1
|
Fischer S, De Majo MS, Di Battista C, Campos RE. Effects of temperature and humidity on the survival and hatching response of diapausing and non-diapausing Aedes aegypti eggs. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104726. [PMID: 39638119 DOI: 10.1016/j.jinsphys.2024.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
In seasonally varying environments, diapause, which is induced by a short photoperiod, favors overwintering of many insects. In Aedine mosquitoes, embryonic diapause is associated with higher survival and resistance to low temperature and humidity. Aedes aegypti, the main vector of dengue and other arboviruses, has recently expanded its distribution towards temperate regions. One of the mechanisms that might have favored this expansion in South America is the ability to induce embryonic diapause. This type of diapause has been recently discovered in populations from Argentina, associated with hatching inhibition and increased amounts of lipids in the eggs. The aim of this study was to assess the four-month survival of diapausing (D) and non-diapausing (ND) eggs stored at different humidity and temperature conditions. Two populations from the temperate region of Argentina were analyzed: one from Buenos Aires (BA), a city with a relatively mild and short winter, and another from San Bernardo (SB), a locality with a harsher and longer winter. For both populations, D and ND eggs were obtained from colonies maintained under 10:14 L:D and 14:10 L:D hours respectively. Eggs were exposed to six different conditions of humidity and temperature for 85 days. After exposure, egg survival and hatching response were analyzed. D eggs showed significantly higher survival at low humidity (both populations), and at medium and high humidity and at low temperatures (SB population). In addition, D eggs showed a significantly lower hatching response at high humidity and low temperatures, and higher proportion of not hatched eggs remaining viable after two immersions under all conditions. D eggs from SB were significantly more tolerant to low temperatures than those from BA. ND eggs from SB were significantly more tolerant to low temperatures, while those from BA were more tolerant to low humidity. Overall, the effect of diapause was a significant increase in the number of not hatched, viable embryos after immersion. Results suggest that the ability of Ae. aegypti to induce egg diapause increases the probability of successful overwintering and further expansion of its distribution range, and as a consequence the risk of arbovirus transmission might increase in temperate areas.
Collapse
Affiliation(s)
- Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina.
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina.
| | - Cristian Di Battista
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina.
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina
| |
Collapse
|
2
|
Zeng K, Sentinella AT, Armitage C, Moles AT. Species that require long-day conditions to flower are not advancing their flowering phenology as fast as species without photoperiod requirements. ANNALS OF BOTANY 2025; 135:113-124. [PMID: 39081226 DOI: 10.1093/aob/mcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/29/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Over the last few decades, many plant species have shown changes in phenology, such as the date on which they germinate, bud or flower. However, some species are changing more slowly than others, potentially owing to daylength (photoperiod) requirements. METHODS We combined data on flowering-time advancement with published records of photoperiod sensitivity to try to predict which species are advancing their flowering time. Data availability limited us to the Northern Hemisphere. KEY RESULTS Cross-species analyses showed that short-day plants advanced their flowering time by 1.4 days per decade and day-neutral plants by 0.9 days per decade, but long-day plants delayed their flowering by 0.2 days per decade. However, photoperiod-sensitivity status exhibited moderate phylogenetic conservation, and the differences in flowering-time advancement were not significant after phylogeny was accounted for. Both annual and perennial herbs were more likely to have long-day photoperiod cues than woody species, which were more likely to have short-day photoperiod cues. CONCLUSIONS Short-day plants are keeping up with plants that do not have photoperiod requirements, suggesting that daylength requirements do not hinder changes in phenology. However, long-day plants are not changing their phenology and might risk falling behind as competitors and pollinators adapt to climate change.
Collapse
Affiliation(s)
- Karen Zeng
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | - Alexander T Sentinella
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Bradshaw WE, Fletcher MC, Holzapfel CM. Clock-talk: have we forgotten about geographic variation? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:649-666. [PMID: 37322375 PMCID: PMC11226528 DOI: 10.1007/s00359-023-01643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Wyeomyia smithii, the pitcher-plant mosquito, has evolved from south to north and from low to high elevations in eastern North America. Along this seasonal gradient, critical photoperiod has increased while apparent involvement of the circadian clock has declined in concert with the evolutionary divergence of populations. Response to classical experiments used to test for a circadian basis of photoperiodism varies as much within and among populations of W. smithii as have been found in the majority of all other insects and mites. The micro-evolutionary processes revealed within and among populations of W. smithii, programmed by a complex underlying genetic architecture, illustrate a gateway to the macro-evolutionary divergence of biological timing among species and higher taxa in general.
Collapse
Affiliation(s)
- William E Bradshaw
- Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA.
| | - Margaret C Fletcher
- Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Christina M Holzapfel
- Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| |
Collapse
|
4
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Testing for variation in photoperiodic plasticity in a butterfly: Inconsistent effects of circadian genes between geographic scales. Ecol Evol 2024; 14:e11713. [PMID: 38975264 PMCID: PMC11227937 DOI: 10.1002/ece3.11713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, timeless and period, on photoperiodic responses in the butterfly Pararge aegeria. While nonsynonymous candidate SNPs in both of these genes have previously shown to be associated with diapause induction on a between-population level, in the present experiment no such effect was found on a within-population level. In trying to reconcile these results, we examine sequence data, revealing considerable, previously unknown protein-level variation at both timeless and period across Scandinavian populations, including variants unique to the population studied here. Hence, we hypothesize that these variants may counteract the previously observed diapause-averting effect of the candidate SNPs, possibly explaining the difference in results between the experiments. Whatever the cause, these results highlight how the effects of candidate SNPs may sometimes vary across genetic backgrounds, which complicates evolutionary interpretations of geographic patterns of genetic variation.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | | - Karl Gotthard
- Department of ZoologyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholmSweden
| |
Collapse
|
5
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
6
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Dennington NL, Grossman MK, Ware-Gilmore F, Teeple JL, Johnson LR, Shocket MS, McGraw EA, Thomas MB. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. GLOBAL CHANGE BIOLOGY 2024; 30:e17041. [PMID: 38273521 DOI: 10.1111/gcb.17041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 01/27/2024]
Abstract
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
Collapse
Affiliation(s)
- Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marissa K Grossman
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janet L Teeple
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, Florida, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Elizabeth A McGraw
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew B Thomas
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Invasion Science Research Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of York, York, UK
| |
Collapse
|
8
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530886. [PMID: 37961581 PMCID: PMC10634975 DOI: 10.1101/2023.03.02.530886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Johannah E. Farner
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Alexandra S. Lee
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Erin A. Mordecai
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| |
Collapse
|
9
|
Reznik SY, Dolgovskaya MY, Karpun NN, Zakharchenko VY, Saulich AK, Musolin DL. The Invasive Caucasian Populations of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae) Rapidly Adapt Their Ecophysiological Traits to the Local Environmental Conditions. INSECTS 2023; 14:insects14050424. [PMID: 37233052 DOI: 10.3390/insects14050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The ability to rapidly adapt to new environmental conditions is a crucial prerequisite for the wide-scale invasion of pests or intentional introduction of beneficial insects. A photoperiodically induced facultative winter diapause is an important adaptation ensuring synchronization of insect development and reproduction with the local seasonal dynamics of environmental factors. We conducted a laboratory study aimed to compare photoperiodic responses of two invasive Caucasian populations of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae), which recently invaded neighboring regions with subtropical (Sukhum, Abkhazia) and temperate (Abinsk, Russia) climates. Under the temperature of 25 °C and the near-critical photoperiods of L:D = 15:9 h and 15.5:8.5 h, the population from Abinsk showed a slower pre-adult development and a stronger tendency to enter winter adult (reproductive) diapause compared to the population from Sukhum. This finding agreed with the difference between the local dynamics of the autumnal temperature decrease. Similar adaptive interpopulation differences in the patterns of diapause-inducing responses are known in other insect species but our finding is distinguished by a very short adaptation time: H. halys was first recorded in Sukhum in 2015 and in Abinsk in 2018. Thus, the differences between the compared populations might have evolved over a relatively short span of several years.
