1
|
Chakrabarty S, Nandi S, Bandopadhyay P, Das A, Azaharuddin M, Pal A, Ghosh S, Sett U, Nandy S, Basu T. Synthesis of novel hydrophilic celastrol nanoformulation by entrapment within calcium phosphate nanoparticle and study of its antioxidant activity against neurotoxin-induced damage in human neuroblastoma cells. Biochem Biophys Res Commun 2024; 735:150480. [PMID: 39094229 DOI: 10.1016/j.bbrc.2024.150480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.
Collapse
Affiliation(s)
- Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
2
|
Surya C, Lakshminarayana ABV, Ramesh SH, Kunjiappan S, Theivendren P, Santhana Krishna Kumar A, Ammunje DN, Pavadai P. Advancements in breast cancer therapy: The promise of copper nanoparticles. J Trace Elem Med Biol 2024; 86:127526. [PMID: 39298835 DOI: 10.1016/j.jtemb.2024.127526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.
Collapse
Affiliation(s)
- Chandana Surya
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | | | - Sameera Hammigi Ramesh
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| |
Collapse
|
3
|
Lei R, Liu X, Wu J. Nutrition and melanoma: the contribution of trace elements in onset, progression, and treatment of melanoma. Nutr Rev 2024; 82:1138-1149. [PMID: 37702535 DOI: 10.1093/nutrit/nuad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Melanoma is a highly malignant and drug-resistant disease that imposes a substantial economic burden on the world. There are many studies linking trace elements to diverse types of cancers, including melanoma. This review elucidates the relationship between trace elements exposure and melanoma. It was identified that copper, manganese, selenium, zinc, iron, and many other trace elements were associated with melanoma in humans. In terms of epidemiology, different elements have different correlations with melanoma. These trace elements affect the occurrence and development of melanoma through various mechanisms, such as oxidative stress and the MAPK pathway. The literature on the role of trace elements in the pathogenesis and treatment of melanoma depicts promising prospects for this field.
Collapse
Affiliation(s)
- Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Tripathy S, Londhe S, Patel A, Saha S, Chandra Y, Patra CR. Copper nitroprusside analogue nanoparticles against melanoma: detailed in vitro and in vivo investigation. NANOSCALE 2024; 16:13580-13596. [PMID: 38953490 DOI: 10.1039/d4nr01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Melanoma is the most invasive and lethal form of skin cancer that arises from the malignant transformation of specialized pigment-producing cell melanocytes. Nanomedicine represents an important prospect to mitigate the difficulties and provide significant benefits to cure melanoma. In the present study, we investigated in vitro and in vivo therapeutic efficacies of copper nitroprusside analogue nanoparticles (abbreviated as CuNPANP) towards melanoma. Initially, in vitro anti-cancer activities of CuNPANP towards melanoma cells (B16F10) were evaluated by several experiments such as [methyl-3H]-thymidine incorporation assay, cell cycle and apoptosis assays using FACS analysis, ROS generation using DCFDA, DHE and DAF2A reagents, internalization of nanoparticles through ICP-OES analysis, co-localization of the nanoparticles using confocal microscopy, JC-1 staining to investigate the mitochondrial membrane potential (MMP) and immunofluorescence studies to analyze the expressions of cytochrome-c, Ki-67, E-cadherin as well as phalloidin staining to analyze the cytoskeletal integrity. Further, the in vivo therapeutic effectiveness of the nanoparticles was established towards malignant melanoma by inoculating B16F10 cells in the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of CuNPANP inhibited tumor growth and increased the survivability of melanoma mice. The in vivo immunofluorescence studies (Ki-67, CD-31, and E-cadherin) and TUNEL assay further support the anti-cancer and apoptosis-inducing potential of CuNPANP, respectively. Finally, various signaling pathways and molecular mechanisms involved in anti-cancer activities were further evaluated by Western blot analysis. The results altogether indicated the potential use of copper-based nanomedicines for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
5
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Mavil-Guerrero E, Vazquez-Duhalt R, Juarez-Moreno K. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. CHEMOSPHERE 2024; 347:140713. [PMID: 37981015 DOI: 10.1016/j.chemosphere.2023.140713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely applied in various products, including food, cosmetic, biomedical, and environmental goods. Despite their broad use, potential risks are still associated with these NPs, therefore, the aim of this study is to delve deeper into the cytotoxic effects of 85 nm CuO NPs on kidney MDCK and liver AML-12 cells, representing cell models from the excretory system. Our findings pointed out that the viability of both cell lines decreased in a concentration-dependent manner when exposed to CuO NPs. Additionally, CuO NPs induced the overproduction of reactive oxygen species (ROS) and caused depolarization of the mitochondrial membrane, thereby arresting the cell cycle at the G2/M phase in MDCK and AML-12 cells. Importantly, unlike others our study uncovered distinctive forms of cellular death induced by CuO NPs in these cell lines. MDCK cells exhibited a combination of apoptosis and autophagy while early apoptosis was predominant in AML-12 cells. Moreover, the role of Cu2+ ions and CuO NPs in exerting cytotoxic effects was investigated, revealing that MDCK cells were affected by both copper ions and NPs. In contrast, AML-12 cells experienced toxic effects solely from CuO NPs. These findings provide crucial insights into the different cell death mechanisms caused either by CuO NPs or Cu2+ ions in excretory system cells in vitro. Nevertheless, further research is needed to explore the underlying mechanisms at the in vivo level, ensuring the safe use of CuO NPs. The results suggest that specific concentrations of metal oxide NPs can impact the physiology of cells within the excretory system of various mammals, including humans, and pave the way for comparing the toxic effects between ions and nanoparticles for further nanotoxicological studies.
