1
|
Le LTT, Pham NC, Trinh XT, Nguyen NG, Nguyen VL, Nam SY, Heo CY. Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. Tissue Eng Part A 2024; 30:447-459. [PMID: 38205627 DOI: 10.1089/ten.tea.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.
Collapse
Affiliation(s)
- Linh Thi Thuy Le
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngoc Chien Pham
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngan Giang Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
| | - Van Long Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
3
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
4
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Hsu MW, Chen SH, Tseng WL, Hung KS, Chung TC, Lin SC, Koo J, Hsueh YY. Physical processing for decellularized nerve xenograft in peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1217067. [PMID: 37324430 PMCID: PMC10267830 DOI: 10.3389/fbioe.2023.1217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
In severe or complex cases of peripheral nerve injuries, autologous nerve grafts are the gold standard yielding promising results, but limited availability and donor site morbidity are some of its disadvantages. Although biological or synthetic substitutes are commonly used, clinical outcomes are inconsistent. Biomimetic alternatives derived from allogenic or xenogenic sources offer an attractive off-the-shelf supply, and the key to successful peripheral nerve regeneration focuses on an effective decellularization process. In addition to chemical and enzymatic decellularization protocols, physical processes might offer identical efficiency. In this comprehensive minireview, we summarize recent advances in the physical methods for decellularized nerve xenograft, focusing on the effects of cellular debris clearance and stability of the native architecture of a xenograft. Furthermore, we compare and summarize the advantages and disadvantages, indicating the future challenges and opportunities in developing multidisciplinary processes for decellularized nerve xenograft.
Collapse
Affiliation(s)
- Ming-Wei Hsu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Kuo-Shu Hung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chun Chung
- Department of Orthopedic Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
García-García ÓD, El Soury M, Campos F, Sánchez-Porras D, Geuna S, Alaminos M, Gambarotta G, Chato-Astrain J, Raimondo S, Carriel V. Comprehensive ex vivo and in vivo preclinical evaluation of novel chemo enzymatic decellularized peripheral nerve allografts. Front Bioeng Biotechnol 2023; 11:1162684. [PMID: 37082209 PMCID: PMC10111265 DOI: 10.3389/fbioe.2023.1162684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
As a reliable alternative to autografts, decellularized peripheral nerve allografts (DPNAs) should mimic the complex microstructure of native nerves and be immunogenically compatible. Nevertheless, there is a current lack of decellularization methods able to remove peripheral nerve cells without significantly altering the nerve extracellular matrix (ECM). The aims of this study are firstly to characterize ex vivo, in a histological, biochemical, biomechanical and ultrastructural way, three novel chemical-enzymatic decellularization protocols (P1, P2 and P3) in rat sciatic nerves and compared with the Sondell classic decellularization method and then, to select the most promising DPNAs to be tested in vivo. All the DPNAs generated present an efficient removal of the cellular material and myelin, while preserving the laminin and collagen network of the ECM (except P3) and were free from any significant alterations in the biomechanical parameters and biocompatibility properties. Then, P1 and P2 were selected to evaluate their regenerative effectivity and were compared with Sondell and autograft techniques in an in vivo model of sciatic defect with a 10-mm gap, after 15 weeks of follow-up. All study groups showed a partial motor and sensory recovery that were in correlation with the histological, histomorphometrical and ultrastructural analyses of nerve regeneration, being P2 the protocol showing the most similar results to the autograft control group.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Marwa El Soury
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Jesús Chato-Astrain, ; Víctor Carriel,
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Jesús Chato-Astrain, ; Víctor Carriel,
| |
Collapse
|
7
|
Yan L, Entezari A, Zhang Z, Zhong J, Liang J, Li Q, Qi J. An experimental and numerical study of the microstructural and biomechanical properties of human peripheral nerve endoneurium for the design of tissue scaffolds. Front Bioeng Biotechnol 2022; 10:1029416. [PMID: 36545684 PMCID: PMC9762494 DOI: 10.3389/fbioe.2022.1029416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Biomimetic design of scaffold architectures represents a promising strategy to enable the repair of tissue defects. Natural endoneurium extracellular matrix (eECM) exhibits a sophisticated microstructure and remarkable microenvironments conducive for guiding neurite regeneration. Therefore, the analysis of eECM is helpful to the design of bionic scaffold. Unfortunately, a fundamental lack of understanding of the microstructural characteristics and biomechanical properties of the human peripheral nerve eECM exists. In this study, we used microscopic computed tomography (micro-CT) to reconstruct a three-dimensional (3D) eECM model sourced from mixed nerves. The tensile strength and effective modulus of human fresh nerve fascicles were characterized experimentally. Permeability was calculated from a computational fluid dynamic (CFD) simulation of the 3D eECM model. Fluid flow of acellular nerve fascicles was tested experimentally to validate the permeability results obtained from CFD simulations. The key microstructural parameters, such as porosity is 35.5 ± 1.7%, tortuosity in endoneurium (X axis is 1.26 ± 0.028, Y axis is 1.26 ± 0.020 and Z axis is 1.17 ± 0.03, respectively), tortuosity in pore (X axis is 1.50 ± 0.09, Y axis is 1.44 ± 0.06 and Z axis is 1.13 ± 0.04, respectively), surface area-to-volume ratio (SAVR) is 0.165 ± 0.007 μm-1 and pore size is 11.8 ± 2.8 μm, respectively. These were characterized from the 3D eECM model and may exert different effects on the stiffness and permeability. The 3D microstructure of natural peripheral nerve eECM exhibits relatively lower permeability (3.10 m2 × 10-12 m2) than other soft tissues. These key microstructural and biomechanical parameters may play an important role in the design and fabrication of intraluminal guidance scaffolds to replace natural eECM. Our findings can aid the development of regenerative therapies and help improve scaffold design.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, Australia,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Jing Liang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia,*Correspondence: Jian Qi, ; Qing Li,
| | - Jian Qi
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China,Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou, China,*Correspondence: Jian Qi, ; Qing Li,
| |
Collapse
|
8
|
Yu T, Ao Q, Ao T, Ahmad MA, Wang A, Xu Y, Zhang Z, Zhou Q. Preparation and assessment of an optimized multichannel acellular nerve allograft for peripheral nerve regeneration. Bioeng Transl Med 2022. [DOI: 10.1002/btm2.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tianhao Yu
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qiang Ao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education China Medical University Shenyang China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Tianrang Ao
