1
|
Dutton-Regester KJ, Roser A, Meer H, Hill A, Pyne M, Al-Najjar A, Whaites T, Fenelon JC, Buchanan KL, Keeley T, Renfree MB, Johnston SD. Body fat and circulating leptin levels in the captive short-beaked echidna (Tachyglossus aculeatus). J Comp Physiol B 2024; 194:457-471. [PMID: 38748188 PMCID: PMC11316712 DOI: 10.1007/s00360-024-01559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 08/12/2024]
Abstract
It is possible that the reproductive strategy of the short-beaked echidna is related to seasonal changes in fat deposition and energy availability, regulated by seasonal changes in endocrine function. We predicted that circulating leptin levels would be directly proportional to adiposity during most of the year, but that a change in this relationship would occur during the pre-breeding season to allow increased fat deposition. To test this hypothesis, we made use of a captive colony of echidnas to describe and quantify changes in fat distribution and the adipostatic hormone leptin. First we assessed seasonal changes in circulating leptin levels, body mass and adiposity for three male and three female adult echidnas maintained on a standard diet. Second, we explored the relationship between circulating leptin levels and increased caloric intake for an additional five adult female echidnas that were provided with supplemented nutrition. Third we visualised fat distribution in male and female adult echidnas using magnetic resonance imaging (MRI) before and after the breeding season, to determine where fat is deposited in this species. For echidnas maintained on the standard diet, there were no seasonal changes in body mass, body fat or plasma leptin levels. However, female echidnas provided with supplemented nutrition had significantly elevated plasma leptin levels during the breeding season, compared to the pre-and post- breeding periods. MRI showed substantial subcutaneous fat depots extending dorso-laterally from the base of the skull to the base of the tail, in both sexes. Pre-breeding season, both sexes had considerable fat deposition in the pelvic/rump region, whilst the female echidna accumulated most fat in the abdominal region. This study shows that male and female echidnas accumulate body fat in the pelvic/rump and the abdominal regions, respectively and that circulating leptin may promote fattening in female echidnas during the breeding season by means of leptin resistance. However, further research is required to evaluate the precise relationship between seasonal changes in leptin and adiposity.
Collapse
Affiliation(s)
- Kate J Dutton-Regester
- School of the Environment, The University of Queensland, Gatton, 4343, Australia.
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia.
| | - Alice Roser
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Haley Meer
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Andrew Hill
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Aiman Al-Najjar
- Centre for Advanced Imaging, The University of Queensland, Brisbane, 4067, Australia
| | - Tim Whaites
- Queensland X-ray, South Port, QLD, 4215, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Tamara Keeley
- School of the Environment, The University of Queensland, Gatton, 4343, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stephen D Johnston
- School of the Environment, The University of Queensland, Gatton, 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
2
|
Voronkov NS, Popov SV, Naryzhnaya NV, Prasad NR, Petrov IM, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Maslov LN. Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:59-70. [PMID: 38770843 PMCID: PMC11186613 DOI: 10.61186/ibj.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 05/22/2024]
Abstract
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Collapse
Affiliation(s)
- Nikita S. Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
- Department of Physiology, Tomsk State University, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | | | | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
3
|
Zhang K, Cao J, Zhao Z. Fat accumulation in striped hamsters (Cricetulus barabensis) reflects the temperature of prior cold acclimation. Front Zool 2024; 21:4. [PMID: 38350982 PMCID: PMC10865701 DOI: 10.1186/s12983-024-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Proper adjustments of metabolic thermogenesis play an important role in thermoregulation in endotherm to cope with cold and/or warm ambient temperatures, however its roles in energy balance and fat accumulation remain uncertain. Our study aimed to investigate the effect of previous cold exposure (10 and 0 °C) on the energy budgets and fat accumulation in the striped hamsters (Cricetulus barabensis) in response to warm acclimation. The body mass, energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST), serum thyroid hormone levels (THs: T3 and T4), and the activity of brown adipose tissue (BAT), indicated by cytochrome c oxidase (COX) activity and uncoupling protein 1 (ucp1) expression, were measured following exposure to the cold (10 °C and 0 °C) and transition