1
|
Kelly MS, Shi P, Boiditswe SC, Qin E, Steenhoff AP, Mazhani T, Patel MZ, Cunningham CK, Rawls JF, Luinstra K, Gilchrist J, Maciejewski J, Hurst JH, Seed PC, Bulir D, Smieja M. Role of the upper airway microbiota in respiratory virus and bacterial pathobiont dynamics in the first year of life. Nat Commun 2025; 16:5195. [PMID: 40467627 PMCID: PMC12137660 DOI: 10.1038/s41467-025-60552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
The mechanisms by which respiratory viruses predispose to secondary bacterial infections remain poorly characterized. Using 2,409 nasopharyngeal swabs from 300 infants enrolled in a prospective cohort study in Botswana, we perform a detailed analysis of factors that influence the dynamics of bacterial pathobiont colonization during infancy. We quantify the extent to which viruses increase the acquisition of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae. We provide evidence of cooperative interactions between these pathobionts while identifying host characteristics and environmental exposures that influence the odds of pathobiont colonization during early life. Using 16S rRNA gene sequencing, we demonstrate that respiratory viruses result in losses of putatively beneficial Corynebacterium and Streptococcus species that are associated with a lower odds of pathobiont acquisition. These findings provide important insights into viral-bacterial relationships in the upper respiratory tract of direct relevance to respiratory infections and suggest that the bacterial microbiota is a potentially modifiable mechanism by which viruses promote bacterial respiratory infections.
Collapse
Affiliation(s)
- Matthew S Kelly
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Emily Qin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Andrew P Steenhoff
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Global Health Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiny Mazhani
- University of Botswana School of Medicine, Gaborone, Botswana
| | - Mohamed Z Patel
- University of Botswana School of Medicine, Gaborone, Botswana
| | - Coleen K Cunningham
- Division of Pediatric Infectious Diseases, University of California, Irvine, Orange, CA, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Kathy Luinstra
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Jodi Gilchrist
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Julia Maciejewski
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Jillian H Hurst
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA
| | - Patrick C Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Bulir
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Marek Smieja
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Ma AX, Lin L, Zhang Q, Zhang MY, Jiang LH, Chen J, Liu SL, Wang ZG, Pang DW. Ratiometric Dual-Response Quantum Dot Spherical Nucleic Acid for Monitoring Viral Secondary Bacterial Infections. Anal Chem 2025; 97:9422-9429. [PMID: 40257288 DOI: 10.1021/acs.analchem.5c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Viral-bacterial coinfections present intricate pathologies that exacerbate disease progression and elevate mortality rates. Understanding the dynamic interplay between viruses and bacteria during coinfection is critical for developing effective therapeutic interventions. However, current diagnostic tools primarily rely on static detection methods, limiting their ability to monitor real-time infection dynamics. Here, we introduce a ratiometric, dual-responsive quantum dot spherical nucleic acid (QD-SNA) probe capable of simultaneously detecting viral- and bacterial-specific markers in vivo. This probe enables real-time monitoring of coinfections, as demonstrated in a mouse model of influenza virus (H1N1) and methicillin-resistant Staphylococcus aureus infection. By providing dynamic, visual insights into the coinfection process, the QD-SNA probe holds significant potential for preclinical drug screening and the diagnosis of respiratory pathogen infections.
Collapse
Affiliation(s)
- Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Qing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ming-Yu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Better J, Estiri M, Wetstein M, Pervizaj-Oruqaj L, Malainou C, Ogungbemi-Alt V, Ferrero MR, Langelage M, Kuznetsova I, Vazquez-Armendariz AI, Kimmig L, Pak O, Mansouri S, Savai R, Wilhelm J, Alexopoulos I, Sommer N, Herold S, Matt U. Cell type-specific efferocytosis determines functional plasticity of alveolar macrophages. Sci Immunol 2025; 10:eadl3852. [PMID: 40315300 DOI: 10.1126/sciimmunol.adl3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
Resolution of lung injuries is vital to maintain gas exchange, but there is an increased risk of secondary bacterial infections during this stage. Alveolar macrophages (AMs) are crucial to clear bacteria and control the resolution of inflammation, but environmental cues that switch functional phenotypes of AMs remain incompletely understood. Here, we found that AMs lack the capacity to mount an effective immune response against bacteria during resolution of inflammation. Neutrophil (PMN)-derived myeloperoxidase (MPO) fueled canonical glutaminolysis via the mitochondrial membrane transporter uncoupling protein-2 (UCP2), resulting in decreased mtROS-dependent killing of bacteria and secretion of pro-inflammatory cytokines. MPO-enhanced UCP2 expression inhibited mitochondrial hyperpolarization and boosted efferocytosis irrespective of the presence of bacterial pathogens. Conversely, efferocytosis of other cell types resulted in a distinct anti-inflammatory AM phenotype while maintaining antibacterial phenotypic plasticity. Overall, our findings indicate that the uptake of apoptotic PMNs or MPO switches AMs to prioritize resolution of inflammation over antibacterial responses, a feature that is conserved in murine extrapulmonary macrophages and human AMs.
Collapse
Affiliation(s)
- Julian Better
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Mohammad Estiri
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Michael Wetstein
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victoria Ogungbemi-Alt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Maximiliano Ruben Ferrero
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomedicine Research Institute of Buenos Aires - CONICET-Partner Institute of the Max Planck Society (IBioBA-MPSP), Buenos Aires, Argentina
| | - Martin Langelage
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Irina Kuznetsova
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Lucas Kimmig
- University of Chicago Medicine, Chicago, IL, USA
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Siavash Mansouri
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ulrich Matt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Xiao Y, Gygli SM, Steen TY, Taubenberger JK. Genetic Sequencing of a Bacterial Pneumonia Vaccine Produced in 1916. Vaccines (Basel) 2025; 13:491. [PMID: 40432103 PMCID: PMC12115763 DOI: 10.3390/vaccines13050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Bacterial vaccines were first developed and used in the late 1800s to prevent chicken cholera and anthrax. Bacterial pneumonia vaccines were widely used during the 1918 influenza pandemic, despite the influenza A/H1N1 virus not yet being identified. Studies showed that bacterial pathogens, including Haemophilus influenzae, Streptococcus pneumoniae, and Streptococcus pyogenes, contributed significantly to fatal secondary bacterial pneumonias during the pandemic. In this study, we aimed to characterize the microbial composition of two ampules of a mixed bacterial influenza vaccine produced in 1916, which were labeled as containing killed Bacillus influenzae, Pneumococci, and Streptococcus pyogenes. Methods: DNA was extracted from two 1916-era vaccine ampules, and due to low DNA yields, whole genome amplification (WGA) was performed prior to construction of Illumina sequencing libraries. Deep sequencing was conducted, followed by bioinformatic analysis to identify bacterial DNA content. Consensus genomes were assembled for predominant species, and further analyzed for serotype, phylogeny, and antibiotic resistance genes. Results: The amount of recoverable DNA from these century-old vaccine ampules was limited. The sequencing results revealed minimal detectable S. pneumoniae DNA. The first ampule contained predominantly H. influenzae DNA, while the second vial primarily contained Enterococcus faecium DNA, in addition to S. pyogenes DNA. Consensus genomes for H. influenzae, S. pyogenes, and E. faecium were assembled and analyzed for serotype, phylogeny, and antibiotic resistance genes. Conclusions: This study presents the first genomic analysis of century-old bacterial pneumonia vaccine ampules from the 1918 influenza pandemic era. The findings provide a unique historical perspective on early vaccine formulations and highlight the limitations of early vaccine production.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.M.G.); (J.K.T.)
| | - Sebastian M. Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.M.G.); (J.K.T.)
| | - Tomoko Y. Steen
- Graduate Program in Biohazardous Threat Agents and Emerging Infectious Diseases, School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.M.G.); (J.K.T.)
| |
Collapse
|
5
|
Gu S, Xiao W, Yu Z, Xiao J, Sun M, Zhang L, Pan P, Xie L. Single-cell RNA-seq reveals the immune response of Co-infection with streptococcus pneumoniae after influenza A virus by a lung-on-chip: The molecular structure and mechanism of tight junction protein ZO-1. Int J Biol Macromol 2025; 306:141815. [PMID: 40057081 DOI: 10.1016/j.ijbiomac.2025.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/11/2025]
Abstract
Secondary bacterial infection is the main cause of pneumonia after influenza virus infection. This study aims to explore the impact of co-infection of influenza A virus (IAV) and Streptococcus pneumoniae (SP) on lung immune response using a human lung-on-chip model and single-cell RNA sequencing technology, with a focus on the molecular structure and mechanism of action of the tight junction protein ZO-1 in this process. Research and construct a human lung-on-chip model to simulate the microenvironment of the lungs in vivo. Use this model to infect IAV and SP separately, as well as co-infect both. Using single-cell RNA sequencing technology to analyze gene expression profiles of lung cells under different infection states, and interpreting key pathways through GO enrichment analysis. Separate peripheral blood mononuclear cells and perform macrophage differentiation, using multiple bead immunoassay to detect cytokine levels. Evaluate changes in lung barrier function through immunofluorescence staining and image analysis. Single cell RNA sequencing data revealed unique transcriptome changes induced by IAV and SP co-infection, particularly in lung epithelial cells. The results showed that co-infection significantly downregulated the expression of tight junction protein ZO-1 and affected its intracellular localization, thereby disrupting the integrity of the pulmonary epithelial barrier. GO enrichment analysis further elucidated the signaling pathways and biological processes associated with ZO-1 downregulation. Multiple bead immunoassay showed that co-infection led to an increase in the release of specific cytokines. The study utilized a human lung-on-chip model and single-cell RNA sequencing technology to reveal the complex immune response induced by IAV and SP co-infection, and identified the key role of ZO-1 in maintaining lung barrier integrity. The downregulation and abnormal localization of ZO-1 expression may be a key mechanism leading to lung injury after co-infection.