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | | | - Aijun Wang
- Department of Neurological Surgery University of California Davis Sacramento California USA
| | - Yingxi Xu
- Department of Clinical Nutrition Shengjing Hospital of China Medical University Shenyang China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| |
Collapse
|
9
|
Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022; 283:121436. [DOI: 10.1016/j.biomaterials.2022.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
|
11
|
Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2021; 10:73. [PMID: 35052753 PMCID: PMC8773001 DOI: 10.3390/biomedicines10010073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK;
| | - Pariya Zare
- Department of Chemical Engineering, University of Tehran, Tehran 1417935840, Iran;
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| | - Zohreh Bagher
- ENT and Head and Neck Research Centre, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran 16844, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, UK
| |
Collapse
|
12
|
Suss PH, Ribeiro VST, Motooka CE, de Melo LC, Tuon FF. Comparative study of decellularization techniques to obtain natural extracellular matrix scaffolds of human peripheral-nerve allografts. Cell Tissue Bank 2021; 23:511-520. [PMID: 34767141 DOI: 10.1007/s10561-021-09977-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND We hypothesize that adding sonication cycles to the process of decellularization of cadaveric human peripheral nerves will increase the removal of cell debris and myelin sheath, increasing their utility as allografts. METHODS Our aim of this study was to develop a decellularization protocol that allows the removal of cells and myelin sheath without detrimental effects on nerve architecture. Segments of ulnar and median nerves from human donors, isolated both before and after cardiac arrest, were subjected to two methods of decellularization: two-detergent-based (M1) and the same method with sonication added (M2). We evaluated the histology of unprocessed and decellularized nerves (n = 24 per group) for general morphology, presence of cell nuclei, nuclear remnants, collagen fibers, and myelin. We performed immunohistochemistry to verify the removal of Schwann cells associated with histomorphometry. We used scanning electron microscopy (EM) to evaluate the ultrastructure of both native and decellularized nerves. The efficacy of decellularization was assessed by analysis of genomic DNA. RESULTS Histology confirmed that both decellularization protocols were adequate and maintained natural nerve architecture. Scanning EM showed that 3D ultrastructural architecture also was maintained. Histomorphometric parameters showed a more complete removal of the myelin with the M2 protocol than with M1 (p = 0.009). Fiber diameter and density were not modified by decellularization methods. CONCLUSIONS Sonication can be a complementary method to decellularization of peripheral nerve allografts with sonication increasing the effectiveness of detergent-based protocols for the removal of unwanted cellular components from peripheral nerve allografts.
Collapse
Affiliation(s)
- Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Carlos Eduardo Motooka
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Letícia Corso de Melo
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
13
|
Sánchez-Porras D, Caro-Magdaleno M, González-Gallardo C, García-García ÓD, Garzón I, Carriel V, Campos F, Alaminos M. Generation of a Biomimetic Substitute of the Corneal Limbus Using Decellularized Scaffolds. Pharmaceutics 2021; 13:1718. [PMID: 34684011 PMCID: PMC8541096 DOI: 10.3390/pharmaceutics13101718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization. However, the method that best preserved the transparency and composition of the limbus extracellular matrix was the use of 0.1% SDS applied to the half-thickness limbus. Recellularization with the limbal epithelial cell line SIRC and human adipose-derived mesenchymal stem cells (hADSCs) was able to generate a stratified epithelium able to express the limbal markers p63, pancytokeratin, and crystallin Z from day 7 in the case of SIRC and after 14-21 days of induction when hADSCs were used. Laminin and collagen IV expression was detected at the basal lamina of both cell types at days 14 and 21 of follow-up. Compared with control native limbi, tissues recellularized with SIRC showed adequate picrosirius red and alcian blue staining intensity, whereas limbi containing hADSCs showed normal collagen staining intensity. These preliminary results suggested that the limbal substitutes generated in this work share important similarities with the native limbus and could be potentially useful in the future.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Manuel Caro-Magdaleno
- Division of Ophthalmology, University Hospital Virgen Macarena, Universidad de Sevilla, E41009 Seville, Spain;
| | | | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
- Doctoral Programme in Biomedicine, Escuela Internacional de Posgrado, Universidad de Granada, E18071 Granada, Spain
| | - Ingrid Garzón
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| |
Collapse
|
14
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
15
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
16
|
Lupon E, Lellouch AG, Acun A, Andrews AR, Oganesyan R, Goutard M, Taveau CB, Lantieri LA, Cetrulo CL, Uygun BE. Engineering Vascularized Composite Allografts Using Natural Scaffolds: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:677-693. [PMID: 34238047 DOI: 10.1089/ten.teb.2021.0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Vascularized Composite Allotransplantation refers to the transplantation of multiple tissues as a functional unit from a deceased donor to a recipient with a severe injury. These grafts serve as potential replacements for traumatic tissue losses. The main problems are the consequences of the long immunosuppressive drugs medications and the lake of compatible donor. To avoid these limitations, decellularization/recellularization constitute an attractive approach. The aim of decellularization/recellularization technology is to develop immunogenic free biological substitutes that will restore, maintain, or improve tissue and organ's function. METHODS A PubMed search was performed for articles on decellularization and recellularization of composite tissue allografts between March and February 2021, with no restrictions in publication year. The selected reports were evaluated in terms of decellularization protocols, assessment of decellularized grafts, and evaluation of their biocompatibility and repopulation with cells both in vitro and in vivo. RESULTS The search resulted in a total of 88 articles. Each article was reviewed, 77 were excluded and the remaining 11 articles reported decellularization of 12 different vascular composite allografts in humans (four), large animals (three), and small animals (rodents) (five). The decellularization protocol for vascularized composite allotransplantation varies slightly between studies, but majority of the reports employ 1% sodium dodecyl sulfate as the main reagent for decellularization. The immunological response of the decellularized scaffolds remains poorly evaluated. Few authors have been able to attempt the recellularization and transplantation of these scaffolds. Successful transplantation seems to require prior recellularization. CONCLUSION Decellularization/recellularization is a promising, growing, emerging developing research field in vascular composite allotransplantation.