to the warm temperature (30 °C). RESULTS The hamsters at 10 °C and 0 °C showed significant increases in energy intake, RMR and NST, and a considerable reduction in body fat than their counterparts kept at 21 °C. After being transferred from cold to warm temperature, the hamsters consumed less food, and decreased RMR and NST, but they significantly increased body fat content. Interestingly, the hamsters that were previously exposed to the colder temperature showed significantly more fat accumulation after transition to the warm. Serum T3 levels, BAT COX activity and ucp1 mRNA expression were significantly increased following cold exposure, and were considerably decreased after transition to the warm. Furthermore, body fat content was negatively correlated with serum T3 levels, BAT COX activity and UCP1 expression. CONCLUSION The data suggest that the positive energy balance resulting from the decreased RMR and NST in BAT under the transition from the cold to the warm plays important roles in inducing fat accumulation. The extent of fat accumulation in the warm appears to reflect the temperature of the previous cold acclimation.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Yang R, Cao J, Speakman JR, Zhao Z. Limits to sustained energy intake. XXXIII. Thyroid hormones play important roles in milk production but do not define the heat dissipation limit in Swiss mice. J Exp Biol 2023; 226:jeb245393. [PMID: 37767758 DOI: 10.1242/jeb.245393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The limits to sustained energy intake set physiological upper boundaries that affect many aspects of human and animal performance. The mechanisms underlying these limits, however, remain unclear. We exposed Swiss mice to either supplementary thyroid hormones (THs) or the inhibitor methimazole during lactation at 21 or 32.5°C, and measured food intake, resting metabolic rate (RMR), milk energy output (MEO), serum THs and mammary gland gene expression of females, and litter size and mass of their offspring. Lactating females developed hyperthyroidism following exposure to supplementary THs at 21°C, but they did not significantly change body temperature, asymptotic food intake, RMR or MEO, and litter and mass were unaffected. Hypothyroidism, induced by either methimazole or 32.5°C exposure, significantly decreased asymptotic food intake, RMR and MEO, resulting in significantly decreased litter size and litter mass. Furthermore, gene expression of key genes in the mammary gland was significantly decreased by either methimazole or heat exposure, including gene expression of THs and prolactin receptors, and Stat5a and Stat5b. This suggests that endogenous THs are necessary to maintain sustained energy intake and MEO. Suppression of the thyroid axis seems to be an essential aspect of the mechanism by which mice at 32.5°C reduce their lactation performance to avoid overheating. However, THs do not define the upper limit to sustained energy intake and MEO at peak lactation at 21°C. Another, as yet unknown, factor prevents supplementary thyroxine exerting any stimulatory metabolic impacts on lactating mice at 21°C.
Collapse
Affiliation(s)
- Rui Yang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Botha A, Fuller A, Beechler BR, Combrink HJ, Jolles AE, Maloney SK, Hetem RS. Cold and Hungry: Heterothermy Is Associated with Low Leptin Levels in a Bulk Grazer during a Drought. Physiol Biochem Zool 2023; 96:342-355. [PMID: 37713716 DOI: 10.1086/726162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractReduced energy intake can compromise the ability of a mammal to maintain body temperature within a narrow 24-h range, leading to heterothermy. To investigate the main drivers of heterothermy in a bulk grazer, we compared abdominal temperature, body mass, body condition index, and serum leptin levels in 11 subadult Cape buffalo (Syncerus caffer caffer) during a drought year and a nondrought year. Low food availability during the drought year (as indexed by grass biomass, satellite imagery of vegetation greenness, and fecal chlorophyll) resulted in lower body condition index, lower body mass relative to that expected for an equivalent-aged buffalo, and lower leptin levels. The range of 24-h body temperature rhythm was 2°C during the nondrought year and more than double that during the drought year, and this was caused primarily by a lower minimum 24-h body temperature rhythm during the cool dry winter months. After rain fell and vegetation greenness increased, the minimum 24-h body temperature rhythm increased, and the range of 24-h body temperature rhythm was smaller than 2°C. In order of importance, poor body condition, low minimum 24-h air temperature, and low serum leptin levels were the best predictors of the increase in the range of 24-h body temperature rhythm. While the thermoregulatory role of leptin is not fully understood, the association between range of 24-h body temperature rhythm and serum leptin levels provides clues about the underlying mechanism behind the increased heterothermy in large mammals facing food restriction.