Collapse
Affiliation(s)
- Sergey Ya Reznik
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Margarita Yu Dolgovskaya
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Natalia N Karpun
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
- Department of Forest Protection, Wood Science and Game Management, St. Petersburg State Forest Technical University, Institutskiy Per. 5, 194021 Saint Petersburg, Russia
| | - Vilena Ye Zakharchenko
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
| | - Aida Kh Saulich
- Department of Entomology, Saint Petersburg State University, Universitetskaya Nab. 7-9, 199034 Saint Petersburg, Russia
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 Boulevard Richard Lenoir, 75011 Paris, France
| |
Collapse
|
10
|
Ware-Gilmore F, Novelo M, Sgrò CM, Hall MD, McGraw EA. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220011. [PMID: 36744557 PMCID: PMC9900713 DOI: 10.1098/rstb.2022.0011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
The geographical range of the mosquito vector for many human disease-causing viruses, Aedes aegypti, is expanding, in part owing to changing climate. The capacity of this species to adapt to thermal stress will affect its future distributions. It is unclear how much heritable genetic variation may affect the upper thermal limits of mosquito populations over the long term. Nor are the genetic pathways that confer thermal tolerance fully understood. In the short term, cells induce a plastic, protective response known as 'heat shock'. Using a physiological 'knockdown' assay, we investigated mosquito thermal tolerance to characterize the genetic architecture of the trait. While families representing the extreme ends of the distribution for knockdown time differed from one another, the trait exhibited low but non-zero broad-sense heritability. We then explored whether families representing thermal performance extremes differed in their heat shock response by measuring gene expression of heat shock protein-encoding genes Hsp26, Hsp83 and Hsp70. Contrary to prediction, the families with higher thermal tolerance demonstrated less Hsp expression. This pattern may indicate that other mechanisms of heat tolerance, rather than heat shock, may underpin the stress response, and the costly production of HSPs may instead signal poor adaptation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth A. McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Yokomizo T, Takahashi Y. Endogenous rhythm variation and adaptation to the tidal environment in the freshwater snail, Semisulcospira reiniana. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1078234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms have endogenous timekeeping system(s) to coordinate their biological processes with environmental cycles, allowing adaptation to external rhythmic changes in their environment. The change in endogenous rhythms could contribute to range expansion in a novel rhythmic environment. We hypothesized that populations of the freshwater snail near estuaries show a circatidal rhythm to synchronize with the tidal cycle. We compared the behavioral and gene expression rhythms between non-tidal and tidal populations of the freshwater snail, Semisulcospira reiniana. Individuals inhabiting tidal areas exhibited a rhythmic activity pattern coordinated with the tidal cycle under both field and laboratory conditions, but individuals inhabiting upstream non-tidal areas showed a circadian activity pattern. The proportion of circadian oscillating genes was greater in non-tidal than in tidal individuals, while that of circatidal oscillating genes was greater in tidal than in non-tidal individuals. Additionally, transcriptome-wide population genetic analyses revealed that these two adjacent populations can be clearly distinguished genetically, though the genetic distance was very small. Our results provide evidence of the shift in an endogenous rhythm via range expansion to a novel rhythmic environment. The changes in a small number of genes and/or phenotypic plasticity may contribute to the difference in the endogenous rhythms between non-tidal and tidal populations.
Collapse
|
12
|
Semi-field and surveillance data define the natural diapause timeline for Culex pipiens across the United States. Commun Biol 2022; 5:1300. [PMID: 36435882 PMCID: PMC9701209 DOI: 10.1038/s42003-022-04276-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.
Collapse
|
13
|
Da Re D, Van Bortel W, Reuss F, Müller R, Boyer S, Montarsi F, Ciocchetta S, Arnoldi D, Marini G, Rizzoli A, L'Ambert G, Lacour G, Koenraadt CJM, Vanwambeke SO, Marcantonio M. dynamAedes: a unified modelling framework for invasive Aedes mosquitoes. Parasit Vectors 2022; 15:414. [PMID: 36348368 PMCID: PMC9641901 DOI: 10.1186/s13071-022-05414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species' biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquiries.
Collapse
Affiliation(s)
- Daniele Da Re
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Wim Van Bortel
- Unit Entomology and the Outbreak Research Team, Tropical Medicine Institute, Antwerp, Belgium
| | - Friederike Reuss
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ruth Müller
- Unit Entomology and the Outbreak Research Team, Tropical Medicine Institute, Antwerp, Belgium
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Fabrizio Montarsi
- Laboratory of Parasitology, National reference centre/OIE collaborating centre for diseases at the animal-human interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Silvia Ciocchetta
- The University of Queensland, School of Veterinary Science, Gatton, Australia
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | - Constantianus J M Koenraadt
- Wageningen University & Research, Department of Plant Sciences, Laboratory of Entomology, Wageningen, The Netherlands
| | - Sophie O Vanwambeke
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Matteo Marcantonio
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Diniz DFA, Romão TP, Helvécio E, de Carvalho-Leandro D, Xavier MDN, Peixoto CA, de Melo Neto OP, Melo-Santos MAVD, Ayres CFJ. A comparative analysis of Aedes albopictus and Aedes aegypti subjected to diapause-inducing conditions reveals conserved and divergent aspects associated with diapause, as well as novel genes associated with its onset. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100047. [PMID: 36683953 PMCID: PMC9846470 DOI: 10.1016/j.cris.2022.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/05/2023]
Abstract
Aedes albopictus and Aedes aegypti are mosquito species that are distributed worldwide and transmit diverse arboviruses of medical importance, such as those causing yellow fever, dengue, chikungunya and Zika. A. albopictus embryos may remain viable for long periods in the environment due to their ability to become dormant through quiescence or diapause, a feature that contributes to their dispersion and hinders control actions. Diapause incidence can vary among natural populations of A. albopictus, but metabolic and genetic parameters associated with its induction still need to be better defined. The present study aimed to investigate the effect of exposure to diapause-inducing conditions on several biological parameters in different populations of A. albopictus (from tropical and temperate areas) and the diapause-refractory A. aegypti (tropical and subtropical populations). As expected, only the A. albopictus populations exhibited diapause, but with a lower incidence for the population from a tropical area. Exposure to diapause-inducing conditions, however, led to a sharp reduction in fecundity for both A. albopictus and A. aegypti tropical populations, with no effect on fertility (>90%). It also led to a prolonged period as pupae for the progeny of all induced groups, with a further delay for those from temperate climates. In all those induced groups, the lipid contents in eggs and adult females were higher than in the non-induced controls, with the highest values observed for both A. albopictus groups. Three genes were selected to have their expression profile investigated: cathepsin, idgf4, and pepck. Upon exposure to diapause-inducing conditions, all three genes were upregulated in the A. albopictus embryos from the tropical region, but only idgf4 was upregulated in the temperate climate embryos. This represents a new gene associated with diapause that can be used as a target to evaluate and prevent embryonic dormancy, a possible new vector control strategy for mosquito species from temperate areas, such as A. albopictus.
Collapse
Affiliation(s)
- Diego Felipe Araujo Diniz
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Tatiany Patrícia Romão
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Elisama Helvécio
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Danilo de Carvalho-Leandro
- Colégio de Aplicação, Federal University of Pernambuco, Av. da Arquitetura, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Morgana do Nascimento Xavier
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Osvaldo Pompílio de Melo Neto
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Maria Alice Varjal de Melo-Santos
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Constância Flávia Junqueira Ayres
- Entomology Department - Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
15
|
Zhang Q, Jiang Y, Li C, Gao J, Zhao T, Zhang H, Li C, Xing D, Dong Y, Zhao T, Guo X. Survival and Replication of Zika Virus in Diapause Eggs of Aedes Albopictus From Beijing, China. Front Microbiol 2022; 13:924334. [PMID: 35875521 PMCID: PMC9301240 DOI: 10.3389/fmicb.2022.924334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a globally important arbovirus. The virus is primarily transmitted to humans through the bite of an infective Aedes albopictus in temperate area. Vertical transmission of ZIKV by Ae. albopictus is determined and has been suggested to be a means by which the virus could persist in nature. Ae. albopictus undergoes a well-characterized photoperiodic diapause. Viruses are harbored by overwintering mosquitoes in diapause that contributes to the resurgence of vertebrate diseases in the following spring, yet little is known about the impact of diapause on the regulation of viral replication and survival. The purpose of this study is to determine that Ae. albopictus in Beijing are highly susceptible to ZIKV (92.3%), and viable virus is passed to their organs of progeny via vertical transmission. Moreover, diapause eggs (diapause incidence 97.8%) had significantly lower minimum infection rates and filial infection rates of the first gonotrophic cycle than those of the second gonotrophic cycle in the short-day photoperiod group. Regarding the development of diapause eggs, the minimum infection rates and ZIKV RNA copy number increased significantly, suggesting that virus RNA replication occurred in the diapause eggs. Meanwhile, eggs from the ZIKV-infected mosquitoes had a significantly lower hatching rate compared with uninfected mosquitoes, implying an intriguing interaction between diapause eggs and virus. The findings here suggest that vertical transmission of ZIKV from diapause eggs to progeny may have a critical epidemiological role in the dissemination and maintenance of ZIKV circulating in the vector.
Collapse
|
16
|
To Every Thing There Is a Season: Phenology and Photoperiodic Control of Seasonal Development in the Invasive Caucasian Population of the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae). INSECTS 2022; 13:insects13070580. [PMID: 35886756 PMCID: PMC9323183 DOI: 10.3390/insects13070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Studies on the phenology of local populations of invasive insects are necessary for monitoring and predicting their dispersion. We investigated the phenology of the brown marmorated stink bug, Halyomorpha halys, in the Sochi region (Krasnodar Territory, Russia) from 2018 to 2021 by regular field sampling and dissecting. The results of the sampling suggest that H. halys is at least partially bivoltine in the studied region: the main period of mass oviposition (by the overwintered females) occurs from June to July; the second, much shorter period of egg-laying (by females of the new, i.e., the first generation) occurs in August. Reproductively active individuals (i.e., females with developed ovaries and filled spermatheca and males with filled ectodermal sac) were recorded from the end of May to the beginning of September. Such a seasonal pattern correlated with day length: when the natural photoperiod decreased below the experimentally determined critical day length (15.0−15.5 h), the proportions of females with fully developed ovaries sharply dropped to zero. Both the rate of H. halys pre-adult development and the timing of the induction of winter adult diapause observed under natural conditions fully agreed with the earlier predictions that had been based on the results of laboratory experiments.