Collapse
Affiliation(s)
- Shaoyan Gu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Qiqihar Medical University (The Second Affiliated Hospital), Qiqihar 161006, China
| | - Wenxuan Xiao
- Department of Microbiology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zhongkuo Yu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| | - Jia Xiao
- Qiqihar Medical University (The Second Affiliated Hospital), Qiqihar 161006, China
| | - Mingze Sun
- Qiqihar Medical University (The Second Affiliated Hospital), Qiqihar 161006, China
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai 200438, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China.
| | - Pan Pan
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
6
|
Bell D, von Agris J, Tacheva B, Brown GW. Natural Spillover Risk and Disease Outbreaks: Is Over-Simplification Putting Public Health at Risk? J Epidemiol Glob Health 2025; 15:65. [PMID: 40272646 PMCID: PMC12021773 DOI: 10.1007/s44197-025-00412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/14/2025] [Indexed: 04/27/2025] Open
Abstract
The pandemic prevention, preparedness and response (PPPR) agenda is currently dominating international public health. International agencies including the World Health Organization and World Bank are proposing an unprecedented level of funding that will inevitably have broad consequences across health and society. Arguments supporting pandemic policy are heavily based on the premise that pandemic risk is rapidly increasing, driven in particular by passage of pathogens from animal reservoirs to establish transmission in the human population; 'zoonotic spillover'. Proposed drivers for increasing spillover are mostly based on environmental change attributed to anthropogenic origin, including deforestation, agricultural expansion and intensification, and changes in climate. Much of the literature, including reports published by international agencies and peer-reviewed papers, offers support for fundamental changes in public health policy premised on definitive statements that spillover is indeed increasing, that underlying anthropogenic drivers are the main reason for this, and that these are remediable. However, many of these assumptions are poorly supported by cited literature, over-simplifying a highly complex set of ecological interactions. This picture is further complicated by rapidly and unevenly evolving capacity for pathogen detection and notification. Public health policy based on incorrect assumptions and overly simplified analyses is likely to lead to poorly designed interventions and poor outcomes. If we are to deal effectively with outbreak risk within the broad context of competing public health priorities, there is an urgent need to re-evaluate current assumptions on drivers of outbreaks based on available evidence and address continuing major gaps in knowledge.
Collapse
Affiliation(s)
- David Bell
- Independent Consultant, Lake Jackson, TX, USA
| | - Jean von Agris
- School of Politics and International Studies (POLIS), University of Leeds, Leeds, LS2 9JT, UK
| | - Blagovesta Tacheva
- School of Politics and International Studies (POLIS), University of Leeds, Leeds, LS2 9JT, UK
| | - Garrett Wallace Brown
- School of Politics and International Studies (POLIS), University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Ding H, Xia JD, Zheng X, Wang ZY, Zhang K. Early application of extracorporeal membrane oxygenation in influenza B virus-related fulminant pneumonia complicated with methicillin-sensitive Staphylococcus aureus infection: a case report. Front Med (Lausanne) 2025; 12:1549856. [PMID: 40309731 PMCID: PMC12040869 DOI: 10.3389/fmed.2025.1549856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Co-infection of the influenza B virus with other bacterial pathogens is a significant contributor to the high pathogenicity and mortality associated with influenza B. The most common bacterial co-infections are caused by Staphylococcus aureus and Streptococcus species. In this case report, we describe the clinical symptoms and treatment of a 69-year-old woman who developed fulminant pneumonia secondary to S. aureus infection following initial influenza B virus infection. This case emphasizes the importance of early recognition and the use of extracorporeal membrane oxygenation in treating fatal pneumonia caused by co-infection with methicillin-sensitive S. aureus and influenza B virus. We conclude that this case provides valuable insights into the severe complications of influenza co-infections and underscores the role of extracorporeal membrane oxygenation in the management of fulminant pneumonia.
Collapse
Affiliation(s)
| | | | | | | | - Kun Zhang
- Department of Intensive Care, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
8
|
Li Y, Liao Y, Miao Y, Yu C, Long J, Wu J, Zuo J, Zhang Z, Dou W, Wang X, Zhang B, Yu C, Yang J, Wang S. Interleukin-35 mRNA therapy for influenza virus-induced pneumonia in mice. Eur J Pharmacol 2025; 993:177366. [PMID: 39947345 DOI: 10.1016/j.ejphar.2025.177366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Influenza virus-induced pneumonia is a common complication caused by influenza A virus infection and causes severe lung inflammation. After infection, the body induces an active immune response that can produce cytokine storm, leading to increased expression of pro-inflammatory factors and tissue damage. Interleukin-35 (IL-35) is a recently identified cytokine associated with viral infection. IL-35 may inhibit the inflammation caused by viral infection and therefore may be developed into an antiviral treatment. Compared with traditional drugs, mRNA drugs have the advantages of simple production process, short development cycle, strong target specificity, high safety, and long-lasting action. In this study,we prepared IL-35 mRNA and IL-35 mRNA/Lipid Nanoparticle (IL-35 mRNA/LNP). To investigate the role of IL-35 mRNA in the host defense against post-influenza pneumonia, a mouse model of pneumonia caused by influenza infection was established. After influenza infection, the mice produced a large number of inflammatory factors that caused lung tissue damage, while administration of IL-35 mRNA/LNP effectively reduced the inflammatory response and improved the survival rate of mice. In addition, mice injected with IL-35 mRNA/LNP (125 μg/kg) directly via tail vein did not show significant inflammatory responses or tissue damage. These data suggest that IL-35 mRNA attenuates the inflammatory response caused by influenza virus infection and shows potential for development as a new drug for the treatment of influenza virus-induced pneumonia.
Collapse
Affiliation(s)
- Yanyan Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yuqin Liao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yiqi Miao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Changxiao Yu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jinrong Long
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jiayu Wu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Jun Zuo
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Zhen Zhang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Wei Dou
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xin Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| | - Jing Yang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| |
Collapse
|
9
|
Cong J, Wang T, Hahm B, Xia C. Positive Regulation of Cellular Proteins by Influenza Virus for Productive Infection. Int J Mol Sci 2025; 26:3584. [PMID: 40332127 PMCID: PMC12027300 DOI: 10.3390/ijms26083584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Influenza viruses cause annual epidemics and occasional pandemics through respiratory tract infections, giving rise to substantial morbidity and mortality worldwide. Influenza viruses extensively interact with host cellular proteins and exploit a variety of cellular pathways to accomplish their infection cycle. Some of the cellular proteins that display negative effects on the virus are degraded by the virus. However, there are also various proteins upregulated by influenza at the expression and/or activation levels. It has been well-established that a large number of host antiviral proteins such as type I interferon-stimulated genes are elevated by viral infection. On the other hand, there are also many cellular proteins that are induced directly by the virus, which are considered as pro-viral factors and often indispensable for rigorous viral propagation or pathogenicity. Here, we review the recent advances in our understanding of the cellular factors deemed to be upregulated and utilized by the influenza virus. The focus is placed on the functions of these pro-viral proteins and the mechanisms associated with promoting viral amplification, evading host immunity, or enhancing viral pathogenicity. Investigating the process of how influenza viruses hijack cellular proteins could provide a framework for inventing the host-factor-targeted drugs to conquer influenza.
Collapse
Affiliation(s)
- Jiayu Cong
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Chuan Xia
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
10
|
Lei B, Mu J, Xu G, Yang X, Huang W, Hu L, Liu D, Cheng T, Ma Y, Xu L, Liang Q, Lin Y, Zhou L, Zhou C, Zhang W, Zheng Y. Jing-Yin-Gu-Biao formula protects mice from postinfluenza Staphylococcus aureus infection by ameliorating acute lung injury and improving hypercoagulable state via inhibiting NETosis. Front Immunol 2025; 16:1567522. [PMID: 40134435 PMCID: PMC11933027 DOI: 10.3389/fimmu.2025.1567522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background Jing-Yin-Gu-Biao formula (JYGBF) is a Chinese medicine derived from Yupingfeng power, Huoxiangzhengqi powder and Yinqiao powder, and has been widely used to treat acute respiratory infections. This study aims to observe the effects of JYGBF against postinfluenza Staphylococcus aureus (S. aureus) infection. Purpose and study design A mouse model of secondary S. aureus infection following PR8 infection was established to evaluate the protective effects of JYGBF against postinfluenza Staphylococcus aureus (S. aureus) infection and related mechanisms were validated in vivo and in vitro. Results The administration of JYGBF significantly ameliorated acute lung injury (ALI) and inhibited overactivated inflammatory response (MIP-2, IL-6, etc.) in mice with postinfluenza S. aureus infection. Single cell RNA-sequencing (scRNA-seq) data indicated that neutrophils had the highest cytokine score in lungs and JYGBF inhibited neutrophil chemotaxis, reactive oxygen species (ROS) biosynthesis and ERK1/2 cascades in neutrophils. Meanwhile, JYGBF inhibited the formation of neutrophil extracellular traps (NETs) in lungs, which is characterized by the production of ROS, peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (CitH3), myeloperoxidase (MPO), neutrophil elastase (NE), S100A8/A9 and MPO-CitH3 colocalization. Moreover, JYGBF decreased platelet counts and the expression of its activated markers (CD62P and αIIbβ3) accompanied by the drop of fibrinogen (FIB) and fibrin degradation product (FDP), accounting for alleviating hypercoagulable state. JYGBF inhibited ERK1/2 phosphorylation in neutrophils and in lungs of infected mice. Acacetin, a critical compound from JYGBF, inhibited NET formation via downregulating ERK/ROS axis. Conclusions These results indicated that JYGBF inhibited NET formation and overactivated inflammatory response by suppressing ERK/ROS axis in neutrophils, thereby mitigating ALI and improving the hypercoagulable state during postinfluenza S. aureus infection. JYGBF could be considered a potent therapeutic agent for the prevention and treatment of postinfluenza bacterial infection.
