMCID: PMC10609729 DOI: 10.3390/pathogens12101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Measles is a highly transmissible respiratory infection due to an enveloped, negative single-stranded RNA virus, belonging to the genus Morbillivirus, the family Paramyxoviridae and the subfamily Orthoparamyxovirinae [...].
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
9
|
Statler VA, Fox T, Ardura MI. Spotting a potential threat: Measles among pediatric solid organ transplantation recipients. Pediatr Transplant 2023; 27:e14502. [PMID: 36919399 DOI: 10.1111/petr.14502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Low-vaccination rates worldwide have led to the re-emergence of vaccine-preventable infections, including measles. Immunocompromised patients, including pediatric solid organ transplant (SOT) recipients, are at risk for measles because of suboptimal vaccination, reduced or waning vaccine immunity, lifelong immunosuppression, and global re-emergence of measles. OBJECTIVES To review published cases of measles in pediatric SOT recipients to heighten awareness of its clinical manifestations, summarize diagnostic and treatment strategies, and identify opportunities to optimize prevention. METHODS We conducted a literature review of published natural measles infections in SOT recipients ≤21 years of age, summarizing management and outcomes. We describe measles epidemiology, recommended diagnostics, treatment, and highlight prevention strategies. RESULTS There are seven published reports of measles infection in 12 pediatric SOT recipients, the majority of whom were unvaccinated or incompletely vaccinated. Subjects had atypical or severe clinical presentations, including lack of rash and complications, most frequently with encephalitis and pneumonitis, resulting in 33% mortality. Updated recommendations on testing and vaccination are provided. Treatment options beyond supportive care and vitamin A are limited, with no approved antivirals. CONCLUSION While measles is infrequently reported in pediatric SOT recipients, morbidity and mortality remain significant. A high index of suspicion is warranted in susceptible SOT recipients with clinically compatible illness or exposure. Providers must recognize this risk, educate families, and be aware of both classic and atypical presentations of measles to rapidly identify, isolate, and diagnose measles in pediatric SOT recipients. Continued efforts to optimize measles vaccination both pre- and post-SOT are warranted.
Collapse
Affiliation(s)
- Victoria A Statler
- Department of Pediatrics, Pediatric Infectious Diseases, Norton Children's and University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Thomas Fox
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Monica I Ardura
- Department of Pediatrics, Infectious Diseases & Host Defense, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Rocamonde B, Hasan U, Mathieu C, Dutartre H. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front Neurosci 2023; 17:1108212. [PMID: 36937670 PMCID: PMC10017484 DOI: 10.3389/fnins.2023.1108212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
There is increasing evidence that viral infections are the source/origin of various types of encephalitis, encephalomyelitis, and other neurological and cognitive disorders. While the involvement of certain viruses, such as the Nipah virus and measles virus, is known, the mechanisms of neural invasion and the factors that trigger intense immune reactions are not fully understood. Based on recent publications, this review discusses the role of the immune response, interactions between viruses and glial cells, and cytokine mediators in the development of inflammatory diseases in the central nervous system. It also highlights the significant gaps in knowledge regarding these mechanisms.
Collapse
Affiliation(s)
- Brenda Rocamonde
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- *Correspondence: Brenda Rocamonde,
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, Team Enveloped Viruses, Vectors and Immunotherapy INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- The Lyon Immunotherapy for Cancer Laboratory (LICL), Centre de Recherche en Cancérologie de Lyon (CRCL, UMR INSERM 1052 – CNRS 5286) Centre Léon Bérard, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie Équipe Neuro-Invasion, Tropism and Viral Encephalitis, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Cyrille Mathieu,
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- Hélène Dutartre,
| |
Collapse
|
11
|
Lebon P, Gelot A, Zhang SY, Casanova JL, Hauw JJ. La panencéphalite sclérosante subaiguë de la rougeole. Med Sci (Paris) 2022; 38:553-561. [DOI: 10.1051/medsci/2022081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La panencéphalite sclérosante subaiguë (PESS), une complication tardive de la rougeole, est encore présente lors d’épidémies de cette maladie dues aux insuffisances de la vaccination. Après un rappel historique, nous aborderons la physiopathologie de la PESS et l’importance des critères diagnostiques. De nombreux travaux portant sur les paramètres de l’immunité innée et sur ceux des réponses interféron tendent à montrer une baisse de l’activité de l’immunité cellulaire au cours de cette maladie. Nous formulons ici plusieurs hypothèses s’appuyant sur des publications concernant différentes formes de la maladie : congénitales, périnatales, formes à incubation courte, semblables à l’encéphalite aiguë à inclusions (EAI), formes d’évolution rapide, formes retrouvées chez les immunodéprimés ou chez l’adulte. Des formes familiales ont également été identifiées, suggérant une origine génétique. Selon la durée de la période de latence entre rougeole et la PESS, deux groupes de patients ont été individualisés, incitant à des analyses rétrospective et prospective des exomes de ces malades. La connaissance des gènes participant à la maladie devrait être utile pour la compréhension de la physiopathologie de la PESS mais aussi d’autres infections neurologiques tardives dues à des virus à ARN.
Collapse
|
12
|
Suresh S, Zafack J, Pham-Huy A, Derfalvi B, Sadarangani M, McConnell A, Tapiéro B, Halperin SA, De Serres G, M Pernica J, Top KA. Physician vaccination practices in mild to moderate inborn errors of immunity and retrospective review of vaccine completeness in IEI: results from the Canadian Immunization Research Network. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:32. [PMID: 35397595 PMCID: PMC8994318 DOI: 10.1186/s13223-022-00667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Background and objectives Safety and effectiveness concerns may preclude physicians from recommending vaccination in mild/moderate inborn errors of immunity (IEI). This study describes attitudes and practices regarding vaccination among physicians who care for patients with mild/moderate B cell or mild/moderate combined immunodeficiencies (CID) and vaccination completeness among patients diagnosed with IEIs. Methods Canadian physicians caring for children with IEI were surveyed about attitudes and practices regarding vaccination in mild/moderate IEI. Following informed consent, immunization records of pediatric patients with IEI evaluated before 7 years of age were reviewed. Vaccine completeness was defined at age 2 years as 4 doses of diphtheria-tetanus-pertussis (DTaP), 3 doses pneumococcal conjugate (PCV), and 1 dose measles-mumps-rubella (MMR) vaccines. At 7 years 5 doses of DTP and 2 doses MMR were required. Results Forty-five physicians from 8 provinces completed the survey. Most recommended inactivated vaccines for B cell deficiency: (84% (38/45) and CID (73% (33/45). Fewer recommended live attenuated vaccines (B cell: 53% (24/45), CID 31% (14/45)). Of 96 patients with IEI recruited across 7 centers, vaccination completeness at age 2 was 25/43 (58%) for predominantly antibody, 3/13 (23%) for CID, 7/35 (20%) for CID with syndromic features, and 4/4 (100%) for innate/phagocyte defects. Completeness at age 7 was 15%, 17%, 5%, and 33%, respectively. Conclusion Most physicians surveyed recommended inactivated vaccines in children with mild to moderate IEI. Vaccine completeness for all IEI was low, particularly at age 7. Further studies should address the reasons for low vaccine uptake among children with IEI and whether those with mild-moderate IEI, where vaccination is recommended, eventually receive all indicated vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00667-1.
