1
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
2
|
Han L, Zhu J, Jones KL, Yang J, Zhai R, Cao J, Hu B. Fabrication and functional application of zein-based core-shell structures: A review. Int J Biol Macromol 2024; 272:132796. [PMID: 38823740 DOI: 10.1016/j.ijbiomac.2024.132796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Core-shell structures exhibit a number of distinct absorptive properties that make them attractive tools for use in a range of industrial contexts including pharmaceuticals, biotechnology, cosmetics, and food/agriculture. Several recent studies have focused on the development and fabrication of zein-based core-shell structures for a range of functional material deliveries. However, no recent review article has evaluated the fabrication of such core-shell structures for food-based applications. In this paper, we therefore survey current approaches to fabricating different zein-based platforms including particles, fibers, films, and hydrogels that have appeared in a variety of functionally relevant applications. In addition, we highlight certain challenges and future research directions in this field, thereby providing a novel perspective on zein-based core-shell structures.
Collapse
Affiliation(s)
- Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Junzhe Zhu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Kevin L Jones
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Ruiyi Zhai
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Jijuan Cao
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China.
| |
Collapse
|
3
|
Wildy M, Lu P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7062. [PMID: 38004992 PMCID: PMC10672065 DOI: 10.3390/ma16227062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Electrospun nanofibers for drug delivery systems (DDS) introduce a revolutionary means of administering pharmaceuticals, holding promise for both improved drug efficacy and reduced side effects. These biopolymer nanofiber membranes, distinguished by their high surface area-to-volume ratio, biocompatibility, and biodegradability, are ideally suited for pharmaceutical and biomedical applications. One of their standout attributes is the capability to offer the controlled release of the active pharmaceutical ingredient (API), allowing custom-tailored release profiles to address specific diseases and administration routes. Moreover, stimuli-responsive electrospun DDS can adapt to conditions at the drug target, enhancing the precision and selectivity of drug delivery. Such localized API delivery paves the way for superior therapeutic efficiency while diminishing the risk of side effects and systemic toxicity. Electrospun nanofibers can foster better patient compliance and enhanced clinical outcomes by amplifying the therapeutic efficiency of routinely prescribed medications. This review delves into the design principles and techniques central to achieving controlled API release using electrospun membranes. The advanced drug release mechanisms of electrospun DDS highlighted in this review illustrate their versatility and potential to improve the efficacy of medical treatments.
Collapse
Affiliation(s)
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| |
Collapse
|
4
|
Srikamut P, Theerasilp M, Crespy D. Nanofibers as precursors for the rapid formation of hydrogels. Chem Commun (Camb) 2023; 59:9952-9955. [PMID: 37477117 DOI: 10.1039/d3cc01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Hydrogels can be used in surgeries, which require a support material to maintain the correct anatomy. One major limitation is however the time required for the preparation of hydrogels under urgent conditions. Herein, we report a new method for a very fast preparation of hydrogels at room temperature. Nanofibers of dextran containing vinyl groups produced by electrospinning are loaded with redox- or photo-initiators for radical polymerization. Once dissolved in water, the nanofibers yield hydrogels either spontaneously or upon irradiation with UV light. We also show that the nanofibers can be loaded with active fillers so that hydrogels embedding nanocapsules are obtained. This concept could be applied for the rapid preparation of functional hydrogels which are needed as implants.
Collapse
Affiliation(s)
- Pichapak Srikamut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
5
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zhang Y, Li TT, Wang Z, Shiu BC, Lin JH, Lou CW. Coaxial microfluidic spinning design produced high strength alginate membranes for antibacterial activity and drug release. Int J Biol Macromol 2023:124956. [PMID: 37245751 DOI: 10.1016/j.ijbiomac.2023.124956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Directional drug delivery and sufficient strength are two conditions that need to be met for wound dressing. In this paper, an oriented fibrous alginate membrane with sufficient strength was constructed via coaxial microfluidic spinning, and zeolitic imidazolate framework-8/ascorbic acid was used to realize drug delivery and antibacterial activity. The effects of the process parameters of the coaxial microfluidic spinning on the mechanical properties of the alginate membrane were discussed. In addition, it was found that the antimicrobial activity mechanism of zeolitic imidazolate framework-8 was attributed to the disruptive effect of reactive oxygen species (ROS) on bacteria, and the quantitative amount of generated ROS were evaluated by detecting •OH and H2O2. Furthermore, a mathematical drug diffusion model was established and showed high consistency with the experimental data (R2 = 0.99). This study provides a new idea for the preparation of dressing materials with high strength and directional drug delivery and also provides some guidance for the development of coaxial microfluidic spin technology to be used in functional materials for drug release.
Collapse
Affiliation(s)
- Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China.
| | - Zhike Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan.