Collapse
|
6
|
Liao S, Tan S, Jiang M, Wen J, Liu J, Cao J, Li M, Zhao Z. Temperature determines the shift of thermal neutral zone and influences thermogenic capacity in striped hamsters. Integr Zool 2023; 18:353-371. [PMID: 36056589 DOI: 10.1111/1749-4877.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermoneutral zone (TNZ) reflects the adaptation of mammals to their natural habitat. However, it remains unclear how TNZ shifts in response to variations in ambient temperature. To test the hypothesis that ambient temperature plays a key role in determining TNZ variations between seasons, we measured metabolic rate, body temperature, and cytochrome c oxidase (COX) activity of several visceral organs in striped hamsters (Cricetulus barabensis) either acclimated to semi-natural conditions over a year, or subjected to a gradual decrease in mean temperature from 30 ± 1°C to -15 ± 1°C. The TNZ range in striped hamsters differed seasonally, with a wider TNZ and a lower lower-critical temperature in winter compared to summer. The hamsters showed a considerable leftward shift of lower-critical temperature from 30°C to 20°C after the ambient temperature of acclimation from 30°C down to -15°C, whereas the upper-critical temperature of TNZ remained fixed at 32.5°C. The resting metabolic rate in thermoneutral zone (RMRt), nonshivering thermogenesis (NST), and COX activity of brown adipose tissue, liver, skeletal muscle, brain, and kidneys, increased significantly in hamsters acclimated at lower ambient temperatures. Following acute exposure to 5°C and -15°C, hamsters acclimated to 32.5°C had significantly lower maximal NST and lower serum thyroid tri-iodothyronine (T3 ) levels compared to those kept at 23°C. These findings suggest that acclimation to the upper-critical temperature of TNZ impairs the hamsters' thermogenic capacity to cope with extreme cold temperature. Reduced ambient temperature was mainly responsible for the leftward shift of TNZ in striped hamsters, which reflects the adaptation to cold environments.
Collapse
Affiliation(s)
- Shasha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meizhi Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinsong Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
7
|
Chen H, Zhang H, Jia T, Wang Z, Zhu W. Roles of leptin on energy balance and thermoregulation in Eothenomys miletus. Front Physiol 2022; 13:1054107. [PMID: 36589465 PMCID: PMC9800980 DOI: 10.3389/fphys.2022.1054107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Leptin is a hormone mainly synthesized and secreted by white adipose tissue (WAT), which regulates various physiological processes. To investigate the role of leptin in energy balance and thermoregulation in Eothenomys miletus, voles were randomly divided into leptin-injected and PBS-injected groups and placed at 25°C ± 1°C with a photoperiod of 12 L:12 D. They were housed under laboratory conditions for 28 days and compared in terms of body mass, food intake, water intake, core body temperature, interscapular skin temperature, resting metabolic rate (RMR), nonshivering thermogenesis (NST), liver and brown adipose tissue (BAT) thermogenic activity, and serum hormone levels. The results showed that leptin injection decreased body mass, body fat, food intake, and water intake. But it had no significant effect on carcass protein. Leptin injection increased core body temperature, interscapular skin temperature, resting metabolic rate, non-shivering thermogenesis, mitochondrial protein content and cytochrome C oxidase (COX) activity in liver and brown adipose tissue, uncoupling protein 1 (UCP1) content and thyroxin 5'-deiodinase (T45'-DII) activity in brown adipose tissue significantly. Serum leptin, triiodothyronine (T3), thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) concentrations were also increased significantly. Correlation analysis showed that serum leptin levels were positively correlated with core body temperature, body mass loss, uncoupling protein 1 content, thyroxin 5'-deiodinase activity, nonshivering thermogenesis, and negatively correlated with food intake; thyroxin 5'-deiodinase and triiodothyronine levels were positively correlated, suggesting that thyroxin 5'-deiodinase may play an important role in leptin-induced thermogenesis in brown adipose tissue. In conclusion, our study shows that exogenous leptin is involved in the regulation of energy metabolism and thermoregulation in E. miletus, and thyroid hormone may play an important role in the process of leptin regulating energy balance in E. miletus.
Collapse
Affiliation(s)
- Huibao Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
8
|
Wang CL, Wang Z, Mou JJ, Wang S, Zhao XY, Feng YZ, Xue HL, Wu M, Chen L, Xu JH, Xu LX. Short Photoperiod Reduces Oxidative Stress by Up-Regulating the Nrf2–Keap1 Signaling Pathway in Hamster Kidneys. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Huo DL, Bao MH, Cao J, Zhao ZJ. Cold exposure prevents fat accumulation in striped hamsters refed a high-fat diet following food restriction. BMC ZOOL 2022; 7:19. [PMID: 37170304 PMCID: PMC10127302 DOI: 10.1186/s40850-022-00122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In mammals, body mass lost during food restriction is often rapidly regained, and fat is accumulated when ad libitum feeding is resumed. Studies in small cold-acclimated mammals have demonstrated significant mobilization of fat deposits during cold exposure to meet the energy requirements of metabolic thermogenesis. However, no studies to our knowledge have examined the effect of cold exposure on fat accumulation during body mass recovery when refed ad libitum. In this study, striped hamsters restricted to 80% of their regular food intake were then refed ad libitum and exposed to one of three conditions: Intermittent cold temperature (5 °C) for 2 h per day (ICE-2 h/d), intermittent cold temperature (5 °C) for 12 h per day (ICE-12 h/d), or persistent cold exposure (PCE) for four weeks. We measured energy intake, fat deposit mass, serum thyroid hormone levels, and uncoupling protein 1 expression in brown adipose tissue.