Collapse
Affiliation(s)
- Sneha Suresh
- Division of Immunology, Department of Pediatrics, Edmonton Clinic Health Academy, 3-529, 11405 87 Ave, Edmonton, AB, T6G 1C9, Canada. .,Division of Infectious Disease and IHOPE, Department of Paediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada.
| | | | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Department of Paediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Beata Derfalvi
- Division of Immunology, Departments of Paediatrics and Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Athena McConnell
- Division of Infectious Diseases, Department of Pediatrics, Jim Pattison Children's Hospital, University of Saskatchewan, Saskatoon, Canada
| | - Bruce Tapiéro
- Division of Infectious Diseases, Department of Pediatrics, CHU Sainte Justine, Université de Montreal, Montreal, Canada
| | - Scott A Halperin
- Departments of Paediatrics and Microbiology and Immunology, Canadian Center for Vaccinology IWK Health Centre, Dalhousie University, Halifax, Canada
| | - Gaston De Serres
- Department of Social and Preventive Medicine, Institut Nationale de Santé Publique du Québec, Université Laval, Québec, Canada
| | - Jeffrey M Pernica
- Division of Infectious Diseases, Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Karina A Top
- Departments of Pediatrics and Community Health and Epidemiology, Canadian Center for Vaccinology, IWK Health Centre, Dalhousie University, Halifax, Canada.
| |
Collapse
|
13
|
Costales C, Sahoo MK, Huang C, Guimaraes CV, Born D, Kushner L, Gans HA, Doan TA, Pinsky BA. Vaccine-Associated Measles Encephalitis in Immunocompromised Child, California, USA. Emerg Infect Dis 2022; 28:906-908. [PMID: 35318930 PMCID: PMC8962891 DOI: 10.3201/eid2804.212357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report a fatal case of vaccine-associated measles encephalitis in an immunocompromised child in California, USA. The infection was confirmed by whole-genome RNA sequencing of measles virus from brain tissue. We observed biased matrix-gene hypermutation consistent with persistent measles virus central nervous system infection.
Collapse
|
14
|
Jain R, Aulakh R. Measles-Associated CNS Complications: A Review. JOURNAL OF CHILD SCIENCE 2022. [DOI: 10.1055/s-0042-1757914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractMeasles virus infection is a common infectious disease of childhood, incidence of which is still high in developing countries. Other than the morbidity associated with the acute systemic infection, the measles virus can cause serious fatal neural complications. It can either enter the brain leading to acute encephalitis like primary measles encephalitis and acute post infectious measles encephalomyelitis or it may persist in brain cells (as mutated virus) leading to long-term neurodegenerative diseases like measles inclusion body encephalitis and subacute sclerosing pan encephalitis. The patho-clinical features, treatment, and the outcomes of these complications are different and should be identified in time for early diagnosis and management.
Collapse
Affiliation(s)
- Reena Jain
- Department of Pediatrics, Government Medical College and Hospital, Chandigarh, India
| | - Roosy Aulakh
- Department of Pediatrics, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
15
|
Kuter BJ, Marshall GS, Fergie J, Schmidt E, Pawaskar M. Prevention of measles, mumps and rubella: 40 years of global experience with M-M-R II. Hum Vaccin Immunother 2021; 17:5372-5383. [PMID: 35130794 PMCID: PMC8903938 DOI: 10.1080/21645515.2021.2007710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/14/2021] [Indexed: 02/09/2023] Open
Abstract
Measles, mumps, and rubella are highly contagious diseases that caused significant global mortality and morbidity in the pre-vaccine era. Since its first approval in the United States over 40 years ago, M-M-RII has been used in >75 countries for prevention of these diseases. The vaccine has been part of immunization programs that have achieved dramatic global reductions in case numbers and mortality rates, as well as the elimination of measles and rubella in several countries and regions. This report summarizes over four decades of global safety, immunogenicity, efficacy, and effectiveness data for the vaccine. We include studies on the use of M-M-RII in different age groups, concomitant use with other routine childhood vaccines, administration via different routes, persistence of immunity, and vaccine effectiveness during outbreaks of measles and mumps. We conclude that M-M-RII is well tolerated and has shown consistently high performance during routine use in multiple countries, in randomized controlled trials with diverse designs, and in outbreak settings, including use as measles postexposure prophylaxis. Physicians, parents, and the public can continue to have a high degree of confidence in the use of M-M-RII as a vital part of global public health programs.
