1
|
Mixed cultures of allogeneic dendritic cells are phenotypically and functionally stable - a potential for primary cell-based "off the shelf" product generation. Cent Eur J Immunol 2021; 46:152-161. [PMID: 34764784 PMCID: PMC8568021 DOI: 10.5114/ceji.2021.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Vaccination against tumors using antigen-pulsed dendritic cell (DC) vaccines has greatly evolved over the last decade, with hundreds of active human clinical trials well on the way. The use of an autologous source for DC-based vaccine therapeutics remains the obvious choice in the majority of clinical studies; however, novel evidence suggests that an allogeneic source of DCs can yield success if administered in the right context. One of the challenges facing successful DC vaccination protocols is the generation of large enough numbers of DCs intended for vaccination and standardization of these procedures. In addition, variations in the quality of DC vaccines due to donor-to-donor variation represent an important therapeutic factor. To this day it has not been shown whether DCs from different donors can readily co-exist within the same co-culture for the extended periods required for vaccine manufacture. We demonstrate that generation of allogeneic DC co-cultures, generated from multiple unrelated donors, allows the preservation of their phenotypical and functional properties in vitro for up to 72 hours. Therefore, in the case of an allogeneic vaccination approach, one could ensure large numbers of DCs generated from a primary cell source intended for multiple vaccinations. By generating large amounts of ex vivo manufactured DCs from multiple donors, this would represent the possibility to ensure sufficient amounts of equipotent “off the shelf” product that could e.g. be used for an entire cohort of patients within a study.
Collapse
|
2
|
Shallie PD, Naicker T. Differential upregulations of SMAC and LAMIN B levels in the buffy coat of HIV associated preeclamptic women. J Matern Fetal Neonatal Med 2021; 35:5080-5086. [PMID: 33478301 DOI: 10.1080/14767058.2021.1875210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To assess HIV positivity as an apoptotic confounding variable in pregnancies complicated by preeclampsia. METHODS AND MATERIALS Using a Bio-plex Multiplex Immunoassay, Smac and Lamin B concentrations (ng/ml) were analyzed in a buffy coat collected from 128 pregnant women attending a large regional hospital in Durban, South Africa. Study groups consisted of Normotensive and Preeclamptic pregnant women stratified according to their HIV status. All HIV positive groups received highly active antiretroviral therapy (HAART). RESULTS Our findings showed significant (p < .05) upregulation in the levels of both SMAC and LAMIN B in the HIV positive patients and a concomitant downregulation of the same apoptotic makers were observed in preeclampsia regardless of HIV status. CONCLUSIONS These results could be associated with the fact that apoptosis promotes deregulation of mitochondrial dynamics, contributing to the associated severe obstetric events observed in pregnancies among HIV-infected women on HAART.
Collapse
Affiliation(s)
- Philemon D Shallie
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Anatomy, College of Medicine, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Thajasvarie Naicker
- Optics and Imaging Centre, College of Health Sciences, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Schwartz D, Iyengar S. Recognition of Apoptotic Cells by Viruses and Cytolytic Lymphocytes: Target Selection in the Fog of War. Viral Immunol 2020; 33:188-196. [PMID: 32286181 PMCID: PMC7185367 DOI: 10.1089/vim.2019.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses and cytolytic lymphocytes operate in an environment filled with dying and dead cells, and cell fragments. For viruses, irreversible fusion with doomed cells is suicide. For cytotoxic T lymphocyte and natural killer cells, time and limited lytic resources spent on apoptotic targets is wasteful and may result in death of the host. We make the case that the target membrane cytoskeleton is the best source of information regarding the suitability of potential targets for engagement for both viruses and lytic effector cells, and we present experimental evidence for detection of apoptotic cells by HIV, without loss of infectivity.
Collapse
Affiliation(s)
- David Schwartz
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| | - Sujatha Iyengar
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
4
|
Natesampillai S, Paim AC, Cummins NW, Chandrasekar AP, Bren GD, Lewin SR, Kiem HP, Badley AD. TRAILshort Protects against CD4 T Cell Death during Acute HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:718-724. [PMID: 31189571 PMCID: PMC6785036 DOI: 10.4049/jimmunol.1900271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly, all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus, TRAILshort impacts T cell dynamics during HIV infection, and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is, therefore, a host-derived, host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted.
Collapse
Affiliation(s)
| | - Ana C Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | | | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria 3004, Australia
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905;
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
5
|
Zhang W, Ambikan AT, Sperk M, van Domselaar R, Nowak P, Noyan K, Russom A, Sönnerborg A, Neogi U. Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers. EBioMedicine 2018; 27:40-50. [PMID: 29269040 PMCID: PMC5828548 DOI: 10.1016/j.ebiom.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
A small subset of HIV-1 infected individuals, the "Elite Controllers" (EC), can control viral replication and restrain progression to immunodeficiency without antiretroviral therapy (ART). In this study, a cross-sectional transcriptomics and targeted proteomics analysis were performed in a well-defined Swedish cohort of untreated EC (n=19), treatment naïve patients with viremia (VP, n=32) and HIV-1-negative healthy controls (HC, n=23). The blood transcriptome identified 151 protein-coding genes that were differentially expressed (DE) in VP compared to EC. Genes like CXCR6 and SIGLEC1 were downregulated in EC compared to VP. A definite distinction in gene expression between males and females among all patient-groups were observed. The gene expression profile between female EC and the healthy females was similar but did differ between male EC and healthy males. At targeted proteomics analysis, 90% (29/32) of VPs clustered together while EC and HC clustered separately from VP. Among the soluble factors, 33 were distinctive to be statistically significant (False discovery rate=0.02). Cell surface receptor signaling pathway, programmed cell death, response to cytokine and cytokine-mediated signaling seem to synergistically play an essential role in HIV-1 control in EC.