Collapse
Affiliation(s)
- Biao Lei
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwen Mu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guihua Xu
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Cheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiankun Liang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Lin
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linqiong Zhou
- Shuguang Hospital, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine Epidemic Research Center, Shanghai, China
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Respiratory and Critical Care Medicine, Shanghai, China
| | - Chunxian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Shuguang Hospital, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine Epidemic Research Center, Shanghai, China
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Respiratory and Critical Care Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sugitani N, Henkel M, Partyka J, Applegate A, Kemp F, Byersdorfer CA, Eddens T, Campfield BT. Nuclear receptor 4A1 is critical for neutrophil-dependent pulmonary immunity to Klebsiella pneumoniae infection. Front Immunol 2025; 16:1558252. [PMID: 40114913 PMCID: PMC11922696 DOI: 10.3389/fimmu.2025.1558252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Bacterial pneumonia is a burdensome, costly disease and increasingly challenging to treat due to antibiotic resistance. Complex host-pathogen interactions regulate protective immunity. Neutrophils play a central role in pulmonary bacterial immunity, and mechanistic understanding of neutrophil functions in bacterial pneumonia has potential clinical and fundamental application. Nuclear receptor 4a1 (Nr4a1), a member of the nuclear orphan receptor family, has been described to regulate inflammation and immune development in a cell type-specific manner, but its role in pulmonary host defense is not well understood. Methods Wild-type (WT) and Nr4a1-/- mice, as well as bone marrow chimeric and Gr-1+ antibody depleted mice, were infected with Klebsiella pneumoniae and assessed for bacterial burden in the lung and spleen, gene transcription, protein levels, histology and cellular abundance by flow cytometry in the lung. WT and Nr4a1-/- neutrophils were exposed to live Klebsiella pneumoniae to quantify bacterial killing, as well as bulk RNA sequencing to assess transcriptomic differences. Results Nr4a1-deficient mice are highly susceptible to Klebsiella pneumoniae pneumonia, which was mediated by Nr4a1 expression in immune cells. Gr-1+ antibody depletion ameliorated the Nr4a1-dependent phenotype. Ex vivo, Nr4a1-deficient neutrophils had impaired bactericidal capacity, and transcriptomic analysis identified an Nr4a1-dependent host defense program in neutrophils. Discussion Neutrophil Nr4a1 expression is critical for defense against K. pneumoniae infection by regulating the neutrophil transcriptome. These findings suggest targeting Nr4a1 signaling pathways in neutrophils may be useful for bacterial pneumonia treatment.
Collapse
MESH Headings
- Animals
- Klebsiella Infections/immunology
- Klebsiella Infections/microbiology
- Klebsiella Infections/metabolism
- Neutrophils/immunology
- Neutrophils/metabolism
- Klebsiella pneumoniae/immunology
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Mice, Knockout
- Lung/immunology
- Lung/microbiology
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Mice, Inbred C57BL
- Disease Models, Animal
- Host-Pathogen Interactions/immunology
Collapse
Affiliation(s)
- Norie Sugitani
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Matthew Henkel
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jessica Partyka
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander Applegate
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Felicia Kemp
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Taylor Eddens
- Division of Allergy and Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Brian T. Campfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Xu Z, Wang K, Hu H, Hu Y, Huang J, Luo Z. Sinensetin attenuates LPS-induced acute pulmonary inflammation in mice and RAW264.7 cells by modulating NF-κB p65-mediated immune resistance and STAT3-mediated tissue resilience. Int Immunopharmacol 2025; 148:114101. [PMID: 39827664 DOI: 10.1016/j.intimp.2025.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation. In LPS-induced inflammation assays in vivo and in vitro, SIN significantly reduced the mRNA levels of inflammatory genes including MCP-1, ICAM1, Ccl3, Ccl4, Ccl5, Ccl7, Cxcl9, Cxcl10, IL1α, IL1β, IL6, IL11, IL18, IL27, TNF-α, IFN-γ, TLR4, MyD88, F4/80, COX2, iNOS, NLRP3, ASC, JAK2, STAT3, STAT4, and Bcl2l1, as well as increased the mRNA levels of anti-inflammatory genes such as IL4, IL10, and IL12α. Besides, SIN markedly decreased the expression of CD68, TLR4, MyD88, phospho-IκBα (S32/S36), phospho-NF-κB p65 (S536), MCP-1, ICAM1, phospho-JAK2 (Tyr1008), phospho-STAT1 (S727), phospho-STAT3 (Y705), and phospho-STAT4 (Y693), inhibited NF-κB p65 translocation into the nucleus, thereby blocking in combination with STAT transcription factors to induce target gene expression. Further GC-MS/MS and LC-MS/MS metabolomic analysis revealed that SIN significantly increased the abundance of anti-inflammatory metabolites, such as L-alanine, L-carnitine, L-glutamic acid, Glycine, and L-cysteine. In conclusion, the results indicated that SIN attenuated LPS-induced acute pulmonary inflammation by modulating NF-κB p65-mediated immune resistance and STAT3-mediated tissue resilience. All these favorable findings presented critical insights into the remarkable abilities and health benefits of SIN in ameliorating inflammatory lung disease.
Collapse
Affiliation(s)
- Zaibin Xu
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405 China
| | - Kongyan Wang
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China
| | - Huiyu Hu
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405 China.
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405 China.
| | - Zhuohui Luo
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China.
| |
Collapse
|
13
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2025; 16:e0338724. [PMID: 39699172 PMCID: PMC11796352 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Sharma L, Singh RB, Ngeow C, van der Geest R, Duray AM, Tolman NJ, McVerry BJ, Dela Cruz CS, Alcorn JF, Bain W, Robinson KM. Therapeutic JAK inhibition does not impact lung injury during viral or bacterial pneumonia in male mice. Physiol Rep 2025; 13:e70232. [PMID: 39921246 PMCID: PMC11805821 DOI: 10.14814/phy2.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Influenza infections are often complicated by secondary bacterial infections such as MRSA pneumonia, which increase morbidity and mortality. Viral infections lead to an inflammatory response that includes elevated levels of IL-6 and interferons. IL-6 activates the JAK/STAT signaling pathway, amplifying downstream inflammation. Given the clinical efficacy of the JAK inhibitor baricitinib in reducing disease severity in COVID-19, we evaluated its impact in a murine model of influenza, MRSA, and post-influenza MRSA pneumonia. Additionally, because IL-6 inhibitory therapies have improved outcomes during COVID-19, we evaluated the impact of IL-6 deletion on post-influenza MRSA pneumonia. In our studies, baricitinib effectively inhibited the JAK/STAT pathway in the lungs, as demonstrated by decreased interferon-stimulated genes (ISGs) and STAT3 phosphorylation. Despite this inhibition, baricitinib did not cause a global suppression of cytokines. Notably, baricitinib treatment did not impair either antiviral or antibacterial host immunity, inflammatory cell recruitment, or lung tissue injury. IL-6 deficiency did not alter weight loss, inflammatory cell recruitment, or bacterial burden during post-influenza MRSA pneumonia. These findings suggest that both JAK inhibition via baricitinib and IL-6 deletion do not enhance host defense or limit tissue injury in murine models of influenza and post-influenza MRSA pneumonia.
Collapse
Affiliation(s)
- Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ravineel B. Singh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Caden Ngeow
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alexis M. Duray
- Division of Pulmonary Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nathanial J. Tolman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Keven M. Robinson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
15
|
Alshammari AK, Maina M, Blanchard AM, Daly JM, Dunham SP. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025; 14:114. [PMID: 40005491 PMCID: PMC11857950 DOI: 10.3390/pathogens14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Influenza A virus infections are known to predispose infected individuals to bacterial infections of the respiratory tract that result in co-infection with severe disease outcomes. Co-infections involving influenza A viruses and streptococcus bacteria result in protein-protein interactions that can alter disease outcomes, promoting bacterial colonisation, immune evasion, and tissue damage. Focusing on the synergistic effects of proteins from different pathogens during co-infection, this scoping review evaluated evidence for protein-protein interactions between influenza A virus proteins and streptococcus bacterial proteins. Of the 2366 studies initially identified, only 32 satisfied all the inclusion criteria. Analysis of the 32 studies showed that viral and bacterial neuraminidases (including NanA, NanB and NanC) are key players in desialylating host cell receptors, promoting bacterial adherence and colonisation of the respiratory tract. Virus hemagglutinin modulates bacterial virulence factors, hence aiding bacterial internalisation. Pneumococcal surface proteins (PspA and PspK), bacterial M protein, and pneumolysin (PLY) enhance immune evasion during influenza co-infections thus altering disease severity. This review highlights the importance of understanding the interaction of viral and bacterial proteins during influenza virus infection, which could provide opportunities to mitigate the severity of secondary bacterial infections through synergistic mechanisms.
Collapse
Affiliation(s)
- Askar K. Alshammari
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 36388, Saudi Arabia
| | - Meshach Maina
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Adam M. Blanchard
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Stephen P. Dunham
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| |
Collapse
|
16
|
Iqbal M, Feng C, Zong G, Wang LX, Vasta GR. Galectin-3 disrupts tight junctions of airway epithelial cell monolayers by inducing expression and release of matrix metalloproteinases upon influenza A infection. Glycobiology 2025; 35:cwae093. [PMID: 39569730 PMCID: PMC11727335 DOI: 10.1093/glycob/cwae093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Galectins are β-galactosyl-binding lectins with key roles in early development, immune regulation, and infectious disease. Influenza A virus (IAV) infects the airway epithelia, and in severe cases may lead to bacterial superinfections and hypercytokinemia, and eventually, to acute respiratory distress syndrome (ARDS) through the breakdown of airway barriers. The detailed mechanisms involved, however, remain poorly understood. Our prior in vivo studies in a murine model system revealed that upon experimental IAV and pneumococcal primary and secondary challenges, respectively, galectin-1 and galectin-3 (Gal-3) are released into the airway and bind to the epithelium that has been desialylated by the viral neuraminidase, contributing to secondary bacterial infection and hypercytokinemia leading to the clinical decline and death of the animals. Here we report the results of in vitro studies that reveal the role of the extracellular Gal-3 in additional detrimental effects on the host by disrupting the integrity of the airway epithelial barrier. IAV infection of the human airway epithelia cell line A549 increased release of Gal-3 and its binding to the A549 desialylated cell surface, notably to the transmembrane signaling receptors CD147 and integrin-β1. Addition of recombinant Gal-3 to A549 monolayers resulted in enhanced expression and release of matrix metalloproteinases, leading to disruption of cell-cell tight junctions, and a significant increase in paracellular permeability. This study reveals a critical mechanism involving Gal-3 that may significantly contribute to the severity of IAV infections by promoting disruption of tight junctions and enhanced permeability of the airway epithelia, potentially leading to lung edema and ARDS.