Collapse
Affiliation(s)
| | - Gary S. Marshall
- Norton Children’s and University of Louisville School of Medicine, Louisville, KY, USA
| | - Jaime Fergie
- Infectious Diseases, Driscoll Children’s Hospital, Corpus Christi, TX, USA
| | - Elvira Schmidt
- Certara Germany GmbH, Evidence and Access, Loerrach, Germany
| | - Manjiri Pawaskar
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
16
|
Desjardins M, Mitre X, Sherman AC, Walsh SR, Cheng MP, Kanjilal S, Ho VT, Baden LR, Issa NC. Safety of Live-Attenuated Measles, Mumps, and Rubella Vaccine Administered Within 2 Years of Hematopoietic Cell Transplant. Open Forum Infect Dis 2021; 8:ofab504. [PMID: 34909436 PMCID: PMC8664685 DOI: 10.1093/ofid/ofab504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Measles, mumps, and rubella (MMR) vaccine is a live-attenuated vaccine usually contraindicated within the first 2 years of hematopoietic cell transplant (HCT). The objective of this study was to assess the safety of MMR vaccine when administered within 2 years of HCT. METHODS We conducted a retrospective review of patients who received MMR vaccination within 2 years of an autologous or allogeneic HCT, mostly in the context of the 2019 measles outbreak. Adverse reactions were collected for 42 days postvaccination, and all hospitalizations and deaths following vaccination were reviewed. RESULTS A total of 129 patients (75 autologous and 54 allogeneic HCT) were vaccinated 300-729 days after HCT (median, 718 days), and 39 (30%) of these were vaccinated earlier than 23 months post-transplant. Ten adverse reactions in 7 patients (5%) were identified within 42 days of vaccination: 6 respiratory tract infections (3 with fever) and 1 rash. The rash was seen in a 37-year-old female who had an allogeneic HCT 542 days before vaccination. She presented with a centrifugal maculopapular rash, confirmed to be caused by the vaccine strain rubella virus. She fully recovered. No other vaccine-associated illness was identified in the cohort after a median follow-up of 676 days. CONCLUSIONS MMR vaccine appears to be well tolerated in select HCT recipients when given between 300 and 729 days after transplant. An uncomplicated case of vaccine-associated rubella illness was seen after vaccination. Assessment of potential risks and benefits of MMR vaccination given within 2 years of HCT remains important.
Collapse
Affiliation(s)
- Michaël Desjardins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Infectious Diseases, Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Xhoi Mitre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Amy C Sherman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Matthew P Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Infectious Disease, McGill University Health Centre, Montreal, Québec, Canada
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Pilgrim Healthcare Institute & Harvard Medical School, Boston, Massachusetts, USA
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lindsey R Baden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nicolas C Issa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Thakur KT, Epstein S, Bilski A, Balbi A, Boehme AK, Brannagan TH, Wesley SF, Riley CS. Neurologic Safety Monitoring of COVID-19 Vaccines: Lessons From the Past to Inform the Present. Neurology 2021; 97:767-775. [PMID: 34475124 DOI: 10.1212/wnl.0000000000012703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global effort to rapidly develop and deploy effective and safe coronavirus disease 2019 (COVID-19) vaccinations. Vaccination has been one of the most effective medical interventions in human history, although potential safety risks of novel vaccines must be monitored, identified, and quantified. Adverse events must be carefully assessed to define whether they are causally associated with vaccination or coincidence. Neurologic adverse events following immunizations are overall rare but with significant morbidity and mortality when they occur. Here, we review neurologic conditions seen in the context of prior vaccinations and the current data to date on select COVID-19 vaccines including mRNA vaccines and the adenovirus-vector COVID-19 vaccines, ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2.S Johnson & Johnson (Janssen/J&J).
Collapse
Affiliation(s)
- Kiran Teresa Thakur
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York.
| | - Samantha Epstein
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Amanda Bilski
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Alanna Balbi
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Amelia K Boehme
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Thomas H Brannagan
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Sarah Flanagan Wesley
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| | - Claire S Riley
- From the Department of Neurology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York
| |
Collapse
|
18
|
Des Roches A, Graham F, Begin P, Paradis L, Gold M. Evaluation of Adverse Reactions to Vaccines. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3584-3597. [PMID: 34627533 DOI: 10.1016/j.jaip.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 02/05/2023]
Abstract
The development and widespread use of vaccination over the past centuries has been the single most impactful intervention in public health, by effectively preventing morbidity and mortality from infectious diseases. Vaccination is generally well tolerated in the vast majority of the population, and the benefits of vaccination largely outweigh the risk of severe adverse events in the majority of patients. Vaccine hesitancy can be a significant concern and lead to infectious disease outbreaks. All health care providers play an important role in maintaining public confidence in vaccines because their attitude and knowledge is often critical in facilitating acceptance of a vaccine. The purpose of this review is to first, provide an understanding of the basic concepts that are relevant to vaccine pharmacovigilance, and secondly, to provide an overview and discuss management of both immune and nonimmune adverse events after vaccination.
Collapse
Affiliation(s)
- Anne Des Roches
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada.
| | - François Graham
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Louis Paradis
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada; Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Michael Gold
- Discipline of Pediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021; 12:731643. [PMID: 34527001 PMCID: PMC8435594 DOI: 10.3389/fimmu.2021.731643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Matthew Donati
- Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Sarah L Johnston
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Mark M Gompels
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
20
|
Chang SY, Bisht A, Faysman K, Schiller GJ, Uslan DZ, Multani A. Vaccine-Associated Measles in a Hematopoietic Cell Transplant Recipient: Case Report and Comprehensive Review of the Literature. Open Forum Infect Dis 2021; 8:ofab326. [PMID: 34377725 PMCID: PMC8339276 DOI: 10.1093/ofid/ofab326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Measles is a worldwide viral disease that can cause fatal complications in immunocompromised hosts such as hematopoietic cell transplant (HCT) recipients. The live attenuated measles, mumps, and rubella (MMR) vaccine is generally contraindicated post-HCT due to the risk for vaccine-associated measles. This, combined with decreasing vaccination rates due to vaccine hesitancy and the coronavirus disease 2019 pandemic, raises significant concerns for a measles resurgence that could portend devastating consequences for immunocompromised hosts. Multiple guidelines have included criteria to determine which HCT recipients can safely receive the MMR vaccine. Here, we report a case of vaccine-associated measles in a HCT recipient who met guideline-recommended criteria for MMR vaccination. The objective of this article is to query these criteria, highlight the importance of MMR vaccination, and comprehensively review the literature.