Collapse
Affiliation(s)
- Elizabeth Mavil-Guerrero
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001, Querétaro 76230, Mexico; Posgrado en Nanociencias, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada B.C. 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001, Querétaro 76230, Mexico.
| |
Collapse
|
7
|
Abdelhakm LO, Kandil EI, Mansour SZ, El-Sonbaty SM. Chrysin Encapsulated Copper Nanoparticles with Low Dose of Gamma Radiation Elicit Tumor Cell Death Through p38 MAPK/NF-κB Pathways. Biol Trace Elem Res 2023; 201:5278-5297. [PMID: 36905557 PMCID: PMC10509080 DOI: 10.1007/s12011-023-03596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Improving radiation effect on tumor cells using radiosensitizers is gaining traction for improving chemoradiotherapy. This study aimed to evaluate copper nanoparticles (CuNPs) synthesized using chrysin as radiosensitizer with γ-radiation on biochemical and histopathological approaches in mice bearing Ehrlich solid tumor. CuNPs were characterized with irregular round sharp shape with size range of 21.19-70.79 nm and plasmon absorption at 273 nm. In vitro study on MCF-7 cells detected cytotoxic effect of CuNPs with IC50 of 57.2 ± 3.1 μg. In vivo study was performed on mice transplanted with Ehrlich solid tumor (EC). Mice were injected with CuNPs (0.67 mg/kg body weight) and/or exposed to low dose of gamma radiation (0.5 Gy). EC mice exposed to combined treatment of CuNPs and radiation showed a marked reduction in tumor volume, ALT and CAT, creatinine, calcium, and GSH, along with elevation in MDA, caspase-3 in parallel with inhibition of NF-κB, p38 MAPK, and cyclin D1 gene expression. Comparing histopathological findings of treatment groups ends that combined treatment was of higher efficacy, showing tumor tissue regression and increase in apoptotic cells. In conclusion, CuNPs with a low dose of gamma radiation showed more powerful ability for tumor suppression via promoting oxidative state, stimulating apoptosis, and inhibiting proliferation pathway through p38MAPK/NF-κB and cyclinD1.
Collapse
Affiliation(s)
- Lubna O Abdelhakm
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
8
|
Prajapat VM, Mahajan S, Paul PG, Aalhate M, Mehandole A, Madan J, Dua K, Chellappan DK, Singh SK, Singh PK. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin Transl Oncol 2023:10.1007/s12094-023-03117-5. [PMID: 36807057 DOI: 10.1007/s12094-023-03117-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems.
Collapse
Affiliation(s)
- Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Shiman Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xinyan Chen
- Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China. .,The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|
10
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
11
|
Nanoemulsion applications in photodynamic therapy. J Control Release 2022; 351:164-173. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Nanoemulsion, or nanoscaled-size emulsions, is a thermodynamically stable system formed by blending two immiscible liquids, blended with an emulsifying agent to produce a single phase. Nanoemulsion science has advanced rapidly in recent years, and it has opened up new opportunities in a variety of fields, including pharmaceuticals, biotechnology, food, and cosmetics. Nanoemulsion has been recognized as a potential drug delivery technology for various drugs, such as photosensitizing agents (PS). In photodynamic therapy (PDT), PSs produce cytotoxic reactive oxygen species under specific light irradiation, which oxidize the surrounding tissues. Over the past decades, the idea of PS-loaded nanoemulsions has received researchers' attention due to their ability to overcome several limitations of common PSs, such as limited permeability, non-specific phototoxicity, hydrophobicity, low bioavailability, and self-aggregation tendency. This review aims to provide fundamental knowledge of nanoemulsion formulations and the principles of PDT. It also discusses nanoemulsion-based PDT strategies and examines nanoemulsion advantages for PDT, highlighting future possibilities for nanoemulsion use.