Collapse
Affiliation(s)
- Muddassar Iqbal
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
- Current address: Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
17
|
Al-Momani H, Nelson A, Al Balawi H, Al Balawi D, Aolymat I, Khasawneh AI, Tabl H, Alsheikh A, Zueter AM, Pearson J, Ward C. Assessment of upper respiratory and gut bacterial microbiomes during COVID-19 infection in adults: potential aerodigestive transmission. Sci Rep 2025; 15:1811. [PMID: 39805887 PMCID: PMC11730684 DOI: 10.1038/s41598-025-85806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease. This research explored the relationship between the microbiomes of the upper respiratory and GI tracts in patients with COVID-19 and examined Extraesophageal reflux (EOR), a mechanism which could contribute to dysregulated communication between the GI and respiratory tract (as identified in COVID-19). 97 patients with a laboratory diagnosis of COVID-19 infection, and 50 age-matched controls were recruited and stool, saliva and sputum were obtained from each participant. ELISA Pepsin tests and Reflux Symptom Index scores (RSI) were conducted for EOR assessment. DNA sequencing of the V4 region of the 16 S rRNA gene was performed for microbiome analysis. No differences were observed between the fecal microbiome's alpha and Shannon diversity indices; however, a distinct microbial composition was observed in COVID-19 patients (when compared to the controls). The respiratory microbiota from individuals with COVID-19 demonstrated a statistically significant reduction in Shannon diversity and bacterial richness alongside an overall reduction in the prevalence of organisms from a typical healthy respiratory microbiome. Furthermore, the bacterial richness of the stool and sputum samples was significantly lower among COVID-19 patients admitted to ICU. A significantly higher RSI score and salivary pepsin level were detected among those with COVID-19. The data indicates that COVID-19 is associated with a dysregulation of both the gut and lung microbiome with a more marked perturbation in the lung, particularly among COVID-19 patients who had been admitted to the ICU. The presence of increased RSI scores, combined with elevated levels of Pepsin, suggests that increased micro-aspiration may occur, which is consistent with of under-recognized interactions between the GI and lung microbiomes in COVID-19 patients and requires additional study. Such studies would benefit from the insights provided by biological samples which reflect the continuum of the aerodigestive tract.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Hala Tabl
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Ayman Alsheikh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, P.O.box 2000, Zarqa, 13110, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Jeffrey Pearson
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom
| |
Collapse
|
18
|
Grass JE, Bulens SN, Ansari UA, Duffy N, Jacob JT, Smith G, Rebolledo PA, Restrepo AM, Vaeth E, Dumyati G, Tsay R, Looi HC, Phipps E, Flores KG, Wilson C, Muleta D, Czaja CA, Driscoll J, Johnston H, Lynfield R, O’Malley S, Maloney M, Stabach N, Nadle J, Pierce R, Hertzel H, Guh AY. An Observational Study to Determine the Prevalence of COVID-19 Among Hospitalized Patients With Multidrug-Resistant Enterobacterales Infections and Clinical Outcomes, 10 US Sites, 2020--2022. Open Forum Infect Dis 2025; 12:ofae745. [PMID: 39822269 PMCID: PMC11736413 DOI: 10.1093/ofid/ofae745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
Background We investigated hospitalized carbapenem-resistant Enterobacterales (CRE) and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) cases with and without COVID-19, as identified through Emerging Infections Program surveillance in 10 sites from 2020 to 2022. Methods We defined a CRE case as the first isolation of Escherichia coli, Enterobacter cloacae complex, Klebsiella aerogenes, K oxytoca, K pneumoniae, or K variicola resistant to any carbapenem. We defined an ESBL-E case as the first isolation of E coli, K pneumoniae, or K oxytoca resistant to any third-generation cephalosporin and nonresistant to all carbapenems tested. Specimens were drawn from a normally sterile site or urine among hospitalized residents of the surveillance area in a 30-day period. We defined COVID-19 as a positive SARS-CoV-2 test result (SC2+) within 14 days before CRE or ESBL-E specimen collection and performed multivariable logistic regression analyses. Results Of 1595 CRE and 1866 ESBL-E hospitalized cases, 38 (2.4%) and 60 (3.2%), respectively, had a SC2+. Among these cases, a SC2+ was associated with intensive care unit admission (adjusted odds ratio [aOR], 1.69 [95% CI, 1.14-2.50]; aOR, 1.48 [95% CI, 1.03-2.12]) and 30-day mortality (aOR, 1.79 [95% CI, 1.22-2.64]; aOR, 1.94 [95% CI, 1.39-2.70]). Conclusions CRE and ESBL-E infections among hospitalized patients with preceding COVID-19 were uncommon but had worse outcomes when compared with cases without COVID-19. COVID-19 prevention in patients at risk of CRE and ESBL-E infections is needed, as well as continued infection control measures and antibiotic stewardship for patients with COVID-19.
Collapse
Affiliation(s)
- Julian E Grass
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandra N Bulens
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Uzma A Ansari
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nadezhda Duffy
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jesse T Jacob
- Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Atlanta, Georgia, USA
| | - Gillian Smith
- Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Paulina A Rebolledo
- Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Atlanta, Georgia, USA
| | - Ana Mesa Restrepo
- Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | | | - Ghinwa Dumyati
- New York Rochester Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, USA
| | - Rebecca Tsay
- New York Rochester Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, USA
| | - Hsioa Che Looi
- New York Rochester Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, USA
| | - Erin Phipps
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico Emerging Infections Program, Santa Fe, New Mexico, USA
| | - Kristina G Flores
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico Emerging Infections Program, Santa Fe, New Mexico, USA
| | | | - Daniel Muleta
- Tennessee Department of Health, Nashville Tennessee, USA
| | | | - Jennifer Driscoll
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Helen Johnston
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Sean O’Malley
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Meghan Maloney
- Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - Nicole Stabach
- Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - Joelle Nadle
- California Emerging Infections Program, Oakland, California, USA
| | - Rebecca Pierce
- Oregon Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Heather Hertzel
- Oregon Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Alice Y Guh
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Hutchinson EC, Amorim MJ, Yamauchi Y. Understanding Influenza. Methods Mol Biol 2025; 2890:1-26. [PMID: 39890719 DOI: 10.1007/978-1-0716-4326-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This chapter briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we currently understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Maria João Amorim
- Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
20
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
21
|
Wüthrich T, de Brot S, Richina V, Mostacci N, Baumann Z, Leborgne NGF, Godel A, Alves MP, Bentires-Alj M, Benarafa C, Hilty M. Cigarette smoke-induced disordered microbiota aggravates the severity of influenza A virus infection. mSystems 2024; 9:e0079024. [PMID: 39565120 DOI: 10.1128/msystems.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Cigarette smoke (CS) promotes the development of chronic pulmonary disease and has been associated with increased risk for influenza-related illness. Here, we directly addressed the impact of CS disordered microbiota on the severity of influenza A virus (IAV) infection. Specific and opportunistic pathogen-free (SOPF) C57BL/6J mice were exposed to CS or room air (RA) for 5.5 months. Each exposed mouse was then cohoused with a group of recipient germ-free (GF) mice for 1 month for microbial transfer. Colonized GF mice were then infected intranasally with IAV and disease development was monitored. Upper and lower airway and fecal microbiota were longitudinally investigated by 16S rRNA gene sequencing and bacterial cultures in donor and recipient mice. The bacterial family Streptococcaceae accounted for the largest difference between CS- and RA-exposed microbiota in the oropharynx. Analysis of the oropharynx and fecal microbiota indicated an efficient transfer to coprophagic recipient mice, which replicated the differences in microbiota composition observed in donor mice. Subsequent IAV infection revealed significantly higher weight loss for CS microbiota recipient mice at 8-10 days post infection (dpi) compared to control recipient mice. In addition, H1N1 infection inflicted substantial changes in the microbiota composition, especially at days 4 and 8 after infection. In conclusion, mice with a CS-associated microbiota suffer from higher disease severity upon IAV infection compared to mice colonized with a normal SOPF microbiota. Our data suggest that independently of CS exposure and concomitant structural lung damage, microbial distortion due to CS exposure may impact the severity of IAV disease course.IMPORTANCEIt has been reported that chronic exposure to CS is associated with a disordered microbiota composition. In this study, we colonized germ-free (GF) mice with the microbiota from SOPF mice which were chronically exposed to CS or RA. This allowed disentangling the effect of the disordered microbiota from the immune-modulating effects of actual CS exposure. We observed a successful transfer of the microbiotas after cohousing including specific microbiota differences induced by CS exposure in formerly GF mice, which were never exposed to CS. We then investigated the effects of IAV infection on the disease course and microbiotas of formerly GF mice. We found that mice with CS-associated microbiota reveal worse disease course compared to the control group. We hypothesize that CS-induced disordering of the microbiota may, indeed, impact the severity of influenza A disease.
Collapse
Affiliation(s)
- Tsering Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Veronica Richina
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Zora Baumann
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan G F Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Aurélie Godel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Xu L, Li X, Han S, Mu C, Zhu W. Galacto-oligosaccharides regulate intestinal mucosal sialylation to counteract antibiotic-induced mucin dysbiosis. Food Funct 2024; 15:12016-12032. [PMID: 39563647 DOI: 10.1039/d4fo04626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Intestinal mucin offers a physical barrier to maintain host-commensal homeostasis. Glycosylation is essential for the appropriate functioning of mucin. Galacto-oligosaccharides (GOS) have been used as a prebiotic with proven intestinal benefits, while their regulatory mechanism on mucin remains unclear. This study employed an antibiotic-treated rat model to mimic gut dysbiosis and attempted to restore gut dysbiosis using GOS. The gut microbiome and intestinal mucus O-glycosylations (O-glycans) in the small intestine were profiled by high-throughput sequencing and glycomics. The sialic acid phenotype at the end of O-glycans was further validated with lectin staining. Expressions of key enzymes in sialic acid metabolism and epithelial morphology were determined as well. Antibiotics significantly increased the relative abundance of Escherichia/Shigella and decreased the relative abundance of Lactobacillus. This was accompanied by decreased microbial sialidase activity and increased sialic acid in the digesta, as well as an increase in epithelial sialidase activity. Analysis of key sialylation enzymes showed the upregulation of α 2,6 sialylation (e.g. ST6GALNACs) and downregulation of α 2,3 sialylation (e.g. ST3GALs) after antibiotic treatment. The glycomics results revealed that antibiotics increased core 4 and α 2,6 sialylated O-glycans and decreased core 1, core 3 and α 2,3 sialylated O-glycans in the intestinal mucus of rats, which was further confirmed by lectin staining. Intestinal histology results demonstrated that antibiotic treatment led to the dysbiosis of intestinal mucus homeostasis. To further test the role of microbiota in regulating intestinal mucus sialylation, we supplemented GOS with antibiotics. The results showed that GOS reversed the effects of antibiotics on the gut microbiota and intestinal mucus O-glycans (especially sialylated O-glycans), characterized by an increase of Lactobacillus and α 2,3 sialylated O-glycans and a decrease of Escherichia/Shigella and α 2,6 sialylated O-glycans. What's more, GOS reduced the stimulation of the intestinal mucosa by lipopolysaccharide (LPS) by increasing α 2,3 sialylated intestinal alkaline phosphatase (IAP) to enhance IAP activity, thereby restoring intestinal mucus homeostasis. Overall, GOS counteracts antibiotic-induced mucin deficiency by remedying the gut ecology and changing the mucin sialylation pattern, as reflected by the increase of α 2,3 sialylated O-glycans and the decrease of α 2,6 sialylated O-glycans.