Collapse
Affiliation(s)
- Sandy Y Chang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Anjali Bisht
- Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, California, USA
| | - Karolina Faysman
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Gary J Schiller
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel Z Uslan
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, California, USA
| | - Ashrit Multani
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Measles Sclerosing Subacute PanEncephalitis (SSPE), an intriguing and ever-present disease: Data, assumptions and new perspectives. Rev Neurol (Paris) 2021; 177:1059-1068. [PMID: 34187690 DOI: 10.1016/j.neurol.2021.02.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Subacute sclerosing panencephalitis (SSPE) is a rare, non-treatable and fatal neurological complication of measles, still present due to the return of the epidemic linked to the loosening of vaccination policies. Its mechanism remains unexplained. OBJECTIVE The main objective was to investigate explanatory variables relating to the risk of developing SSPE and its pathophysiology. METHODS Literature analysis was focused on different varieties of SSPE: perinatal forms, short-incubation forms similar to acute measles inclusion body encephalitis (MIBE), rapidly evolving forms, forms occurring in the immunosuppressed, adult forms, and family forms. In addition, several studies on the parameters of innate immunity and interferon responses of patients were analyzed. RESULTS Two main data were highlighted: a relationship between the so-called fulminant forms and the prescription of corticosteroids was established. In familial SSPE, two groups were individualized according to the duration of the latency period, prompting an analysis of patient exomes. CONCLUSION Treatment with corticosteroids should be banned. Knowledge of the genes involved and epigenetics should be useful for understanding the pathophysiology of SSPE and other late-onset neurological infections with RNA viruses.
Collapse
|
22
|
Rodriguez C, Gouilh MA, Weiss N, Stroer S, Mokhtari K, Seilhean D, Mathon B, Demontant V, N'Debi M, Gricourt G, Woerther PL, Pawlotsky JM, Stefic K, Marlet J, Dequin PF, Guillon A, Pourcher V, Boutolleau D, Vabret A, Burrel S. Fatal Measles Inclusion-Body Encephalitis in Adult with Untreated AIDS, France. Emerg Infect Dis 2021; 26:2231-2234. [PMID: 32818389 PMCID: PMC7454109 DOI: 10.3201/eid2609.200366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We report a fatal case of measles inclusion-body encephalitis occurring in a woman from Romania with AIDS. After an extensive but unsuccessful diagnostic evaluation, a pan-pathogen shotgun metagenomic approach revealed a measles virus infection. We identified no mutations previously associated with neurovirulence.
Collapse
|
23
|
Abstract
Evaluation of antibodies produced after immunization is central to immune deficiency diagnosis. This includes assessment of responses to routine immunizations as well as to vaccines administered specifically for diagnosis. Here, we present the basic concepts of the humoral immune response and their relevance for vaccine composition and diagnosis of immune deficiency. Current vaccines are discussed, including nonviable protein and glycoprotein vaccines, pure polysaccharide vaccines, polysaccharide-protein conjugate vaccines, and live agent vaccines. Diagnostic and therapeutic applications of vaccine antibody measurement are discussed in depth. Important adverse effects of vaccines are also presented.
Collapse
|
24
|
Miauton A, Tan R, Pantazou V, Du Pasquier R, Genton B. Vaccine-associated measles in a patient treated with natalizumab: a case report. BMC Infect Dis 2020; 20:753. [PMID: 33054715 PMCID: PMC7556935 DOI: 10.1186/s12879-020-05475-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022] Open
Abstract
Background Safety of live vaccines in patients treated with immunosuppressive therapies is not well known, resulting in contradictory vaccination recommendations. We describe here the first case of vaccine-associated measles in a patient on natalizumab treatment. Case presentation A young female patient with relapsing-remitting multiple sclerosis on natalizumab treatment received the live attenuated measles, mumps, and rubella vaccine in preparation for a change in her treatment in favour of fingolimod, with established immunosuppressive qualities. Seven days after receiving the vaccine, our patient experienced diffuse muscle pain, fatigue, and thereafter developed a fever and then an erythematous maculopapular rash, compatible with vaccine associated measles. This was later confirmed by a positive measles RT-PCR throat swab. The patient’s symptoms resolved without any sequelae. Conclusion In this case report we review the immunosuppressive qualities of natalizumab and the evidence in favour and against live vaccines in patients on this treatment. Our findings reveal the insufficient understanding of the immunosuppressive effects of new immunomodulators, and thus of the safety of live vaccines in patients on such medications. While this case triggers precaution, there is insufficient evidence to conclude that natalizumab treatment could favor the onset of vaccine-associated measles.
Collapse
Affiliation(s)
- Alix Miauton
- Tropical, travel and vaccination clinic, Unisanté, Center for primary care and public health, Bugnon 44, 1011, Lausanne, Switzerland.
| | - Rainer Tan
- Tropical, travel and vaccination clinic, Unisanté, Center for primary care and public health, Bugnon 44, 1011, Lausanne, Switzerland
| | - Vasiliki Pantazou
- Department of Neurology, Lausanne University Hospital, Bugnon 46, 1011, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Department of Neurology, Lausanne University Hospital, Bugnon 46, 1011, Lausanne, Switzerland
| | - Blaise Genton
- Tropical, travel and vaccination clinic, Unisanté, Center for primary care and public health, Bugnon 44, 1011, Lausanne, Switzerland
| |
Collapse
|
25
|
Lytvyn H, Basa N, Stasiv M, Troyanovska O, Dorosh O. Difficulties in diagnosing of measles inclusion body encephalitis in a child with acute lymphoblastic leukemia. IDCases 2020; 21:e00877. [PMID: 32637321 PMCID: PMC7327900 DOI: 10.1016/j.idcr.2020.e00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022] Open
Abstract
Report of measles inclusion body encephalitis in child with leukemia. It is necessary to determine antibodies to measles virus in the cerebrospinal fluid. We found intrathecal synthesis of IgG antibodies to measles virus. The disease had a dramatic course and ended in death.
The measles epidemic was observed in Ukraine during 20172019. According to WHO, in Ukraine there was registered the highest number of measles cases in Europe during that period [8]. Measles is characterized by an acute course with fever, maculopapular rash, cough, conjunctivitis and can lead to central nervous system complications (encephalitis, encephalomyelitis) and bronchopulmonary system complications (laryngotracheobronchitis, bronchiolitis, pneumonia). In immunocompetent patients, viremia ends after the end of clinical signs, in contrast to immunosuppressed individuals, who could develop viremia from one month up to a year. We have described a case of measles inclusion body encephalitis (MIBE) or subacute measles encephalitis (SME) in an unvaccinated child with an acute lymphoblastic leukemia (ALL). The diagnosis was confirmed by the synthesis of IgG antibodies to the measles virus in the cerebrospinal fluid and by the MRI results. The disease had a dramatic course and ended in death.