| |
Collapse
|
7
|
Ilomuanya MO, Bassey PO, Ogundemuren DA, Ubani-Ukoma UN, Tsamis A, Fan Y, Michalakis K, Angsantikul P, Usman A, Amenaghawon AN. Development of Mucoadhesive Electrospun Scaffolds for Intravaginal Delivery of Lactobacilli spp., a Tenside, and Metronidazole for the Management of Bacterial Vaginosis. Pharmaceutics 2023; 15:pharmaceutics15041263. [PMID: 37111748 PMCID: PMC10143884 DOI: 10.3390/pharmaceutics15041263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial vaginosis (BV) is an infection of the vagina associated with thriving anaerobes, such as Gardnerella vaginitis and other associated pathogens. These pathogens form a biofilm responsible for the recurrence of infection after antibiotic therapy. The aim of this study was to develop a novel mucoadhesive polyvinyl alcohol and polycaprolactone electrospun nanofibrous scaffolds for vaginal delivery, incorporating metronidazole, a tenside, and Lactobacilli. This approach to drug delivery sought to combine an antibiotic for bacterial clearance, a tenside biofilm disruptor, and a lactic acid producer to restore healthy vaginal flora and prevent the recurrence of bacterial vaginosis. F7 and F8 had the least ductility at 29.25% and 28.39%, respectively, and this could be attributed to the clustering of particles that prevented the mobility of the crazes. F2 had the highest at 93.83% due to the addition of a surfactant that increased the affinity of the components. The scaffolds exhibited mucoadhesion between 31.54 ± 0.83% and 57.86 ± 0.95%, where an increased sodium cocoamphoacetate concentration led to increased mucoadhesion. F6 showed the highest mucoadhesion at 57.86 ± 0.95%, as compared to 42.67 ± 1.22% and 50.89 ± 1.01% for the F8 and F7 scaffolds, respectively. The release of metronidazole via a non-Fickian diffusion-release mechanism indicated both swelling and diffusion. The anomalous transport within the drug-release profile pointed to a drug-discharge mechanism that combined both diffusion and erosion. The viability studies showed a growth of Lactobacilli fermentum in both the polymer blend and the nanofiber formulation that was retained post-storage at 25 °C for 30 days. The developed electrospun scaffolds for the intravaginal delivery of Lactobacilli spp., along with a tenside and metronidazole for the management of bacterial vaginosis, provide a novel tool for the treatment and management of recurrent vaginal infection.
Collapse
Affiliation(s)
- Margaret O Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Peace O Bassey
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Deborah A Ogundemuren
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Uloma N Ubani-Ukoma
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Alkiviadis Tsamis
- Department of Mechanical Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece
- School of Engineering, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Yuwei Fan
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Konstantinos Michalakis
- Department of Restorative Sciences & Biomaterials, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | - Abdulrahman Usman
- Department of Biotechnology and Pharmaceutical Microbiology, Faculty of Pharmacy, University of Lagos, Lagos 100213, Nigeria
| | - Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City 300287, Nigeria
| |
Collapse
|
8
|
De Marco I. Coprecipitation of Class II NSAIDs with Polymers for Oral Delivery. Polymers (Basel) 2023; 15:polym15040954. [PMID: 36850237 PMCID: PMC9959069 DOI: 10.3390/polym15040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently administered orally with modified-release formulations. The attainment of modified-release drugs is commonly achieved through the coprecipitation of the active principle with a biodegradable polymeric carrier in the form of micro or nanoparticles. In this review, some coprecipitation studies of three highly prescribed NSAIDs (in particular, ibuprofen, ketoprofen, and diclofenac sodium) have been analyzed. The techniques employed to micronize the powder, the polymers used, and the main results have been classified according to the type of release required in different categories, such as delayed, immediate, prolonged, sustained, and targeted release formulations. Indeed, depending on the pathology to be treated, it is possible to achieve specific therapeutic objectives, ensuring that the drug is released at a higher or lower dissolution rate (if compared to conventional drugs) and/or at a different time and/or in a specific site of action.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
14
|
Preparation, Properties and Water Dissolution Behavior of Polyethylene Oxide Mats Prepared by Solution Blow Spinning. Polymers (Basel) 2022; 14:polym14071299. [PMID: 35406174 PMCID: PMC9003185 DOI: 10.3390/polym14071299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between processing conditions, structure and morphology are key issues to understanding the final properties of materials. For instance, in the case of polymers to be used as scaffolds in tissue engineering, wound dressings and membranes, morphology tuning is essential to control mechanical and wettability behaviors. In this work, the relationship between the processing conditions of the solution blow spinning process (SBS) used to prepare nonwoven mats of polyethylene oxide (PEO), and the structure and morphology of the resulting materials are studied systematically, to account for the thermal and mechanical behaviors and dissolution in water. After finding the optimal SBS processing conditions (air pressure, feed rate, working distance and polymer concentration), the effect of the solvent composition has been considered. The structure and morphology of the blow spun fibers are studied as well as their thermal, mechanical behaviors and dissolution in water. We demonstrate that the morphology of the fibers (size and porosity) changes with the solvent composition, which is reflected in different thermal and mechanical responses and in the dissolution rates of the materials in water.
Collapse
|
15
|
Gupta A, Paudwal G, Dolkar R, Lewis S, Gupta PN. Recent advances in the surfactant and controlled release polymer-based solid dispersion. Curr Pharm Des 2022; 28:1643-1659. [PMID: 35209818 DOI: 10.2174/1381612828666220223095417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
The oral route is the most preferred delivery route for drug administration due to its advantages such as lower cost, improved patient compliance, no need for trained personnel and the drug reactions are generally less severe. The major problem with new molecules in the drug discovery pipeline is poor solubility and dissolution rate that ultimately results in low oral bioavailability. Numerous techniques are available for solubility and bioavailability (BA) enhancement, but out of all, solid dispersion (SD) is proven to be the most feasible due to the least issues in manufacturing, processing, storage, and transportation. In the past few years, SD had been extensively applied to reinforce the common issues of insoluble drugs. Currently, many hydrophobic and hydrophilic polymers are used to prepare either immediate release or controlled release SDs. Therefore, the biological behavior of the SDs is contingent upon the use of appropriate polymeric carriers and methods of preparation. The exploration of novel carriers and methodologies in SD technology leads to improved BA and therapeutic effectiveness. Moreover, the clinical applicability of SD-based formulations has been increased with the discovery of novel polymeric carriers. In this review, emphasis is laid down on the present status of recent generations of SDs (i.e., surfactant and controlled release polymer-based SD) and their application in modifying the physical properties of the drug and modulation of pharmacological response in different ailments.