Collapse
Affiliation(s)
- Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB., Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Wang Y, Swayze S, Brown KA, MacFadden DR, Lee SM, Schwartz KL, Daneman N, Langford BJ. Prevalence and Predictors of Concomitant Bacterial Infections in Patients With Respiratory Viruses in Ontario: A Cohort Study. Open Forum Infect Dis 2024; 11:ofae701. [PMID: 39691293 PMCID: PMC11651150 DOI: 10.1093/ofid/ofae701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Background To investigate the prevalence of concomitant bacterial infection across common viral infections. Methods This population-based cohort study included patients infected with influenza A and B (FLUA, FLUB) and respiratory syncytial virus (RSV) in Ontario between 2017 and 2019 and patients with SARS-CoV-2 between 2020 and 2021. Specific bacteria present in concomitant infections were identified. Concomitant infections were further classified into different categories (eg, coinfection -2 to +2 days from viral infection and secondary infection >2 days after viral infection). We used logistic regression models to estimate the odds of bacterial infections for FLUA, FLUB, and RSV relative to SARS-CoV-2 while adjusting for confounders. Results A total of 4230 (0.5%, 885 004) viral cases had concomitant bacterial infections, encompassing 422 of FLUB (4.7%, 8891), 861 of FLUA (3.9%, 22 313), 428 of RSV (3.4%, 12 774), and 2519 of COVID-19 (0.3%, 841 026). The most prevalent species causing concomitant bacterial infection were Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. When compared with SARS-CoV-2, the adjusted odds ratio for bacterial infection was 1.69 (95% CI, 1.48-1.93) for FLUA, 2.30 (95% CI, 1.97-2.69) for FLUB, and 1.56 (95% CI, 1.33-1.82) for RSV. The adjusted odds of coinfection in patients with SARS-CoV-2 were lower but higher for secondary infection as compared with the other viruses. Conclusions A higher prevalence and risk of concomitant bacterial infection were found in FLUA, FLUB, and RSV as compared with SARS-CoV-2, although this is largely driven by coinfections. Ongoing surveillance efforts are needed to compare the risk of concomitant infections during periods when these viruses are cocirculating.
Collapse
Affiliation(s)
- Yue Wang
- ICES, Toronto, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Kevin A Brown
- ICES, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Derek R MacFadden
- ICES, Toronto, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Kevin L Schwartz
- ICES, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Unity Health Toronto, Toronto, Ontario, Canada
| | - Nick Daneman
- ICES, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J Langford
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Hotel Dieu Shaver Health and Rehabilitation Center, St. Catharines, Ontario, Canada
| |
Collapse
|
25
|
Kowalsky JM, Mitchell AM, Okdie BM. Co-rumination and intrapersonal cognitive processes predict distress: Longitudinal evidence from the COVID-19 pandemic. Stress Health 2024; 40:e3490. [PMID: 39377293 PMCID: PMC11636448 DOI: 10.1002/smi.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Perseverative thinking and catastrophizing have well established associations with fear and distress. However, less is known about the impact of interpersonal dynamics, such as co-rumination, on these intrapersonal cognitive processes and subsequent stress. The present study addresses this knowledge gap. A sample of 433 adults from across the United States was recruited online and completed measures of co-rumination, perseverative thinking, catastrophizing, and demographic characteristics early in the COVID-19 pandemic, and the COVID Stress Scales (CSS) at six month follow up. Co-rumination, perseverative thinking, catastrophizing, and CSS scores were correlated in the expected direction. Regression analyses revealed all three independently predicted CSS worry about the dangerousness of COVID-19 subscale. Co-rumination was the strongest predictor of CSS worry about the socioeconomic impact and CSS compulsive checking scales. Perseverative thinking and catastrophizing predicted CSS traumatic stress symptoms subscale. Finally, perseverative thinking was the strongest predictor of CSS xenophobia subscale. Structural equation modelling indicated that co-rumination had a significant indirect effect on CSS scores through perseverative thinking and catastrophizing. Interpersonal dynamics, such as co-rumination, are relevant for understanding stress and are promising targets for intervention research to prevent or attenuate fears and distress, in addition to traditional intrapersonal cognitive processes such as perseverative thinking and catastrophizing.
Collapse
Affiliation(s)
| | - Amanda M. Mitchell
- Department of Counseling and Human DevelopmentUniversity of LouisvilleLouisvilleKentuckyUSA
| | | |
Collapse
|
26
|
Sumitomo T, Kawabata S. Respiratory tract barrier dysfunction in viral-bacterial co-infection cases. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:44-52. [PMID: 38274948 PMCID: PMC10808858 DOI: 10.1016/j.jdsr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
A preceding viral infection of the respiratory tract predisposes the host to secondary bacterial pneumonia, known as a major cause of morbidity and mortality. However, the underlying mechanism of the viral-bacterial synergy that leads to disease progression has remained elusive, thus hampering the production of effective prophylactic and therapeutic intervention options. In addition to viral-induced airway epithelial damage, which allows dissemination of bacteria to the lower respiratory tract and increases their invasiveness, dysfunction of immune defense following a viral infection has been implicated as a factor for enhanced susceptibility to secondary bacterial infections. Given the proximity of the oral cavity to the respiratory tract, where viruses enter and replicate, it is also well-established that oral health status can significantly influence the initiation, progression, and pathology of respiratory viral infections. This review was conducted to focus on the dysfunction of the respiratory barrier, which plays a crucial role in providing physical and secretory barriers as well as immune defense in the context of viral-bacterial synergy. Greater understanding of barrier response to viral-bacterial co-infections, will ultimately lead to development of effective, broad-spectrum therapeutic approaches for prevention of enhanced susceptibility to these pathogens.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770–8504, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka 565–0871, Japan
| |
Collapse
|
27
|
Heinzl MW, Freudenthaler M, Fellinger P, Kolenchery L, Resl M, Klammer C, Obendorf F, Schinagl L, Berger T, Egger M, Dieplinger B, Clodi M. High-Density Lipoprotein Predicts Intrahospital Mortality in Influenza. J Clin Med 2024; 13:7242. [PMID: 39685701 DOI: 10.3390/jcm13237242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Although it is known that high-density lipoprotein (HDL) exerts important anti-inflammatory effects and that low HDL plasma concentrations represent a negative prognostic marker in bacterial infections and sepsis, not much is known about possible implications of HDL in acute viral infections such as influenza. Methods: We performed a retrospective, single-centre analysis of influenza patients hospitalised during the 2018/19 and 2019/20 influenza seasons and analysed the impact of HDL concentrations on inflammation and mortality. Results: 199 influenza patients (173 male patients) were admitted during the 2018/19 and 2019/20 influenza seasons with a mortality rate of 4.5%. HDL was significantly lower in deceased patients (median HDL 21 (IQR 19-25) vs. 35 (IQR 28-44) mg/dL; p = 0.005). Low HDL correlated with increased inflammation and HDL was an independent negative predictor regarding mortality after correction for age and the number of comorbidities both overall (OR = 0.890; p = 0.008) and in male patients only (OR = 0.891; p = 0.009). Conclusions: Low HDL upon hospital admission is associated with increased inflammation and is an independent predictor for increased mortality in male patients with influenza A.
Collapse
Affiliation(s)
- Matthias Wolfgang Heinzl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Markus Freudenthaler
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Wien, Austria
| | - Lisa Kolenchery
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Michael Resl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Carmen Klammer
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Florian Obendorf
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Lukas Schinagl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Thomas Berger
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| | - Martin Clodi
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| |
Collapse
|
28
|
Costa C, Sirard JC, Gibson PS, Veening JW, Gjini E, Baldry M. Triggering Toll-Like Receptor 5 Signaling During Pneumococcal Superinfection Prevents the Selection of Antibiotic Resistance. J Infect Dis 2024; 230:e1126-e1135. [PMID: 38716762 PMCID: PMC11566229 DOI: 10.1093/infdis/jiae239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin (AMX) improves the treatment of primary pneumonia or superinfection caused by AMX-sensitive or AMX-resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and antibiotic-resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. A mathematical model was developed that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.