Results
There was no significant effect of intermittent or persistent cold exposure on body mass regain, whereas energy intake increased significantly and total fat deposit decreased in the ICE-12 h/d and PCE groups compared to the ICE-2 h/d group and control group maintained at 23 °C (CON). In the ICE-12 h/d and PCE groups, hamsters had 39.6 and 38.3% higher serum 3,3′,5-triiodothyronine levels, respectively, and 81.6 and 71.3% up-regulated expression of uncoupling protein 1, respectively, in brown adipose tissue compared to their counterparts in the CON group. The rate of mitochondrial state III and state IV respiration O2 consumption and the activity of cytochrome c oxidase in BAT and liver were significantly higher in the ICE-12 h/d and PCE groups than in the ICE-2 h/d and CON groups.
Conclusions
Our findings suggest thyroid hormone-mediated heat production in brown adipose tissue and liver may be involved in preventing fat accumulation during refeeding in animals frequently or persistently exposed to cold conditions.
Collapse
|
10
|
Yang YZ, Han CY, Jia T, Wang ZK, Zhu WL, Zhang H. Variations of body mass and thermogenesis properties in Eothenomys olitor during cold acclimatization. ANIM BIOL 2021. [DOI: 10.1163/15707563-bja10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The set-point hypothesis states that there is a biological control method in mammals that actively regulates weight toward a predetermined set weight for each individual, which may occur by regulation of energy intake or energy expenditure. In order to investigate the effects of low temperature on body mass regulation in Eothenomys olitor, body mass, body fat mass, food intake, resting metabolic rate (RMR), non-shivering thermogenesis (NST), serum leptin levels, morphology, biochemical indexes of liver and brown adipose tissue (BAT) and hypothalamic neuropeptide genes expression were measured during cold acclimatization. The results showed that there was no significant difference in body mass, but food intake, RMR and NST increased during cold acclimatization. Cytochrome c oxidase (COX) and α-glycerophosphate oxidase (α-GPO) activities in liver and BAT were significantly enhanced during cold acclimatization, and triiodothyronine (T3) and thyroxine (T4) levels in serum were significantly higher than those in the control group. Serum leptin levels decreased after cold acclimatization. Low temperature significantly increased the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP), while it decreased cocaine- and amphetamine-regulated transcript peptide (CART) and pro-opiomelanocortin (POMC) expressions. All of the above results suggested that body mass in E. olitor can remain relatively stable at low temperature, which conforms to the ‘set-point hypothesis’. However, the species showed differences with sympatric species, such as E. miletus, Apodemus chevrieri and Tupaia belangeri. Moreover, E. olitor can cope with low temperature by increasing its metabolic rate and thermogenesis properties.
Collapse
Affiliation(s)
- Ya-zuo Yang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Chun-yan Han
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, 650106, China
| | - Zheng-kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Wan-long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
11
|
Huang YX, Li HH, Wang L, Min HX, Xu JQ, Wu SL, Cao J, Zhao ZJ. The Ability to Dissipate Heat Is Likely to Be a More Important Limitation on Lactation in Striped Hamsters with Greater Reproductive Efforts under Warmer Conditions. Physiol Biochem Zool 2021; 93:282-295. [PMID: 32484722 DOI: 10.1086/709538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The limitations on energy availability and outputs have been implied to have a profound effect on the evolution of many morphological and behavioral traits. It has been suggested that the reproductive performance of mammals is frequently constrained by intrinsic physiological factors, such as the capacity of the mammary glands to produce milk (the peripheral limitation [PL] hypothesis) or that of the body to dissipate heat (the heat dissipation limitation [HDL] hypothesis). Research on a variety of small mammals, however, has so far failed to provide unequivocal support for one hypothesis over the other. We tested the PL and HDL hypotheses in female striped hamsters (Cricetulus barabensis) with artificially manipulated litter sizes of two (three or four pups removed from natural litter size), five, eight (two or three pups added to natural litter size), and 12 (five to seven pups added to natural litter size) pups at ambient temperatures of 21° and 30°C. Energy intake and milk output of mothers, litter size, and litter mass were measured throughout lactation. Several markers indicating digestive enzyme activity and the gene expression of hypothalamic neuropeptides related to food intake were also measured. Food consumption and milk output increased with increasing litter size but reached a ceiling at 12 pups, causing 12-pup litters to have significantly lower litter mass and pup body mass than litters composed of fewer pups. Litter mass and maternal metabolic rate, milk output, maltase, sucrase, and aminopeptidase activity in the small intestine, and gene expression of hypothalamic orexigenic peptides were significantly lower at 30°C than at 21°C, and these differences were considerably more pronounced in 12-pup litters. These results suggest that PL and HDL can operate simultaneously but that the HDL hypothesis is probably more valid at warmer temperatures. Our results suggest that increased environmental temperatures in future climates may limit reproductive output through heat dissipation limits.