Collapse
Affiliation(s)
- Elise Lupon
- University Toulouse III Paul Sabatier, Department of Plastic Surgery, Toulouse, Occitanie, France.,Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Alexandre G Lellouch
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Aylin Acun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Alec R Andrews
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Ruben Oganesyan
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Marion Goutard
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Corentin B Taveau
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Laurent A Lantieri
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Curtis L Cetrulo
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Basak E Uygun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| |
Collapse
|
17
|
Chuang MH, Ho LH, Kuo TF, Sheu SY, Liu YH, Lin PC, Tsai YC, Yang CH, Chu CM, Lin SZ. Regenerative Potential of Platelet-Rich Fibrin Releasate Combined with Adipose Tissue-Derived Stem Cells in a Rat Sciatic Nerve Injury Model. Cell Transplant 2021; 29:963689720919438. [PMID: 32538130 PMCID: PMC7586258 DOI: 10.1177/0963689720919438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sciatic nerve injuries, not uncommon in trauma with a limited degree of functional recovery, are considered a persistent clinical, social, and economic problem worldwide. Accumulating evidence suggests that stem cells can promote the tissue regeneration through various mechanisms. The aim of the present study was to investigate the role of adipose tissue–derived stem cells (ADSCs) and combine with platelet-rich fibrin releasate (PRFr) in the regeneration of sciatic nerve injury in rats. Twenty-four Sprague-Dawley rats were randomly assigned to four groups, a blade was used to transect the left hindlimb sciatic nerve, and silicon tubes containing one of the following (by injection) were used to bridge the nerve proximal and distal ends (10-mm gap): group 1: untreated controls; group 2: PRFr alone; group 3: ADSCs alone; group 4: PRFr + ADSCs-treated. Walking function was assessed in horizontal rung ladder apparatus to compare the demands of the tasks and test sensitivity at 1-mo interval for a total of 3 mo. The gross inspection and histological examination was performed at 3 mo post transplantation. Overall, PRFr + ADSCs-treated performed better compared with PRFr or ADSCs injections alone. Significant group differences of neurological function were observed in ladder rung walking tests in all treated groups compared to that of untreated controls (P < 0.05). This injection approach may provide a successfully employed technique to target sciatic nerve defects in vivo, and the combined strategy of ADSCs with PRFr appears to have a superior effect on nerve repair.
Collapse
Affiliation(s)
- Ming-Hsi Chuang
- Ph.D. Program of Technology Management, Chung Hwa University, Hsinchu, Taiwan
| | - Li-Hsing Ho
- Department of Technology Management, Chung Hwa University, Hsinchu, Taiwan
| | - Tzong-Fu Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
- Tzong-Fu Kuo, Department of Post-Baccalaureate Veterinary Medicine, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan. Li-Hsing Ho, Department of Technology Management, Chung Hwa University, 707, Sec.2, WuFu Rd., Hsinchu 30012, Taiwan. Emails: ;
| | - Shi-Yuan Sheu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hao Liu
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Dental Anatomy Division, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Huan Yang
- Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Big Data Research Center, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
18
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Comparison of Decellularization Protocols to Generate Peripheral Nerve Grafts: A Study on Rat Sciatic Nerves. Int J Mol Sci 2021; 22:ijms22052389. [PMID: 33673602 PMCID: PMC7957587 DOI: 10.3390/ijms22052389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
In critical nerve gap repair, decellularized nerve allografts are considered a promising tissue engineering strategy that can provide superior regeneration results compared to nerve conduits. Decellularized nerves offer a well-conserved extracellular matrix component that has proven to play an important role in supporting axonal guiding and peripheral nerve regeneration. Up to now, the known decellularized techniques are time and effort consuming. The present study, performed on rat sciatic nerves, aims at investigating a novel nerve decellularization protocol able to combine an effective decellularization in short time with a good preservation of the extracellular matrix component. To do this, a decellularization protocol proven to be efficient for tendons (DN-P1) was compared with a decellularization protocol specifically developed for nerves (DN-P2). The outcomes of both the decellularization protocols were assessed by a series of in vitro evaluations, including qualitative and quantitative histological and immunohistochemical analyses, DNA quantification, SEM and TEM ultrastructural analyses, mechanical testing, and viability assay. The overall results showed that DN-P1 could provide promising results if tested in vivo, as the in vitro characterization demonstrated that DN-P1 conserved a better ultrastructure and ECM components compared to DN-P2. Most importantly, DN-P1 was shown to be highly biocompatible, supporting a greater number of viable metabolically active cells.