Collapse
Affiliation(s)
- Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
29
|
Belcher T, Coutte L, Debrie AS, Sencio V, Trottein F, Locht C, Cauchi S. Pertussis toxin-dependent and -independent protection by Bordetella pertussis against influenza. Microbes Infect 2024; 26:105404. [PMID: 39128538 DOI: 10.1016/j.micinf.2024.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17-/- mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne-Sophie Debrie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stephane Cauchi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
30
|
Spottiswoode N, Tsitsiklis A, Chu VT, Phan HV, DeVoe C, Love C, Ghale R, Bloomstein J, Zha BS, Maguire CP, Glascock A, Sarma A, Mourani PM, Kalantar KL, Detweiler A, Neff N, Haller SC, COMET Consortium, DeRisi JL, Erle DJ, Hendrickson CM, Kangelaris KN, Krummel MF, Matthay MA, Woodruff PG, Calfee CS, Langelier CR. Microbial dynamics and pulmonary immune responses in COVID-19 secondary bacterial pneumonia. Nat Commun 2024; 15:9339. [PMID: 39472555 PMCID: PMC11522429 DOI: 10.1038/s41467-024-53566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Secondary bacterial pneumonia (2°BP) is associated with significant morbidity following respiratory viral infection, yet remains incompletely understood. In a prospective cohort of 112 critically ill adults intubated for COVID-19, we comparatively assess longitudinal airway microbiome dynamics and the pulmonary transcriptome of patients who developed 2°BP versus controls who did not. We find that 2°BP is significantly associated with both mortality and corticosteroid treatment. The pulmonary microbiome in 2°BP is characterized by increased bacterial RNA mass and dominance of culture-confirmed pathogens, detectable days prior to 2°BP clinical diagnosis, and frequently also present in nasal swabs. Assessment of the pulmonary transcriptome reveals suppressed TNFα signaling in patients with 2°BP, and sensitivity analyses suggest this finding is mediated by corticosteroid treatment. Further, we find that increased bacterial RNA mass correlates with reduced expression of innate and adaptive immunity genes in both 2°BP patients and controls. Taken together, our findings provide fresh insights into the microbial dynamics and host immune features of COVID-19-associated 2°BP, and suggest that suppressed immune signaling, potentially mediated by corticosteroid treatment, permits expansion of opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Victoria T Chu
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Hoang Van Phan
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Catherine DeVoe
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Christina Love
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rajani Ghale
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Beth Shoshana Zha
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | | | - Aartik Sarma
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Peter M Mourani
- Department of Pediatrics, Arkansas Children's, Little Rock, AR, USA
| | | | | | - Norma Neff
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Sidney C Haller
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Joseph L DeRisi
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
Collaborators
Saharai Caldera, Sarah B Doernberg, Eran Mick, Hoang Van Phan, Paula Hayakawa Serpa, Deanna Lee, Maira Phelps, Carolyn S Calfee, Suzanna Chak, Stephanie Christenson, Walter L Eckalbar, David J Erle, Alejandra Jauregui, Chayse Jones, Carolyn Leroux, Michael Matthay, Lucile P A Neyton, Viet Nguyen, Austin Sigman, Andrew Willmore, Prescott G Woodruff, Michael Adkisson, Saurabh Asthana, Zachary Collins, Gabriela K Fragiadakis, Lenka Maliskova, Ravi Patel, Arjun Rao, Bushra Samad, Andrew Schroeder, Cole Shaw, Kirsten N Kangelaris, Divya Kushnoor, Tasha Lea, Kenneth Hu, Alan Shen, Jessica Tsui, Raymund Bueno, David Lee, Yang Sun, Erden Tumurbaatar, Alyssa Ward, Monique van der Wijst, Jimmie Ye, K Mark Ansel, Vincent Chan, Kamir Hiam, Elizabeth McCarthy, Priscila Muñoz-Sandoval, Anton Ogorodnikov, Matthew Spitzer, Wandi S Zhu, Gracie Gordon, George Hartoularos, Sadeed Rashid, Nicklaus Rodriguez, Kevin Tang, Luz Torres Altamirano, Alexander Whatley, Yun S Song, Aleksandra Leligdowicz, Michael Wilson, Nayvin Chew, Alexis Combes, Tristan Courau, Norman Jones, Jeff Milush, Nitasha Kumar, Billy Huang, Salman Mahboob, Randy Parada, Gabriella Reeder,
Collapse
|
31
|
Kelly MS, Shi P, Boiditswe SC, Qin E, Steenhoff AP, Mazhani T, Patel MZ, Cunningham CK, Rawls JF, Luinstra K, Gilchrist J, Maciejewski J, Hurst JH, Seed PC, Bulir D, Smieja M. The role of the microbiota in respiratory virus-bacterial pathobiont relationships in the upper respiratory tract. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.22.24315478. [PMID: 39502658 PMCID: PMC11537323 DOI: 10.1101/2024.10.22.24315478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanisms by which respiratory viruses predispose to secondary bacterial infections remain poorly characterized. Using 2,409 nasopharyngeal swabs from 300 infants in Botswana, we performed a detailed analysis of factors that influence the dynamics of bacterial pathobiont colonization during infancy. We quantify the extent to which viruses increase the acquisition of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae. We provide evidence of cooperative interactions between these pathobionts while identifying host characteristics and environmental exposures that influence the odds of pathobiont colonization during early life. Using 16S rRNA gene sequencing, we demonstrate that respiratory viruses result in losses of putatively beneficial Corynebacterium and Streptococcus species that are associated with a lower odds of pathobiont acquisition. These findings provide novel insights into viral-bacterial relationships in the URT of direct relevance to respiratory infections and suggest that the URT bacterial microbiota is a potentially modifiable mechanism by which viruses promote bacterial respiratory infections.
Collapse
Affiliation(s)
- Matthew S. Kelly
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States
| | | | - Emily Qin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States
| | - Andrew P. Steenhoff
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Global Health Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Tiny Mazhani
- University of Botswana School of Medicine, Gaborone, Botswana
| | | | - Coleen K. Cunningham
- Division of Pediatric Infectious Diseases, University of California, Irvine, Children’s Hospital of Orange County, Orange, California, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States
| | - Kathy Luinstra
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Jodi Gilchrist
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Julia Maciejewski
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Jillian H. Hurst
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina, United States
| | - Patrick C. Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David Bulir
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Marek Smieja
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Raghavan S, Kim KS. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int J Antimicrob Agents 2024; 64:107308. [PMID: 39168417 DOI: 10.1016/j.ijantimicag.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The incidence of secondary bacterial infections has increased in recent decades owing to various viral pandemics. These infections further increase the morbidity and mortality rates associated with viral infections and remain a significant challenge in clinical practice. Intensive antibiotic therapy has mitigated the threat of such infections; however, overuse and misuse of antibiotics have resulted in poor outcomes, such as inducing the emergence of bacterial populations with antimicrobial resistance (AMR) and reducing the therapeutic options for this crisis. Several antibiotic substitutes have been suggested and employed; however, they have certain limitations and novel alternatives are urgently required. This review highlights host immunomodulation as a promising strategy against secondary bacterial infections to overcome AMR. The definition and risk factors of secondary bacterial infections, features and limitations of currently available therapeutic strategies, host immune responses, and future perspectives for treating such infections are discussed.
Collapse
Affiliation(s)
- Srimathi Raghavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea.
| |
Collapse
|
33
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
34
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Martin-Loeches I, Restrepo MI. COVID-19 vs. non-COVID-19 related nosocomial pneumonias: any differences in etiology, prevalence, and mortality? Curr Opin Crit Care 2024; 30:463-469. [PMID: 39150059 DOI: 10.1097/mcc.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review explores the similarities and differences between coronavirus disease 2019 (COVID-19)-related and non-COVID-related nosocomial pneumonia, particularly hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). It critically assesses the etiology, prevalence, and mortality among hospitalized patients, emphasizing the burden of these infections during the period before and after the severe acute respiratory syndrome coronavirus 2 pandemic. RECENT FINDINGS Recent studies highlight an increase in nosocomial infections during the COVID-19 pandemic, with a significant rise in cases involving severe bacterial and fungal superinfections among mechanically ventilated patients. These infections include a higher incidence of multidrug-resistant organisms (MDROs), complicating treatment and recovery. Notably, COVID-19 patients have shown a higher prevalence of VAP than those with influenza or other respiratory viruses, influenced by extended mechanical ventilation and immunosuppressive treatments like corticosteroids. SUMMARY The findings suggest that COVID-19 has exacerbated the frequency and severity of nosocomial infections, particularly VAP. These complications not only extend hospital stays and increase healthcare costs but also lead to higher morbidity and mortality rates. Understanding these patterns is crucial for developing targeted preventive and therapeutic strategies to manage and mitigate nosocomial infections during regular or pandemic care.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation (MICRO), St James's Hospital, Dublin, Ireland
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
| | - Marcos I Restrepo
- Section of Pulmonary & Critical Care Medicine, South Texas Veterans Healthcare System, GRECC and University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
36
|
Białka S, Zieliński M, Latos M, Skurzyńska M, Żak M, Palaczyński P, Skoczyński S. Severe Bacterial Superinfection of Influenza Pneumonia in Immunocompetent Young Patients: Case Reports. J Clin Med 2024; 13:5665. [PMID: 39407724 PMCID: PMC11476596 DOI: 10.3390/jcm13195665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Influenza can lead to or coexist with severe bacterial pneumonia, with the potential to permanently damage lung tissue, refractory to conservative treatment in the post-COVID-19 period. It can lead to serious complications; therefore, annual vaccinations are recommended. This case series with a literature review pertains to two young female patients with an insignificant past medical history, who required emergency lobectomy due to bacterial complications after influenza infection. Urgent lobectomy proves to be a feasible therapeutic option for selected patients with pleural complications.
Collapse
Affiliation(s)
- Szymon Białka
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-803 Zabrze, Poland; (S.B.); (P.P.)
| | - Michał Zieliński
- Department of Lung Diseases and Tuberculosis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-803 Zabrze, Poland; (M.Z.); (S.S.)
| | - Magdalena Latos
- Department of Lung Diseases and Tuberculosis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-803 Zabrze, Poland; (M.Z.); (S.S.)
| | - Marlena Skurzyńska
- Clinical Department of Anaesthesiology and Intensive Care, Independent Public Clinical Hospital No. 1., 41-800 Zabrze, Poland;
| | - Michał Żak
- Student Scientific Society at the Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland;
| | - Piotr Palaczyński
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-803 Zabrze, Poland; (S.B.); (P.P.)
| | - Szymon Skoczyński
- Department of Lung Diseases and Tuberculosis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-803 Zabrze, Poland; (M.Z.); (S.S.)
| |
Collapse
|
37
|
Liu S, Yu C, Tu Q, Zhang Q, Fu Z, Huang Y, He C, Yao L. Bacterial co-infection in COVID-19: a call to stay vigilant. PeerJ 2024; 12:e18041. [PMID: 39308818 PMCID: PMC11416760 DOI: 10.7717/peerj.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Co-infection with diverse bacteria is commonly seen in patients infected with the novel coronavirus, SARS-CoV-2. This type of co-infection significantly impacts the occurrence and development of novel coronavirus infection. Bacterial co-pathogens are typically identified in the respiratory system and blood culture, which complicates the diagnosis, treatment, and prognosis of COVID-19, and even exacerbates the severity of disease symptoms and increases mortality rates. However, the status and impact of bacterial co-infections during the COVID-19 pandemic have not been properly studied. Recently, the amount of literature on the co-infection of SARS-CoV-2 and bacteria has gradually increased, enabling a comprehensive discussion on this type of co-infection. In this study, we focus on bacterial infections in the respiratory system and blood of patients with COVID-19 because these infection types significantly affect the severity and mortality of COVID-19. Furthermore, the progression of COVID-19 has markedly elevated the antimicrobial resistance among specific bacteria, such as Klebsiella pneumoniae, in clinical settings including intensive care units (ICUs). Grasping these resistance patterns is pivotal for the optimal utilization and stewardship of antibiotics, including fluoroquinolones. Our study offers insights into these aspects and serves as a fundamental basis for devising effective therapeutic strategies. We primarily sourced our articles from PubMed, ScienceDirect, Scopus, and Google Scholar. We queried these databases using specific search terms related to COVID-19 and its co-infections with bacteria or fungi, and selectively chose relevant articles for inclusion in our review.