Collapse
Affiliation(s)
- Aman Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Gourav Paudwal
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rigzin Dolkar
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shaila Lewis
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
17
|
Orodispersible Membranes from a Modified Coaxial Electrospinning for Fast Dissolution of Diclofenac Sodium. MEMBRANES 2021; 11:membranes11110802. [PMID: 34832031 PMCID: PMC8622798 DOI: 10.3390/membranes11110802] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
The dissolution of poorly water-soluble drugs has been a longstanding and important issue in pharmaceutics during the past several decades. Nanotechnologies and their products have been broadly investigated for providing novel strategies for resolving this problem. In the present study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented for the preparation of membranes, during which an unspinnable solution of sucralose was explored as the sheath working fluid for smoothing the working processes and also adjusting the taste of membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution measurements and simulated artificial tongue experiments verified that the OMs were able to release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for oral administration.
Collapse
|
18
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
20
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Tipduangta P, Belton P, McAuley WJ, Qi S. The use of polymer blends to improve stability and performance of electrospun solid dispersions: The role of miscibility and phase separation. Int J Pharm 2021; 602:120637. [PMID: 33901595 DOI: 10.1016/j.ijpharm.2021.120637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Solid dispersion-based nanofiber formulations of poorly soluble drugs prepared by electrospinning (ES) with a water-soluble polymer, can offer significant improvements in drug dissolution for oral drug administration. However, when hygroscopic polymers, such as polyvinylpyrrolidone (PVP) are used, environmental moisture sorption can lead to poor physical stability on storage. This study investigated the use of polymer blends to modify PVP-based ES formulations of a model poorly soluble drug, fenofibrate (FF), to improve its physical stability without compromising dissolution enhancement. FF-PVP ES dispersions demonstrated clear dissolution enhancement, but poor storage stability against high humidity. Polymer blends of PVP with Eudragit E, Soluplus and hypromellose acetate succinate (HPMCAS), were selected because of the low intrinsic moisture sorption of these polymers. The drug-polymer and polymer-polymer miscibility study revealed that FF was more miscible with Eudragit E and Soluplus than with PVP and HPMCAS, and that PVP was more miscible with HPMCAS than Eudragit E and Soluplus. This led to different configurations of phase separation in the placebo and drug-loaded fibres. The in vitro drug release data confirmed that the use of PVP-Eudragit E retained the dissolution enhancement of the PVP formulation, whereas PVP-Soluplus reduced the drug release rate in comparison to FF-PVP formulations. The moisture sorption results confirmed that moisture uptake by the polymer blends was reduced, but formulation deformation occurred to phase-separated blend formulations. The data revealed the importance of miscibility and phase separation in understanding the physical stability of the ES fibre mats. The findings provide insight into the design of formulations that can provide dissolution enhancement balanced with improved storage stability.
Collapse
Affiliation(s)
- Pratchaya Tipduangta
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - William J McAuley
- Centre for Research in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
22
|
Tran PHL, Tran TTD. Nano-sized Solid Dispersions for Improving the Bioavailability of Poorly Water-soluble Drugs. Curr Pharm Des 2021; 26:4917-4924. [PMID: 32611298 DOI: 10.2174/1381612826666200701134135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
It has been well established that solid dispersions have a high potential to increase the release rate of poorly water-soluble drugs, resulting in high drug bioavailability. Solid dispersions have been vigorously investigated with various practical approaches in recent decades. Improvements in wettability, molecular interactions and drugs being held in an amorphous state in solid dispersions are the main mechanisms underlying the high drug release rate. Moreover, the synergistic effect of incorporating nanotechnology in solid dispersions is expected to lead to an advanced drug delivery system for poorly water-soluble drugs. However, to date, there is still a lack of reviews providing outlooks on the nano-sized solid dispersions that have been substantially investigated for improving the bioavailability of poorly water-soluble drugs. In the current review, we aim to overview key advantages and approaches for producing nano-sized solid dispersions. The classification of key strategies in developing nano-sized solid dispersions will advance the creation of even more efficient solid dispersions, which will translate into clinical studies.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
23
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
24
|
Aidana Y, Wang Y, Li J, Chang S, Wang K, Yu DG. Fast Dissolution Electrospun Medicated Nanofibers for Effective Delivery of Poorly Water-Soluble Drugs. Curr Drug Deliv 2021; 19:422-435. [PMID: 33588728 DOI: 10.2174/1567201818666210215110359] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications are approached in various ways through electrospun medicated nanofibers. The fast-dissolving oral drug delivery system (DDS) among them is one of the most promising routes in the near future for commercial applications. METHODS Related papers are investigated, including the latest research results, on electrospun nanofiber-based fast-dissolution DDSs. RESULTS Several relative topics have been concluded: 1) the development of electrospinning, ranging from 1-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) Selection of appropriate polymer matrices and drug carriers for filament formation; 3) Types of poorly water-soluble drugs ideal for fast oral delivery; 4) The methods for evaluating fast-dissolving nanofibers; 5) The mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) the important issues for further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems. Conclusions & Perspectives: The unique properties of electrospun-medicated nanofibers can be used as oral fast dissolving DDSs of poorly water-soluble drugs. However, some significant issues need to be investigated, such as scalable productions and solid dosage form conversions.