Collapse
|
17
|
Musolin DL, Dolgovskaya MY, Zakharchenko VY, Karpun NN, Haye T, Saulich AK, Reznik SY. Flying over Eurasia: Geographic Variation of Photoperiodic Control of Nymphal Development and Adult Diapause Induction in Native and Invasive Populations of the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae). INSECTS 2022; 13:insects13060522. [PMID: 35735859 PMCID: PMC9225459 DOI: 10.3390/insects13060522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary The brown marmorated stink bug is an invasive true bug that originates in eastern Asia and is considered now one of the most harmful invasive insect pests in North America and Europe. Similar to the many species that produce more than one generation per year, this bug responds to day length: under short-day conditions (which predict the approaching of autumn), adults form a special overwintering (diapause) physiological state, whereas, under long-day conditions (typical for summer), they reproduce. Critical day length is the condition that induces diapause in 50% of adults. This critical day length is usually strongly correlated with the latitude of the population origin. In this study, we compared the critical day lengths of one native (Andong, South Korea) and three invasive (Torino, Italy; Basel, Switzerland; and Sochi, Russia) populations. The critical day lengths of both sexes fell between 14.5 and 15.0 h in the Korean population, and between 15.0 and 15.5 h in the three European populations. The results demonstrate that microevolution was possibly ‘too slow to keep up’ with the rapid spread of the invader across Eurasia. It is expected that in the near future, the critical day length of invasive H. halys populations will gradually change to adapt better to the local conditions. Abstract Facultative winter adult diapause in Halyomorpha halys is regulated by a long-day photoperiodic response. Day length also influences nymphal development, which slows down at the critical (near-threshold) day lengths. We compared the photoperiodic responses of one native (Andong, South Korea) and three invasive (Torino, Italy; Basel, Switzerland; and Sochi, Russia) populations in a laboratory common-garden experiment. Nymphs developed and emerging adults were reared at 24 °C in a range of photoperiods with day lengths of 14.0, 14.5, 15.0, 15.5, and 16.0 h. The critical day lengths of the photoperiodic responses of both sexes fell between 14.5 and 15.0 h in the native Korean population and between 15.0 and 15.5 h in three invasive European populations. The differences between the three invasive populations were not significant, despite their distant origins. Moreover, the difference between the Korean and European populations was much smaller than was expected. The microevolution was possibly ‘too slow to keep up’ with the rapid spread of the invader across Eurasia. It is expected that soon the critical day length of the invasive H. halys populations will gradually change to adapt better to local conditions. At present, the critical day length for diapause induction of 15 h 15 min can be used to model the phenology, further spread, and response to climate change for all European populations of the pest.
Collapse
Affiliation(s)
- Dmitry L. Musolin
- Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy Per. 5, 194021 St. Petersburg, Russia;
- Correspondence:
| | - Margarita Yu. Dolgovskaya
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 St. Petersburg, Russia; (M.Y.D.); (S.Y.R.)
| | - Vilena Ye. Zakharchenko
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia;
| | - Natalia N. Karpun
- Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy Per. 5, 194021 St. Petersburg, Russia;
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia;
| | - Tim Haye
- CABI, Rue des Grillons 1, 2800 Delemont, Switzerland;
| | - Aida Kh. Saulich
- Department of Entomology, Saint Petersburg State University, Universitetskaya Nab. 7–9, 199034 St. Petersburg, Russia;
| | - Sergey Ya. Reznik
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 St. Petersburg, Russia; (M.Y.D.); (S.Y.R.)
| |
Collapse
|
18
|
Verdasca MJ, Carvalheiro L, Aguirre Gutierrez J, Granadeiro JP, Rome Q, Puechmaille SJ, Rebelo R, Rebelo H. Contrasting patterns from two invasion fronts suggest a niche shift of an invasive predator of native bees. PeerJ 2022; 10:e13269. [PMID: 35573178 PMCID: PMC9104094 DOI: 10.7717/peerj.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Background The accuracy of predictions of invasive species ranges is dependent on niche similarity between invasive and native populations and on our ability to identify the niche characteristics. With this work we aimed to compare the niche dynamics of two genetically related invasive populations of Vespa velutina (an effective predator of honeybees and wild pollinators), in two distinct climatic regions, one in central Europe and another one in the north-western Iberian Peninsula, and hence to identify uninvaded regions susceptible to invasion. Methods Niche dynamics and shifts of V. velutina were assessed by comparing the environmental niches of the native and of the two invasive populations, using climatic, topographic and land use variables. We also ran reciprocal distribution models using different algorithms and records from both native and invasive ranges to compare model predictions and estimate which regions are at a greater risk of being invaded. Results An apparent niche shift was detected in the population of the NW of Iberian Peninsula, where the species is living under environmental conditions different from the native niche. In central Europe, large suitable areas remain unoccupied. The fact that both invasive populations are well established, despite occupying environmentally distinct regions indicates that V. velutina has a high ability to successfully invade different environmental envelopes from those existing in its native range. For example, in north-western Iberian Peninsula the species is now thriving out of its native niche limits. Moreover, the large extent of still unoccupied environmental space with similar conditions to those used by the species in its native range suggests that there is still a large area of central and eastern Europe that can be potentially invaded by the species.
Collapse
Affiliation(s)
- Maria João Verdasca
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences of Lisbon University, Lisboa, Portugal
| | - Luisa Carvalheiro
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences of Lisbon University, Lisboa, Portugal,Departamento de Ecologia, Universidade Federal de Goiás, Goiana, Brasil
| | - Jesus Aguirre Gutierrez
- School of Geography and the Environment, University of Oxford, Environmental Change Institute, Oxford, UK,Naturalis Biodiversity Center, Biodiversity Dynamics, Leiden, Netherlands
| | - José Pedro Granadeiro
- Centre for Environmental and Marine Studies (CESAM) — Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Quentin Rome
- UMS 2006 PatriNat –OFB, CNRS, MNHN, Muséum National d’Histoire Naturelle, Paris, France,ISYEB UMR 7205 CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, Paris, France
| | - Sebastien J. Puechmaille
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany,School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland,ISEM, University of Montpellier, Montpellier, France
| | - Rui Rebelo
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences of Lisbon University, Lisboa, Portugal
| | - Hugo Rebelo
- University of Porto, CIBIO/InBIO, Porto, Portugal,CEABN/InBIO, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
19
|
Lee IH, Duvall LB. Maternally Instigated Diapause in Aedes albopictus: Coordinating Experience and Internal State for Survival in Variable Environments. Front Behav Neurosci 2022; 16:778264. [PMID: 35548691 PMCID: PMC9082357 DOI: 10.3389/fnbeh.2022.778264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is one of the most dangerous invasive species in the world. Females bite mammalian hosts, including humans, to obtain blood for egg development. The ancestral range of Ae. albopictus likely spanned from India to Japan and this species has since invaded a substantial portion of the globe. Ae. albopictus can be broadly categorized into temperate and tropical populations. One key to their ability to invade diverse ecological spaces is the capacity of females to detect seasonal changes and produce stress-resistant eggs that survive harsh winters. Females living in temperate regions respond to cues that predict the onset of unfavorable environmental conditions by producing eggs that enter maternally instigated embryonic diapause, a developmentally arrested state, which allows species survival by protecting the embryos until favorable conditions return. To appropriately produce diapause eggs, the female must integrate environmental cues and internal physiological state (blood feeding and reproductive status) to allocate nutrients and regulate reproduction. There is variation in reproductive responses to environmental cues between interfertile tropical and temperate populations depending on whether females are actively producing diapause vs. non-diapause eggs and whether they originate from populations that are capable of diapause. Although diapause-inducing environmental cues and diapause eggs have been extensively characterized, little is known about how the female detects gradual environmental changes and coordinates her reproductive status with seasonal dynamics to lay diapause eggs in order to maximize offspring survival. Previous studies suggest that the circadian system is involved in detecting daylength as a critical cue. However, it is unknown which clock network components are important, how these connect to reproductive physiology, and how they may differ between behavioral states or across populations with variable diapause competence. In this review, we showcase Ae. albopictus as an emerging species for neurogenetics to study how the nervous system combines environmental conditions and internal state to optimize reproductive behavior. We review environmental cues for diapause induction, downstream pathways that control female metabolic changes and reproductive capacity, as well as diapause heterogeneity between populations with different evolutionary histories. We highlight genetic tools that can be implemented in Ae. albopictus to identify signaling molecules and cellular circuits that control diapause. The tools and discoveries made in this species could translate to a broader understanding of how environmental cues are interpreted to alter reproductive physiology in other species and how populations with similar genetic and circuit organizations diversify behavioral patterns. These approaches may yield new targets to interfere with mosquito reproductive capacity, which could be exploited to reduce mosquito populations and the burden of the pathogens they transmit.