Collapse
Affiliation(s)
- Shengbi Liu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Chao Yu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Qin Tu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Qianming Zhang
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Zuowei Fu
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Yifeng Huang
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Chuan He
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| | - Lei Yao
- Department of Clinical Laboratory, Guiqian International General Hospital, Guiyang, People’s Republic of China
| |
Collapse
|
38
|
Piechowicz L, Kosznik-Kwaśnicka K, Jarzembowski T, Daca A, Necel A, Bonawenturczak A, Werbowy O, Stasiłojć M, Pałubicka A. Staphylococcus aureus Co-Infection in COVID-19 Patients: Virulence Genes and Their Influence on Respiratory Epithelial Cells in Light of Risk of Severe Secondary Infection. Int J Mol Sci 2024; 25:10050. [PMID: 39337536 PMCID: PMC11431965 DOI: 10.3390/ijms251810050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Pandemics from viral respiratory tract infections in the 20th and early 21st centuries were associated with high mortality, which was not always caused by a primary viral infection. It has been observed that severe course of infection, complications and mortality were often the result of co-infection with other pathogens, especially Staphylococcus aureus. During the COVID-19 pandemic, it was also noticed that patients infected with S. aureus had a significantly higher mortality rate (61.7%) compared to patients infected with SARS-CoV-2 alone. Our previous studies have shown that S. aureus strains isolated from patients with COVID-19 had a different protein profile than the strains in non-COVID-19 patients. Therefore, this study aims to analyze S. aureus strains isolated from COVID-19 patients in terms of their pathogenicity by analyzing their virulence genes, adhesion, cytotoxicity and penetration to the human pulmonary epithelial cell line A549. We have observed that half of the tested S. aureus strains isolated from patients with COVID-19 had a necrotizing effect on the A549 cells. The strains also showed greater variability in terms of their adhesion to the human cells than their non-COVID-19 counterparts.
Collapse
Affiliation(s)
- Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Tomasz Jarzembowski
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Agnieszka Daca
- Department of Physiopathology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Ada Bonawenturczak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Olesia Werbowy
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Anna Pałubicka
- Specialist Hospital in Koscierzyna Sp. z o.o., Department of Laboratory and Microbiological Diagnostics, Koscierzyna, Alojzego Piechowskiego 36, 83-400 Koscierzyna, Poland
| |
Collapse
|
39
|
Sanches Santos Rizzo Zuttion M, Parimon T, Bora SA, Yao C, Lagree K, Gao CA, Wunderink RG, Kitsios GD, Morris A, Zhang Y, McVerry BJ, Modes ME, Marchevsky AM, Stripp BR, Soto CM, Wang Y, Merene K, Cho S, Victor BL, Vujkovic-Cvijin I, Gupta S, Cassel SL, Sutterwala FS, Devkota S, Underhill DM, Chen P. Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia. J Clin Invest 2024; 134:e180986. [PMID: 39255040 PMCID: PMC11527449 DOI: 10.1172/jci180986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated that antibiotic treatment during influenza infection caused a fungal dysbiosis that drove lung eosinophilia and impaired MRSA clearance. Finally, we evaluated 3 cohorts of hospitalized patients and found that eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs, thereby increasing the risk of developing a secondary bacterial infection.
Collapse
Affiliation(s)
| | | | | | - Changfu Yao
- Department of Medicine
- Women’s Guild Lung Institute
| | - Katherine Lagree
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Barry R. Stripp
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| | | | - Ying Wang
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Silvia Cho
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Ivan Vujkovic-Cvijin
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suman Gupta
- Department of Medicine
- Women’s Guild Lung Institute
| | | | | | - Suzanne Devkota
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M. Underhill
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| |
Collapse
|
40
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
41
|
Kato H. Antibiotic therapy for bacterial pneumonia. J Pharm Health Care Sci 2024; 10:45. [PMID: 39080789 PMCID: PMC11290052 DOI: 10.1186/s40780-024-00367-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Pneumonia is a common infection in patients of all ages. Determining its etiology and selecting antibiotic therapy are challenging for physicians in both private practice and hospitals. Moreover, the coronavirus disease pandemic revealed the importance of prevention and treatment of secondary bacterial pneumonia in patients hospitalized with viral respiratory infections. This review focuses on the types of bacteria that cause pneumonia and provides new insights into antibiotic therapy for bacterial pneumonia. Moreover, it also reviews the current state of knowledge regarding secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Hideo Kato
- Department of Pharmacy, Mie University Hospital, Mie, 514-8507, Japan.
- Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan.
| |
Collapse
|
42
|
Ledderose C, Valsami EA, Elevado M, Junger WG. Adenosine Triphosphate Release From Influenza-Infected Lungs Enhances Neutrophil Activation and Promotes Disease Progression. J Infect Dis 2024; 230:120-130. [PMID: 39052721 PMCID: PMC11272046 DOI: 10.1093/infdis/jiad442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP) enhances neutrophil responses, but little is known about the role of ATP in influenza infections. METHODS We used a mouse influenza model to study if ATP release is associated with neutrophil activation and disease progression. RESULTS Influenza infection increased pulmonary ATP levels 5-fold and plasma ATP levels 3-fold vs healthy mice. Adding ATP at those concentrations to blood from healthy mice primed neutrophils and enhanced CD11b and CD63 expression, CD62L shedding, and reactive oxygen species production in response to formyl peptide receptor stimulation. Influenza infection also primed neutrophils in vivo, resulting in formyl peptide receptor-induced CD11b expression and CD62L shedding up to 3 times higher than that of uninfected mice. In infected mice, large numbers of neutrophils entered the lungs. These cells were significantly more activated than the peripheral neutrophils of infected mice and pulmonary neutrophils of healthy mice. Plasma ATP levels of infected mice and influenza disease progression corresponded with the numbers and activation level of their pulmonary neutrophils. CONCLUSIONS Findings suggest that ATP release from the lungs of infected mice promotes influenza disease progression by priming peripheral neutrophils, which become strongly activated and cause pulmonary tissue damage after their recruitment to the lungs.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Hernandez-Morfa M, Reinoso-Vizcaino NM, Zappia VE, Olivero NB, Cortes PR, Stempin CC, Perez DR, Echenique J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front Microbiol 2024; 15:1423995. [PMID: 39035445 PMCID: PMC11258013 DOI: 10.3389/fmicb.2024.1423995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
44
|
Villalba JA, Cheek-Norgan EH, Johnson TF, Yi ES, Boland JM, Aubry MC, Pennington KM, Scott JP, Roden AC. Fatal Infections Differentially Involve Allograft and Native Lungs in Single Lung Transplant Recipients. Arch Pathol Lab Med 2024; 148:784-796. [PMID: 37756557 DOI: 10.5858/arpa.2023-0227-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/29/2023]
Abstract
CONTEXT.— Respiratory infections complicate lung transplantation and increase the risk of allograft dysfunction. Allograft lungs may have different susceptibilities to infection than native lungs, potentially leading to different disease severity in lungs of single lung transplant recipients (SLTRs). OBJECTIVE.— To study whether infections affect allograft and native lungs differently in SLTRs but similarly in double LTRs (DLTRs). DESIGN.— Using an institutional database of LTRs, medical records were searched, chest computed tomography studies were systematically reviewed, and histopathologic features were recorded per lung lobe and graded semiquantitatively. A multilobar-histopathology score (MLHS) including histopathologic data from each lung and a bilateral ratio (MLHSratio) comparing histopathologies between both lungs were calculated in SLTRs and compared to DLTRs. RESULTS.— Six SLTRs died of infection involving the lungs. All allografts showed multifocal histopathologic evidence of infection, but at least 1 lobe of the native lung was uninvolved. In 4 of 5 DLTRs, histopathologic evidence of infection was seen in all lung lobes. On computed tomography, multifocal ground-glass and/or nodular opacities were found in a bilateral distribution in all DLTRs but in only 2 of 6 SLTRs. In SLTRs, the MLHSAllograft was higher than MLHSNative (P = .02). The MLHSratio values of SLTR and DLTR were significantly different (P < .001). CONCLUSIONS.— Allograft and native lungs appear to harbor different susceptibilities to infections. The results are important for the management of LTRs.
Collapse
Affiliation(s)
- Julian A Villalba
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| | - E Heidi Cheek-Norgan
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| | - Tucker F Johnson
- From the Departments of Laboratory Medicine and Radiology (Johnson)
| | - Eunhee S Yi
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| | - Jennifer M Boland
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| | - Marie-Christine Aubry
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| | - Kelly M Pennington
- the Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota(Pennington, Scott)
| | - John P Scott
- the Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota(Pennington, Scott)
| | - Anja C Roden
- From the Departments of Laboratory Medicine and Pathology (Villalba, Cheek-Norgan, Yi, Boland, Aubry, Roden)
| |
Collapse
|
45
|
Kwok WC, Lung DC, Tam TCC, Yap DYH, Ma TF, Tsui CK, Zhang R, Lam DCL, Ip MSM, Ho JCM. Protective Effects from Prior Pneumococcal Vaccination in Patients with Chronic Airway Diseases during Hospitalization for Influenza-A Territory-Wide Study. Vaccines (Basel) 2024; 12:704. [PMID: 39066342 PMCID: PMC11281690 DOI: 10.3390/vaccines12070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza is an important respiratory viral pathogen in adults, with secondary bacterial pneumonia being a common complication. While pneumococcal vaccines can prevent pneumococcal pneumonia and invasive pneumococcal disease, whether they can also prevent the severe in-hospital outcomes among patients hospitalized for influenza has not been examined. A territory-wide retrospective study was conducted in Hong Kong, which included all adult patients having chronic airway diseases (asthma, bronchiectasis, and chronic obstructive pulmonary disease) hospitalized for influenza and who had received seasonal influenza vaccine. The occurrence of secondary bacterial pneumonia, mortality, and other severe in-hospital outcomes were compared among subjects with or without pneumococcal vaccination. There was a total of 3066 eligible patients who were hospitalized for influenza in public hospitals in Hong Kong from 1 January 2016 to 30 June 2023. Completed pneumococcal vaccination with PSV23/PCV13 conferred protection against secondary bacterial pneumonia, all-cause mortality, and respiratory cause of mortality with adjusted odds ratios of 0.74 (95% CI = 0.57-0.95, p = 0.019), 0.12 (95% CI = 0.03-0.53, p = 0.005), and 0.04 (95% CI = 0.00-0.527, p = 0.0038), respectively.