Collapse
Affiliation(s)
- Yrysbaeva Aidana
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Yibin Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Jie Li
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Shuyue Chang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Ke Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| |
Collapse
|
25
|
Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Ponrasu T, Chen BH, Chou TH, Wu JJ, Cheng YS. Fast Dissolving Electrospun Nanofibers Fabricated from Jelly Fig Polysaccharide/Pullulan for Drug Delivery Applications. Polymers (Basel) 2021; 13:241. [PMID: 33445743 PMCID: PMC7830562 DOI: 10.3390/polym13020241] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.
Collapse
Affiliation(s)
- Thangavel Ponrasu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Bei-Hsin Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Jia-Jiuan Wu
- Department of Nutrition, China Medical University, Hsueh-Shih Road No. 91, Taichung 404, Taiwan;
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| |
Collapse
|
27
|
Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B 2021; 9:939-951. [DOI: 10.1039/d0tb02124e] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This perspective explores recent developments and innovations in the electrospinning technique and their potential applications in biomedicine.
Collapse
Affiliation(s)
| | - Qingqing Sang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Jinglei Wu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Ziwei Zhang
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Fenglei Zhou
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- Centre for Medical Image Computing, UCL Computer Science
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology
- Spanish Council for Scientific Research
- Valencia 46100
- Spain
| | - Xiumei Mo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, UCL Computer Science
- University College London
- London WC1V 6LJ
- UK
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Li-Min Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|
28
|
Gençtürk A, Kahraman E, Güngör S, Özsoy Y, Saraç AS. Effects of Polyvinylpyrrolidone and Ethyl Cellulose in Polyurethane Electrospun Nanofibers on Morphology and Drug Release Characteristics. Turk J Pharm Sci 2020; 17:638-644. [PMID: 33389954 DOI: 10.4274/tjps.galenos.2019.87094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Polyurethanes (PUs) are a popular choice for composing nanofibers due to their spinnability, biocompatibility, high chemical stability, and good mechanical and elasticity properties. The desired release behaviors are also achieved by using combinations of PUs and various polymers. In this study, we investigated effects of polyvinylpyrrolidone (PVP) and ethyl cellulose (EC) on PU electrospun nanofibers in terms of morphological structures and drug release characteristics. Materials and Methods Nanofibers were prepared using blends of PU with either EC or PVP in different ratios by electrospinning. The effects of PVP or EC on the morphology and diameter of the prepared nanofibers were examined with scanning electron microscope (SEM). The compatibility of the components used in the formulations of nanofibers was determined by attenuated total reflection (ATR)-fourier-transform infrared (FTIR). Donepezil hydrochloride (DNP), a water soluble compound, was selected as a model drug to examine its release characteristics from both PU/PVP and PU/EC electrospun nanofibers. In vitro drug release studies from electrospun nanofibers were performed according to the method defined in the monograph as the "paddle over disk method" of United States Pharmacopeia 38. Results The SEM images showed that addition of EC or PVP to PU solutions did not affect the generation of nanofibers, and those formed had a smooth surface without beads in nanoscale. The ATR-FTIR spectra disclosed that EC and PVP were separately incorporated into the PU matrix. The in vitro release data indicated that the presence of EC or PVP in PU nanofibers dramatically changed the release behavior of DNP. PU/EC nanofibers (F4) provided sustained drug release with the Korsmeyer-Peppas drug release kinetic mechanism, in which the release rate was controlled by diffusion of the drug, while all of the PU/PVP nanofibers exhibited fast drug release. Conclusion Overall, these characteristics of PU/EC (10/8) electrospun nanofibers has suggested their potential use as a drug carrier from which water-soluble drug release may occur in a sustained fashion.
Collapse
Affiliation(s)
- Aslı Gençtürk
- İstanbul Technical University Faculty of Science and Letters, Department of Polymer Science and Technology, İstanbul, Turkey
| | - Emine Kahraman
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Sevgi Güngör
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Yıldız Özsoy
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - A Sezai Saraç
- İstanbul Technical University Faculty of Science and Letters, Department of Polymer Science and Technology, İstanbul, Turkey.,İstanbul Technical University University Faculty of Science and Letters, Department of Nanoscience and Nanoengineering, İstanbul, Turkey
| |
Collapse
|
29
|
Hamedani Y, Teixeira RB, Karbasiafshar C, Wipf P, Bhowmick S, Abid MR. Delivery of a mitochondria-targeted antioxidant from biocompatible, polymeric nanofibrous scaffolds. FEBS Open Bio 2020; 11:35-47. [PMID: 33179452 PMCID: PMC7780095 DOI: 10.1002/2211-5463.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease has been associated with increased levels of reactive oxygen species (ROS). Recently, we have shown that a critical balance between cytosolic ROS and mitochondrial ROS is crucial in cardiovascular health and that modulation of mitochondrial ROS helps prevent detrimental effects of cytosolic ROS on endothelial cells (EC) in transgenic animals. Here, we report the development of a controlled delivery system for a mitochondria‐targeted antioxidant, JP4‐039, from an electrospun scaffold made of FDA‐approved biocompatible polymeric nanofibers. We demonstrate that the active antioxidant moiety was preserved in released JP4‐039 for over 72 h using electron paramagnetic resonance. We also show that both the initial burst release of the drug within the first 20 min and the ensuing slow and sustained release that occurred over the next 24 h improved tube formation in human coronary artery ECs (HCAEC) in vitro. Taken together, these findings suggest that electrospinning methods can be used to upload mitochondrial antioxidant (JP4‐039) onto a biocompatible nanofibrous PLGA scaffold, and the uploaded drug (JP4‐039) retains nitroxide antioxidant properties upon release from the scaffold, which in turn can reduce mitochondrial ROS and improve EC function in vitro.