Collapse
Affiliation(s)
- Wang Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Robert van Domselaar
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Piotr Nowak
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden.
| |
Collapse
|
6
|
Orlowski P, Pardecka M, Cymerys J, Krzyzowska M. Dendritic cells during mousepox: The role of delayed apoptosis in the pathogenesis of infection. Microb Pathog 2017; 109:99-109. [PMID: 28554653 DOI: 10.1016/j.micpath.2017.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Dendritic cells (DCs) are effector cells linking the innate immune system with the adaptive immune response. Many viruses eliminate DCs to prevent host response, induce immunosuppression and to maintain chronic infection. In this study, we examined apoptotic response of dendritic cells during in vitro and in vivo infection with ectromelia virus (ECTV), the causative agent of mousepox. ECTV-infected bone marrow dendritic cells (BMDCs) from BALB/c mice underwent apoptosis through mitochondrial pathway at 48 h post infection, up-regulated FasL and decreased expression of anti-apoptotic Bcl-2 and pro-apoptotic Fas. Similar pattern of Bcl-2, Fas and FasL expression was observed for DCs early during in vivo infection of BALB/c mice. Both BMDCs and DCs from BALB/c mice showed no maturation upon ECTV infection. We conclude that ECTV-infected DCs from BALB/c mouse strain help the virus to spread and to maintain infection.
Collapse
Affiliation(s)
- Piotr Orlowski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Maja Pardecka
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Ciszewskiego 8, 02-786, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Cymerys
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Ciszewskiego 8, 02-786, Warsaw University of Life Sciences, Warsaw, Poland
| | | |
Collapse
|
7
|
Hertoghs N, van der Aar AMG, Setiawan LC, Kootstra NA, Gringhuis SI, Geijtenbeek TBH. SAMHD1 degradation enhances active suppression of dendritic cell maturation by HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 194:4431-7. [PMID: 25825449 DOI: 10.4049/jimmunol.1403016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
A hallmark of HIV-1 infection is the lack of sterilizing immunity. Dendritic cells (DCs) are crucial in the induction of immunity, and lack of DC activation might underlie the absence of an effective anti-HIV-1 response. We have investigated how HIV-1 infection affects maturation of DCs. Our data show that even though DCs are productively infected by HIV-1, infection does not induce DC maturation. HIV-1 infection actively suppresses DC maturation, as HIV-1 infection inhibited TLR-induced maturation of DCs and thereby decreased the immune stimulatory capacity of DCs. Interfering with SAMHD1 restriction further increased infection of DCs, but did not lead to DC maturation. Notably, higher infection observed with SAMHD1 depletion correlated with a stronger suppression of maturation. Furthermore, blocking reverse transcription rescued TLR-induced maturation. These data strongly indicate that HIV-1 replication does not trigger immune activation in DCs, but that HIV-1 escapes immune surveillance by actively suppressing DC maturation independent of SAMHD1. Elucidation of the mechanism of suppression can lead to promising targets for therapy or vaccine design.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Angelic M G van der Aar
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Laurentia C Setiawan
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| |
Collapse
|
8
|
Sanz AB, Izquierdo MC, Sanchez-Niño MD, Ucero AC, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 2014; 29 Suppl 1:i54-i62. [PMID: 24493870 DOI: 10.1093/ndt/gft342] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) activates the fibroblast growth factor-inducible-14 (Fn14) receptor. TWEAK has actions on intrinsic kidney cells and on inflammatory cells of potential pathophysiological relevance. The effects of TWEAK in tubular cells have been explored in most detail. In cultured murine tubular cells TWEAK induces the expression of inflammatory cytokines, downregulates the expression of Klotho, is mitogenic, and in the presence of sensitizing agents promotes apoptosis. Similar actions were observed on glomerular mesangial cells. In vivo TWEAK actions on healthy kidneys mimic cell culture observations. Increased expression of TWEAK and Fn14 was reported in human and experimental acute and chronic kidney injury. The role of TWEAK/Fn14 in kidney injury has been demonstrated in non-inflammatory compensatory renal growth, acute kidney injury and chronic kidney disease of immune and non-immune origin, including hyperlipidaemic nephropathy, lupus nephritis (LN) and anti-GBM nephritis. The nephroprotective effect of TWEAK or Fn14 targeting in immune-mediated kidney injury is the result of protection from TWEAK-induced injury of renal intrinsic cells, not from interference with the immune response. A phase I dose-ranging clinical trial demonstrated the safety of anti-TWEAK antibodies in humans. A phase II randomized placebo-controlled clinical trial exploring the efficacy, safety and tolerability of neutralizing anti-TWEAK antibodies as a tissue protection strategy in LN is ongoing. The eventual success of this trial may expand the range of kidney diseases in which TWEAK targeting should be explored.