Collapse
|
12
|
Abstract
Ambient temperature (Ta ) is an important factor in shaping phenotypic plasticity. Plasticity is generally beneficial for animals in adapting to their environments. Gut microbiota are crucial in regulating host physiological and behavioral processes. However, whether the gut microbiota play a role in regulating host phenotypic plasticity under the conditions of repeated fluctuations in environmental factors has rarely been examined. We used intermittent Ta acclimations to test the hypothesis that the plasticity of gut microbiota confers on the host a metabolic adaptation to Ta fluctuations. Mongolian gerbils (Meriones unguiculatus) were acclimated to intermittent 5°C to 23°C, 37°C to 23°C or 23°C to 23°C conditions for 3 cycles (totally 3 months). Intermittent Ta acclimations induced variations in resting metabolic rate (RMR), serum thyroid hormones, and core body temperature (Tb ). We further identified that the β-diversity of the microbial community varied with Ta and showed diverse responses during the 3 cycles. Some specific bacteria were more sensitive to Ta and were associated with host dynamic metabolic plasticity during Ta acclimations. In addition, depletion of gut microbiota in antibiotic-treated gerbils impaired metabolic plasticity, particularly at low Ta , whereas supplementation with propionate as an energy resource improved the inhibited thermogenic capacity and increased the survival rate in the cold. These findings demonstrate that both gut microbiota and their host were more adaptive after repeated acclimations, and dynamic gut microbiota and their metabolites may confer host plasticity in thermoregulation in response to Ta fluctuations. It also implies that low Ta is a crucial cue in driving symbiosis between mammals and their gut microbiota during evolution.IMPORTANCE Whether gut microbiota play a role in regulating host phenotypic plasticity in small mammals living in seasonal environments has rarely been examined. The present study, through an intermittent temperature acclimation model, indicates that both gut microbiota and their host were more adaptive after repeated acclimations. It also demonstrates that dynamic gut microbiota confer host plasticity in thermoregulation in response to intermittent temperature fluctuations. Furthermore, low temperature seems to be a crucial cue in driving the symbiosis between mammals and their gut microbiota during evolution.
Collapse
|
13
|
Yu JX, Deng GM, Xu JQ, Cao J, Zhao ZJ. The energy budget and fat accumulation in striped hamsters (Cricetulus barabensis) during post-lactation. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110755. [PMID: 32673739 DOI: 10.1016/j.cbpa.2020.110755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Adaptive adjustments of energy intake and body fat play an important role in allowing animals' to meet the energy demands of thermoregulation during cold conditions and reproduction. Body fat is usually metabolized during lactation, which is one of the most energetically demanding activities of female mammals, however the effect of this on the energy budget and body fat regulation after lactation remains unclear. We compared the energy intake and body fat of female striped hamsters (Cricetulus barabensis) fed either a high-fat or low-fat diet for 21 days after the end of lactation (post-lactation, PL) to those of virgin controls. Serum leptin levels and the expression of hypothalamic orexigenic and anorexigenic neuropeptide genes were also measured and compared. Although lactating females consumed significantly more food, they had significantly lower body fat than virgin controls. The energy intake and body fat levels of the PL females were, however, significantly higher than those of virgin females. This was particularly true for the PL females that were fed high-fat diet. These females had significantly higher serum leptin concentrations, but lower hypothalamic leptin receptor gene expression, than virgin females. Neither orexigenic nor anorexigenic neuropeptide levels in the hypothalamus differed significantly between the PL and virgin females. This suggests that a negative energy balance during lactation drives fat accumulation after lactation. Furthermore, leptin resistance may occur after the end of lactation, causing females to consume more food, and accumulate more fat, than virgin females.