Collapse
Affiliation(s)
- Yasaman Hamedani
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Rayane Brinck Teixeira
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Torres-Martínez EJ, Vera-Graziano R, Cervantes-Uc JM, Bogdanchikova N, Olivas-Sarabia A, Valdez-Castro R, Serrano-Medina A, Iglesias AL, Pérez-González GL, Cornejo-Bravo JM, Villarreal-Gómez LJ. Preparation and characterization of electrospun fibrous scaffolds of either PVA or PVP for fast release of sildenafil citrate. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSildenafil citrate (SC) has proved to be an effective and inexpensive drug for the treatment of pulmonary arterial hypertension (PAH). This study aims to synthesize electrospun, submicron fiber scaffolds of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) loaded with SC for fast drug dissolution and its potential use in the treatment of PAH. These fiber scaffolds were prepared through the electrospinning technique. The chemical composition of the nanofibers was analyzed by Fourier transform infrared spectroscopy. Thermal stability was studied by thermogravimetric analysis and polymeric transitions by differential scattering calorimetry. Surface analysis of the nanofibers was studied by field emission scanning electron microscopy. The wetting and dissolution time of the scaffolds and drug release rate were studied as well. The drug-loaded PVP fibers showed better quality regarding size and homogeneity compared to drug-loaded PVA fibers. These fibers encapsulated approximately 2.5 mg/cm2 of the drug and achieved immediate controlled released rate, which is encouraging for further studies leading to an alternative treatment of PAH in children.
Collapse
Affiliation(s)
- Erick José Torres-Martínez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Ricardo Valdez-Castro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Aracely Serrano-Medina
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Ana Leticia Iglesias
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Graciela Lizeth Pérez-González
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - José Manuel Cornejo-Bravo
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California C.P. 22390, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| |
Collapse
|
31
|
Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical assisted electrospray/spinning to produce PVP+quercetin microparticles and microfibers. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27:1625-1643. [PMID: 33207947 PMCID: PMC7737680 DOI: 10.1080/10717544.2020.1846638] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Fahad Alotaibi
- General Directorate Health Affairs, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Himani, Kumar N, Prabhakar PK, Pant V. Physical, Mechanical, Functional, and Thermal Characterization of Chitosan: Maltodextrin Blends Edible Oral Film Incorporated with Aqueous Clove Extract. STARCH-STARKE 2020. [DOI: 10.1002/star.201900220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himani
- Department of Food Business Management and Entrepreneurship Development National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Nishant Kumar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Pramod K Prabhakar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Vimal Pant
- Department of Food Business Management and Entrepreneurship Development National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| |
Collapse
|
34
|
Srikamut C, Thongchaivetcharat K, Phakkeeree T, Crespy D. Encapsulation of emulsion droplets and nanoparticles in nanofibers as sustainable approach for their transport and storage. J Colloid Interface Sci 2020; 577:199-206. [PMID: 32480106 DOI: 10.1016/j.jcis.2020.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Emulsions are metastable and can be destabilized by coalescence and Ostwald ripening, which lead to phase separation. Immobilizing emulsion droplets in a solid material shall improve their stability during storage. EXPERIMENTS Miniemulsions and dispersions of nanocapsules are electrospun to immobilize colloids in polymer nanofibers. The nanofibers are dissolved after various period of time to re-disperse nanodroplets and nanocapsules. FINDINGS The size of nanodroplets and nanocapsules are close to the size of the original colloids before electrospinning, meaning that the emulsion droplets are efficiently stored overtime in nanofibers. Entrapping droplets in nanofibers by electrospinning allows a reduction of weight and volume of the emulsion of up to 82%. This method is therefore beneficial for improving shelf-life of emulsions, decreasing storage volume, and decreasing energy consumption for transportation of emulsions.
Collapse
Affiliation(s)
- Chadapon Srikamut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Kusuma Thongchaivetcharat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Treethip Phakkeeree
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
35
|
Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Sci Rep 2020; 10:13427. [PMID: 32778719 PMCID: PMC7417572 DOI: 10.1038/s41598-020-69136-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Electrospinning is a widely used production method for nanoscale fine polymer fiber fabrics. An ultrafine fiber made of polymers such as polyvinylpyrrolidone (PVP) polyacrylic acid (PAA) has immense potential for applications in air filters, batteries, and biosensors. However, producing fabrics with long uniformly distributed ultrafine fibers of a mean diameter below ~ 200 nm is still a challenge, because such elongated-ultrafine fibers tend to break into beads before they reach the collector. Here, we exploits the thixotropy of the solution given by the addition of 2,2,6,6-tetramethylpiperidin-1-oxyl-oxidized cellulose nanofibers to recover the solution viscosity for stabilizing the electrostatically elongated nanofibers, whereby the solution is smooth in the syringe needle owing to the shear force but regain its original viscosity after being freed from electrostatic force. Using this method, we successfully fabricated a non-woven ultrafine-long nanofiber made of PVP and PAA with a mean diameter as low as ~ 90 nm with a negligible number of beads.