Collapse
Affiliation(s)
- Ana B Sanz
- Dialysis Unit, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barblu L, Smith N, Durand S, Scott-Algara D, Boufassa F, Delfraissy JF, Cimarelli A, Lambotte O, Herbeuval JP. Reduction of death receptor 5 expression and apoptosis of CD4+ T cells from HIV controllers. Clin Immunol 2014; 155:17-26. [PMID: 25110157 DOI: 10.1016/j.clim.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
TNF-related apoptosis ligand (TRAIL) induces apoptosis of HIV-1-exposed CD4 T cells expressing the death receptor 5 (DR5) in vitro and has been associated with reduced CD4 T cell number in viremic HIV-1-infected patients. Alterations of the TRAIL/DR5 apoptotic pathway could be involved in the absence of massive CD4 T cell depletion in HIV-1-infected controllers (HIC). We studied here apoptosis of CD4 T cells from HIV-infected progressors and controllers. Reduced apoptosis of CD4 T cells from HIC was observed upon HIV stimulation. This lower apoptosis correlated with a deficiency of DR5 cell surface expression by CD4 T cells upon HIV-1 stimulation. The significant lower apoptosis observed in CD4 T cells after HIV exposure, associated with lower expression of membrane DR5 could explain the better survival of HIV-specific CD4 T cells from HIV controllers. The levels of DR5 cell surface expression on CD4 T cells could represent a new prognostic marker.
Collapse
Affiliation(s)
- Lucie Barblu
- CNRS UMR 8147; Université Paris Descartes, Paris, France
| | - Nikaïa Smith
- CNRS UMR 8601, Faculté des Saints-Pères, Université Paris Descartes, Paris, France
| | - Stéphanie Durand
- Department of Human Virology, Ecole Normale Supérieure de Lyon; INSERM, U758; Université Lyon1, France
| | | | | | - Jean-François Delfraissy
- INSERM, U1012, Bicêtre, Paris, France; AP-HP, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, Bicêtre, Paris, France; Université Paris-Sud, Bicêtre, France
| | - Andrea Cimarelli
- Department of Human Virology, Ecole Normale Supérieure de Lyon; INSERM, U758; Université Lyon1, France
| | - Olivier Lambotte
- INSERM, U1012, Bicêtre, Paris, France; AP-HP, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, Bicêtre, Paris, France; Université Paris-Sud, Bicêtre, France
| | | |
Collapse
|
10
|
Dutertre CA, Jourdain JP, Rancez M, Amraoui S, Fossum E, Bogen B, Sanchez C, Couëdel-Courteille A, Richard Y, Dalod M, Feuillet V, Cheynier R, Hosmalin A. TLR3–Responsive, XCR1+, CD141(BDCA-3)+/CD8α+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus–Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2014; 192:4697-708. [DOI: 10.4049/jimmunol.1302448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Innate immune evasion strategies by human immunodeficiency virus type 1. ISRN AIDS 2013; 2013:954806. [PMID: 24052891 PMCID: PMC3767209 DOI: 10.1155/2013/954806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Host immune components play both beneficial and pathogenic roles in human immunodeficiency virus type 1 (HIV-1) infection. During the initial stage of viral infection, a complex network of innate immune factors are activated. For instance, the immune cells express a number of inflammatory proteins including cytokines, chemokines, and antiviral restriction factors. These factors, specifically, interferons (IFNs) play a crucial role in antiviral defense system by modulating the downstream signaling events, by inducing maturation of dendritic cells (DCs), and by activation of macrophages, natural killer (NK) cells, and B and T cells. However, HIV-1 has evolved to utilize a number of strategies to overcome the antiviral effects of the host innate immune system. This review discusses the pathways and strategies utilized by HIV-1 to establish latent and persistent infection by defeating host's innate defense system.
Collapse
|
13
|
Pállinger E. [Flow cytometry: is it a novel tool in microbiological diagnostics?]. Orv Hetil 2013; 154:1207-18. [PMID: 23895989 DOI: 10.1556/oh.2013.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct detection of pathogens is time- and labor-intensive. There is an increasing demand for new rapid microbiological testing methods, which would be faster and more sensitive than the conventional ones. Initially, automated methods were applied for the testing of bacteremia, urinary tract infections, characterization of antimicrobial susceptibility and quantitation of pathogen specific antibodies. Recently the nucleic acid-based detection methods have also become a routine. The molecular biological methods accelerate diagnosis, enhance specificity and provide an opportunity to identify pathogens with potential difficulties in culturing. However, they do not give any information about the immune status of the host. Yet it should also be borne in mind that detection of pathogen-specific nucleic acids is not equivalent to the presence of living microbes. The greatest advantage of FACS against these techniques is the capability to identify individual microbial cells as well. High speed FACS becomes a priority in the characterization of slow-growing microbes and identification of pathogens in mixed infections. Last but not least, it allows the monitoring of immune status and follow up of antimicrobial therapy.