Collapse
Affiliation(s)
- Wang-Chun Kwok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - David Christopher Lung
- Department of Pathology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong SAR, China;
| | - Terence Chi-Chun Tam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - Desmond Yat-Hin Yap
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - Ting-Fung Ma
- Department of Statistics, University of South Carolina, Columbia, SC 29208, USA;
| | - Chung-Ki Tsui
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - Ru Zhang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - David Chi-Leung Lam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - Mary Sau-Man Ip
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| | - James Chung-Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China; (W.-C.K.); (T.C.-C.T.); (D.Y.-H.Y.); (C.-K.T.); (R.Z.); (D.C.-L.L.); (M.S.-M.I.)
| |
Collapse
|
46
|
Gingerich A, Mahoney L, McCormick AL, Miller RJ, Mousa J. Human monoclonal antibodies protect against viral-mediated pneumococcal superinfection. Front Immunol 2024; 15:1364622. [PMID: 38933273 PMCID: PMC11199387 DOI: 10.3389/fimmu.2024.1364622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Community-acquired pneumonia (CAP) is a global health concern, with 25% of cases attributed to Streptococcus pneumoniae (Spn). Viral infections like influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) increase the risk of Spn, leading to severe complications due to compromised host immunity. Methods We evaluated the efficacy of an anti-PhtD monoclonal antibody (mAb) cocktail therapy (PhtD3 + 7) in improving survival rates in three viral/bacterial coinfection models: IAV/Spn, hMPV/Spn, and RSV/Spn. Results The PhtD3 + 7 mAb cocktail outperformed antiviral mAbs, resulting in prolonged survival. In the IAV/Spn model, it reduced bacterial titers in blood and lungs by 2-4 logs. In the hMPV/Spn model, PhtD3 + 7 provided greater protection than the hMPV-neutralizing mAb MPV467, significantly reducing bacterial titers. In the RSV/Spn model, PhtD3 + 7 offered slightly better protection than the antiviral mAb D25, uniquely decreasing bacterial titers in blood and lungs. Discussion Given the threat of antibiotic resistance, our findings highlight the potential of anti-PhtD mAb therapy as an effective option for treating viral and secondary pneumococcal coinfections.
Collapse
Affiliation(s)
- Aaron Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lauren Mahoney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Anna L. McCormick
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Rose J. Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
47
|
Pokhrel V, Kuntal BK, Mande SS. Role and significance of virus-bacteria interactions in disease progression. J Appl Microbiol 2024; 135:lxae130. [PMID: 38830797 DOI: 10.1093/jambio/lxae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Understanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection. The review provides a unique perspective on the general theme of virus-bacteria interactions, which either lead to colocalized infections that are restricted to one anatomical niche, or systemic infections that have a systemic effect on the human host. The sequence, nature, and underlying mechanisms of certain virus-bacteria interactions have been elaborated with relevant examples from literature. It also attempts to address the various applied aspects, including diagnostic and therapeutic strategies for individual infections as well as virus-bacteria coinfections. The review aims to aid researchers in comprehending the intricate interplay between virus and bacteria in disease progression, thereby enhancing understanding of current methodologies and empowering the development of novel health care strategies to tackle coinfections.
Collapse
Affiliation(s)
- Vatsala Pokhrel
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhusan K Kuntal
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
48
|
Tamura K, Shimbashi R, Kasamatsu A, Chang B, Gotoh K, Tanabe Y, Kuronuma K, Oshima K, Maruyama T, Nakamatsu M, Abe S, Kasahara K, Nishi J, Arakawa Y, Kinjo Y, Suzuki M, Akeda Y, Oishi K. Unveiling the role of preceding seasonal influenza in the development of bacteremic pneumococcal pneumonia in older adults before the COVID-19 pandemic in Japan. Int J Infect Dis 2024; 143:107024. [PMID: 38582146 DOI: 10.1016/j.ijid.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
OBJECTIVE We aimed to investigate the impact of preceding seasonal influenza on the clinical characteristics of adult patients with invasive pneumococcal disease (IPD) in Japan. METHODS Data for 1722 adult patients with IPD were analyzed before (2017-2019) and during the COVID-19 pandemic (2020-2022). RESULTS The seasonal influenza epidemic disappeared soon after the emergence of the pandemic. Compared with that before the pandemic (66.7%), we observed a lower bacteremic pneumonia proportion in patients with IPD during the pandemic (55.6%). The clinical presentations of IPD cases significantly differed between those with and without preceding influenza. The proportion of bacteremic pneumonia was higher in IPD patients with preceding influenza than in those without in both younger (44.9% vs 84.2%) and older adults (65.5% vs 87.0%) before the pandemic. The case fatality rate was significantly higher in IPD patients with preceding influenza (28.3%) than in those without (15.3%) in older adults before the pandemic (P = 0.020). Male and aging are high risk factors for death in older patients with IPD who had preceding influenza. CONCLUSION Our study reveals that preceding seasonal influenza plays a role in the development of bacteremic pneumococcal pneumonia, increasing the risk of death in older adults.
Collapse
Affiliation(s)
| | | | - Ayu Kasamatsu
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Bin Chang
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Gotoh
- Kurume University School of Medicine, Fukuoka, Japan
| | | | - Koji Kuronuma
- Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kengo Oshima
- Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Masashi Nakamatsu
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shuichi Abe
- Yamagata Prefectural Central Hospital, Yamagata, Japan
| | | | - Junichiro Nishi
- Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Arakawa
- Kochi Medical School, Kochi University, Kochi, Japan
| | - Yuki Kinjo
- The Jikei University School of Medicine, Tokyo, Japan
| | - Motoi Suzuki
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | | |
Collapse
|
49
|
Ismael YH, Pacheco E Castilho HG, Zhen F, Yamaguto GE, Moriya VL, Maestri AC, Kussen GMB, Nogueira MB, Petterle R, Shimidt ALA, Moreira FN, da Silva Nogueira K, Raboni SM. Clinical and microbiological profile of health care-associated infections in a tertiary hospital: Comparison between a cohort of hospitalized patients during prepandemic and COVID-19 pandemic periods. Am J Infect Control 2024; 52:712-718. [PMID: 38181901 DOI: 10.1016/j.ajic.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, health service practices underwent significant changes, impacting the occurrence of health care-associated infections (HAIs). This study presents the epidemiology of bacterial infections and compares clinical data on nosocomial infections in hospitalized patients before and during the pandemic. METHODS A unicentric, observational, retrospective cohort study was conducted with descriptive analyses on the microorganism identification and resistance profile. Patient's clinical data who had hospital-acquired infection (HAI), during their hospitalization in a tertiary hospital before and during the COVID-19 pandemic was compared by descriptive and inferential analyses. RESULTS A total of 1,581 bacteria were isolated from 1,183 hospitalized patients. Among patients coinfected with COVID-19, there was a statistically significant increase in HAI-related deaths (P < .001) and HAI caused by multidrug-resistant organisms (P < .001), mainly by Acinetobacter baumannii and Staphylococcus aureus. A higher odds ratio of HAI-related deaths compared to the prepandemic period was observed (odds ratio 6.98 [95% confidence interval 3.97-12.64]). CONCLUSIONS The higher incidence of multidrug-resistant bacteria and increased deaths due to HAI, especially in patients with COVID-19 coinfection, might be related to various factors such as increased workload, broad-spectrum antibiotic use, and limited resources. The pandemic has changed the profile of circulating bacteria and antimicrobial resistance. Prevention strategies should be considered to reduce the impact of these infections.
Collapse
Affiliation(s)
- Youssef H Ismael
- Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Felipe Zhen
- Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Guilherme E Yamaguto
- Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Vitor L Moriya
- Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Adriane C Maestri
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gislene M B Kussen
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Meri B Nogueira
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Petterle
- Department of Integrative Medicine, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ana L A Shimidt
- Hospital Infection Control Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabíola N Moreira
- Hospital Infection Control Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Keite da Silva Nogueira
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sonia M Raboni
- Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
50
|
Clark JJ, Penrice-Randal R, Sharma P, Dong X, Pennington SH, Marriott AE, Colombo S, Davidson A, Kavanagh Williamson M, Matthews DA, Turtle L, Prince T, Hughes GL, Patterson EI, Shawli G, Mega DF, Subramaniam K, Sharp J, Turner JD, Biagini GA, Owen A, Kipar A, Hiscox JA, Stewart JP. Sequential Infection with Influenza A Virus Followed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Leads to More Severe Disease and Encephalitis in a Mouse Model of COVID-19. Viruses 2024; 16:863. [PMID: 38932155 PMCID: PMC11209060 DOI: 10.3390/v16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The coalescence of SARS-CoV-2 with seasonal respiratory viruses, particularly influenza viruses, is a global health concern. To understand this, transgenic mice expressing the human ACE2 receptor (K18-hACE2) were infected with influenza A virus (IAV) followed by SARS-CoV-2 and the host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 alone. The sequentially infected mice showed reduced SARS-CoV-2 RNA synthesis, yet exhibited more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to the singly infected or control mice. Sequential infection also exacerbated the extrapulmonary encephalitic manifestations associated with SARS-CoV-2 infection. Conversely, prior infection with a commercially available, multivalent live-attenuated influenza vaccine (Fluenz Tetra) elicited the same reduction in SARS-CoV-2 RNA synthesis, albeit without the associated increase in disease severity. This suggests that the innate immune response stimulated by IAV inhibits SARS-CoV-2. Interestingly, infection with an attenuated, apathogenic influenza vaccine does not result in an aberrant immune response and enhanced disease severity. Taken together, the data suggest coinfection ('twinfection') is deleterious and mitigation steps should be instituted as part of the comprehensive public health and management strategy of COVID-19.
Collapse
Affiliation(s)
- Jordan J. Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Rebekah Penrice-Randal
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Xiaofeng Dong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Shaun H. Pennington
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Stefano Colombo
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Lance Turtle
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Tropical & Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Tessa Prince
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Ghada Shawli
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Daniele F. Mega
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Krishanthi Subramaniam
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Jo Sharp
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Julian A. Hiscox
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|