Collapse
|
36
|
Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020; 326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| | - Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Lutzweiler G, Ndreu Halili A, Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020; 12:E602. [PMID: 32610440 PMCID: PMC7407612 DOI: 10.3390/pharmaceutics12070602] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Porous scaffolds have been employed for decades in the biomedical field where researchers have been seeking to produce an environment which could approach one of the extracellular matrixes supporting cells in natural tissues. Such three-dimensional systems offer many degrees of freedom to modulate cell activity, ranging from the chemistry of the structure and the architectural properties such as the porosity, the pore, and interconnection size. All these features can be exploited synergistically to tailor the cell-material interactions, and further, the tissue growth within the voids of the scaffold. Herein, an overview of the materials employed to generate porous scaffolds as well as the various techniques that are used to process them is supplied. Furthermore, scaffold parameters which modulate cell behavior are identified under distinct aspects: the architecture of inert scaffolds (i.e., pore and interconnection size, porosity, mechanical properties, etc.) alone on cell functions followed by comparison with bioactive scaffolds to grasp the most relevant features driving tissue regeneration. Finally, in vivo outcomes are highlighted comparing the accordance between in vitro and in vivo results in order to tackle the future translational challenges in tissue repair and regeneration.
Collapse
Affiliation(s)
- Gaëtan Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | - Albana Ndreu Halili
- Department of Information Technology, Aleksander Moisiu University, 2001 Durres, Albania;
| | | |
Collapse
|
38
|
Edmans JG, Clitherow KH, Murdoch C, Hatton PV, Spain SG, Colley HE. Mucoadhesive Electrospun Fibre-Based Technologies for Oral Medicine. Pharmaceutics 2020; 12:E504. [PMID: 32498237 PMCID: PMC7356016 DOI: 10.3390/pharmaceutics12060504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Oral disease greatly affects quality of life, as the mouth is required for a wide range of activities including speech, food and liquid consumption. Treatment of oral disease is greatly limited by the dose forms that are currently available, which suffer from short contact times, poor site specificity, and sensitivity to mechanical stimulation. Mucoadhesive devices prepared using electrospinning offer the potential to address these challenges by allowing unidirectional site-specific drug delivery through intimate contact with the mucosa and with high surface areas to facilitate drug release. This review will discuss the range of electrospun mucoadhesive devices that have recently been reported to address oral inflammatory diseases, pain relief, and infections, as well as new treatments that are likely to be enabled by this technology in the future.
Collapse
Affiliation(s)
- Jake G. Edmans
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Katharina H. Clitherow
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| | - Paul V. Hatton
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| | - Sebastian G. Spain
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK;
| | - Helen E. Colley
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; (J.G.E.); (K.H.C.); (P.V.H.); (H.E.C.)
| |
Collapse
|
39
|
Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem 2020; 308:125599. [DOI: 10.1016/j.foodchem.2019.125599] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
|
40
|
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576:118963. [DOI: 10.1016/j.ijpharm.2019.118963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
41
|
Celebioglu A, Uyar T. Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system. RSC Med Chem 2020; 11:245-258. [PMID: 33479631 PMCID: PMC7484989 DOI: 10.1039/c9md00390h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
The electrospinning of hydrocortisone/cyclodextrin complex nanofibers was performed in order to develop a fast-dissolving oral drug delivery system. Hydrocortisone is a water-insoluble hydrophobic drug, yet, the water solubility of hydrocortisone was significantly enhanced by inclusion complexation with hydroxypropyl-beta-cyclodextrin (HP-β-CyD). In this study, hydrocortisone/HP-β-CyD complexes were prepared in aqueous solutions having molar ratios of 1/1, 1/1.5 and 1/2 (hydrocortisone/HP-β-CyD). Highly concentrated aqueous solutions of HP-β-CyD (180%, w/v) were used for hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) in order to perform electrospinning without the use of an additional polymer matrix. The turbidity of hydrocortisone/HP-β-CyD (1/1 and 1/1.5) aqueous solutions indicated the presence of some uncomplexed crystals of hydrocortisone whereas the aqueous solution of hydrocortisone/HP-β-CyD (1/2) was homogeneous indicating that hydrocortisone becomes totally water-soluble by inclusion complexation with HP-β-CyD. Nonetheless, the electrospinning of hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) successfully yielded defect-free uniform nanofibrous structures. Moreover, the electrospinning process was quite efficient that hydrocortisone was completely preserved without any loss yielding hydrocortisone/HP-β-CyD nanofibers having the initial molar ratios (1/1, 1/1.5 and 1/2). The structural and thermal characterization of the hydrocortisone/HP-β-CyD nanofibers revealed that hydrocortisone was totally inclusion complexed with HP-β-CyD and was in the amorphous state in hydrocortisone/HP-β-CyD (1/2) nanofibers whereas some uncomplexed crystalline hydrocortisone was present in hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibers. Nevertheless, hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) complex aqueous systems were electrospun in the form of nanofibrous webs having a free-standing and flexible nature. The hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) nanofibrous webs have shown fast-dissolving behavior in water or when they were in contact with artificial saliva. Yet, the hydrocortisone/HP-β-CyD (1/2) nanofibrous web dissolved more quickly than the hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibrous webs due to the full inclusion complexation and the amorphous state of hydrocortisone in this sample. In short, the results suggest that polymer-free electrospun nanofibrous webs produced from hydrocortisone/HP-β-CyD could be quite applicable for fast-dissolving oral drug delivery systems.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design , College of Human Ecology , Cornell University , Ithaca , NY 14853 , USA . ;