Collapse
Affiliation(s)
- Jing-Xin Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Guang-Min Deng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jia-Qi Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Wen J, Chi QS, Wang DH, Zhao ZJ. The responses of metabolic rate and neuropeptides to food deprivation in striped hamsters (Cricetulus barabensis) with different basal metabolic rate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:483-492. [PMID: 32314557 DOI: 10.1002/jez.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
High basal metabolic rate (BMR) is related to a powerful metabolic engine even under food shortage, which can lead to high levels of daily energy expenditure and requires more energy for maintenance in small mammals. To test the hypothesis that animals with different BMR levels respond differently to food shortage, we compared the changes in metabolism, morphology, and gene expression in response to food deprivation (FD) in male-striped hamsters (Cricetulus barabensis) with low (L)- or high (H)-BMR levels. After 36 hr of FD, energy expenditure, metabolic rate (MR), mass of body composition, and leptin and agouti-related peptide gene expressions in the white adipose tissues and the hypothalamus, respectively, decreased significantly in hamsters. The energy expenditure of H-BMR hamsters was reduced more than that of L-BMR hamsters after 36 hr of FD. Furthermore, MR was significantly reduced by FD, and that of the H-BMR group decreased more than that of the L-BMR group during the daytime. Therefore, our data suggest that striped hamsters with different BMR display different responses to variations in food availability. During FD, MR in H-BMR hamsters was more flexible than that in L-BMR animals and L-BMR hamsters could not reduce their MR any lower.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
15
|
Xu JQ, Xu XM, Bi ZQ, Shi LL, Cao J, Zhao ZJ. The less weight loss due to modest food restriction drove more fat accumulation in striped hamsters refed with high-fat diet. Horm Behav 2019; 110:19-28. [PMID: 30790562 DOI: 10.1016/j.yhbeh.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Food restriction (FR) has been commonly used to decrease body fat, reducing the risk of overweight in humans and animals. However, the lost weight has been shown to be followed by overweight when food restriction ends. It remains uncertain whether the weight loss drives the overweight, or not. In the present study, striped hamsters were restricted by 15%, 30% and 40% of ad libitum food intake for 2 weeks, followed by high-fat refeeding for 6 weeks (FR15%-Re, FR30%-Re and FR40%-Re). The hamsters in FR15%, FR30% and FR40% groups decreased by 21.1%, 37.8% and 50.0% in fat mass (P < 0.01), and 16.8%, 42.8% and 53.4% in leptin levels (P < 0.01) compared with the hamsters fed ad libitum. The FR15%-Re, FR30%-Re and FR40%-Re groups showed 77.0%, 37.2% and 23.7% more body fat than ad libitum group (P < 0.01). The FR15%-Re group showed considerable decreases in gene expression of arcuate nucleus co-expressing proopiomelanocortin (POMC), cocaine - and amphetamineregulated transcript (CART) and the long isoform of leptin receptor (LepRb) in the hypothalamus and of several genes associated with fatty acid transport to mitochondria and β-oxidation in brown adipose tissue and liver. It suggests that less weight loss is likely to drive more fat accumulation when food restriction ends, in which the impaired function of LepRb, POMC and CART in the brain and fatty acid oxidation in brown adipose tissue and liver may be involved.
Collapse
Affiliation(s)
- Jia-Qi Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhong-Qiang Bi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
16
|
Khakisahneh S, Zhang XY, Nouri Z, Hao SY, Chi QS, Wang DH. Thyroid hormones mediate metabolic rate and oxidative, anti-oxidative balance at different temperatures in Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:101-109. [PMID: 30476595 DOI: 10.1016/j.cbpc.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative damage is a potential physiological cost of thermoregulation during seasonal adjustments to air temperature (Ta) in small mammals. Here, we hypothesized that Ta affects serum thyroid hormone levels and these hormones can mediate the changes in metabolic rate and oxidative damage. Mongolian gerbils (Meriones unguiculatus) were acclimated at different Tas (5 °C, 23 °C and 37 °C) for 3 weeks. Serum tri-iodothyronine (T3) levels increased at 5 °C but decreased at 37 °C compared to the control (23 °C). Protein carbonyls increased in liver at 37 °C compared with control, however, lipid damage (malonaldehyde, MDA) in both serum and liver was unrelated to Ta. After the effects of different Tas on thyroid hormone levels and oxidative damage markers were determined, we further investigate whether thyroid hormones mediated metabolic rate and oxidative damage. Another set of gerbils received 0.0036% L-thyroxin (hyperthyroid), 0.04% Methylimazol (hypothyroid) or water (control). Hypothyroid group showed a 34% reduction in resting metabolic rate (RMR) also 42% and 26% increases in MDA and liver protein carbonyl respectively, whereas hyperthyroid group had higher RMR, liver mass and superoxide dismutase (SOD) compared to control. Serum T3 or T3/T4 levels were correlated positively with RMR, liver mass, and SOD, but negatively with MDA and uncoupling protein 2 (UCP2). We concluded that high Ta induced hypothyroidism, decreased RMR and increased oxidative damage, whereas low Ta induced hyperthyroidism, increased RMR and unchanged oxidative damage. These data supported our hypothesis that thyroid hormones can be a cue to mediate metabolic rate and different aspects of oxidative and antioxidant activities at different Tas.