Collapse
|
12
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
13
|
Pieta IS, Gieroba B, Kalisz G, Pieta P, Nowakowski R, Naushad M, Rathi A, Gawande MB, Sroka-Bartnicka A, Zboril R. Developing Benign Ni/g-C 3N 4 Catalysts for CO 2 Hydrogenation: Activity and Toxicity Study. Ind Eng Chem Res 2022; 61:10496-10510. [PMID: 35938051 PMCID: PMC9344432 DOI: 10.1021/acs.iecr.2c00452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This research discusses the CO2 valorization via hydrogenation over the non-noble metal clusters of Ni and Cu supported on graphitic carbon nitride (g-C3N4). The Ni and Cu catalysts were characterized by conventional techniques including XRD, AFM, ATR, Raman imaging, and TPR and were tested via the hydrogenation of CO2 at 1 bar. The transition-metal-based catalyst designed with atom-economy principles presents stable activity and good conversions for the studied processes. At 1 bar, the rise in operating temperature during CO2 hydrogenation increases the CO2 conversion and the selectivity for CO and decreases the selectivity for methanol on Cu/CN catalysts. For the Ni/CN catalyst, the selectivity to light hydrocarbons, such as CH4, also increased with rising temperature. At 623 K, the conversion attained ca. 20%, with CH4 being the primary product of the reaction (CH4 yield >80%). Above 700 K, the Ni/CN activity increases, reaching almost equilibrium values, although the Ni loading in Ni/CN is lower by more than 90% compared to the reference NiREF catalyst. The presented data offer a better understanding of the effect of the transition metals' small metal cluster and their coordination and stabilization within g-C3N4, contributing to the rational hybrid catalyst design with a less-toxic impact on the environment and health. Bare g-C3N4 is shown as a good support candidate for atom-economy-designed catalysts for hydrogenation application. In addition, cytotoxicity to the keratinocyte human HaCaT cell line revealed that low concentrations of catalysts particles (to 6.25 μg mL-1) did not cause degenerative changes.
Collapse
Affiliation(s)
- Izabela S. Pieta
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Barbara Gieroba
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Grzegorz Kalisz
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Piotr Pieta
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mu. Naushad
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Anuj Rathi
- Chemistry
Innovation Research Center, R&D, Jubilant Biosys, Knowledge Park II, Greater Noida, Uttar Pradesh 201310, India
| | - Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký
University, Slechtitelu
27, 77900 Olomouc, Czech Republic
- Department
of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna 431 203, India
| | - Anna Sroka-Bartnicka
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký
University, Slechtitelu
27, 77900 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre of Energy and Environmental Technologies, VŠB−Technical University of Ostrava, 17 listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
14
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Lv H, Liu X, Zeng X, Liu Y, Zhang C, Zhang Q, Xu J. Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma. Front Pharmacol 2022; 13:930041. [PMID: 35837286 PMCID: PMC9273972 DOI: 10.3389/fphar.2022.930041] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
Skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) is the most lethal skin cancer with increasing incidence. Regulated cell death plays an important role in tumorigenesis and serves as an important target for almost all treatment strategies. Cuproptosis is the most recently identified copper-dependent regulated cell death form that relies on mitochondria respiration. However, its role in tumorigenesis remains unknown. The correlation of cuproptosis-related genes with tumor prognosis is far to be understood, either. In the present study, we explored the correlation between cuproptosis-related genes with the prognosis of melanoma by accessing and analyzing a public database and found 11 out 12 genes were upregulated in melanoma tissues and three genes (LIPT1, PDHA1, and SLC31A1) have predictive value for the prognosis. The subgroup of melanoma patients with higher cuproptosis-related gene expression showed longer overall survival than those with lower gene expression. We chose LIPT1 for further exploration. LIPT1 expression was increased in melanoma biopsies and was an independent favorable prognostic indicator for melanoma patients. Moreover, LIPT1 expression was positively correlated with PD-L1 expression and negatively associated with Treg cell infiltration. The melanoma patients with higher LIPT1 expression showed longer overall survival than those with lower LIPT1 expression after receiving immunotherapy, indicating the prognostic predictive value of LIPT1. Finally, a pan-cancer analysis indicated that LIPT1 was differentially expressed in diverse cancers as compared to normal tissues and correlated with the expression of multiple immune checkpoints, especially PD-L1. It could serve as a favorable prognosis indicator in some cancer types. In conclusion, our study demonstrated the prognostic value of cuproptosis-related genes, especially LIPT1, in melanoma, and revealed the correlation between LIPT1 expression and immune infiltration in melanoma, thus providing new clues on the prognostic assessment of melanoma patients and providing a new target for the immunotherapy of melanoma.