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design , College of Human Ecology , Cornell University , Ithaca , NY 14853 , USA . ;
| |
Collapse
|
42
|
Scale‐up of electrospinning technology: Applications in the pharmaceutical industry. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1611. [DOI: 10.1002/wnan.1611] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/25/2023]
|
43
|
Celebioglu A, Uyar T. Metronidazole/Hydroxypropyl-β-Cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int J Pharm 2019; 572:118828. [DOI: 10.1016/j.ijpharm.2019.118828] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
|
44
|
CENGİZ ÇALLIOĞLU F, KESİCİ GÜLER H. Çevreci Çözücüler ile Polivinilpirolidon Nanolif Üretimi. ACTA ACUST UNITED AC 2019. [DOI: 10.29233/sdufeffd.589516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Celebioglu A, Uyar T. Fast Dissolving Oral Drug Delivery System Based on Electrospun Nanofibrous Webs of Cyclodextrin/Ibuprofen Inclusion Complex Nanofibers. Mol Pharm 2019; 16:4387-4398. [PMID: 31436100 DOI: 10.1021/acs.molpharmaceut.9b00798] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, the polymer-free electrospinning was performed in order to produce cyclodextrin/ibuprofen inclusion complex nanofibers, which could have potential as the fast dissolving oral drug delivery system. Ibuprofen is a poorly water-soluble nonsteroidal anti-inflammatory drug; however, the water solubility of ibuprofen can be significantly enhanced by inclusion complexation with cyclodextrins. Here, hydroxypropyl-beta-cyclodextrin (HPβCyD) was chosen both as a nanofiber matrix and host molecule for inclusion complexation in order to enhance water solubility and fast dissolution of ibuprofen. Ibuprofen was inclusion-complexed with HPβCyD in highly concentrated aqueous solutions of HPβCyD (200%, w/v) having two different molar ratios: 1:1 and 2:1 (HPβCyD/ibuprofen). The HPβCyD/ibuprofen-IC (1:1) aqueous solution was turbid having some undissolved/uncomplexed ibuprofen, whereas HPβCyD/ibuprofen-IC (2:1) aqueous solution was homogeneous and clear, indicating that ibuprofen was totally complexed with HPβCyD and becomes water soluble. Then, both HPβCyD/ibuprofen-IC solutions (1:1 and 2:1) were electrospun into bead-free and uniform nanofibers having ∼200 nm fiber diameter. The electrospun HPβCyD/ibuprofen-IC nanofibers were obtained as nanofibrous webs having self-standing and flexible character, which is appropriate for fast dissolving oral drug delivery systems. Ibuprofen was completely preserved during the electrospinning process, and the resulting electrospun HPβCyD/ibuprofen-IC nanofibers were produced without any loss of ibuprofen by preserving the initial molar ratio of 1:1 and 2:1 (HPβCyD/ibuprofen). X-ray diffraction and differential scanning calorimetry measurements indicated the presence of some crystalline ibuprofen in HPβCyD/ibuprofen-IC (1:1) nanofibers, whereas ibuprofen was totally in the amorphous state in HPβCyD/ibuprofen-IC (2:1) nanofibers. Nonetheless, both HPβCyD/ibuprofen-IC (1:1 and 2:1) nanofibrous webs have shown very fast dissolving character when contacted with water or when wetted with artificial saliva. In brief, our results revealed that electrospun HPβCyD/ibuprofen-IC nanofibrous webs have potential as fast dissolving oral drug delivery systems.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
46
|
Clitherow KH, Murdoch C, Spain SG, Handler AM, Colley HE, Stie MB, Mørck Nielsen H, Janfelt C, Hatton PV, Jacobsen J. Mucoadhesive Electrospun Patch Delivery of Lidocaine to the Oral Mucosa and Investigation of Spatial Distribution in a Tissue Using MALDI-Mass Spectrometry Imaging. Mol Pharm 2019; 16:3948-3956. [PMID: 31361498 PMCID: PMC7007276 DOI: 10.1021/acs.molpharmaceut.9b00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Many
oral mucosal conditions cause considerable and prolonged pain
that to date has been difficult to alleviate via topical delivery,
and the use of injection causes many patients dental anxiety and needle-prick
pain. Therefore, developing a noninjectable drug delivery system as
an alternative administration procedure may vastly improve the health
and wellbeing of these patients. Recent advances in the development
of mucoadhesive electrospun patches for the direct delivery of therapeutics
to the oral mucosa offer a potential solution, but as yet, the release
of local anesthetics from this system and their uptake by oral tissue
have not been demonstrated. Here, we demonstrate the fabrication of
lidocaine-loaded electrospun fiber patches, drug release, and subsequent
uptake and permeation through the porcine buccal mucosa. Lidocaine
HCl and lidocaine base were incorporated into the electrospun patches
to evaluate the difference in drug permeation for the two drug compositions.
Lidocaine released from the lidocaine HCl-containing electrospun patches
was significantly quicker than from the lidocaine base patches, with
double the amount of drug released from the lidocaine HCl patches
in the first 15 min (0.16 ± 0.04 mg) compared to that from the
lidocaine base patches (0.07 ± 0.01 mg). The permeation of lidocaine
from the lidocaine HCl electrospun patches through ex vivo porcine
buccal mucosa was also detected in 15 min, whereas permeation of lidocaine
from the lidocaine base patch was not detected. Matrix-assisted laser
desorption ionization-mass spectrometry imaging was used to investigate
localization of lidocaine within the oral tissue. Lidocaine in the
solution as well as from the mucoadhesive patch penetrated into the
buccal mucosal tissue in a time-dependent manner and was detectable
in the lamina propria after only 15 min. Moreover, the lidocaine released
from lidocaine HCl electrospun patches retained biological activity,
inhibiting veratridine-mediated opening of voltage-gated sodium channels
in SH-SY5Y neuroblastoma cells. These data suggest that a mucoadhesive
electrospun patch may be used as a vehicle for rapid uptake and sustained
anesthetic drug delivery to treat or prevent oral pain.