Collapse
Affiliation(s)
- Saeid Khakisahneh
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zahra Nouri
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Yan Hao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Xu XM, Chi QS, Cao J, Zhao ZJ. The effect of aggression I: The increases of metabolic cost and mobilization of fat reserves in male striped hamsters. Horm Behav 2018; 98:55-62. [PMID: 29288636 DOI: 10.1016/j.yhbeh.2017.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
Aggression can benefit individuals by enhancing their dominance and thereby their ability to acquire and retain resources that increase survival or fitness. Engaging in aggressive behavior costs energy and how animals manage their energy budget to accommodate aggression remains unclear. We conducted three experiments to examine changes in physiological, behavioral and hormonal markers indicative of energy budget in male striped hamsters subject to resident-intruder aggression tests. Body temperature, metabolic rate and serum corticosterone levels significantly increased in resident hamsters immediately after the introduction of intruders. Energy intake did not change, but the metabolic rate of residents increased by 16.1% after 42-days of repeated encounters with intruders. Residents had significantly decreased body fat content and serum thyroxine (T4) levels, and a considerably elevated tri-iodothyronine (T3)/T4 ratio compared to a control group that had no intruders. Attack latency considerably shortened, and the number of attack bouts and total duration of attacks, significantly increased in residents on day 42 compared to day 1 of experiments. These findings may suggest that the conversion of T4 to T3 is involved in defensive aggression behavior. The mobilization of fat reserves resulting in lean body mass is probably common response to the increased metabolic cost of aggression in small mammals. Aggressive behavior, which is important for the successful acquisition and defense of resources, may be of significance for adaptation and evolution of metabolic rate.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
18
|
Richardson CS, Heeren T, Kunz TH. Seasonal and Sexual Variation in Metabolism, Thermoregulation, and Hormones in the Big Brown Bat (Eptesicus fuscus). Physiol Biochem Zool 2018; 91:705-715. [DOI: 10.1086/695424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
20
|
Shi LL, Fan WJ, Zhang JY, Zhao XY, Tan S, Wen J, Cao J, Zhang XY, Chi QS, Wang DH, Zhao ZJ. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:35-44. [PMID: 28711354 DOI: 10.1016/j.cbpa.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
The metabolic thermogenesis plays important roles in thermoregulation, and it may be also involved in body fat regulation. The thermogenesis of brown adipose tissue (BAT) is largely affected by ambient temperature, but it is unclear if the roles in body fat regulation are dependent on the temperature. In the present study, uncoupling protein 1 (ucp1)-based BAT thermogenesis, energy budget and body fat content were examined in the striped hamsters fed high fat diet (HF) at cold (5°C) and warm (30°C) temperatures. The effect of 2, 4-dinitrophenol (DNP), a chemical uncoupler, on body fat was also examined. The striped hamsters showed a notable increase in body fat following the HF feeding at 21°C. The increased body fat was markedly elevated at 30°C, but was significantly attenuated at 5°C compared to that at 21°C. The hamsters significantly increased energy intake at 5°C, but consumed less food at 30°C relative to those at 21°C. Metabolic thermogenesis, indicated by basal metabolic rate, UCP1 expression and/or serum triiodothyronine levels, significantly increased at 5°C, but decreased at 30°C compared to that at 21°C. A significant decrease in body fat content was observed in DNP-treated hamsters relative to the controls. These findings suggest that the roles of metabolic thermogenesis in body fat regulation largely depend on ambient temperature. The cold-induced enhancement of BAT thermogenesis may contribute the decreased body fat, resulting in a lean mass. Instead, the attenuation of BAT thermogenesis at the warm may result in notable obesity.
Collapse
Affiliation(s)
- Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei-Jia Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
21
|
Wanlong Z, Di Z, Dongmin H, Guang Y. Roles of hypothalamic neuropeptide gene expression in body mass regulation in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1334840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Di
- School of Life Sciences, Kunming, People’s Republic of China
| | - H. Dongmin
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Y. Guang
- College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Zhang L, Yang F, Wang ZK, Zhu WL. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): the experiment test. Sci Rep 2017; 7:41352. [PMID: 28145515 PMCID: PMC5286505 DOI: 10.1038/srep41352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Ambient conditions, as temperature and photoperiod, play a key role in animals’ physiology and behaviors. To test the hypothesis that the maximum thermal physiological and bioenergetics tolerances are induced by extreme environments in Tupaia belangeri. We integrated the acclimatized and acclimated data in several physiological, hormonal, and biochemical markers of thermogenic capacity and bioenergetics in T. belangeri. Results showed that T. belangeri increased body mass, thermogenesis capacity, protein contents and cytochrome c oxidase (COX) activity of liver and brown adipose tissue in winter-like environments, which indicated that temperature was the primary signal for T. belangeri to regulate several physiological capacities. The associated photoperiod signal also elevated the physiological capacities. The regulations of critical physiological traits play a primary role in meeting the survival challenges of winter-like condition in T. belangeri. Together, to cope with cold, leptin may play a potential role in thermogenesis and body mass regulation, as this hormonal signal is associated with other hormones. The strategies of thermal physiology and bioenergetics differs between typical Palearctic species and the local species. However, the maximum thermal physiology and bioenergetic tolerance maybe is an important strategy to cope with winter-like condition of T. belangeri.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zheng-Kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Wan-Long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
23
|
Wan-Long Z, Zheng-Kun W. Effects of random food deprivation and refeeding on energy metabolism, behavior and hypothalamic neuropeptide expression in Apodemus chevrieri. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:71-78. [PMID: 27387442 DOI: 10.1016/j.cbpa.2016.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments.