Collapse
Affiliation(s)
- Haozhen Lv
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanhao Zeng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yating Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Canjing Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Qi Zhang, ; Jinhua Xu,
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Dermatology, Shanghai, China
- *Correspondence: Qi Zhang, ; Jinhua Xu,
| |
Collapse
|
16
|
Pryjmaková J, Hryhoruk M, Veselý M, Slepička P, Švorčík V, Siegel J. Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation. NANOMATERIALS 2022; 12:nano12071220. [PMID: 35407337 PMCID: PMC9000622 DOI: 10.3390/nano12071220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
- Correspondence: (J.P.); (J.S.); Tel.: +420-220-445-149 (J.P. & J.S.)
| | - Mariia Hryhoruk
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Martin Veselý
- Department of Organic Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
- Correspondence: (J.P.); (J.S.); Tel.: +420-220-445-149 (J.P. & J.S.)
| |
Collapse
|
17
|
Zadeh FA, Bokov DO, Salahdin OD, Abdelbasset WK, Jawad MA, Kadhim MM, Qasim MT, Kzar HH, Al-Gazally ME, Mustafa YF, Khatami M. Cytotoxicity evaluation of environmentally friendly synthesis Copper/Zinc bimetallic nanoparticles on MCF-7 cancer cells. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:441-447. [PMID: 35342535 PMCID: PMC8936039 DOI: 10.1007/s12210-022-01064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Bimetallic nanoparticles offer unique chemical, physical and optical properties that are not available for monometallic nanoparticles. Bimetallic nanoparticles play a major role in various therapeutic, industrial and energy fields. Recently, nanoparticles of Copper/Zinc bimetallic nanoparticles have attracted attention in various fields, especially medicine. In this study, bimetallic CuO/ZnO nanostructures were biosynthesized using plant extracts. The plant-mediated synthesis nanoparticles were characterized by Transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive Spectroscopy (EDAX). The cytotoxicity of plant-mediated synthesis bimetallic nanoparticles and the synergistic effects of these nanoparticles in combination with the anticancer drug doxorubicin on MCF-7 cancer cells were evaluated by MTT assay.
Collapse
Affiliation(s)
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240 Russian Federation
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
- College of technical engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hamzah H. Kzar
- Department of Chemistry, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001 Iraq
| | - M. Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
18
|
Genotoxicity of aluminium oxide, iron oxide, and copper nanoparticles in mouse bone marrow cells. Arh Hig Rada Toksikol 2021; 72:315-325. [PMID: 34985838 PMCID: PMC8785108 DOI: 10.2478/aiht-2021-72-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the genotoxic effects of Al2O3, Fe2O3, and Cu nanoparticles with chromosomal aberration (CA), micronucleus (MN), and comet assays on the bone marrow of male BALB/c mice. Three doses of Al2O3, Fe2O3 (75, 150, and 300 mg/kg), or Cu (5, 10, and 15 mg/kg) nanoparticles were administered to mice through intraperitoneal injection once a day for 14 days and compared with negative control (distilled water) and positive control (mitomycin C and methyl methanesulphonate). Al2O3 and Fe2O3 did not show genotoxic effects, but Cu nanoparticles induced significant (P<0.05) genotoxicity at the highest concentration compared to negative control. Our findings add to the health risk information of Al2O3, Fe2O3, and Cu nanoparticles regarding human exposure (occupational and/or through consumer products or medical treatment), and may provide regulatory reference for safe use of these nanoparticles. However, before they can be used safely and released into the environment further chronic in vivo studies are essential.
Collapse
|
19
|
Cao Y, Dhahad HA, El-Shorbagy MA, Alijani HQ, Zakeri M, Heydari A, Bahonar E, Slouf M, Khatami M, Naderifar M, Iravani S, Khatami S, Dehkordi FF. Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Sci Rep 2021; 11:23479. [PMID: 34873281 PMCID: PMC8648779 DOI: 10.1038/s41598-021-02937-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
In this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.