Collapse
Affiliation(s)
- Eva Pállinger
- Semmelweis Egyetem, Általános Orvostudományi Kar Genetikai, Sejt- és Immunbiológiai Intézet Budapest.
| |
Collapse
|
14
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
15
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Sarkar R, Mitra D, Chakrabarti S. HIV-1 gp120 protein downregulates Nef induced IL-6 release in immature dentritic cells through interplay of DC-SIGN. PLoS One 2013; 8:e59073. [PMID: 23554973 PMCID: PMC3598654 DOI: 10.1371/journal.pone.0059073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/11/2013] [Indexed: 11/28/2022] Open
Abstract
HIV-1 replication is a tightly controlled mechanism which demands the interplay of host as well as viral factors. Both gp120 (envelope glycoprotein) and Nef (regulatory protein) have been correlated with the development of AIDS disease in independent studies. In this context, the ability of HIV-1 to utilize immature dentritic cells for transfer of virus is pivotal for early pathogenesis. The presence of C-type lectins on dendritic cells (DCs) like DC-SIGN, are crucial in inducing antiviral immunity to HIV-1. Both gp120 and Nef induce the release of cytokines leading to multiple effects of viral pathogenesis. Our study elucidated for the first time the cross-talk of the signaling mechanism of these two viral proteins in immature monocyte derived dentritic cells (immDCs). Further, gp120 was found to downregulate the IL-6 release by Nef, depending on the interaction with DC-SIGN. A cascade of signaling followed thereafter, including the activation of SOCS-3, to mediate the diminishing effect of gp120. Our results also revealed that the anti-apoptotic signals emanated from Nef was put to halt by gp120 through inhibition of Nef induced STAT3. Thus our results implicate that the signaling generated by gp120 and Nef, undergoes a switch-over mechanism that significantly contributes to the pathogenesis of HIV-1 and widens our view towards the approach on battling the viral infection.
Collapse
Affiliation(s)
- Roni Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Sekhar Chakrabarti
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
- * E-mail:
| |
Collapse
|
17
|
Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci U S A 2013; 110:5127-32. [PMID: 23493554 DOI: 10.1073/pnas.1221211110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the TNF family of proteins have been associated with inherited forms of immune deficiency. Using an array-based sequencing assay, we identified an autosomal-dominant deficiency in TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) in a kindred with recurrent infection and impaired antibody responses to protein and polysaccharide vaccines. This mutation occurs in the sixth exon of TWEAK and results in the amino acid substitution R145C within the conserved TNF-homology domain of the full-length protein. TWEAK mutant protein formed high molecular weight aggregates under nonreducing conditions, suggesting an increased propensity for intermolecular interactions. As a result, mutant TWEAK associated with B-cell-activating factor (BAFF) protein and down-regulated the BAFF-mediated activation of the noncanonical NF-κB pathway through inhibition of p100 processing to p52, resulting in inhibition of BAFF-dependent B-cell survival and proliferation. As BAFF mediates T-cell-independent isotype switching and B-cell survival, our data implicate TWEAK as a disease-susceptibility gene for a humoral immunodeficiency.
Collapse
|
18
|
Yu X, Li Z, Zhou Z, Kilby JM, Jiang W. Microbial TLR Agonists and Humoral Immunopathogenesis in HIV Disease. EPIDEMIOLOGY (SUNNYVALE, CALIF.) 2013; 3:120. [PMID: 24795844 PMCID: PMC4005894 DOI: 10.4172/2161-1165.1000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although T cells are the primary and most-studied targets of the Human Immunodeficiency Virus (HIV), B cells, especially memory B lymphocytes, are also chronically depleted in the course of HIV disease. Although the lack of CD4+ T cell help may explain these deficiencies, intrinsic defects in B lymphocytes appear to contribute to B cell depletion and reduced antibody (Ab) production in the setting of HIV, especially of some antigens eliciting T cell-independent responses. The gut mucosal barrier is disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Toll-Like Receptor (TLR) agonists. The association of enhanced systemic levels of TLR agonists and B cell dysfunction in HIV disease is not understood. This review discusses the potential role of microbial TLR agonists in the B cell depletion, enhanced autoantibody production and impaired responses to vaccination observed in HIV-infected hosts. Increased microbial translocation in HIV infection may drive B cells to produce autoantibodies and increase susceptibilities of B cells to apoptosis through activation-induced cell death. Determining the mechanisms of B cell perturbations in HIV disease will inform the design of novel strategies of improve immune responses to vaccines, reduce opportunistic infections and slow disease progression.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Zhenxian Zhou
- NanJing Second Hospital, Infectious Diseases, NanJing, China
| | - J Michael Kilby
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| |
Collapse
|
19
|
Characteristics of plasmacytoid dendritic cell and CD4+ T cell in HIV elite controllers. Clin Dev Immunol 2012; 2012:869505. [PMID: 23243424 PMCID: PMC3517220 DOI: 10.1155/2012/869505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.