Collapse
Affiliation(s)
- Halyna Lytvyn
- Department of Pediatric Infectious Diseases, Danylo Halytsky Lviv National Medical University, Communal Noncommercial Enterprise of Lviv Regional council "Lviv Regional Infectious Diseases Hospital", Lviv, Ukraine
| | - Natella Basa
- Department of Pediatric Infectious Diseases, Danylo Halytsky Lviv National Medical University, Communal Noncommercial Enterprise of Lviv Regional council "Lviv Regional Infectious Diseases Hospital", Lviv, Ukraine
| | - Mariia Stasiv
- Department of Pediatric Infectious Diseases, Danylo Halytsky Lviv National Medical University, Communal Noncommercial Enterprise of Lviv Regional council "Lviv Regional Infectious Diseases Hospital", Lviv, Ukraine
| | - Olga Troyanovska
- Department of Pediatrics, Danylo Halytsky Lviv National Medical University, Communal Noncommercial Enterprise of Lviv Regional Council "Western Ukrainian Specialized Children's Medical Centre", Lviv, Ukraine
| | - Olga Dorosh
- Department of pediatrics and neonatology FPGE, Danylo Halytsky Lviv National Medical University, Communal noncommercial enterprise of Lviv regional council "Western Ukrainian Specialized Children's Medical Centre", Lviv, Ukraine
| |
Collapse
|
26
|
Bellavite P. Causality assessment of adverse events following immunization: the problem of multifactorial pathology. F1000Res 2020; 9:170. [PMID: 32269767 PMCID: PMC7111503 DOI: 10.12688/f1000research.22600.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 07/22/2023] Open
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to national vaccine injury compensation programs. If manufacturing defects or vaccine storage and delivering errors are excluded, the majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that can explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents some concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
27
|
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to vaccine injury compensation programs. The majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that might explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents several concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. Given these inadequacies in the evaluation of multifactorial diseases, the WHO guidelines need to be reevaluated and revised. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
28
|
Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci 2020; 21:ijms21051705. [PMID: 32131483 PMCID: PMC7084400 DOI: 10.3390/ijms21051705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.
Collapse
|
29
|
Misin A, Antonello RM, Di Bella S, Campisciano G, Zanotta N, Giacobbe DR, Comar M, Luzzati R. Measles: An Overview of a Re-Emerging Disease in Children and Immunocompromised Patients. Microorganisms 2020; 8:E276. [PMID: 32085446 PMCID: PMC7074809 DOI: 10.3390/microorganisms8020276] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the availability of a safe and effective vaccine, in 2018, around 350,000 measles cases were reported worldwide, which resulted in an estimate of 142,300 deaths from measles. Additionally, in 2017, global measles cases spiked, causing the death of 110,000 people, mostly children under the age of 5 years and immunocompromised adults. The increase in measles incidence is caused by the ongoing reduction of vaccination coverage. This event has triggered public and scientific interest. For this reason, we reviewed the pathophysiology of measles infection, focusing on mechanisms by which the virus spreads systemically through the host organism. By reaching the lymphocytes from the airways through a "trojan horse" strategy, measles induces an immunosuppression status. H and F glycoproteins, both expressed in the envelope, ensure attachment of the virus to host cells and spreading from one cell to another by binding to several receptors, as described in detail. The severity of the disease depends both on the age and underlying conditions of patients as well as the social and health context in which epidemics spread, and is often burdened by sequelae and complications that may occur several years after infection. Particular attention was paid to special groups that are more susceptible to severe or atypical measles. An overview of microbiology, symptoms, diagnosis, prevention, and treatment completes and enriches the review.
Collapse
Affiliation(s)
- Andrea Misin
- Department of Infectious Diseases, Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), Via G.L. Gatteri 25/1, 34125 Trieste, Italy; (S.D.B.); (R.L.)
| | - Roberta Maria Antonello
- Faculty of Medicine and Surgery, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Stefano Di Bella
- Department of Infectious Diseases, Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), Via G.L. Gatteri 25/1, 34125 Trieste, Italy; (S.D.B.); (R.L.)
| | - Giuseppina Campisciano
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34137 Trieste, Italy; (G.C.); (N.Z.); (M.C.)
| | - Nunzia Zanotta
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34137 Trieste, Italy; (G.C.); (N.Z.); (M.C.)
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino—IRCCS, L.go R. Benzi 10, 16132 Genoa, Italy;
- Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Manola Comar
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34137 Trieste, Italy; (G.C.); (N.Z.); (M.C.)
- Department of Medical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Roberto Luzzati
- Department of Infectious Diseases, Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), Via G.L. Gatteri 25/1, 34125 Trieste, Italy; (S.D.B.); (R.L.)
| |
Collapse
|
30
|
Greenberg-Kushnir N, Lee YN, Simon AJ, Lev A, Marcus N, Abuzaitoun O, Somech R, Stauber T. A Large Cohort of RAG1/2-Deficient SCID Patients—Clinical, Immunological, and Prognostic Analysis. J Clin Immunol 2019; 40:211-222. [DOI: 10.1007/s10875-019-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
|
31
|
Greydanus DE, Leonov A, Elisa A, Azmeh R. Should rare immunologic, neurologic, and other adverse events be indications to withhold vaccination? Transl Pediatr 2019; 8:419-427. [PMID: 31993356 PMCID: PMC6970121 DOI: 10.21037/tp.2019.06.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Millions of illnesses, hospitalizations, and deaths are prevented by vaccination worldwide. This discussion examines vaccine safety concerns from the past several decades of immunization research. Both immunologic and non-immunologic side effects are reviewed, and clarification is provided regarding some highly-publicized myths regarding vaccine safety.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric & Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Andrey Leonov
- Department of Pediatric & Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.,DuPage Medical Group, Plainfield, IL, USA
| | - Ahmed Elisa
- Department of Pediatric & Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Roua Azmeh
- Department of Pediatric & Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
32
|
Stone CA, Rukasin CR, Beachkofsky TM, Phillips EJ. Immune-mediated adverse reactions to vaccines. Br J Clin Pharmacol 2019; 85:2694-2706. [PMID: 31472022 PMCID: PMC6955412 DOI: 10.1111/bcp.14112] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccination continues to be the single most important and successful public health intervention, due to its prevention of morbidity and mortality from prevalent infectious diseases. Severe immunologically mediated reactions are rare and less common with the vaccine than the true infection. However, these events can cause public fearfulness and loss of confidence in the safety of vaccination. In this paper, we perform a systematic literature search and narrative review of immune-mediated vaccine adverse events and their known and proposed mechanisms, and outline directions for future research. Improving our knowledge base of severe immunologically mediated vaccine reactions and their management drives better vaccine safety and efficacy outcomes.