Collapse
Affiliation(s)
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University in the City of New York, New York, NY, United States
| |
Collapse
|
20
|
McDougall RN, Ogburn EC, Walgenbach JF, Nielsen AL. Diapause Termination in Invasive Populations of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) in Response to Photoperiod. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1400-1406. [PMID: 34458900 DOI: 10.1093/ee/nvab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Understanding cues for diapause termination in insects can be valuable in predicting phenological events in their lifecycles. Once identified, such cues can be utilized as a biofix, the point at which the majority of individuals within a population begin to accumulate degree days. We investigated the impact of photoperiod on completion of reproductive diapause in the invasive eastern North American population of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), by exposing diapausing females to varying light regimes in otherwise identical environments. The critical photoperiod estimated to initiate reproductive development in at least 50% of the potential reproductive population was 13.0-13.5 h, with increasing photoperiods coinciding with increased probability of females reproducing, earlier time to first oviposition, and higher rates of fecundity. These data on the species' response to photoperiod are in agreement with previous modeling that predicted the twin constraints of photoperiod and temperature on H. halys reproduction prevents populations that undergo diapause from producing more than two generations annually anywhere within the continental U.S. However, the facultative nature of diapause in H. halys leaves open the possibility that sub-populations may not enter diapause in some conditions, potentially allowing for additional annual generations.
Collapse
Affiliation(s)
| | - Emily C Ogburn
- Department of Entomology and Plant Pathology, North Carolina State University, Mills River, NC, USA
| | - James F Walgenbach
- Department of Entomology and Plant Pathology, North Carolina State University, Mills River, NC, USA
| | - Anne L Nielsen
- Department of Entomology, Rutgers University, Bridgeton, NJ, USA
| |
Collapse
|
21
|
Reinbold-Wasson DD, Reiskind MH. Comparative Skip-Oviposition Behavior Among Container Breeding Aedes spp. Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2091-2100. [PMID: 34048548 DOI: 10.1093/jme/tjab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 05/23/2023]
Abstract
Container Aedes mosquitoes are the most important vectors of human arboviruses (i.e., dengue, chikungunya, Zika, or yellow fever). Invasive and native container Aedes spp. potentially utilize natural and artificial containers in specific environments for oviposition. Several container Aedes spp. display 'skip-oviposition' behavior, which describes the distribution of eggs among multiple containers during a single gonotrophic cycle. In this study, we compared individual skip-oviposition behavior using identical eight-cup testing arenas with three container Aedes species: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say). We applied the index of dispersion, an aggregation statistic, to individual mosquitoes' oviposition patterns to assess skip-oviposition behavior. Aedes aegypti and Ae. albopictus utilized more cups and distributed eggs more evenly among cups than Ae. triseriatus under nutritionally enriched oviposition media (oak leaf infusion) conditions. When presented with a nutritionally unenriched (tap water) oviposition media, both Ae. aegypti and Ae. albopictus increased egg spreading behavior. Aedes albopictus did not modify skip-oviposition behavior when reared and assessed under fall-like environmental conditions, which induce diapause egg production. This study indicates specific oviposition site conditions influence skip-oviposition behavior with 'preferred' sites receiving higher amounts of eggs from any given individual and 'non-preferred' sites receive a limited contribution of eggs. A further understanding of skip-oviposition behavior is needed to make the best use of autodissemination trap technology in which skip-ovipositing females spread a potent larvicide among oviposition sites within the environment.
Collapse
Affiliation(s)
- Drew David Reinbold-Wasson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G) Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Michael Hay Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
22
|
Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proc Natl Acad Sci U S A 2021; 118:2106006118. [PMID: 34580222 PMCID: PMC8501875 DOI: 10.1073/pnas.2106006118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/05/2022] Open
Abstract
Cities represent novel environments with altered seasonality; they are warmer, which may accelerate growth, but light pollution can also lengthen days, misleading organisms that use daylength to predict seasonal change. Using long-term observational data, we show that urban populations of a butterfly and a moth have longer flight seasons than neighboring rural populations for six Nordic city regions. Next, using laboratory experiments, we show that the induction of diapause by daylength has evolved in urban populations in the direction predicted by urban warming. We thus show that the altered seasonality of urban environments can lead to corresponding evolutionary changes in the seasonal responses of urban populations, a pattern that may be repeated in other species. Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napi (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ectotherms and may contribute to ecoevolutionary dynamics in cities.
Collapse
|
23
|
Dong CL, Lu MX, Du YZ. Transcriptomic analysis of pre-diapause larvae of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) in natural populations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100903. [PMID: 34455148 DOI: 10.1016/j.cbd.2021.100903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Chilo suppressalis Walker is a devastating pest of rice in Asia and exhibits facultative diapause in the larval stage. Most prior experiments on diapausing and non-diapausing C. suppressalis were conducted in the laboratory. In this study, transcriptome analyses were performed on pre-diapausing larvae collected from field populations of C. suppressalis and compared to laboratory populations. Among 2674 differentially expressed genes (DEGs), 32 DEGs related to pre-diapause and 239 universally expressed genes were screened; these were primarily enriched in "neuroactive ligand-receptor interaction", "lysosome" and "glycerolipid metabolism" in KEGG pathway analysis. With respect to clusters of orthologous genes (COG), DEGs were assigned to "posttranslational modification, protein turnover, chaperones", "carbohydrate transport and metabolism", and "secondary metabolite biosynthesis, transport and catabolism" categories. Further analysis also revealed that a key "circadian clock-controlled protein" gene is sensitive to photoperiod and significantly decreased during the pre-diapause phase. Genes encoding two small heat shock proteins, hsp21.4 and hsp27.2, were significantly expressed on August 15 as compared to three other sampling times in August 2018. Eight DEGs were randomly chosen and evaluated by real-time quantitative PCR (RT-qPCR) to validate the accuracy of the transcriptome data. The expression of six DEGs (gene-evm_000752, gene-evm_006486, gene-evm_008626, gene-evm_002485, gene-evm_011981 and Chilo_suppressalis_newGene_18103) showed significant same patterns of differential expression in both the RT-qPCR and RNA-Seq analyses. This study increases our understanding of the complex physiological and molecular mechanisms involved in C. suppressalis at the pre-diapause phase.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
25
|
Peffers CS, Pomeroy LW, Meuti ME. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1610-1618. [PMID: 33835160 DOI: 10.1093/jme/tjab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Diapause, a period of arrested development that allows mosquitoes to survive inhospitable conditions, is triggered by short daylengths in temperate mosquitoes. Different populations of mosquitoes initiate diapause in response to a specific photoperiod, or daylength, resulting in population-specific differences in annual cycles of abundance. The photoperiod that causes approximately 50% of a population to initiate diapause is known as the critical photoperiod (CPP). The autumn daylength corresponding to the CPP in the field likely marks the day beyond which the photoperiods would trigger and maintain 50% or more diapause incidence in a population, although temperature, diet, and other factors can impact diapause initiation. In the Northern Hemisphere, northern populations of mosquitoes experience lower temperatures earlier in the year and must be triggered into diapause by longer daylengths than southern populations. CPP is genetically based, but also adapts over time responding to the population's environment. Therefore, CPP has been shown to lengthen with increasing latitude and altitude. While the positive correlation between CPP and latitude/altitude has been established in a few mosquito species, including Aedes albopictus (Skuse, Diptera: Culicidae), Aedes triseriatus, Aedes sierrensis, and Wyeomyia smithii (Coquillett, Diptera: Culicidae), we do not know when most other species initiate their seasonal responses. As several of these species transmit important diseases, characterizing the CPP of arthropod vectors could improve existing control by ensuring that surveillance efforts align with the vector's seasonally active period. Additionally, better understanding when mosquitoes and other vectors initiate diapause can reduce the frequency of chemical applications, thereby ameliorating the negative impacts to nontarget insects.