Collapse
Affiliation(s)
- Yan Cao
- School of Mechatronic Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Hayder A Dhahad
- Mechanical Engineering Department, University of Technology, Baghdad, Iraq
| | - M A El-Shorbagy
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Hajar Q Alijani
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mana Zakeri
- Department of Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41, Bratislava, Slovakia
| | - Ehsan Bahonar
- Faculty of Chemical and Petroleum Engineering, Sahand University of Technology, Tabriz, Iran
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| | - Mahin Naderifar
- Faculty of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Vasil'kov A, Batsalova T, Dzhambazov B, Naumkin A. XPS study of silver and copper nanoparticles demonstrated selective anticancer, proapoptotic, and antibacterial properties. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Vasil'kov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
21
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
22
|
Patra M, Banik M, Bandopadhyay P, Dutta D, Mukherjee R, Das S, Begum NA, Basu T. Nanonization of a chemically synthesized flavone HMDF (3-hydroxy-3',4'-methylenedioxyflavone) by entrapping within calcium phosphate nanoparticles and exploring its antioxidant role on neural cells in vitroand zebrafish in vivo. NANOTECHNOLOGY 2021; 32:235101. [PMID: 33724928 DOI: 10.1088/1361-6528/abe66f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The chemical synthesis of 3-hydroxy-3',4'-methylenedioxyflavone (HMDF) was reported to generate a modified flavone of potent antioxidant activity with significant neuropharmacological properties. In this study, HMDF was nanonized by entrapping within calcium phosphate nanoparticles (CPNPs). HMDF-CPNPs were of (i) size 25 nm, (ii) zeta potential (-) [22 ± 3] mV and (iii) entrapment efficiency 67%. HMDF-CPNPs, but not HMDF alone, inhibited thein vitroactivity of acetylcholinesterase enzymes to break down the major neurotransmitter compound acetylcholine. Moreover, nanonized HMDF had more antioxidant activity than bulk HMDF, as observed from its ability to protect mouse neural (N2A) cells from oxidative damage caused by H2O2exposure at the levels of cell viability, intracellular reactive oxygen species, mitochondrial membrane potential, cell cycle stages, nuclear integrity and neural connectivity. Anin vivostudy on zebrafish larvae (Denio rerio) also demonstrated that H2O2-mediated larval death was checked by HMDF-CPNP treatment. These results, therefore, suggest that HMDF-CPNPs may be developed as a potential antioxidant, particularly as a neuroprotectant.
Collapse
Affiliation(s)
- Mousumi Patra
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| | - Milon Banik
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| | - Sreeparna Das
- Department of Chemistry, Visva-Bharati (Central University), Santiniketan 731 235, India
| | - Naznin Ara Begum
- Department of Chemistry, Visva-Bharati (Central University), Santiniketan 731 235, India
| | - Tarakdas Basu
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani-741 235, West Bengal, India
| |
Collapse
|
23
|
Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A, Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm 2021; 597:120311. [PMID: 33539998 DOI: 10.1016/j.ijpharm.2021.120311] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
The skin is the primordial barrier that protects the human body against environmental factors. Due to the arise of dermatological pathologies, the development of efficient delivery systems for topical applications has received increased interest. The highest challenge consists of increasing the penetration of the active ingredients through the skin barrier, alongside to the need of obtaining enough skin retention to achieve therapeutic concentrations. Metals, specially noble metals, have been used for years to treat and prevent health issues, among them dermatological disorders. Nanoparticles have been extensively used for topical applications given their advantages, namely by enhancing solubility of apolar drugs, the possibility of controlled release, the higher stability and the capability to target specific areas and delivery of high concentrations of active ingredients. In order to take advantage of the before mentioned unique properties of nanoparticles and the biological activities of metals, various metal-based nanoparticles (MNPs) have been synthesized in the past few years, such as silver (AgNPs), gold (AuNPs), zinc (ZnNPs), zinc oxide (ZnONPs), copper (CuNPs) and copper oxide (CuONPs) nanoparticles. These MNPs are flexible structures that allow the control of physical characteristics, with enhanced surface properties, which provides a high applicability in dermopharmacy and cosmetics. The conventional methods for synthesizing nanoparticles (physical and chemical approaches) are associated with major drawbacks, being the most concerning the high cost (in resources, energy, time and space) and human/environmental toxicity. Hence, the need to develop an alternative synthesis pathway was imposed, giving rise to the green synthesis methodology. In general, green synthesis consist of using biological sources (plants, bacteria or fungi) to synthesize ecological benign, non-hazard and biocompatible nanoparticles. With the development of green synthesis, starting materials have been used more frequently, among them plants. Plant-mediated green synthesis of nanoparticles is based on the use of plant extracts to synthesize nanoparticles, and their outstanding advantages have paved the way for exciting developments on