Collapse
Affiliation(s)
- Cosby A. Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Christine R.F. Rukasin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
| | | | - Elizabeth J. Phillips
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Medical SchoolNashvilleTennessee
| |
Collapse
|
33
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
34
|
Churchill L, Rizzuti FA, Fonseca K, Kim J. Vaccine-associated measles in a healthy 40-year-old woman. CMAJ 2019; 190:E1046-E1048. [PMID: 30181151 DOI: 10.1503/cmaj.180527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Lucas Churchill
- Departments of Medicine (Churchill, Rizzuti, Kim), and Microbiology, Immunology and Infectious Diseases (Fonseca), University of Calgary; Provincial Laboratory for Public Health (Fonseca), Alberta Health Services, Calgary, Alta
| | - Francesco A Rizzuti
- Departments of Medicine (Churchill, Rizzuti, Kim), and Microbiology, Immunology and Infectious Diseases (Fonseca), University of Calgary; Provincial Laboratory for Public Health (Fonseca), Alberta Health Services, Calgary, Alta
| | - Kevin Fonseca
- Departments of Medicine (Churchill, Rizzuti, Kim), and Microbiology, Immunology and Infectious Diseases (Fonseca), University of Calgary; Provincial Laboratory for Public Health (Fonseca), Alberta Health Services, Calgary, Alta
| | - Joseph Kim
- Departments of Medicine (Churchill, Rizzuti, Kim), and Microbiology, Immunology and Infectious Diseases (Fonseca), University of Calgary; Provincial Laboratory for Public Health (Fonseca), Alberta Health Services, Calgary, Alta.
| |
Collapse
|
35
|
McMahon J, Mackay IM, Lambert SB. Measles Vaccine Virus RNA in Children More Than 100 Days after Vaccination. Viruses 2019; 11:E636. [PMID: 31295941 PMCID: PMC6669751 DOI: 10.3390/v11070636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Measles vaccines have been in use since the 1960s with excellent safety and effectiveness profiles. Limited data are available on detection of measles vaccine virus (MeVV) RNA in human subjects following vaccination. Available evidence suggests MeVV RNA can be identified up to 14 days after vaccination, with detection beyond this rare. In routine diagnostic testing, we used two real-time reverse transcription-polymerase chain reaction (RT-rPCR) assays targeting M and F genes to identify measles virus (MeV) and MeVV RNA. Confirmatory testing was performed with an N gene RT-rPCR, followed by sequence confirmation of RT-rPCR positives by semi-nested conventional RT-PCR assays targeting portions of the N, H, and L genes. We report detection and confirmation of MeVV RNA from the respiratory tract of 11 children between 100 and 800 days after most recent receipt of measles-containing vaccine. These novel findings emphasize the importance of genotyping all MeV detections and highlight the need for further work to assess whether persistent MeVV RNA represents viable virus and if transmission to close contacts can occur.
Collapse
Affiliation(s)
- Jamie McMahon
- Public Health Virology Laboratory, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| | - Ian M Mackay
- Public Health Virology Laboratory, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Stephen B Lambert
- Child Health Research Centre, The University of Queensland, 62 Graham Street, South Brisbane, QLD 4101, Australia
| |
Collapse
|
36
|
Pöyhönen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity. J Clin Immunol 2019; 39:376-390. [PMID: 31123910 DOI: 10.1007/s10875-019-00642-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/β and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain "idiopathic," in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.
Collapse
Affiliation(s)
- Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
37
|
|
38
|
Heiman S, Weil M, Shulman LM, Simon AJ, Lev A, Somech R, Stauber T. Co-appearance of OPV and BCG vaccine-derived complications in two infants with severe combined immunodeficiency. Immunol Res 2019; 66:437-443. [PMID: 29804197 DOI: 10.1007/s12026-018-9007-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infants with severe combined immunodeficiency (SCID) are at risk of developing severe life-threatening infections if they are inadvertently given attenuated live vaccines. Concomitant appearance of two live vaccine-associated complications in one person is rarely reported. In this study, we present two SCID infants, who received BCG and oral polio vaccines according to their local immunization schedule early in life, before the diagnosis of immunodeficiency was made. Their clinical presentation, extensive immunological workup, genetic tests, and clinical disease course are presented. Both patients developed localized and disseminated infections originating from the BCG vaccine (BCGitis and BCGiosis, respectively) and in addition suffered from diarrhea and chronic fecal secretion of vaccine-derived poliovirus. Alarmingly, in case 2, the poliovirus was a type 2 vaccine-derived poliovirus in which both neurovirulence attenuation sites reverted to the neurovirulent genotype. These cases highlight the importance of early recognition of SCID by neonatal screening or thorough family anamnesis, and the need to further defer the timing of administration of attenuated live vaccines.