Collapse
Affiliation(s)
- Zhu Wan-Long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China.
| | - Wang Zheng-Kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
24
|
Gao WR, Zhu WL, Wang ZK. The role of dietary fiber content on energy metabolism, thermogenesis, and leptin in Chevrier’s field mouse (Apodemus chevrieri). CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food quality and availability are important factors influencing the survival and reproduction of animals. The aim of the present study was to examine the effect of dietary fiber content high-fiber (HF) diet treatment or low-fiber (LF) diet treatment) on energy metabolism, thermogenesis, and leptin concentrations in Chevrier’s field mouse (Apodemus chevrieri (Milne-Edwards, 1868)) (Mammalia: Rodentia: Muridae). Mice on the HF treatment showed a lower body mass compared with LF treatment from day 27 to day 37, and a lower but insignificant body mass to day 71. Dry matter intake (DMI) and gross energy intake (GEI) were greater in HF compared with LF, whereas the digestible energy intake (DEI) was similar for both treatments. Nonshivering thermogenesis (NST) decreased in HF mice, whereas LF mice remained stable; no significant differences were detected in the basal metabolic rate (BMR), uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), or the levels of serum tri-iodothyronine (T3) and thyroxine (T4) between HF and LF mice. Although there were no differences in body fat content and serum leptin concentrations between HF and LF mice, serum leptin levels were positively correlated with body fat mass. These results support the hypothesis that A. chevrieri can compensate the poor-quality diet physiologically by way of increasing food intake and decreasing thermogenesis.
Collapse
Affiliation(s)
- W.-R. Gao
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
- School of Energy and Environmental Science, Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| | - W.-L. Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| | - Z.-K. Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| |
Collapse
|
25
|
Zhang JY, Zhao XY, Wen J, Tan S, Zhao ZJ. Plasticity in gastrointestinal morphology and enzyme activity in lactating striped hamsters (Cricetulus barabensis). J Exp Biol 2016; 219:1327-36. [DOI: 10.1242/jeb.138396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 11/20/2022]
Abstract
In small mammals marked phenotypic plasticity of digestive physiology has been shown to make it easier to cope with the energetically stressful periods, such as lactation. It has been proposed that the capacity of the gut to digest and absorb food is not the factor limiting to sustained energy intake (SusEI) during peak lactation. In this study, plasticity in energy intake and gastrointestinal morphology was examined in striped hamsters at different stages of reproduction and raising litters of different sizes. Mechanisms associated with digestive enzymes and neuroendocrine hormones underpinning the plasticity were also examined. The females significantly increased energy intake, digestibility, masses of digestive tracts and activity of stomach pepsin and maltase, sucrase and aminopeptidase of small intestine in peak lactation compared to the non-productive and post-lactating periods. Further, the females raising large litters significantly increased energy intake, digestibility, gastrointestinal mass and activity of digestive enzymes, and weaned heavier offspring compared with those nursing small and medium litters, indicating that the significant plasticity of digestive physiology increased reproductive performance. The agouti-related protein (AgRP) mRNA expression in the hypothalamus was up-regulated significantly in the females raising large litters relative to those raising small litters. Serum leptin levels, hypothalamus neuropeptide Y (NPY), or anorexigenic neuropeptides (pro-opiomelanocortin / cocaine- and amphetamine-regulated transcript, POMC / CART) mRNA expression did not differ among the females raising small, medium and large litters, indicating that leptin levels in lactation might only reflect a state of energy balance rather than being the prime driver of hyperphagia. Some hypothalamic neuropeptides, such as NPY, POMC and CART, would be involved in the limits to the SusEI during lactation.
Collapse
Affiliation(s)
- Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
26
|
Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:84-90. [DOI: 10.1016/j.cbpa.2015.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 01/18/2023]
|