nanoparticle synthesis to the detriment of complex and toxicity-associated chemical and physical synthesis. MNPs produced by plant-mediated synthesis also demonstrate notorious biological activities, i.e., anticancer, antioxidant, anti-inflammatory, antimicrobial, wound healing and antiaging activities. However, safety assessment of phyto MNPs (phyto-MNPs) holds significant importance due to the lack of toxicological studies and the conception issues that some of the available studies show. In general, current studies suggest the biocompatibility and safety of phyto-MNPs, together with significantly improved and relevant biological activities towards dermopharmaceutical and cosmetic applications. Against this backdrop, there is still a long way to run until the application of phyto-MNPs in the medical, pharmaceutical and cosmetic fields, but studies so far show a very high potential towards their clinical translation for dermopharmaceutical and cosmetics applications. This review focuses on phyto-MNPs synthesized resorting to various plant extracts, including their production, characterization and the biological activities that support their topical application for dermopharmaceutical and cosmetic purposes.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Ana Margarida Herdade
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António Paranhos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Ezzatkhah F, Khalaf AK, Mahmoudvand H. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Biomed Pharmacother 2021; 136:111257. [PMID: 33450495 DOI: 10.1016/j.biopha.2021.111257] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Surgery remains the preferred treatment option for hydatid cyst (cystic echinococcosis); however, recent studies have demonstrated that the current protoscolicidal agents used during surgery are associated with some adverse side effects such as biliary fibrosis, hepatic necrosis, and cirrhosis. The present study aims to evaluate the in vitro and ex vivo anti-parasitic effects of copper nanoparticles (CuNPs) alone and combined with albendazole on hydatid cyst protoscoleces. METHODS CuNPs was green synthesized using C. spinosa extract. Various concentrations of CuNPs (250, 500, and 750 mg/mL) alone and combined with albendazole (ALZ, 200 mg/mL) were exposed to protoscoleces collected from the liver fertile hydatid cysts of infected sheep for 5-60 min in vitro and ex vivo. Next, the eosin exclusion test was applied to determine the viability of protoscoleces. Caspase-3 like activity of CuNPs-treated protoscoleces was then evaluated using the colorimetric protease assay Sigma Kit based on the manufacturer's instructions. RESULTS Scanning electron microscopy (SEM) results showed that the particle size of CuNPs was 17 and 41 nm with the maximum peak at the wavelength of 414 nm. The maximum protoscolicidal activity of CuNPs was observed at the concentration of 750 mg/mL in vitro, so that 73.3 % of protoscoleces were killed after 60 min of exposure. Meanwhile, the mortality of protoscoleces was 100 % after 10 min of exposure to 750 mg/mL of CuNPs along with ALZ (200 mg/mL). Nevertheless, the findings proved that CuNPs even in combination with ALZ required a longer time to kill protoscoleces ex vivo. After 48 h of treating protoscoleces, CuNPs in a dose-dependent manner and at doses of 250, 500, and 750 mg/mL induced the caspase enzyme activation by 20.5 %, 32.3 %, and 36.1 %, respectively. CONCLUSION The findings of the present investigation showed potent protoscolicidal effects of CuNPs, especially combined with albendazole, which entirely eliminated the parasite after 10-20 min of exposure. The results also showed that although the possible protoscolicidal mechanisms of CuNPs are not clearly understood, the inducing apoptosis through caspases is one of the main protoscolicidal mechanisms of CuNPs. However, supplementary studies, especially in animal models and clinical settings, are needed to approve these results.
Collapse
Affiliation(s)
- Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:E5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
26
|
Paul P, Karar M, Alam MN, Dutta D, Majumdar T, Mallick A. Circumstantial Overdose Management of an Efficient Cancer Cell Photosensitizer with Preclinical Evidence: A Biophysical Study. ACS APPLIED BIO MATERIALS 2020; 3:8049-8060. [PMID: 35019544 DOI: 10.1021/acsabm.0c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, pharmacological management of circumstantial overdose of an anticancer drug, Harmine (HM), under in vitro and in vivo conditions is described and further validated by employing in silico methods. HM, an efficient cancer cell photosensitizer, interacts extensively with nontoxic β-cyclodextrin (β-CD). Steady-state fluorescence studies and molecular docking analysis established differential nature of molecular inclusion depending on the relative concentrations of β-CD. Presently, β-CD is commonly used as a standard drug-delivery vehicle but its application for controlled drug withdrawal is rarely explored. Flow cytometric results and in vivo investigations on a zebrafish model showed that conditional overdose of preadministered drug molecules can be efficiently removed by encapsulating successfully within nontoxic β-CDs, albeit by controlled application of the same. This is an approach to manage the cytotoxicity of a drug in a safe way that is already administered. We believe that this β-CD-mediated withdrawal of drugs may find possible applications in controlled capturing of excess or unused drug inside living systems and reducing the unwanted toxicity associated with chemotherapeutics.