Collapse
|
20
|
TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane. J Immunol Methods 2012; 387:147-56. [PMID: 23085529 DOI: 10.1016/j.jim.2012.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/07/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
Abstract
The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.
Collapse
|
21
|
Zhi-Chun L, Qiao-Ling Z, Zhi-Qin L, Xiao-Zhao L, Xiao-xia Z, Rong T. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mediates p38 mitogen-activated protein kinase activation and signal transduction in peripheral blood mononuclear cells from patients with lupus nephritis. Inflammation 2012; 35:935-43. [PMID: 22009442 DOI: 10.1007/s10753-011-9396-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Forty-two patients with systemic lupus erythematosus (SLE), including 26 patients with renal damage and 16 without, and 20 healthy controls were included in the study. The isolated peripheral blood mononuclear cells (PBMCs) were treated with a p38 inhibitor (SB203580) or anti-tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mAb, with or without phytohemagglutinin/phorbol myristate acetate (PHA/PMA) stimulation. Western blot experiments were used to evaluate the protein expression of TWEAK and p38 MAPK in PBMCs .Next, the contents of interleukin-10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) in the supernatant were measured by ELISA. The results showed that expression of TWEAK protein in PBMCs from lupus nephritis patients was significantly higher than that from SLE patients without renal damage and healthy controls. PHA/PMA simulation could upregulate the productions of TWEAK and p-p38MAPK in PBMCs from patients with SLE. Anti-TWEAK mAb treatment downregulated both TWEAK and p-p38 MAPK expression in PBMCs, as well as IL-10 and MCP-1 in the supernatant; SB203580 had the same effect on cytokine production in PBMC, but had no effect on the expression of TWEAK. Our results suggested that TWEAK-p38 MAPK-IL-10, MCP-1 signaling pathway in PBMC played an important pathogenic role in lupus nephritis.
Collapse
Affiliation(s)
- Liu Zhi-Chun
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Mahajan SD, Hu Z, Reynolds JL, Aalinkeel R, Schwartz SA, Nair MPN. Methamphetamine Modulates Gene Expression Patterns in Monocyte Derived Mature Dendritic Cells. Mol Diagn Ther 2012; 10:257-69. [PMID: 16884330 DOI: 10.1007/bf03256465] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The US is currently experiencing a grave epidemic of methamphetamine use as a recreational drug, and the risk for HIV-1 infection attributable to methamphetamine use continues to increase. Recent studies show a high prevalence of HIV infection among methamphetamine users. Dendritic cells (DCs) are potent antigen presenting cells that are the initial line of defense against HIV-1 infection. In addition, DCs also serve as reservoirs for HIV-1 and function at the interface between the adaptive and the innate immune systems, which recognize and internalize pathogens and subsequently activate T cells. Exposure to methamphetamine results in modulation of immune functional parameters that are necessary for host defense. Chronic methamphetamine use can cause psychiatric co-morbidity, neurological complications, and can alter normal biological processes and immune functions. Limited information is available on the mechanisms by which methamphetamine may influence immune function. This study explores the effect of methamphetamine on a specific array of genes that may modulate immune function. We hypothesize that methamphetamine treatment results in the immunomodulation of DC functions, leading to dysregulation of the immune system of the infected host. This suggests that methamphetamine has a role as a cofactor in the pathogenesis of HIV-1. METHODS We used the high-throughput technology of gene microarray analysis to understand the molecular mechanisms underlying the genomic changes that alter normal biological processes when DCs are treated with methamphetamine. Additionally, we validated the results obtained from microarray experiments using a combination of quantitative real-time PCR and Western blot analysis. RESULTS These data are the first evidence that methamphetamine modulates DC expression of several genes. Methamphetamine treatment alters categories of genes that are associated with chemokine regulation, cytokinesis, signal transduction mechanisms, apoptosis, and cell cycle regulation. This report focuses on a selected group of genes that are significantly modulated by methamphetamine treatment and that have been associated with HIV-1 pathogenesis. DISCUSSION/CONCLUSION The purpose of this study was to identify genes that are unique and/or specific to the complex immunomodulatory mechanisms that are altered as a result of methamphetamine abuse in HIV-1-infected patients. These studies will help to identify the molecular mechanisms that underlie methamphetamine toxicity, and several functionally important classes of genes have emerged as targets in methamphetamine-mediated immunopathogenesis of HIV-1. Identification of novel DC-specific and methamphetamine-responsive genes that modulate several biological, molecular, and signal transduction functions may serve as methamphetamine- and/or HIV-1-specific drug targets.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Buffalo General Hospital, Buffalo, New York 14203, USA.