Collapse
|
20
|
Choi SJ, Park SY, Shin YH, Heo SH, Kim KH, Lee HI, Kim JK. Mesenchymal Stem Cells Derived from Wharton's Jelly Can Differentiate into Schwann Cell-Like Cells and Promote Peripheral Nerve Regeneration in Acellular Nerve Grafts. Tissue Eng Regen Med 2021; 18:467-478. [PMID: 33515168 DOI: 10.1007/s13770-020-00329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) secrete neurotrophic factors and provide structural support and guidance during axonal regeneration. However, nearby nerves may be damaged to obtain primary SCs, and there is a lack of nervous tissue donors. We investigated the potential of Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) in differentiating into Schwann cell-like cells (WJ-SCLCs) as an alternative to SCs. We also examined whether implantation of WJ-SCLCs-laden acellular nerve grafts (ANGs) are effective in inducing functional recovery and nerve regeneration in an animal model of peripheral nerve injury. METHODS The differentiation of WJ-MSCs into WJ-SCLCs was determined by analyzing SC-specific markers. The secretion of neurotrophic factors was assessed by the Neuro Discovery antibody array. Neurite outgrowth and myelination of axons were found in a co-culture system involving motor neuron cell lines. The effects of ANGs on repairing sciatic nerves were evaluated using video gait angle test, isometric tetanic force analysis, and toluidine blue staining. RESULTS Compared with undifferentiated WJ-MSCs, WJ-SCLCs showed higher expression levels of SC-specific markers such as S100β, GFAP, KROX20, and NGFR. WJ-SCLCs also showed higher secreted amounts of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and granulocyte-colony stimulating factor than did WJ-MSCs. WJ-SCLCs effectively promoted the outgrowth and myelination of neurites in motor neuron cells, and WJ-SCLCs laden ANGs significantly facilitated peripheral nerve regeneration in an animal model of sciatic nerve injury. CONCLUSION WJ-MSCs were readily differentiated into WJ-SCLCs, which effectively promoted the regeneration of peripheral nerves. Transplantation of WJ-SCLCs with ANGs might be useful for assisting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Soon Jin Choi
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea
| | - Suk Young Park
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seung-Ho Heo
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Kang-Hyun Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Hyo In Lee
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Jae Kwang Kim
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea. .,Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
21
|
Effective decellularization of human nerve matrix for regenerative medicine with a novel protocol. Cell Tissue Res 2021; 384:167-177. [PMID: 33471198 DOI: 10.1007/s00441-020-03317-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Injuries to the peripheral nerves represent a frequent cause of permanent disability in adults. The repair of large nerve lesions involves the use of autografts, but they have several inherent limitations. Overcoming these limitations, the use of decellularized nerve matrix has emerged as a promising treatment in tissue regenerative medicine. Here, we generate longer human decellularized nerve segments with a novel decellularization method, using nonionic, zwitterionic, and enzymatic incubations. Efficiency of decellularization was measured by DNA quantification and cell remnant analysis (myelin, S100, neurofilament). The evaluation of the extracellular matrix (collagen, laminin, and glycosaminoglycans) preservation was carried out by enzyme-linked immunosorbent assay (ELISA) or biochemical methods, along with histological and immunofluorescence analysis. Moreover, biomechanical properties and cytocompatibility were tested. Results showed that the decellularized nerves generated with this protocol have a concentration of DNA below the threshold of 50 ng/mg of dry tissue. Furthermore, myelin, S100, and MHCII proteins were absent, although some neurofilament remnants could be observed. Moreover, extracellular matrix proteins were well maintained, as well as the biomechanical properties, and the decellularized nerve matrix did not generate cytotoxicity. These results show that our method is effective for the generation of decellularized human nerve grafts. The generation of longer decellularized nerve segments would allow the understanding of the regenerative neurobiology after nerve injuries in both clinical assays and bigger animal models. Effective decellularization of human nerve matrix for regenerative medicine with a novel protocol. Combination of zwitterionic, non-ionic detergents, hyperosmotic solution and nuclease enzyme treatment remove cell remnants, maintain collagen, laminin and biomechanics without generating cytotoxic leachables.
Collapse
|
22
|
García-García ÓD, El Soury M, González-Quevedo D, Sánchez-Porras D, Chato-Astrain J, Campos F, Carriel V. Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves. Int J Mol Sci 2021; 22:ijms22020674. [PMID: 33445493 PMCID: PMC7826762 DOI: 10.3390/ijms22020674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Marwa El Soury
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Orbassano, Italy
| | - David González-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| |
Collapse
|
23
|
Bae JY, Park SY, Shin YH, Choi SW, Kim JK. Preparation of human decellularized peripheral nerve allograft using amphoteric detergent and nuclease. Neural Regen Res 2021; 16:1890-1896. [PMID: 33510098 PMCID: PMC8328754 DOI: 10.4103/1673-5374.306091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal studies have shown that amphoteric detergent and nuclease (DNase I and ribonuclease A) is the most reliable decellularization method of the peripheral nerve. However, the optimal combination of chemical reagents for decellularization of human nerve allograft needs further investigation. To find the optimal protocol to remove the immunogenic cellular components of the nerve tissue and preserve the basal lamina and extracellular matrix and whether the optimal protocol can be applied to larger-diameter human peripheral nerves, in this study, we decellularized the median and sural nerves from the cadavers with two different methods: nonionic and anionic detergents (Triton X-100 and sodium deoxycholate) and amphoteric detergent and nuclease (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), deoxyribonuclease I, and ribonuclease A). All cellular components were successfully removed from the median and sural nerves by amphoteric detergent and nuclease. Not all cellular components were removed from the median nerve by nonionic and anionic detergent. Both median and sural nerves treated with amphoteric detergent and nuclease maintained a completely intact extracellular matrix. Treatment with nonionic and anionic detergent decreased collagen content in both median and sural nerves, while the amphoteric detergent and nuclease treatment did not reduce collagen content. In addition, a contact cytotoxicity assay revealed that the nerves decellularized by amphoteric detergent and nuclease was biocompatible. Strength failure testing demonstrated that the biomechanical properties of nerves decellularized with amphoteric detergent and nuclease were comparable to those of fresh controls. Decellularization with amphoteric detergent and nuclease better remove cellular components and better preserve extracellular matrix than decellularization with nonionic and anionic detergents, even in large-diameter human peripheral nerves. In Korea, cadaveric studies are not yet legally subject to Institutional Review Board review.