Collapse
Affiliation(s)
- Sophia Heiman
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Díaz-Delgado J, Groch KR, Sierra E, Sacchini S, Zucca D, Quesada-Canales Ó, Arbelo M, Fernández A, Santos E, Ikeda J, Carvalho R, Azevedo AF, Lailson-Brito J, Flach L, Ressio R, Kanamura CT, Sansone M, Favero C, Porter BF, Centelleghe C, Mazzariol S, Di Renzo L, Di Francesco G, Di Guardo G, Catão-Dias JL. Comparative histopathologic and viral immunohistochemical studies on CeMV infection among Western Mediterranean, Northeast-Central, and Southwestern Atlantic cetaceans. PLoS One 2019; 14:e0213363. [PMID: 30893365 PMCID: PMC6426187 DOI: 10.1371/journal.pone.0213363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cetacean morbillivirus (CeMV) is a major natural cause of morbidity and mortality in cetaceans worldwide and results in epidemic and endemic fatalities. The pathogenesis of CeMV has not been fully elucidated, and questions remain regarding tissue tropism and the mechanisms of immunosuppression. We compared the histopathologic and viral immunohistochemical features in molecularly confirmed CeMV-infected Guiana dolphins (Sotalia guianensis) from the Southwestern Atlantic (Brazil) and striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from the Northeast-Central Atlantic (Canary Islands, Spain) and the Western Mediterranean Sea (Italy). Major emphasis was placed on the central nervous system (CNS), including neuroanatomical distribution of lesions, and the lymphoid system and lung were also examined. Eleven Guiana dolphins, 13 striped dolphins, and 3 bottlenose dolphins were selected by defined criteria. CeMV infections showed a remarkable neurotropism in striped dolphins and bottlenose dolphins, while this was a rare feature in CeMV-infected Guiana dolphins. Neuroanatomical distribution of lesions in dolphins stranded in the Canary Islands revealed a consistent involvement of the cerebrum, thalamus, and cerebellum, followed by caudal brainstem and spinal cord. In most cases, Guiana dolphins had more severe lung lesions. The lymphoid system was involved in all three species, with consistent lymphoid depletion. Multinucleate giant cells/syncytia and characteristic viral inclusion bodies were variably observed in these organs. Overall, there was widespread lymphohistiocytic, epithelial, and neuronal/neuroglial viral antigen immunolabeling with some individual, host species, and CeMV strain differences. Preexisting and opportunistic infections were common, particularly endoparasitism, followed by bacterial, fungal, and viral infections. These results contribute to understanding CeMV infections in susceptible cetacean hosts in relation to factors such as CeMV strains and geographic locations, thereby establishing the basis for future neuro- and immunopathological comparative investigations.
Collapse
Affiliation(s)
- Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Kátia R. Groch
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Eva Sierra
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Simona Sacchini
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Daniele Zucca
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Óscar Quesada-Canales
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Manuel Arbelo
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Antonio Fernández
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Elitieri Santos
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Joana Ikeda
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Rafael Carvalho
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Alexandre F. Azevedo
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Jose Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Leonardo Flach
- Projeto Boto cinza, Mangaratiba, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Ressio
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | | | - Marcelo Sansone
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | - Cíntia Favero
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Brian F. Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, Località Piano d'Accio, University of Teramo, Teramo, Italy
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Watanabe S, Shirogane Y, Sato Y, Hashiguchi T, Yanagi Y. New Insights into Measles Virus Brain Infections. Trends Microbiol 2019; 27:164-175. [DOI: 10.1016/j.tim.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/15/2022]
|
41
|
Safdar A. Rare and Emerging Viral Infections in the Transplant Population. PRINCIPLES AND PRACTICE OF TRANSPLANT INFECTIOUS DISEASES 2019. [PMCID: PMC7119999 DOI: 10.1007/978-1-4939-9034-4_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viral infections account for a large proportion of emerging infectious diseases, and the agents included in this group consist of recently identified viruses as well as previously identified viruses with an apparent increase in disease incidence. In transplant recipients, this group can include viruses with no recognized pathogenicity in immunocompetent patients and those that result in atypical or more severe disease presentations in the immunocompromised host. In this chapter, we begin by discussing viral diagnostics and techniques used for viral discovery, specifically as they apply to emerging and rare infections in this patient population. Focus then shifts to specific emerging and re-emerging viruses in the transplant population, including human T-cell leukemia virus 1, rabies, lymphocytic choriomeningitis virus, human bocavirus, parvovirus 4, measles, mumps, orf, and dengue. We have also included a brief discussion on emerging viruses and virus families with few or no reported cases in transplant recipients: monkeypox, nipah and hendra, chikungunya and other alphaviruses, hantavirus and the Bunyaviridae, and filoviruses. Finally, concerns regarding infectious disease complications in xenotransplantation and the reporting of rare viral infections are addressed. With the marked increase in the number of solid organ and hematopoietic stem cell transplants performed worldwide, we expect a corresponding rise in the reports of emerging viral infections in transplant hosts, both from known viruses and those yet to be identified.
Collapse
Affiliation(s)
- Amar Safdar
- Clinical Associate Professor of Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX USA
| |
Collapse
|
42
|
Macrophages and Dendritic Cells Are the Predominant Cells Infected in Measles in Humans. mSphere 2018; 3:3/3/e00570-17. [PMID: 29743202 PMCID: PMC5956143 DOI: 10.1128/msphere.00570-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/19/2018] [Indexed: 01/08/2023] Open
Abstract
Characterization of human measles cases is essential in order to better assess the data generated in model systems of morbillivirus infection. To this end, we collected formalin-fixed tissue samples from 23 natural measles cases from different areas in the world and different phases of disease ranging from prodromal and acute measles to a persistent infection in an immunocompromised subject. We show that the vast majority of measles virus (MV)-infected cells in epithelia were intraepithelial immune cells that were, in most cases, positive for the CD11c myeloid cell marker. Small numbers of measles virus-infected cytokeratin-positive epithelial cells were also detected in bronchial and appendix epithelia. Dissolution and disruption of uninfected and MV-infected alveolar and bronchial epithelia were prominent features of the measles cases, especially in the established and late phases of the disease. In some instances, this was associated with the formation of MV-infected multinucleated giant cells which expressed CD11c and/or macrophage cell marker 68, a pathological feature also prominently observed in closely associated mucosa-associated lymphoid tissue. Collectively, these data show that resident and inflammatory infiltrating immune cells alter the architecture of respiratory tract epithelia and highlight the necessity for additional research into the function(s) and expression of nectin-4 in human tissues.IMPORTANCE We have brought together a unique collection of 23 human cases of measles infection and studied the types of cells that are infected. This work has not been done with modern technologies such as double labeling with antibodies and confocal microscopy in human cases primarily due to the fact that it is difficult to obtain the material because, fortunately, measles is fatal in only a very small fraction of infected patients. During the past decades, the receptors for measles virus have been elucidated and monkey models have been developed. We found that, in most cases, independently of whether the tissues were obtained early or later in the infection, the primary cell types that were infected were those of the immune system such as lymphocytes, macrophages, and dendritic cells. A very small number of epithelial cells were also found to be infected.