Collapse
Affiliation(s)
- Caitlin S Peffers
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| | - Laura W Pomeroy
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Neil Avenue, Cunz Hall, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Neil Avenue, Suite, Pomerene Hall, Columbus, OH, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| |
Collapse
|
26
|
Sherpa S, Després L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol Appl 2021; 14:1463-1484. [PMID: 34178098 PMCID: PMC8210789 DOI: 10.1111/eva.13215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Biological invasions, the establishment and spread of non-native species in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates introduction rates, while climate and land-cover changes may decrease the barriers to invasive populations spread. A detailed knowledge of the invasion history, including assessing source populations, routes of spread, number of independent introductions, and the effects of genetic bottlenecks and admixture on the establishment success, adaptive potential, and further spread, is crucial from an applied perspective to mitigate socioeconomic impacts of invasive species, as well as for addressing fundamental questions on the evolutionary dynamics of the invasion process. Recent advances in genomics together with the development of geographic information systems provide unprecedented large genetic and environmental datasets at global and local scales to link population genomics, landscape ecology, and species distribution modeling into a common framework to study the invasion process. Although the factors underlying population invasiveness have been extensively reviewed, analytical methods currently available to optimally combine molecular and environmental data for inferring invasive population demographic parameters and predicting further spreading are still under development. In this review, we focus on the few recent insect invasion studies that combine different datasets and approaches to show how integrating genetic, observational, ecological, and environmental data pave the way to a more integrative biological invasion science. We provide guidelines to study the evolutionary dynamics of invasions at each step of the invasion process, and conclude on the benefits of including all types of information and up-to-date analytical tools from different research areas into a single framework.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Laurence Després
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| |
Collapse
|
27
|
Campos RE, Zanotti G, Di Battista CM, Gimenez JO, Fischer S. Differential inhibition of egg hatching in Aedes aegypti populations from localities with different winter conditions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:323-330. [PMID: 33243314 DOI: 10.1017/s0007485320000681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In Argentina, the mosquito Aedes aegypti (L.) (Diptera: Culicidae) is distributed from subtropical to temperate climates. Here, we hypothesized that the expansion of Ae. aegypti into colder regions is favoured by high-phenotypic plasticity and an adaptive inhibition of egg hatching at low temperatures. Thus, we investigated the hatching response of eggs of three populations: one from a subtropical region (Resistencia) and two from temperate regions (Buenos Aires City and San Bernardo) of Argentina. Eggs collected in the field were raised in three experimental colonies. F1 eggs were acclimated for 7 days prior to immersion at 7.6 or 22°C (control eggs). Five immersion temperatures were tested: 7.6, 10.3, 11.8, 14.1 and 16°C (range of mean winter temperatures of the three localities). A second immersion at 22°C was performed 2 weeks later to assess the inhibition to hatch under favourable conditions. After the first immersion, we compared the proportions of hatched eggs and dead larvae among treatment levels, whereas after the second immersion we compared the hatching response among the three populations. The factors that most influenced the egg hatching response were the geographical origin of the populations and the immersion temperature, but not the acclimation temperature. The proportions of hatching and larval mortality at low temperatures were higher for Resistencia than for Buenos Aires and San Bernardo, whereas the hatching response at ambient temperature was lower for San Bernardo than for Buenos Aires and Resistencia. The results support the hypothesis that populations from colder regions show an adaptive inhibition of egg hatching.
Collapse
Affiliation(s)
- Raúl E Campos
- Instituto de Limnología 'Dr Raúl A. Ringuelet', Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62, No. 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Gabriela Zanotti
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso, Laboratorio 54, C1428EHA, Buenos Aires, Argentina
| | - Cristian M Di Battista
- Instituto de Limnología 'Dr Raúl A. Ringuelet', Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62, No. 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Javier O Gimenez
- Instituto de Medicina Regional, Área de Entomología, Universidad Nacional del Nordeste (UNNE), Avda. Las Heras, 727, 3500, Resistencia, Chaco, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso, Laboratorio 54, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
28
|
Krupa E, Henon N, Mathieu B. Diapause characterisation and seasonality of Aedes japonicus japonicus (Diptera, Culicidae) in the northeast of France. ACTA ACUST UNITED AC 2021; 28:45. [PMID: 34037519 PMCID: PMC8152802 DOI: 10.1051/parasite/2021045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022]
Abstract
The invasive mosquito Aedes japonicus japonicus (Theobald, 1901) settled in 2013 in the Alsace region, in the northeast of France. In this temperate area, some mosquito species use diapause to survive cold winter temperatures and thereby foster settlement and dispersal. This study reports diapause and its seasonality in a field population of Ae. japonicus in the northeast of France. For two years, eggs were collected from May to the beginning of November. They were most abundant in summer and became sparse in late October. Diapause eggs were determined by the presence of a fully developed embryo in unhatched eggs after repeated immersions. Our study showed effective diapause of Ae. japonicus in this part of France. At the start of the egg-laying period (week 20), we found up to 10% of eggs under diapause, and this rate reached 100% in October. The 50% cut-off of diapause incidence was determined by the end of summer, leading to an average calculated maternal critical photoperiod of 13 h 23 min. Interestingly, diapause was shown to occur in part of the eggs even at the earliest period of the two seasons, i.e. in May of each year. Even though we observed that the size of eggs was positively correlated with diapause incidence, morphology cannot be used as the unique predictive indicator of diapause status due to overlapping measurements between diapausing and non-diapausing eggs. This study provides new knowledge on diapause characterisation and invasive traits of Ae. japonicus.
Collapse
Affiliation(s)
- Eva Krupa
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Nicolas Henon
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Bruno Mathieu
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| |
Collapse
|
29
|
Echeverry-Cárdenas E, López-Castañeda C, Carvajal-Castro JD, Aguirre-Obando OA. Potential geographic distribution of the tiger mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia. PLoS Negl Trop Dis 2021; 15:e0008212. [PMID: 33974620 PMCID: PMC8112644 DOI: 10.1371/journal.pntd.0008212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
In Colombia, little is known on the distribution of the Asian mosquito Aedes albopictus, main vector of dengue, chikungunya, and Zika in Asia and Oceania. Therefore, this work sought to estimate its current and future potential geographic distribution under the Representative Concentration Paths (RCP) 2.6 and 8.5 emission scenarios by 2050 and 2070, using ecological niche models. For this, predictions were made in MaxEnt, employing occurrences of A. albopictus from their native area and South America and bioclimatic variables of these places. We found that, from their invasion of Colombia to the most recent years, A. albopictus is present in 47% of the country, in peri-urban (20%), rural (23%), and urban (57%) areas between 0 and 1800 m, with Antioquia and Valle del Cauca being the departments with most of the records. Our ecological niche modelling for the currently suggests that A. albopictus is distributed in 96% of the Colombian continental surface up to 3000 m (p < 0.001) putting at risk at least 48 million of people that could be infected by the arboviruses that this species transmits. Additionally, by 2050 and 2070, under RCP 2.6 scenario, its distribution could cover to nearly 90% of continental extension up to 3100 m (≈55 million of people at risk), while under RCP 8.5 scenario, it could decrease below 60% of continental extension, but expand upward to 3200 m (< 38 million of people at risk). These results suggest that, currently in Colombia, A. albopictus is found throughout the country and climate change could diminish eventually its area of distribution, but increase its altitudinal range. In Colombia, surveillance and vector control programs must focus their attention on this vector to avoid complications in the national public health setting.
Collapse
Affiliation(s)
- Emmanuel Echeverry-Cárdenas
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Armenia, Quindío, Colombia
- Programa de Biología, Universidad del Quindío, Armenia, Quindío, Colombia
| | | | - Juan D. Carvajal-Castro
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C, Colombia
- Department of Biological Sciences, St. John’s University, Queens, New York, United States of America
| | - Oscar Alexander Aguirre-Obando
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Armenia, Quindío, Colombia
- Programa de Biología, Universidad del Quindío, Armenia, Quindío, Colombia
| |
Collapse
|
30
|
Mensch J, Di Battista C, De Majo MS, Campos RE, Fischer S. Increased size and energy reserves in diapausing eggs of temperate Aedes aegypti populations. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104232. [PMID: 33798504 DOI: 10.1016/j.jinsphys.2021.104232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Many insects overwinter in diapause, a pre-programmed anticipated response to unfavorable environmental conditions, often induced by a short-day photoperiod. Diapause involves morphological changes and increased energy stores required for metabolic demands during winter. In diapausing mosquito eggs, the accumulation of lipids plays an important role, because these molecules are the primary fuel consumed during embryogenesis and pharate larvae metabolism, and have a key role in egg desiccation resistance. The supposed inability of the mosquito Aedes aegypti to lay diapausing eggs has been recently challenged by a study on a temperate population, which showed that the inhibition of egg hatching in response to short days is possible in this species. Thus, the aim of the present study was to assess the effects of parental photoperiod on embryonic diapause-related traits, such as the triglyceride content and size of eggs laid, of two populations whose localities of origin differ in their winter length. Two colonies were maintained for each population: one under a Short-Day Photoperiod (SD: 10 h:14 h - Light:Dark) and the other under a Long-Day Photoperiod (LD: 14 h:10 h - Light:Dark). The eggs obtained from each combination of population and light treatment were used for size measurement (length, width and volume) and for the quantification of triglyceride content. Egg size showed differences between photoperiod treatments, with larger width and volume in eggs from the SD treatment. Remarkably, eggs from the SD treatment accumulated twice as many triglycerides as those from the LD treatment. Also, the eggs derived from the population having the longer winter accumulated larger amounts of triglycerides. The higher lipid content is probably contributing to a better survival during the cold season in both populations. The photoperiod-induced response in egg size and amount of triglycerides observed in this study support the hypothesis that the Ae. aegypti populations studied are able to lay diapausing eggs, a fact that provides physiological bases for the further expansion of this species to colder regions.