Collapse
Affiliation(s)
- Joo-Yul Bae
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung-si, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Shin Woo Choi
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung-si, Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
24
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020; 115:235-249. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Acellular nerve allografts are promising alternatives to autologous nerve grafts, but still have many drawbacks which greatly limit their curative effects. Here, we developed an optimized acellular nerve allograft with multiple axial channels by a modified decellularization method. These allografts were confirmed to preserve more extracellular matrix components and factors, and remove cellular components effectively. Meanwhile, macrochannels and microchannels were introduced to optimize internal microstructure of allografts, which increases porosity and water absorption, without significant loss of mechanical strength. The in vitro experiments demonstrated that the multichannel allografts showed superior ability of facilitating proliferation and penetration of Schwann cells. Additionally, in the in vivo experiments, the multichannel allografts were used to bridge 10 mm rat sciatic nerve defects. They exhibited better capacity to guide regenerative nerve fibers through the defective segment and restore innervation of target organs, thus achieving better recovery of muscle and motor function, in comparison with conventional acellular allografts. These findings indicate that this multichannel acellular nerve allograft has great potential for clinical application and provides a new prospective for future investigations of nerve regeneration. STATEMENT OF SIGNIFICANCE: Acellular nerve allografts, with preservation of natural extracellular matrix, are officially approved to repair peripheral nerve injury in some countries. However, bioactive component loss and compact internal structure result in variable clinical effects of conventional acellular allografts. In the present study, we fabricated an optimized acellular nerve allograft with multiple axial channels, which could both enable decellularization to be easily accomplished and reduce the amount of detergents in the preparation process. Characterization of the multichannel acellular allografts was confirmed to have better preservation of ECM bioactive molecules and regenerative factors. Efficiency evaluation showed the multichannel allografts could facilitate Schwann cells to migrate inside them in vitro, and enhance regrowth and myelination of axons as well as recovery of muscle and motor function in vivo.
Collapse
|
26
|
Choudhury D, Yee M, Sheng ZLJ, Amirul A, Naing MW. Decellularization systems and devices: State-of-the-art. Acta Biomater 2020; 115:51-59. [PMID: 32771593 DOI: 10.1016/j.actbio.2020.07.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) is a natural biomaterial scaffold that provides biochemical and structural support to its surrounding cells, forming tissue and respective organs. These ECM proteins can be extracted from organs and tissues through decellularization, which is the process of removing cellular content and nuclear material from the organs to obtain decellularized ECM (dECM). dECM is a versatile and functional biomaterial that can be used as the base component of bioinks for rebuilding tissue and organs. Intact dECM of whole organs can be used as a scaffold for recellularization with human stem cells to produce a functioning organ. As decellularization is a relatively new lab process, the associated technologies and devices are largely non-standardized and only available in small, lab-specific scales. Additionally, there is a lack of standardized protocols to analyze the quality and consistency of harvested dECM for medical applications. This review discusses the relevant decellularization systems and devices currently available to facilitate further development of this process for larger scales with the intention to commercialize dECM materials. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) is a natural cocktail of biomaterials that provides biochemical and structural support to its surrounding cells. ECM proteins are extracted from organs and tissues through decellularization. Being a versatile and functional biomaterial, decellularized extracellular matrix (dECM) is being used as base component of bioinks/hydrogels for rebuilding of tissue and organ constructs. Decellularization is a relatively new lab process with associated technologies/devices being largely non-standardized and only available in lab-specific scales. We discuss categories of decellularization systems and devices for the first time being used in academic and commercial settings. We highlight inherent challenges with the current systems and suggest possible solutions. We comment on further development of these processes for large-scale and commercial applications of dECM.
Collapse
Affiliation(s)
- Deepak Choudhury
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore.
| | - Marcus Yee
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore
| | - Zach Lee Jia Sheng
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| | - Ahmad Amirul
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| | - May Win Naing
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| |
Collapse
|
27
|
Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020; 9:cells9092131. [PMID: 32962230 PMCID: PMC7563640 DOI: 10.3390/cells9092131] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries result in the loss of the motor, sensory and autonomic functions of the denervated segments of the body. Neurons can regenerate after peripheral axotomy, but inaccuracy in reinnervation causes a permanent loss of function that impairs complete recovery. Thus, understanding how regenerating axons respond to their environment and direct their growth is essential to improve the functional outcome of patients with nerve lesions. Schwann cells (SCs) play a crucial role in the regeneration process, but little is known about their contribution to specific reinnervation. Here, we review the mechanisms by which SCs can differentially influence the regeneration of motor and sensory axons. Mature SCs express modality-specific phenotypes that have been associated with the promotion of selective regeneration. These include molecular markers, such as L2/HNK-1 carbohydrate, which is differentially expressed in motor and sensory SCs, or the neurotrophic profile after denervation, which differs remarkably between SC modalities. Other important factors include several molecules implicated in axon-SC interaction. This cell–cell communication through adhesion (e.g., polysialic acid) and inhibitory molecules (e.g., MAG) contributes to guiding growing axons to their targets. As many of these factors can be modulated, further research will allow the design of new strategies to improve functional recovery after peripheral nerve injuries.