Collapse
Affiliation(s)
- Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata 700073 West Bengal, India
| | - Debanjan Dutta
- Department of MRDG, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713340, India
| |
Collapse
|
27
|
Garfami M, Jalali A, Salehzadeh A. A novel CuFe
2
O
4
@Ag nanocomposite biosynthesized by
Spirulina platensis
exhibits an anticancer effect on human gastric adenocarcinoma and Michigan Cancer Foundation‐7 breast cancer cell lines. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammad Garfami
- Department of Biology, Rasht Branch Islamic Azad University Rasht Iran
| | - Amir Jalali
- Department of Biology, Faculty of Sciences Arak University Arak Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch Islamic Azad University Rasht Iran
| |
Collapse
|
28
|
Jian Z, Guo H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Oxidative stress, apoptosis and inflammatory responses involved in copper-induced pulmonary toxicity in mice. Aging (Albany NY) 2020; 12:16867-16886. [PMID: 32952128 PMCID: PMC7521514 DOI: 10.18632/aging.103585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
At present, there are few studies focused on the relationship between copper (Cu) and oxidative stress, apoptosis, or inflammatory responses in animal and human lungs. This study was conducted to explore the effects of Cu on pulmonary oxidative stress, apoptosis and inflammatory responses in mice orally administered with 0 mg/kg (control), 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. The results showed that CuSO4 increased ROS production, and MDA, 8-OHdG and NO contents as well as iNOS activities and mRNA expression levels. Meanwhile, CuSO4 reduced the activities and mRNA expression levels of antioxidant enzymes (GSH-Px, CAT, and SOD) and GSH contents, and ASA and AHR abilities. Also, CuSO4 induced apoptosis, which was accompanied by decreasing Bcl-2, Bcl-xL mRNA expression levels and protein expression levels, and increasing Bax, Bak, cleaved-caspase-3, cleaved-caspase-9 mRNA, and protein expression levels, and Bax/Bcl-2 ratio. Concurrently, CuSO4 caused inflammation by increasing MPO activities and activating the NF-κB signalling pathway, and down-regulating the mRNA and protein expression levels of anti-inflammatory cytokines (IL-2, IL-4, IL-10). In conclusion, the abovementioned findings demonstrated that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, and inflammatory responses, which contribute to pulmonary lesions and dysfunction in mice.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China,Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan 625014, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| |
Collapse
|
29
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
30
|
|
31
|
Zhao H, Su H, Ahmeda A, Sun Y, Li Z, Zangeneh MM, Nowrozi M, Zangeneh A, Moradi R. Biosynthesis of copper nanoparticles using
Allium eriophyllum
Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound‐healing potentials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hongwei Zhao
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Haitao Su
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Ahmad Ahmeda
- College of Medicine, QU HealthQatar University Doha Qatar
| | - Yanqiu Sun
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Zongyu Li
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Masoumeh Nowrozi
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Rohallah Moradi
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
32
|
Hemmati S, Ahany Kamangar S, Ahmeda A, Zangeneh MM, Zangeneh A. Application of copper nanoparticles containing natural compounds in the treatment of bacterial and fungal diseases. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saba Hemmati
- Department of ChemistryPayame Noor University Tehran Iran
| | | | - Ahmad Ahmeda
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar University Doha Qatar
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
33
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
34
|
Joseph MM, Hari N, Pillai RK, Nair AJ, Therakathinal T S. Galactoxyloglucan Endowed Biogenic Nanoimmunobiotics Arrests Microbial Growth and Elicits Antitumor Immunity. ACS APPLIED BIO MATERIALS 2019; 3:801-814. [DOI: 10.1021/acsabm.9b00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manu M. Joseph
- Laboratory of Biopharmaceutics & Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| | - Neethu Hari
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Raveendran K. Pillai
- Clinical Laboratory Services, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| | | | - Sreelekha Therakathinal T
- Laboratory of Biopharmaceutics & Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| |
Collapse
|
35
|
Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 2019; 15:4-33. [PMID: 30160607 PMCID: PMC6287681 DOI: 10.1080/15548627.2018.1509171] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials have gained a rapid increase in use in a variety of applications that pertain to many aspects of human life. The majority of these innovations are centered on medical applications and a range of industrial and environmental uses ranging from electronics to environmental remediation. Despite the advantages of NPs, the knowledge of their toxicological behavior and their interactions with the cellular machinery that determines cell fate is extremely limited. This review is an attempt to summarize and increase our understanding of the mechanistic basis of nanomaterial interactions with the cellular machinery that governs cell fate and activity. We review the mechanisms of NP-induced necrosis, apoptosis and autophagy and potential implications of these pathways in nanomaterial-induced outcomes. Abbreviations: Ag, silver; CdTe, cadmium telluride; CNTs, carbon nanotubes; EC, endothelial cell; GFP, green fluorescent protein; GO, graphene oxide; GSH, glutathione; HUVECs, human umbilical vein endothelial cells; NP, nanoparticle; PEI, polyethylenimine; PVP, polyvinylpyrrolidone; QD, quantum dot; ROS, reactive oxygen species; SiO2, silicon dioxide; SPIONs, superparamagnetic iron oxide nanoparticles; SWCNT, single-walled carbon nanotubes; TiO2, titanium dioxide; USPION, ultra-small super paramagnetic iron oxide; ZnO, zinc oxide.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Deniz Özkan Vardar