Collapse
Affiliation(s)
- Julián Mensch
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - Cristian Di Battista
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2. C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Joschinski J, Bonte D. Diapause and bet‐hedging strategies in insects: a meta‐analysis of reaction norm shapes. OIKOS 2021. [DOI: 10.1111/oik.08116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jens Joschinski
- Terrestrial Ecology Unit (TEREC), Dept of Biology, Ghent Univ. Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Dept of Biology, Ghent Univ. Ghent Belgium
| |
Collapse
|
32
|
Wepprich T, Grevstad FS. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. ENVIRONMENTAL ENTOMOLOGY 2021; 50:306-316. [PMID: 33346818 DOI: 10.1093/ee/nvaa161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/12/2023]
Abstract
A key knowledge gap in classical biological control is to what extent insect agents evolve to novel environments. The introduction of biological control agents to new photoperiod regimes and climates may disrupt the coordination of diapause timing that evolved to the growing season length in the native range. We tested whether populations of Galerucella calmariensis L. have evolved in response to the potential mismatch of their diapause timing since their intentional introduction to the United States from Germany in the 1990s. Populations collected from 39.4° to 48.8° latitude in the western United States were reared in growth chambers to isolate the effects of photoperiod on diapause induction and development time. For all populations, shorter day lengths increased the proportion of beetles that entered diapause instead of reproducing. The critical photoperiods, or the day length at which half of a population diapauses, differed significantly among the sampled populations, generally decreasing at lower latitudes. The latitudinal trend reflects changes in growing season length, which determines the number of generations possible, and in local day lengths, at the time when beetles are sensitive to this cue. Development times were similar across populations, with one exception, and did not vary with photoperiod. These results show that there was sufficient genetic variation from the two German source populations to evolve different photoperiod responses across a range of environmental conditions. This study adds to the examples of rapid evolution of seasonal adaptations in introduced insects.
Collapse
Affiliation(s)
- Tyson Wepprich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Fritzi S Grevstad
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| |
Collapse
|
33
|
Dittmer J, Brucker RM. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. MICROBIOME 2021; 9:85. [PMID: 33836829 PMCID: PMC8035746 DOI: 10.1186/s40168-021-01037-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid wasp Nasonia vitripennis, a model organism for host-microbiome interactions. RESULTS Our results demonstrate that the microbiome is essential for host nutrient allocation during diapause in N. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member, Providencia sp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance. CONCLUSION This work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment. Video Abstract.
Collapse
Affiliation(s)
- Jessica Dittmer
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
- Present Address: Dipartimento di Scienze agrarie e ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| | - Robert M Brucker
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
| |
Collapse
|
34
|
Mushegian AA, Neupane N, Batz Z, Mogi M, Tuno N, Toma T, Miyagi I, Ries L, Armbruster PA. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species. Ecol Lett 2021; 24:698-707. [PMID: 33554374 PMCID: PMC8045958 DOI: 10.1111/ele.13686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022]
Abstract
Recurring seasonal changes can lead to the evolution of phenological cues. For example, many arthropods undergo photoperiodic diapause, a programmed developmental arrest induced by short autumnal day length. The selective mechanisms that determine the timing of autumnal diapause initiation have not been empirically identified. We quantified latitudinal clines in genetically determined diapause timing of an invasive mosquito, Aedes albopictus, on two continents. We show that variation in diapause timing within and between continents is explained by a novel application of a growing degree day (GDD) model that delineates a location-specific deadline after which it is not possible to complete an additional full life cycle. GDD models are widely used to predict spring phenology by modelling growth and development as physiological responses to ambient temperatures. Our results show that the energy accumulation dynamics represented by GDD models have also led to the evolution of an anticipatory life-history cue in autumn.
Collapse
Affiliation(s)
| | - Naresh Neupane
- Department of BiologyGeorgetown University3700 O St NWWashingtonDC20057USA
| | - Zachary Batz
- Department of BiologyGeorgetown University3700 O St NWWashingtonDC20057USA
| | - Motoyoshi Mogi
- Division of ParasitologyFaculty of MedicineSaga UniversityNabeshima 5‐1‐1Saga849‐8501Japan
| | - Nobuko Tuno
- Laboratory of EcologyGraduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
| | - Takako Toma
- University Museum (Fujukan)University of the Ryukyus1 SenbaruNishiharaOkinawa903‐0213Japan
| | - Ichiro Miyagi
- University Museum (Fujukan)University of the Ryukyus1 SenbaruNishiharaOkinawa903‐0213Japan
| | - Leslie Ries
- Department of BiologyGeorgetown University3700 O St NWWashingtonDC20057USA
| | | |
Collapse
|
35
|
Boyle JH, Rastas PMA, Huang X, Garner AG, Vythilingam I, Armbruster PA. A Linkage-Based Genome Assembly for the Mosquito Aedes albopictus and Identification of Chromosomal Regions Affecting Diapause. INSECTS 2021; 12:167. [PMID: 33669192 PMCID: PMC7919801 DOI: 10.3390/insects12020167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
The Asian tiger mosquito, Aedes albopictus, is an invasive vector mosquito of substantial public health concern. The large genome size (~1.19-1.28 Gb by cytofluorometric estimates), comprised of ~68% repetitive DNA sequences, has made it difficult to produce a high-quality genome assembly for this species. We constructed a high-density linkage map for Ae. albopictus based on 111,328 informative SNPs obtained by RNAseq. We then performed a linkage-map anchored reassembly of AalbF2, the genome assembly produced by Palatini et al. (2020). Our reassembled genome sequence, AalbF3, represents several improvements relative to AalbF2. First, the size of the AalbF3 assembly is 1.45 Gb, almost half the size of AalbF2. Furthermore, relative to AalbF2, AalbF3 contains a higher proportion of complete and single-copy BUSCO genes (84.3%) and a higher proportion of aligned RNAseq reads that map concordantly to a single location of the genome (46%). We demonstrate the utility of AalbF3 by using it as a reference for a bulk-segregant-based comparative genomics analysis that identifies chromosomal regions with clusters of candidate SNPs putatively associated with photoperiodic diapause, a crucial ecological adaptation underpinning the rapid range expansion and climatic adaptation of A. albopictus.
Collapse
Affiliation(s)
- John H. Boyle
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
- Department of Biology, University of Mary, Bismarck, ND 58504, USA
| | - Pasi M. A. Rastas
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland;
| | - Xin Huang
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| | - Austin G. Garner
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| |
Collapse
|
36
|
Feitoza TDS, Ferreira-de-Lima VH, Câmara DCP, Honório NA, Lounibos LP, Lima-Camara TN. Interspecific Mating Effects on Locomotor Activity Rhythms and Refractoriness of Aedes albopictus (Diptera: Culicidae) Females. INSECTS 2020; 11:E874. [PMID: 33316878 PMCID: PMC7764719 DOI: 10.3390/insects11120874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
This study tests the hypotheses that the locomotor activity of Ae. albopictus females is not significantly altered by the presence of accessory gland (AG) extracts from conspecific and heterospecific males, and that Ae. albopictus females remain receptive to mating with conspecific males even after receiving AG of Ae. aegypti males. Virgin Ae. albopictus females were injected with saline (control group), AG extracts of Ae. aegypti males (aegMAG) or AG extracts of Ae. albopictus males (albMAG). Locomotor activity was evaluated under 12 h of light and 12 h of darkness at 25 °C. All live Ae. albopictus females were subsequently exposed to conspecific males for 48 h, and their spermathecae were dissected for the presence of sperm. Females injected with aegMAG and albMAG showed significant decreases in total, diurnal and diurnal without lights-on Period activities. Females injected with aegMAG showed significant decreases in nocturnal and nocturnal without lights-off period activities. Females injected with albMAG showed significant decreases in lights-off activity. A total of 83% of Ae. albopictus females injected with aegMAG and 10% of females injected with albMAG were inseminated by conspecific males. These results, coupled with our previous paper on MAG and interspecific mating effects on female Ae. aegypti, demonstrate contrasting outcomes on locomotor activities and loss of sexual receptivity, both conspecific and heterospecific MAGs capable of sterilizing virgin Ae. aegypti, but only conspecific MAGs sterilizing Ae. albopictus, whereas locomotor activities were depressed in females of both species after heterospecific and conspecific injections or treatments.