Collapse
|
28
|
Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020; 21:ijms21165792. [PMID: 32806758 PMCID: PMC7461058 DOI: 10.3390/ijms21165792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system controls the functions of sensation, movement and motor coordination of the body. Peripheral nerves can get damaged easily by trauma or neurodegenerative diseases. The injury can cause a devastating effect on the affected individual and his aides. Treatment modalities include anti-inflammatory medications, physiotherapy, surgery, nerve grafting and rehabilitation. 3D bioprinted peripheral nerve conduits serve as nerve grafts to fill the gaps of severed nerve bodies. The application of induced pluripotent stem cells, its derivatives and bioprinting are important techniques that come in handy while making living peripheral nerve conduits. The design of nerve conduits and bioprinting require comprehensive information on neural architecture, type of injury, neural supporting cells, scaffold materials to use, neural growth factors to add and to streamline the mechanical properties of the conduit. This paper gives a perspective on the factors to consider while bioprinting the peripheral nerve conduits.
Collapse
|
29
|
Ji W, Hou B, Tang H, Cai M, Zheng W. Investigation of the effects of laminin present in the basal lamina of the peripheral nervous system on axon regeneration and remyelination using the nerve acellular scaffold. J Biomed Mater Res A 2020; 108:1673-1687. [PMID: 32196907 DOI: 10.1002/jbm.a.36933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the effects of laminin (LN) located in the basal lamina, which are important components of the peripheral nervous system-extracellular matrix, on axon regeneration and remyelination. Nerve acellular scaffolds (NASs) (S-untreated) were prepared using the acellular technique. The active component LN in the NASs was blocked (S-LN- ) or upregulated (S-LN+ ); S-LN+ contained seven times more LN than did the S-untreated group. The adhesion capacity of Schwann cells (SCs) to the three types of NAS (S-untreated, S-LN- , and S-LN+ ) was assessed in vitro. Our results showed that the adhesion of SCs to the NASs was significantly reduced in the S-LN- group, whereas no difference was observed between the S-LN+ and S-untreated groups. The pretreated NASs were used to repair nerves in a nerve injury mouse model with the animals divided into four groups (S-LN- group, S-untreated group, S-LN+ group, and autograft group). Two weeks after surgery, although there was no difference in the S-LN- group, S-untreated group and S-LN+ group, the newly formed basal lamina in the S-LN- group were significantly lower than those in the other two groups. Four weeks after surgery, the S-LN+ group had higher numbers of newly generated axons and their calibers, more myelinated fibers, thicker myelin sheaths, increased myelin basic protein expression, and improved recovery of neural function compared to those of the S-LN- and S-untreated groups, but all of these parameters were significantly worse than those of the autograft group. Downregulation of the LN level in the NAS leads to a reduction in all of the above parameters.
Collapse
Affiliation(s)
- Wanqing Ji
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bo Hou
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhan Zheng
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Badileanu A, Mora-Navarro C, Gracioso Martins AM, Garcia ME, Sze D, Ozpinar EW, Gaffney L, Enders JR, Branski RC, Freytes DO. Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues. ACS Biomater Sci Eng 2020; 6:4200-4213. [PMID: 33463339 DOI: 10.1021/acsbiomaterials.0c00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.
Collapse
Affiliation(s)
- Andreea Badileanu
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Camilo Mora-Navarro
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mario E Garcia
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Daphne Sze
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily W Ozpinar
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States.,The Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ryan C Branski
- Departments of Rehabilitation Medicine, Otolaryngology-Head and Neck Surgery, and Pathology, New York University Grossman School of Medicine, New York, New York 10003, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
31
|
Chato-Astrain J, Philips C, Campos F, Durand-Herrera D, García-García OD, Roosens A, Alaminos M, Campos A, Carriel V. Detergent-based decellularized peripheral nerve allografts: An in vivo preclinical study in the rat sciatic nerve injury model. J Tissue Eng Regen Med 2020; 14:789-806. [PMID: 32293801 DOI: 10.1002/term.3043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 02/15/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
Nerve autograft is the gold standard technique to repair critical nerve defects, but efficient alternatives are needed. The present study evaluated the suitability of our novel Roosens-based (RSN) decellularized peripheral nerve allografts (DPNAs) in the repair of 10-mm sciatic nerve defect in rats at the functional and histological levels after 12 weeks. These DPNAs were compared with the autograft technique (AUTO) and Sondell (SD) or Hudson (HD) based DPNAs. Clinical and functional assessments demonstrated a partial regeneration in all operated animals. RSN-based DPNAs results were comparable with SD and HD groups and closely comparable with the AUTO group without significant differences (p > .05). Overall hematological studies confirmed the biocompatibility of grafted DPNAs. In addition, biochemistry revealed some signs of muscle affection in all operated animals. These results were confirmed by the loss of weight and volume of the muscle and by muscle histology, especially in DPNAs. Histology of repaired nerves confirmed an active nerve tissue regeneration and partial myelination along with the implanted grafts, being the results obtained with HD and RSN-based DPNAs comparable with the AUTO group. Finally, this in vivo study suggests that our novel RSN-based DPNAs supported a comparable tissue regeneration, along the 10-mm nerve gap, after 12-week follow-up to HD DPNAs, and both were superior to SD group and closely comparable with autograft technique. However, further improvements are needed to overcome the efficacy of the nerve autograft technique.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Doctoral program in Biomedicine, University of Granada, Granada, Spain
| | - Charlot Philips
- Tissue Engineering Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Oscar D García-García
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - Annelies Roosens
- School of Technology, Chemistry, Odisee University College, Ghent, Belgium
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
32
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2019; 171:41-61. [PMID: 31398392 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