- Sungurlu Vocational High School, Health Programs, Hitit University, Corum, Turkey
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salik Hussain
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, School of Medicine, Morgantown, WV, USA
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
38
|
Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol 2018; 144:2283-2302. [DOI: 10.1007/s00432-018-2726-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
|
39
|
Hu X, Ren C, Kang W, Mu L, Liu X, Li X, Wang T, Zhou Q. Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1332-1341. [PMID: 29898540 DOI: 10.1016/j.scitotenv.2018.01.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Much attention has been paid to extracting and isolating specific and well-known nanoparticles (especially for engineered nanomaterials) from complex environmental matrices. However, such research may not provide global information on actual contamination because nanoscale fragments exist as mixtures of various elements and matrices in the real environment. The present work first isolated and characterized nanoscale fragments in effluents from municipal wastewater treatment plants (WWTPs). The nanoscale fragments were found to be composed of 70-85% carbon and low amounts of oxygen, heavy metals and other elements and exhibited nanosheet topographies (approximately 0.87-1.31 nm thickness and 68-187 nm lateral length). Because the isolated nanoscale fragments were mixtures rather than one specific type of nanoparticle, they were present at high concentrations ranging from 0.07 to 0.55 mg/L. It was also found that the accumulation of nanoscale fragments in rice reached 0.59 mg/g under exposure to environmentally relevant concentrations, leading to marked phytotoxicity (e.g., ultrastructural damage to chloroplasts and mitochondria). Metabolic analysis revealed the toxicological mechanisms to be related to disorders of carbohydrate, amino acid and fatty acid metabolism. This study is the first to characterize the properties and analyze the toxicity of nanoscale fragments in the effluents of WWTPs. Given that WWTP effluents containing nanoscale fragments are continuously discharged to the soil, surface water and seas, nanoscale fragment materials deserve considerable attention in future work compared with the few widely studied engineered nanoparticles.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiaowei Liu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
40
|
Tai YW, Chiu YC, Wu PT, Yu J, Chin YC, Wu SP, Chuang YC, Hsieh HC, Lai PS, Yu HP, Liao MY. Degradable NIR-PTT Nanoagents with a Potential Cu@Cu 2O@Polymer Structure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5161-5174. [PMID: 29359551 DOI: 10.1021/acsami.7b15109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cu@Cu2O@PSMA polymer nanoparticles (Cu@Cu2O@polymer NPs) with near-infrared (NIR) absorption were successfully synthesized in a single-step oxidation reaction of Cu@PSMA polymer NPs at 100 °C for 20 min. The shape, structure, and optical properties of the Cu@Cu2O@polymer NPs were tailorable by controlling the reaction parameters, for example, using the initial Cu@PSMA polymer NP as a template and varying the halide ion content, heating temperature, and reaction time. The Cu@Cu2O@polymer NPs exhibited robust NIR absorption between 650 and 710 nm and possessed superior oxidation resistance in water and culture media. In vitro assays demonstrated the low cytotoxicity of the Cu@Cu2O@PSMA polymer NPs to HeLa cells through an improved cell viability, high IC50, low injury incidence from the supernatant of the partly dissociated Cu@Cu2O@PSMA polymer NPs, and minor generation of reactive oxygen species. More importantly, we demonstrated that the inorganic Cu-based nanocomposite [+0.34 V vs normal hydrogen electrode (NHE)] was degradable in an endogenous H2O2 (+1.78 V vs NHE) environment. Cu ions were detected in the urine of mice, which illustrates the possibility of extraction after the degradation of the Cu-based particles. 'After an treatment of the HeLa cells with the Cu@Cu2O@polymer NPs and a 660 nm light-emitting diode, the photoablation of 50 and 90% cells was observed at NP doses of 20 and 50 ppm, respectively. These results demonstrate that NIR-functional and moderate redox-active Cu@Cu2O@polymer NPs are potential next-generation photothermal therapy (PTT) nanoagents because of combined features of degradation resistance in the physiological environment, enabling the delivery of efficient PTT, a possibly improved ability to selectively harm cancer cells by releasing Cu ions under high-H2O2 and/or low-pH conditions, and ability to be extracted from the body after biodegradation.
Collapse
Affiliation(s)
- Yu-Wei Tai
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Zhongxiao Branch, Taipei City Hospital , Taipei 11556, Taiwan
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yu-Cheng Chin
- Department of Applied Chemistry, National Pingtung University , Pingtung 90003, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center , Hsinchu 300, Taiwan
| | - Ho-Chen Hsieh
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University , Taichung 402, Taiwan
| | - Hsiu-Ping Yu
- Department of Chemistry, National Chung Hsing University , Taichung 402, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University , Pingtung 90003, Taiwan
| |
Collapse
|
41
|
Affiliation(s)
- Ankush Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|