| | | | | | | | | | | |
Collapse
|
23
|
In vitro HIV infection impairs the capacity of myeloid dendritic cells to induce regulatory T cells. PLoS One 2012; 7:e42802. [PMID: 22912740 PMCID: PMC3418294 DOI: 10.1371/journal.pone.0042802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/11/2012] [Indexed: 12/28/2022] Open
Abstract
Myeloid dendritic cells (mDCs) are the antigen-presenting cells best capable of promoting peripheral induction of regulatory T cells (Tregs), and are among the first targets of HIV. It is thus important to understand whether HIV alters their capacity to promote Treg conversion. Monocyte-derived DCs (moDCs) from uninfected donors induced a Treg phenotype (CD25+FOXP3+) in autologous conventional T cells. These converted FOXP3+ cells suppressed the proliferation of responder T cells similarly to circulating Tregs. In contrast, the capacity of moDCs to induce CD25 or FOXP3 was severely impaired by their in vitro infection with CCR5-utilizing virus. MoDC exposure to inactivated HIV was sufficient to impair FOXP3 induction. This DC defect was not dependent on IL-10, TGF-β or other soluble factors, but was due to preferential killing of Tregs by HIV-exposed/infected moDCs, through a caspase-dependent pathway. Importantly, similar results were obtained with circulating primary myeloid DCs. Upon infection in vitro, these mDCs also killed Treg through mechanisms at least partially caspase-dependent, leading to a significantly lower proportion of induced Tregs. Taken together, our data suggest that Treg induction may be defective when DCs are exposed to high levels of virus, such as during the acute phase of infection or in AIDS patients.
Collapse
|
24
|
Abstract
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Collapse
|
25
|
Barblu L, Machmach K, Gras C, Delfraissy JF, Boufassa F, Leal M, Ruiz-Mateos E, Lambotte O, Herbeuval JP. Plasmacytoid Dendritic Cells (pDCs) From HIV Controllers Produce Interferon-α and Differentiate Into Functional Killer pDCs Under HIV Activation. J Infect Dis 2012; 206:790-801. [DOI: 10.1093/infdis/jis384] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Lucie Barblu
- Centre National de Recherche Scientifique (CNRS) UMR 8147, Université Paris Descartes, Paris, France
| | - Kawthar Machmach
- Laboratorio de Inmunovirología, Servicio de Enfermedades Infecciosas, Instituto de Biomedicina de Sevilla/Hospitales Universitarios Virgen del Rocio, Seville, Spain
| | - Christophe Gras
- Centre National de Recherche Scientifique (CNRS) UMR 8147, Université Paris Descartes, Paris, France
- Université Paris-Sud, U1012, Bicêtre, France
| | - Jean-François Delfraissy
- Institut national de la santé et de la recherche médicale (INSERM) U1012
- Assistance publique – Hôpitaux de Paris (AP-HP)
- Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital
| | - Faroudy Boufassa
- Institut national de la santé et de la recherche médicale (INSERM) U1012
- Assistance publique – Hôpitaux de Paris (AP-HP)
- Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital
| | - Manuel Leal
- Laboratorio de Inmunovirología, Servicio de Enfermedades Infecciosas, Instituto de Biomedicina de Sevilla/Hospitales Universitarios Virgen del Rocio, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratorio de Inmunovirología, Servicio de Enfermedades Infecciosas, Instituto de Biomedicina de Sevilla/Hospitales Universitarios Virgen del Rocio, Seville, Spain
| | - Olivier Lambotte
- Institut national de la santé et de la recherche médicale (INSERM) U1012
- Assistance publique – Hôpitaux de Paris (AP-HP)
- Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital
- Université Paris-Sud, U1012, Bicêtre, France
| | - Jean-Philippe Herbeuval
- Centre National de Recherche Scientifique (CNRS) UMR 8147, Université Paris Descartes, Paris, France
| | | |
Collapse
|
26
|
Barblu L, Herbeuval JP. Three-dimensional microscopy characterization of death receptor 5 expression by over-activated human primary CD4+ T cells and apoptosis. PLoS One 2012; 7:e32874. [PMID: 22412938 PMCID: PMC3295789 DOI: 10.1371/journal.pone.0032874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 02/06/2012] [Indexed: 12/14/2022] Open
Abstract
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.