Collapse
Affiliation(s)
- Thais de Souza Feitoza
- Laboratory of Entomology in Public Health, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
| | | | - Daniel Cardoso Portela Câmara
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Nildimar Alves Honório
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Tamara Nunes Lima-Camara
- Laboratory of Entomology in Public Health, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
| |
Collapse
|
37
|
Westby KM, Medley KA. Cold Nights, City Lights: Artificial Light at Night Reduces Photoperiodically Induced Diapause in Urban and Rural Populations of Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1694-1699. [PMID: 32638000 DOI: 10.1093/jme/tjaa139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 05/12/2023]
Abstract
As the planet becomes increasingly urbanized, it is imperative that we understand the ecological and evolutionary consequences of urbanization on species. One common attribute of urbanization that differs from rural areas is the prevalence of artificial light at night (ALAN). For many species, light is one of the most important and reliable environmental cues, largely governing the timing of daily and seasonal activity patterns. Recently, it has been shown that ALAN can alter behavioral, phenological, and physiological traits in diverse taxa. For temperate insects, diapause is an essential trait for winter survival and commences in response to declining daylight hours in the fall. Diapause is under strong selection pressure in the mosquito, Aedes albopictus (Skuse); local adaptation and rapid evolution has been observed along a latitudinal cline. It is unknown how ALAN affects this photosensitive trait or if local adaptation has occurred along an urbanization gradient. Using a common garden experiment, we experimentally demonstrated that simulated ALAN reduces diapause incidence in this species by as much as 40%. There was no difference, however, between urban and rural demes. We also calculated diapause incidence from wild demes in urban areas to determine whether wild populations exhibited lower than predicted incidence compared to estimates from total nocturnal darkness. In early fall, lower than predicted diapause incidence was recorded, but all demes reached nearly 100% diapause before terminating egg laying. It is possible that nocturnal resting behavior in vegetation limits the amount of ALAN exposure this species experiences potentially limiting local adaptation.
Collapse
Affiliation(s)
- Katie M Westby
- Tyson Research Center, Washington University in Saint Louis, Eureka, MO
| | - Kim A Medley
- Tyson Research Center, Washington University in Saint Louis, Eureka, MO
| |
Collapse
|
38
|
den Burg MPV, Van Belleghem SM, Villanueva CNDJ. The continuing march of Common Green Iguanas: arrival on mainland Asia. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Lehmann P, Westberg M, Tang P, Lindström L, Käkelä R. The Diapause Lipidomes of Three Closely Related Beetle Species Reveal Mechanisms for Tolerating Energetic and Cold Stress in High-Latitude Seasonal Environments. Front Physiol 2020; 11:576617. [PMID: 33101058 PMCID: PMC7546402 DOI: 10.3389/fphys.2020.576617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
During winter insects face energetic stress driven by lack of food, and thermal stress due to sub-optimal and even lethal temperatures. To survive, most insects living in seasonal environments such as high latitudes, enter diapause, a deep resting stage characterized by a cessation of development, metabolic suppression and increased stress tolerance. The current study explores physiological adaptations related to diapause in three beetle species at high latitudes in Europe. From an ecological perspective, the comparison is interesting since one species (Leptinotarsa decemlineata) is an invasive pest that has recently expanded its range into northern Europe, where a retardation in range expansion is seen. By comparing its physiological toolkit to that of two closely related native beetles (Agelastica alni and Chrysolina polita) with similar overwintering ecology and collected from similar latitude, we can study if harsh winters might be constraining further expansion. Our results suggest all species suppress metabolism during diapause and build large lipid stores before diapause, which then are used sparingly. In all species diapause is associated with temporal shifts in storage and membrane lipid profiles, mostly in accordance with the homeoviscous adaptation hypothesis, stating that low temperatures necessitate acclimation responses that increase fluidity of storage lipids, allowing their enzymatic hydrolysis, and ensure integral protein functions. Overall, the two native species had similar lipidomic profiles when compared to the invasive species, but all species showed specific shifts in their lipid profiles after entering diapause. Taken together, all three species show adaptations that improve energy saving and storage and membrane lipid fluidity during overwintering diapause. While the three species differed in the specific strategies used to increase lipid viscosity, the two native beetle species showed a more canalized lipidomic response, than the recent invader. Since close relatives with similar winter ecology can have different winter ecophysiology, extrapolations among species should be done with care. Still, range expansion of the recent invader into high latitude habitats might indeed be retarded by lack of physiological tools to manage especially thermal stress during winter, but conversely species adapted to long cold winters may face these stressors as a consequence of ongoing climate warming.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Melissa Westberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patrik Tang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science and Biocenter Finland, Helsinki, Finland
| |
Collapse
|
40
|
Gaboriau T, Mendes FK, Joly S, Silvestro D, Salamin N. A multi‐platform package for the analysis of intra‐ and interspecific trait evolution. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Théo Gaboriau
- Department of Computational Biology University of Lausanne Lausanne Switzerland
| | - Fábio K. Mendes
- School of Computer Science The University of Auckland Auckland New Zealand
- School of Biological Sciences The University of Auckland Auckland New Zealand
| | - Simon Joly
- Institut Recherche en Biologie Végétale Montréal QC Canada
- Montreal Botanical Garden Montreal QC Canada
| | - Daniele Silvestro
- Department of Biology University of Fribourg Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Global Gothenburg Biodiversity Centre Gothenburg Sweden
| | - Nicolas Salamin
- Department of Computational Biology University of Lausanne Lausanne Switzerland
| |
Collapse
|
41
|
Magnoli SM. Rapid adaptation (or not) in restored plant populations. Evol Appl 2020; 13:2030-2037. [PMID: 32908602 PMCID: PMC7463322 DOI: 10.1111/eva.12959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/03/2023] Open
Abstract
Mismatches between the traits of a colonizing population and a novel habitat can generate strong selection, potentially resulting in rapid adaptation. However, for most colonization events, it can be difficult to detect rapid adaptation or distinguish it from nonadaptive evolutionary changes. Here, I take advantage of a replicated prairie restoration experiment to compare recently established plant populations in two closely located restored prairies to each other and to their shared source population to test for rapid adaptation. Using a reciprocal transplant experiment six years after the populations were established, I found that one restored plant population showed evidence of adaptation, outperforming the other restored population when grown at its home site. In contrast, I detected no evidence for adaptation at the other site. These findings demonstrate that while rapid adaptation can occur in colonizing plant populations, it may not be the rule. Better understanding of when adaptation may or may not occur in these contexts may help us use evolution to our advantage, potentially improving establishment of desirable species in restored habitats.
Collapse
Affiliation(s)
- Susan M. Magnoli
- W.K. Kellogg Biological Station and Department of Plant BiologyMichigan State UniversityHickory CornersMIUSA
| |
Collapse
|
42
|
Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA. Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution 2020; 74:1451-1465. [PMID: 32490563 PMCID: PMC8023039 DOI: 10.1111/evo.14029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a "natural experiment" presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.
Collapse
Affiliation(s)
- Zachary A. Batz
- Department of BiologyGeorgetown UniversityWashingtonDC20057
- Current Address: Neurobiology‐Neurodegeneration and Repair LaboratoryNational Eye Institute, National Institute of Health6 Center Drive, Room 307BethesdaMaryland20892
| | - Anthony J. Clemento
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | | | | - John Carlos Garza
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzCalifornia95064
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | |
Collapse
|
43
|
Vega-Rúa A, Marconcini M, Madec Y, Manni M, Carraretto D, Gomulski LM, Gasperi G, Failloux AB, Malacrida AR. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 2020; 3:326. [PMID: 32581265 PMCID: PMC7314749 DOI: 10.1038/s42003-020-1046-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023] Open
Abstract
The mosquito Aedes albopictus is one of the most dangerous invasive species. Its worldwide spread has created health concerns as it is a major vector of arboviruses of public health significance such as chikungunya (CHIKV). Dynamics of different genetic backgrounds and admixture events may have impacted competence for CHIKV in adventive populations. Using microsatellites, we infer the genetic structure of populations across the expansion areas that we then associate with their competence for different CHIKV genotypes. Here we show that the demographic history of Ae. albopictus populations is a consequence of rapid complex patterns of historical lineage diversification and divergence that influenced their competence for CHIKV. The history of adventive populations is associated with CHIKV genotypes in a genotype-by-genotype interaction that impacts their vector competence. Thus, knowledge of the demographic history and vector competence of invasive mosquitoes is pivotal for assessing the risk of arbovirus outbreaks in newly colonized areas.
Collapse
Affiliation(s)
- Anubis Vega-Rúa
- Laboratory of Vector Control Research, Institut Pasteur of Guadeloupe, 97139, Guadeloupe, France
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Yoann Madec
- Department of Infection and Epidemiology of Emerging Diseases, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel-Servet 1211 Genève and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ludvik Marcus Gomulski
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors Unit, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.
| | - Anna Rodolfa Malacrida
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
44
|
Metelmann S, Caminade C, Jones AE, Medlock JM, Baylis M, Morse AP. The UK's suitability for Aedes albopictus in current and future climates. J R Soc Interface 2020; 16:20180761. [PMID: 30862279 PMCID: PMC6451397 DOI: 10.1098/rsif.2018.0761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is able to transmit various pathogens to humans and animals and it has already caused minor outbreaks of dengue and chikungunya in southern Europe. Alarmingly, it is spreading northwards and its eggs have been found in the UK in 2016 and 2017. Climate-driven models can help to analyse whether this originally subtropical species could become established in northern Europe. But so far, these models have not considered the impact of the diurnal temperature range (DTR) experienced by mosquitoes in the field. Here, we describe a dynamical model for the life cycle of Ae. albopictus, taking into account the DTR, rainfall, photoperiod and human population density. We develop a new metric for habitat suitability and drive our model with different climate data sets to analyse the UK's suitability for this species. For now, most of the UK seems to be rather unsuitable, except for some densely populated and high importation risk areas in southeast England. But this picture changes in the next 50 years: future scenarios suggest that Ae. albopictus could become established over almost all of England and Wales, indicating the need for continued mosquito surveillance.