Collapse
Affiliation(s)
- Katharina H Clitherow
- School of Clinical Dentistry , University of Sheffield , 19 Claremont Crescent , Sheffield S10 2TA , U.K
| | - Craig Murdoch
- School of Clinical Dentistry , University of Sheffield , 19 Claremont Crescent , Sheffield S10 2TA , U.K
| | - Sebastian Guy Spain
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | - Anna Mette Handler
- Department of Pharmacy , University of Copenhagen , 2 Universitetsparken , Copenhagen DK-2100 , Denmark
| | - Helen E Colley
- School of Clinical Dentistry , University of Sheffield , 19 Claremont Crescent , Sheffield S10 2TA , U.K
| | - Mai Bay Stie
- Department of Pharmacy , University of Copenhagen , 2 Universitetsparken , Copenhagen DK-2100 , Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy , University of Copenhagen , 2 Universitetsparken , Copenhagen DK-2100 , Denmark
| | - Christian Janfelt
- Department of Pharmacy , University of Copenhagen , 2 Universitetsparken , Copenhagen DK-2100 , Denmark
| | - Paul V Hatton
- School of Clinical Dentistry , University of Sheffield , 19 Claremont Crescent , Sheffield S10 2TA , U.K
| | - Jette Jacobsen
- Department of Pharmacy , University of Copenhagen , 2 Universitetsparken , Copenhagen DK-2100 , Denmark
| |
Collapse
|
47
|
Mirzaeei S, Mohammadi G, Fattahi N, Mohammadi P, Fattahi A, Nikbakht MR, Adibkia K. Formulation and Physicochemical Characterization of Cyclosporine Microfiber by Electrospinning. Adv Pharm Bull 2019; 9:249-254. [PMID: 31380250 PMCID: PMC6664123 DOI: 10.15171/apb.2019.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: The objective of this study was to improve the permeability and water solubility rate of a poor water soluble drug, cyclosporine A (CsA).
Methods: In order to improve the drug dissolution rate and oral bioavailability, electrospinning method was used as an approach to prepare. The fibers were evaluated for surface morphology, thermal characterizations, drug crystallinity, in vitro drug release and in vivo bioavailability studies.
Results: Scanning electron microscope (SEM) results confirmed that the fibers were in microsize range and the size of the fibers was in the rang of 0.2 to 2 micron. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRPD) analysis ensured that the crystalline lattice of drug were weakened or destroyed in the fibers. The drug release was 15.28%, 20.67%, and 32.84% from pure drug, fibers of formulation B, and formulation A, respectively. In vivo study results indicated that the bioavailability parameters of the optimized fiber formulation were improved and the maximum concentration (Cmax) were significantly higher for fibers (3001 ng/mL) than for pure drug (2550 ng/mL). The dissolution rate of the formulations was dependent on the nature and ratio of drug to carriers.
Conclusion: The physicochemical properties showed that the optimized mixture of polyethylene glycol (PEG) and povidone (PVP) fibers could be an effective carrier for CsA delivery. PEG and PVP fibers improved the absolute bioavailability and drug dissolution rate with appropriate physicochemical properties.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Navid Fattahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Nikbakht
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khosro Adibkia
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Tran PH, Duan W, Lee BJ, Tran TT. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566:557-564. [DOI: 10.1016/j.ijpharm.2019.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
49
|
Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int J Biol Macromol 2019; 137:224-231. [PMID: 31260763 DOI: 10.1016/j.ijbiomac.2019.06.224] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
In this study, Chitosan/pullulan composite nanofiber fast dissolving oral films (FDOFs) were prepared via electrospinning technology. The ratio of chitosan/pullulan (C/P) had an influence on solution property and nanofiber morphology, with the increase of chitosan, viscosity and conductivity of solutions increased, the morphology obtained by scanning electron microscopy indicated that the diameter of nanofibers decreased initially then increased. The Fourier transform infrared spectra indicated hydrogen bond interactions between chitosan and pullulan molecules. X-ray diffraction analysis proved that electrospinning process decreased the crystallinity of materials. Thermal analysis showed that melting point, degradation temperature and glass transition temperature increased with the addition of chitosan content in the FDOF. Water solubility test proved that the FDOF can dissolve in water completely within 60 s. Finally, in order to prove its practicability in future, a model drug of aspirin was encapsulated in the FDOF successfully.
Collapse
|
50
|
Core-shell nanofibers as drug delivery systems. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:131-153. [PMID: 31259723 DOI: 10.2478/acph-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2018] [Indexed: 01/19/2023]
Abstract
Core-shell nanofibers have grown in popularity over the last decade owing to their special features and their many applications in biomedicine. They can be produced by electrospinning of immiscible polymer blends or emulsions through a single nozzle or by electrospinning using a coaxial nozzle. Several of the electrospinning parameters allow great versatility for the compositions and diameters of core-shell nanofibers to be produced. Morphology of core-shell nanofibers can be investigated using transmission electron microscopy and, in some cases, scanning electron microscopy. Several studies have shown that core-shell nanofibers have some advantages over monolithic nanofibers, such as better drug, protein, gene or probiotic incorporation into the nanofibers, greater control over drug release, and maintenance of protein structure and activity during electrospinning. We herein review the production and characterization of core-shell nanofibers, the critical parameters that affect their development, and their advantages as delivery systems.
Collapse
|