33
|
Shin YH, Park SY, Kim JK. Comparison of systematically combined detergent and nuclease-based decellularization methods for acellular nerve graft: An ex vivo characterization and in vivo evaluation. J Tissue Eng Regen Med 2019; 13:1241-1252. [PMID: 31050871 DOI: 10.1002/term.2874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Little consensus exists regarding which decellularization technique best removes the cellular components while maintaining structural integrity. We aimed to identify the most efficient and safest decellularization method by combining previously established chemical (detergent based) and biological (nuclease based) methods in a systematic manner. Sixty sciatic nerves were harvested from Sprague-Dawley rats and prepared in 120 nerve fragments with 1-cm length. Nerve fragments were randomly divided into six groups and decellularized with six different methods: A, nonionic detergent + amphoteric detergent; B, nonionic detergent + anionic detergent; C, anionic detergent + amphoteric detergent; D, nonionic detergent + nuclease; E, amphoteric detergent + nuclease; and F, anionic detergent + nuclease. The remaining cellular components were evaluated with H&E, DAPI, and S-100 immunohistochemical staining, and DNA content was measured in each sample. The remaining extracellular matrix (ECM) integrity was evaluated with H&E, Masson's trichrome, periodic acid-Schiff, Luxol fast blue, and laminin immunohistochemical staining, and collagen content was measured in each sample. The amphoteric detergent + nuclease method was the best protocol for both cell removal and ECM preservation. In the in vivo study, the nerve allograft that was decellularized with amphoteric detergent + nuclease showed an inferior recovery rate based on the tibialis anterior muscle weight to autograft, but considerable recovery was observed. In conclusion, among the possible systematic combinations of detergent- and nuclease-based methods, the combination of amphoteric detergent and nuclease is currently the most suitable for nerve decellularization in terms of adequate cell removal and sufficient preservation of the ECM.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 2018; 25:90. [PMID: 30572957 PMCID: PMC6300901 DOI: 10.1186/s12929-018-0491-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nervous system is a crucial component of the body and damages to this system, either by of injury or disease, can result in serious or potentially lethal consequences. Restoring the damaged nervous system is a great challenge due to the complex physiology system and limited regenerative capacity.Polymers, either synthetic or natural in origin, have been extensively evaluated as a solution for restoring functions in damaged neural tissues. Polymers offer a wide range of versatility, in particular regarding shape and mechanical characteristics, and their biocompatibility is unmatched by other biomaterials, such as metals and ceramics. Several studies have shown that polymers can be shaped into suitable support structures, including nerve conduits, scaffolds, and electrospun matrices, capable of improving the regeneration of damaged neural tissues. In general, natural polymers offer the advantage of better biocompatibility and bioactivity, while synthetic or non-natural polymers have better mechanical properties and structural stability. Often, combinations of the two allow for the development of polymeric conduits able to mimic the native physiological environment of healthy neural tissues and, consequently, regulate cell behaviour and support the regeneration of injured nervous tissues.Currently, most of neural tissue engineering applications are in pre-clinical study, in particular for use in the central nervous system, however collagen polymer conduits aimed at regeneration of peripheral nerves have already been successfully tested in clinical trials.This review highlights different types of natural and synthetic polymers used in neural tissue engineering and their advantages and disadvantages for neural regeneration.
Collapse
Affiliation(s)
- Rossana Boni
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Azam Ali
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Amin Shavandi
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- BioMatter-Biomass Transformation Lab (BTL), École interfacultaire de Bioingénieurs (EIB), École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| |
Collapse
|
36
|
Chato-Astrain J, Campos F, Roda O, Miralles E, Durand-Herrera D, Sáez-Moreno JA, García-García S, Alaminos M, Campos A, Carriel V. In vivo Evaluation of Nanostructured Fibrin-Agarose Hydrogels With Mesenchymal Stem Cells for Peripheral Nerve Repair. Front Cell Neurosci 2018; 12:501. [PMID: 30627086 PMCID: PMC6309160 DOI: 10.3389/fncel.2018.00501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
The regenerative capability of peripheral nerves is very limited, and several strategies have been proposed to increase nerve regeneration. In the present work, we have analyzed the in vivo usefulness of a novel nanostructured fibrin-agarose bio-artificial nerve substitute (Nano) used alone or in combination with NeuraGen® collagen type I conduits (Coll-Nano) in laboratory rats with a 10-mm sciatic nerve defect. Control animals were subjected to the gold-standard autograft technique (Auto). Results first demonstrated that the percentage of self-amputations was lower in Nano and Coll-Nano groups as compared to the Auto group. Neurotrophic ulcers were more abundant in the Auto group (60%, with 66.6% of them being >2-mm) than Nano and Coll-Nano groups (0%) at 4 weeks, although Nano showed more ulcers after 12 weeks. Foot length was significantly altered in Auto animals due to neurogenic retraction, but not in Nano and Coll-Nano groups after 12 weeks. At the functional level, all animals showed a partial sensory recovery as determined by the pinch test, especially in Nano and Auto groups, but did not reach the levels of native animals. Toe-spread test revealed a partial motor function recovery only in Nano animals at 4 weeks and Auto and Nano at 12 weeks. Electromyography showed clear denervation signs in all experimental groups, with few differences between Auto and Nano animals. After 12 weeks, an important denervation decrease and an increase of the reinnervation process was found in Auto and Nano groups, with no differences between these groups. Histological analyses demonstrated an active peripheral nerve regeneration process with newly formed peripheral nerve fascicles showing S-100, GAP-43 and myelin in all experimental groups. The peripheral nerve regeneration process was more abundant in Auto group, followed by Nano group, and both were better than Coll-Nano group. Muscle histology confirmed the electromyography results and showed some atrophy and fibrosis signs and an important weight and volume loss in all groups, especially in the Coll-Nano group (56.8% weight and 60.4% volume loss). All these results suggest that the novel Nano substitutes used in in vivo were able to contribute to bridge a 10-mm peripheral nerve defect in rats.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Doctoral Program in Biomedicine, Faculty of Medicine, University of Granada, Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Olga Roda
- Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Esther Miralles
- Division of Clinical Neurophysiology, University Hospital San Cecilio, Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Salomé García-García
- Division of Clinical Neurophysiology, University Hospital San Cecilio, Granada, Spain
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| |
Collapse
|
37
|
Gontika I, Katsimpoulas M, Antoniou E, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Decellularized Human Umbilical Artery Used as Nerve Conduit. Bioengineering (Basel) 2018; 5:bioengineering5040100. [PMID: 30469361 PMCID: PMC6315692 DOI: 10.3390/bioengineering5040100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment of injuries to peripheral nerves after a segmental defect is one of the most challenging surgical problems. Despite advancements in microsurgical techniques, complete recovery of nerve function after repair has not been achieved. The purpose of this study was to evaluate the use of the decellularized human umbilical artery (hUA) as nerve guidance conduit. A segmental peripheral nerve injury was created in 24 Sprague–Dawley rats. The animals were organized into two experimental groups with different forms of repair: decellularized hUA (n = 12), and autologous nerve graft (n = 12). Sciatic faction index and gastrocnemius muscle values were calculated for functional recovery evaluation. Nerve morphometry was used to analyze nerve regeneration. Results showed that decellularized hUAs after implantation were rich in nerve fibers and characterized by improved Sciatic Functional index (SFI) values. Decellularized hUA may support elongation and bridging of the 10 mm nerve gap.
Collapse
Affiliation(s)
- Ioanna Gontika
- Hellenic Cord Blood Bank, Biomedical Research Foudation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Michalis Katsimpoulas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Efstathios Antoniou
- Second Department of Propaedeutic Surgery, University of Athens, Medical School, "Laiko" General Hospital 17 Agios Thomas Street, 11527 Athens, Greece.
| | - Alkiviadis Kostakis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foudation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| |
Collapse
|
38
|
Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves. Ann Biomed Eng 2018; 46:1921-1937. [PMID: 29987538 DOI: 10.1007/s10439-018-2082-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023]
Abstract
Tissue engineering is an emerging strategy for the development of nerve substitutes for peripheral nerve repair. Especially decellularized peripheral nerve allografts are interesting alternatives to replace the gold standard autografts. In this study, a novel decellularization protocol was qualitatively and quantitatively evaluated by histological, biochemical, ultrastructural and mechanical methods and compared to the protocol described by Sondell et al. and a modified version of the protocol described by Hudson et al. Decellularization by the method described by Sondell et al. resulted in a reduction of the cell content, but was accompanied by a loss of essential extracellular matrix (ECM) molecules such as laminin and glycosaminoglycans. This decellularization also caused disruption of the endoneurial tubes and an increased stiffness of the nerves. Decellularization by the adapted method of Hudson et al. did not alter the ECM composition of the nerves, but an efficient cell removal could not be obtained. Finally, decellularization by the method developed in our lab by Roosens et al. led to a successful removal of nuclear material, while maintaining the nerve ultrastructure and ECM composition. In addition, the resulting ECM scaffold was found to be cytocompatible, allowing attachment and proliferation of adipose-derived stem cells. These results show that our decellularization combining Triton X-100, DNase, RNase and trypsin created a promising scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Annelies Roosens
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
39
|
Durand-Herrera D, Campos F, Jaimes-Parra BD, Sánchez-López JD, Fernández-Valadés R, Alaminos M, Campos A, Carriel V. Wharton's jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Histochem Cell Biol 2018; 150:379-393. [PMID: 29931444 DOI: 10.1007/s00418-018-1685-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/25/2022]
Abstract
Microtissues (MT) are currently considered as a promising alternative for the fabrication of natural, 3D biomimetic functional units for the construction of bio-artificial substitutes by tissue engineering (TE). The aim of this study was to evaluate the possibility of generating mesenchymal cell-based MT using human umbilical cord Wharton's jelly stromal cells (WJSC-MT). MT were generated using agarose microchips and evaluated ex vivo during 28 days. Fibroblasts MT (FIB-MT) were used as control. Morphometry, cell viability and metabolism, MT-formation process and ECM synthesis were assessed by phase-contrast microscopy, functional biochemical assays, and histological analyses. Morphometry revealed a time-course compaction process in both MT, but WJSC-MT resulted to be larger than FIB-MT in all days analyzed. Cell viability and functionality evaluation demonstrated that both MT were composed by viable and metabolically active cells, especially the WJSC during 4-21 days ex vivo. Histology showed that WJSC acquired a peripheral pattern and synthesized an extracellular matrix-rich core over the time, what differed from the homogeneous pattern observed in FIB-MT. This study demonstrates the possibility of using WJSC to create MT containing viable and functional cells and abundant extracellular matrix. We hypothesize that WJSC-MT could be a promising alternative in TE protocols. However, future cell differentiation and in vivo studies are still needed to demonstrate the potential usefulness of WJSC-MT in regenerative medicine.
Collapse
Affiliation(s)
- D Durand-Herrera
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Doctoral Programme in Biomedicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - B D Jaimes-Parra
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
| | - J D Sánchez-López
- Division of Maxillofacial Surgery, University Hospital Complex of Granada, Granada, Spain
| | - R Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Complex of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - A Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - V Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|