Collapse
Affiliation(s)
- S Metelmann
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - C Caminade
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A E Jones
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK
| | - J M Medlock
- 3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK.,4 Medical Entomology Group, Public Health England , London UK
| | - M Baylis
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A P Morse
- 2 School of Environmental Sciences, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| |
Collapse
|
45
|
Tsai HY, Rubenstein DR, Fan YM, Yuan TN, Chen BF, Tang Y, Chen IC, Shen SF. Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nat Commun 2020; 11:1398. [PMID: 32170152 PMCID: PMC7069978 DOI: 10.1038/s41467-020-15208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding how phenotypic traits vary among populations inhabiting different environments is critical for predicting a species' vulnerability to climate change. Yet, little is known about the key functional traits that determine the distribution of populations and the main mechanisms-phenotypic plasticity vs. local adaptation-underlying intraspecific functional trait variation. Using the Asian burying beetle Nicrophorus nepalensis, we demonstrate that mountain ranges differing in elevation and latitude offer unique thermal environments in which two functional traits-thermal tolerance and reproductive photoperiodism-interact to shape breeding phenology. We show that populations on different mountain ranges maintain similar thermal tolerances, but differ in reproductive photoperiodism. Through common garden and reciprocal transplant experiments, we confirm that reproductive photoperiodism is locally adapted and not phenotypically plastic. Accordingly, year-round breeding populations on mountains of intermediate elevation are likely to be most susceptible to future warming because maladaptation occurs when beetles try to breed at warmer temperatures.
Collapse
Affiliation(s)
- Hsiang-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology and Center for Integrative Animal Behavior, Columbia University, New York, NY, 10027, USA
| | - Yu-Meng Fan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan
| | - Tzu-Neng Yuan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Bo-Fei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 61004, People's Republic of China
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
46
|
Ma L, Cao L, Hoffmann AA, Gong Y, Chen J, Chen H, Wang X, Zeng A, Wei S, Zhou Z. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hong‐Song Chen
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests Institute of Plant Protection Guangxi Academy of Agricultural Sciences Nanning China
| | - Xu‐Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University Kunming China
| | - Ai‐Ping Zeng
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Zhong‐Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
47
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
48
|
Healy KB, Dugas E, Fonseca DM. Development of a Degree-Day Model to Predict Egg Hatch of Aedes albopictus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2019; 35:249-257. [PMID: 31922937 DOI: 10.2987/19-6841.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aedes albopictus, the Asian tiger mosquito, is an important nuisance mosquito species and known vector of arboviruses such as dengue, chikungunya, and Zika. Despite their cosmopolitan distribution around the world, there is a paucity of accurate predictive models based on rates of development at different temperatures (degree-day models). These types of models can benefit mosquito control districts by predicting when to target early-season larval development, when populations are likely at their lowest levels. In this study, we determined the effect of temperature and nutrient levels on the development rates and male and female adult size of 2 Ae. albopictus populations: one field-collected, the other a 20-year-old lab colony. We found relatively small differences in the effects of temperature and nutrient levels between populations. Data from these studies were used to create a predictive degree-day model, which when tested in New Jersey correlated with field observations of early-season field populations of Ae. albopictus. While other important factors, such as day length and fluctuating temperatures, should be evaluated, data from this study will contribute to the development of operational strategies to effectively time early-season larviciding against this species.
Collapse
|
49
|
Czypionka T, Fields PD, Routtu J, van den Berg E, Ebert D, De Meester L. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol Ecol 2019; 28:998-1008. [PMID: 30592346 DOI: 10.1111/mec.15001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
Diapause is a feature of the life cycle of many invertebrates by which unfavourable environmental conditions can be outlived. The seasonal timing of diapause allows organisms to adapt to seasonal changes in habitat suitability and thus is key to their fitness. In the planktonic crustacean Daphnia, various cues can induce the production of diapause stages that are resistant to heat, drought or freezing and contain one to two embryos in developmental arrest. Daphnia is a keystone species of many freshwater ecosystems, where it acts as the main link between phytoplankton and higher trophic levels. The correct seasonal timing of diapause termination is essential to maintain trophic interactions and is achieved via a genetically based interpretation of environmental cues like photoperiod and temperature. Field monitoring and modelling studies raised concerns on whether populations can advance their seasonal release from diapause to advances in spring phenology under global change, or if a failure to adapt will cause trophic mismatches negatively affecting ecosystem functioning. Our capacity to understand and predict the evolution of diapause timing requires information about the genetic architecture underlying this trait. In this study, we identified eight quantitative trait loci (QTLs) and four epistatic interactions that together explained 66.5% of the variation in diapause termination in Daphnia magna using QTL mapping. Our results suggest that the most significant QTL is modulating diapause termination dependent on photoperiod and is involved in three of the four detected epistatic interactions. Candidate genes at this QTL could be identified through the integration with genome data and included the presynaptic active zone protein bruchpilot. Our findings contribute to understanding the genomic control of seasonal diapause timing in an ecological relevant species.
Collapse
Affiliation(s)
- Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Sherpa S, Guéguen M, Renaud J, Blum MGB, Gaude T, Laporte F, Akiner M, Alten B, Aranda C, Barre‐Cardi H, Bellini R, Bengoa Paulis M, Chen X, Eritja R, Flacio E, Foxi C, Ishak IH, Kalan K, Kasai S, Montarsi F, Pajović I, Petrić D, Termine R, Turić N, Vazquez‐Prokopec GM, Velo E, Vignjević G, Zhou X, Després L. Predicting the success of an invader: Niche shift versus niche conservatism. Ecol Evol 2019; 9:12658-12675. [PMID: 31788205 PMCID: PMC6875661 DOI: 10.1002/ece3.5734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023] Open
Abstract
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype-environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat-shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental-induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Maya Guéguen
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Michael G. B. Blum
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité (TIMC‐IMAG)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Frédéric Laporte
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Mustafa Akiner
- Department of BiologyFaculty of Arts and SciencesRecep Tayyip Erdogan UniversityFenerTurkey
| | - Bulent Alten
- Vector Ecology Research Group (VERG)Ecological Sciences Research LaboratoriesDepartment of BiologyFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA IRTA)BarcelonaSpain
- Servei de Control de MosquitsConsell Comarcal del Baix LlobregatBarcelonaSpain
| | - Hélène Barre‐Cardi
- Observatoire Conservatoire des Insectes de CorseOffice de l'Environnement de la CorseCortiFrance
| | - Romeo Bellini
- Department of Medical and Veterinary EntomologyCentro Agricoltura Ambiente “G.Nicoli”CrevalcoreItaly
| | | | - Xiao‐Guang Chen
- Department of Pathogen BiologySchool of Public HealthSouthern Medical UniversityGuang ZhouChina
| | - Roger Eritja
- Servei de Control de MosquitsConsell Comarcal del Baix LlobregatBarcelonaSpain
| | - Eleonora Flacio
- Laboratorio Microbiologia ApplicataDipartimento Ambiente Costruzioni e DesignScuola Universitaria Professionale della Svizzera ItalianaPorzaSwitzerland
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale della Sardegna “G. Pegreffi”SassariItaly
| | - Intan H. Ishak
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Katja Kalan
- Department of BiodiversityFaculty of Mathematics, Natural Sciences and Information TechnologiesUniversity of PrimorskaKoperSlovenia
| | - Shinji Kasai
- Department of Medical EntomologyNational Institute of Infectious DiseasesTokyoJapan
| | - Fabrizio Montarsi
- Laboratory of ParasitologyIstituto Zooprofilattico Sperimentale delle VeneziePadovaItaly
| | - Igor Pajović
- University of Montenegro Biotechnical FacultyPodgoricaMontenegro
| | - Dušan Petrić
- Laboratory for Medical and Veterinary EntomologyFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | - Rosa Termine
- Laboratorio di Ingegneria Sanitaria AmbientaleUniversità “Kore” di EnnaEnnaItaly
| | - Nataša Turić
- Department of BiologyJosip Juraj Strossmayer UniversityOsijekCroatia
| | | | - Enkelejda Velo
- Department of Epidemiology and Control of Infectious DiseasesInstitute of Public HealthTiranaAlbania
| | - Goran Vignjević
- Department of BiologyJosip Juraj Strossmayer UniversityOsijekCroatia
| | - Xiaohong Zhou
- Department of Pathogen BiologySchool of Public HealthSouthern Medical UniversityGuang ZhouChina
| | - Laurence Després
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| |
Collapse
|