Collapse
|
43
|
Update: Vaccines in primary immunodeficiency. J Allergy Clin Immunol 2017; 141:474-481. [PMID: 29288077 DOI: 10.1016/j.jaci.2017.12.980] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/21/2022]
Abstract
Vaccines were originally developed to prevent or ameliorate infectious disease. As knowledge of immune function and appreciation of immunodeficiency has developed, researchers have used vaccine responses as a tool to characterize the phenotypes of patients exhibiting various syndromes. Thus it has become possible for a clinician to evaluate individual responses to vaccines to interrogate the immunocompetence of their patients. Although there have been many advances in these areas, we still have much to learn about the quantity and quality of humoral and cellular vaccine responses in healthy and immunodeficient subjects and how that knowledge can then be extrapolated to diagnostic purposes. Adverse effects of vaccines have been recognized for many years, especially the occurrence of infections caused by viable vaccine organisms in immunodeficient hosts. Nevertheless, vaccines are essential for disease prevention in immunodeficient patients, just as they are for healthy subjects. Clinicians must understand the appropriate and safe use of vaccines in patients with immunodeficiency. This review highlights some recent advances and ongoing challenges in application of vaccines for the diagnosis and treatment of immunodeficiencies.
Collapse
|
44
|
Koeller KK, Shih RY. Viral and Prion Infections of the Central Nervous System: Radiologic-Pathologic Correlation: From the Radiologic Pathology Archives. Radiographics 2017; 37:199-233. [PMID: 28076019 DOI: 10.1148/rg.2017160149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viral infections of the central nervous system (CNS) range in clinical severity, with the most severe proving fatal within a matter of days. Some of the more than 100 different viruses known to affect the brain and spinal cord are neurotropic with a predilection for producing CNS infection. The host response to viral infection of the CNS is responsible for the pathophysiology and imaging findings seen in affected patients. Viral CNS infections can take the form of meningitis, encephalitis, encephalomyelitis, or, when involving the spinal cord and nerve roots, encephalomyeloradiculitis. In 1982, an infectious particle termed a prion that lacked nucleic acid and therefore was not a virus was reported to produce the fatal neurodegenerative disease Creutzfeldt-Jakob disease and related disorders. These prion diseases produce characteristic neuroimaging findings that are distinct from those seen in most viral infections. The clinical and imaging findings associated with viral CNS infection are often nonspecific, with microbiologic analysis of cerebrospinal fluid the most useful single test allowing for diagnosis of a specific viral infection. This review details the spectrum of viral CNS infections and uses case material from the archives of the American Institute for Radiologic Pathology, with a focus on the specific clinical characteristics and magnetic resonance imaging features seen in these infections. Where possible, the imaging features that allow distinction of these infections from other CNS inflammatory conditions are highlighted.
Collapse
Affiliation(s)
- Kelly K Koeller
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (K.K.K., R.Y.S.); Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); and Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.)
| | - Robert Y Shih
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (K.K.K., R.Y.S.); Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); and Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.)
| |
Collapse
|
45
|
Gattinara GC, Bellelli E, Angelone DF, Santilli V, Nicolosi L. Adverse Events Related to Vaccination (VAEs): How to Manage the Further Doses of Immunization and Parents’ Hesitancy. Vaccines (Basel) 2017. [DOI: 10.5772/intechopen.68697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
46
|
Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol 2017; 23:35-42. [PMID: 28319790 PMCID: PMC5474179 DOI: 10.1016/j.coviro.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
In a prototypical response to an acute viral infection it would be expected that the adaptive immune response would eliminate all virally infected cells within a few weeks of infection. However many (non-retrovirus) RNA viruses can establish 'within host' persistent infections that occasionally lead to chronic or reactivated disease. Despite the importance of 'within host' persistent RNA virus infections, much has still to be learnt about the molecular mechanisms by which RNA viruses establish persistent infections, why innate and adaptive immune responses fail to rapidly clear these infections, and the epidemiological and potential disease consequences of such infections.
Collapse
Affiliation(s)
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Laksono BM, de Vries RD, McQuaid S, Duprex WP, de Swart RL. Measles Virus Host Invasion and Pathogenesis. Viruses 2016; 8:E210. [PMID: 27483301 PMCID: PMC4997572 DOI: 10.3390/v8080210] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023] Open
Abstract
Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150⁺ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis.
Collapse
Affiliation(s)
- Brigitta M Laksono
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, BT7 1NN Belfast, UK.
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Abstract
INTRODUCTION To assure the highest safety of immunization programs, detect adverse events following immunization (AEFIs), eliminate concerns, and reduce the risk of low vaccination coverage, authorities in industrialized countries have collected years of reports of suspected AEFIs and have systematically assessed their clinical importance. AREAS COVERED In this paper, the methods used to assess vaccine safety and the results obtained by the analysis of reports, studies, and meta-analyses are discussed. EXPERT OPINION Severe AEFIs are rare, and all evaluations of safety of vaccines recommended for both children and adults have demonstrated that the advantages of vaccines are always significantly higher than the problems that they cause, and there is no need to modify recommendations. However, the definition of AEFI is dependent on the vaccines themselves, complicating the definition of an AEFI and explaining why doubts and concerns have been raised. Presently, disease epidemiology data collected in healthy people and in subjects with underlying disease, general vaccine coverage, and the vaccination status of subjects with AEFIs are managed by many independent institutions. Only strict co-operation between these institutions will lead to the successful identification of AEFIs and to a reduction of the weight of anti-vaccine arguments.
Collapse
Affiliation(s)
- Nicola Principi
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Susanna Esposito
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
50
|
Subacute sclerosing panencephalitis in pregnancy. THE LANCET. INFECTIOUS DISEASES 2016; 16:366-75. [PMID: 26809815 PMCID: PMC7164796 DOI: 10.1016/s1473-3099(15)00524-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 01/21/2023]
Abstract
We present a case of subacute sclerosing panencephalitis that developed in a previously healthy 29-year-old pregnant woman who had returned from a trip to rural India shortly before the onset of symptoms. She was admitted to hospital at 27 weeks' gestation with a history of cognitive decline and difficulty completing simple tasks. She had no clinical signs of infection. The working diagnosis was autoimmune encephalitis, although extensive investigations did not lead to a final classifying diagnosis. The patient became comatose and developed hypertension, and an emergency caesarean section was done at 31 weeks to deliver the child, who seemed healthy. The patient died about 6 weeks after the onset of symptoms. The patient was found to have had subacute sclerosing panencephalitis at autopsy. In this Grand Round, we review the clinical features and treatment of subacute sclerosing panencephalitis, and the epidemiological and public health aspects of the case.
Collapse
|