Collapse
Affiliation(s)
- Lucie Barblu
- CNRS UMR 8147, Université Paris Descartes, Paris, France
| | | |
Collapse
|
27
|
Hochman S, Kim K. The Impact of HIV Coinfection on Cerebral Malaria Pathogenesis. JOURNAL OF NEUROPARASITOLOGY 2012; 3:235547. [PMID: 22545215 PMCID: PMC3336366 DOI: 10.4303/jnp/235547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV infection is widespread throughout the world and is especially prevalent in sub-Saharan Africa and Asia. Similarly, Plasmodium falciparum, the most common cause of severe malaria, affects large areas of sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Although initial studies suggested that HIV and malaria had independent impact upon patient outcomes, recent studies have indicated a more significant interaction. Clinical studies have shown that people infected with HIV have more frequent and severe episodes of malaria, and parameters of HIV disease progression worsen in individuals during acute malaria episodes. However, the effect of HIV on development of cerebral malaria, a manifestation of P. falciparum infection that is frequently fatal, has not been characterized. We review clinical and basic science studies pertaining to HIV and malaria coinfection and cerebral malaria in particular in order to highlight the likely role HIV plays in exacerbating cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Sarah Hochman
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
28
|
Abstract
HIV elite controllers (EC) are a rare group of HIV-infected patients who are able to maintain undetectable viral loads during a long period of time in the absence of antiretroviral treatment. Adaptive immunity and host genetic factors, although implicated, do not entirely explain this phenomenon. On the other hand, plasmacytoid dendritic cells (pDCs) are the principal type I interferon (IFN) producers in response to viral infection, and it is unknown whether pDCs are involved in the control of HIV infection in EC. In our study, we analyzed peripheral pDC levels and IFN-α production by peripheral blood mononuclear cells (PBMCs) in EC compared to other groups of HIV-infected patients, the ability of pDCs to reduce HIV production in vitro, and the mechanisms potentially involved. We showed preserved pDC counts and IFN-α production in EC. We also observed a higher capacity of pDCs from EC to reduce HIV production and to induce T cell apoptosis, whereas pDCs from viremic patients barely responded without previous Toll-like receptor 9 (TLR-9) stimulus. The preserved functionality of pDCs from EC to reduce viral production may be one of the mechanisms involved in the control of HIV viremia in these subjects. These results demonstrate the importance of innate immunity in HIV pathogenesis, and an understanding of pDC mechanisms would be helpful for the design of new therapies.
Collapse
|
29
|
Jiang W. Microbial Translocation and B Cell Dysfunction in Human Immunodeficiency Virus Disease. AMERICAN JOURNAL OF IMMUNOLOGY 2012; 8:44-51. [PMID: 23869197 PMCID: PMC3712352 DOI: 10.3844/ajisp.2012.44.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS). The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR) agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunolog, Deaprtment of Medicine, Division of Infectious Diseases Medical University of South Carolina, 173 Ashly Avenue, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Rossi R, Lichtner M, De Rosa A, Sauzullo I, Mengoni F, Massetti AP, Mastroianni CM, Vullo V. In vitro effect of anti-human immunodeficiency virus CCR5 antagonist maraviroc on chemotactic activity of monocytes, macrophages and dendritic cells. Clin Exp Immunol 2011; 166:184-90. [PMID: 21985364 DOI: 10.1111/j.1365-2249.2011.04409.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Compounds targeting the chemokine receptor CCR5 have recently been approved for treatment of human immunodeficiency virus (HIV) infection. Given the central role of CCR5 in inflammation and recruitment of antigen-presenting cells (APC), it is important to investigate the immunological consequences of pharmacological inhibition of CCR5. We evaluated the in vitro effect of different concentrations of CCR5 antagonist maraviroc (MVC) on cell migration of monocytes, macrophages (MO) and monocyte-derived dendritic cells (MDC) towards peptide formyl-methionyl-leucyl-phenylalanine (fMLP) and chemokines regulated upon activation normal T cell expressed and secreted (RANTES) and CCL4/macrophage inflammatory protein-1 (MIP-1β) and CCL2/monocyte chemotactic protein-1 (MCP-1). Results of flow cytometric analysis showed that monocytes treated in vitro with MVC exhibited a significant dose-dependent reduction of chemotaxis towards MIP-1β and MCP-1. fMLP-induced chemotactic activity decreased only at higher concentration (1 µM and 10 µM of MVC). In addition, all concentrations of MVC (0·1, 1 and 10 µM) induced in vitro a significant inhibition of chemotaxis of MO and MDC in response to all tested chemoattractants. No change in phenotype (CD1a and CD14) and CCR1, CCR4, CCR5 and formyl peptide receptor (FPR) expression was seen after in vitro treatment with MVC. These findings suggest that CCR5 antagonist MVC may have the in vitro ability of inhibiting the migration of innate immune cells by mechanism which could be independent from the pure anti-HIV effect. The drug might have a potential role in the down-regulation of HIV-associated chronic inflammation by blocking the recirculation and trafficking of MO and MDC.
Collapse
Affiliation(s)
- R Rossi
- Department of Public Health and Infectious Diseases, Istituto Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University, Rome
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
32
|
Schnepple DJ, Shepard B, Bren GD, Cummins NW, Natesampillai S, Trushin S, Algeciras-Schimnich A, Meng XW, Sainski AM, Rizza SA, Kaufmann SH, Badley AD. Isolation of a TRAIL antagonist from the serum of HIV-infected patients. J Biol Chem 2011; 286:35742-35754. [PMID: 21859711 DOI: 10.1074/jbc.m111.274639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Virus-host interactions are characterized by the selection of adaptive mechanisms by which to evade pathogenic and defense mechanisms, respectively. In primary T cells infected with HIV, HIV infection up-regulates TNF-related apoptosis inducing ligand (TRAIL) and death-inducing TRAIL receptors, but blockade of TRAIL:TRAIL receptor interaction does not alter HIV-induced cell death. Instead, HIV infection results in a novel splice variant that we call TRAIL-short (TRAIL-s), which antagonizes TRAIL-R2. In HIV patients, plasma TRAIL-s concentration increases with increasing viral load and renders cells resistant to TRAIL-induced death. Knockdown of TRAIL-s abrogates this resistance. We propose that TRAIL-s is a novel adaptive mechanism of apoptosis resistance acquired by HIV-infected cells to avoid their elimination by TRAIL-dependent effector mechanism.
Collapse
Affiliation(s)
- David J Schnepple
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Program in Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Brett Shepard
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Program in Translational Immunovirology and Biodefense, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sergey Trushin
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | | | - Xue W Meng
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Amy M Sainski
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Molecular Pharmacology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Stacey A Rizza
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Molecular Pharmacology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Program in Translational Immunovirology and Biodefense, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
33
|
Lakomy D, Janikashvili N, Fraszczak J, Trad M, Audia S, Samson M, Ciudad M, Vinit J, Vergely C, Caillot D, Foucher P, Lagrost L, Chouaib S, Katsanis E, Larmonier N, Bonnotte B. Cytotoxic dendritic cells generated from cancer patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:2775-82. [PMID: 21804019 DOI: 10.4049/jimmunol.1004146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Daniela Lakomy
- INSERM Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Faculté de Médecine, 21079 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Samikkannu T, Rao KVK, Gandhi N, Saxena SK, Nair MPN. Human immunodeficiency virus type 1 clade B and C Tat differentially induce indoleamine 2,3-dioxygenase and serotonin in immature dendritic cells: Implications for neuroAIDS. J Neurovirol 2010; 16:255-63. [PMID: 20602605 DOI: 10.3109/13550284.2010.497809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is commonly associated with immune dysfunctions and the suppression of antigen-presenting cells. This results in immune alterations, which could lead to impaired neuronal functions, such as neuroAIDS. The neurotoxic factor kynurenine (KYN), the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO), serotonin (5-HT), and serotonin transporter (5-HTT) may play a role in tryptophan deficiency and serotogenic dysfunction in neuroAIDS. HIV-1 transactivator regulatory protein (Tat) is known to play a major role in immune dysfunction. Previous studies suggest that HIV-1 B and C clades differentially manifest neuronal dysfunctions in the infected host. In the present study we examine the effect of HIV-1 B and C clade-derived Tat on IDO and 5-HTT gene and protein expressions by dendritic cells as studied by quantitative polymerase chain reaction (qPCR) and Western blot. In addition, the intracellular IDO expression, IDO enzyme activity, and the levels of 5-HT and KYN were also measured. Results indicate that HIV-1 clade B Tat up-regulates IDO and down-regulates 5-HTT gene and protein expressions. Further, HIV-1 clade B Tat caused a reduction of 5-HT with simultaneous increase in KYN levels as compared to HIV-1 clade C Tat. These studies suggest that HIV-1 clade B and C Tat proteins may play a differential role in the neuropathogenesis of HIV-associated dementia (HAD) or HIV-associated neurocognitive disorder (HAND).
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University, Miami, Florida 33199, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection.
Collapse
|
36
|
Darwich L, Díaz I, Mateu E. Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Res 2010; 154:123-32. [PMID: 20659507 DOI: 10.1016/j.virusres.2010.07.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most costly pathogens for the swine industry. Since its emergence some 20 years ago, much has been learned about the immunobiology of PRRSV. Although vaccines are available, they do not provide full and universal protection against PRRSV infection. In the present review, current knowledge on the virus's immunobiology will be discussed including: role of viral receptors, innate immune response to the virus, regulation of the immune response by PRRSV, and the characteristics and role of adaptive immunity. In addition, some hypotheses for future research in this area are presented.
Collapse
Affiliation(s)
- Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Raymond AD, Gekonge B, Giri MS, Hancock A, Papasavvas E, Chehimi J, Kossenkov AV, Kossevkov AV, Nicols C, Yousef M, Mounzer K, Shull J, Kostman J, Showe L, Montaner LJ. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J Leukoc Biol 2010; 88:589-96. [PMID: 20551211 DOI: 10.1189/jlb.0110051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating monocytes exhibit an apoptotic resistance phenotype during HIV viremia in association with increased MT expression. MTs are known to play an important role in zinc metabolism and immune function. We now show, in a cross-sectional study using peripheral monocytes, that expression of MT1 isoforms E, G, H, and X is increased significantly in circulating monocyte cells from HIV+ subjects during chronic viremic episodes as compared with uninfected subjects. This increase in expression is also observed during acute viremia following interruption of suppressive ART. Circulating monocytes from HIV+ donors were also found to have elevated zinc importer gene Zip8 expression in conjunction with elevated intracellular zinc levels in contrast to CD4(+)T-lymphocytes. In vitro HIV-1 infection studies with elutriated MDM confirm a direct relation between HIV-1 infection and increased MDM MT1 (isoform G) gene expression and increased intracellular zinc levels. A direct link between elevated zinc levels and apoptosis resistance was established using a cell-permeable zinc chelator TPEN, which reversed apoptosis resistance effectively in monocytes from HIV-infected to levels comparable with uninfected controls. Taken together, increases in MT gene expression and intracellular zinc levels may contribute directly to maintenance of an immune-activated monocyte by mediating an increased resistance to apoptosis during active HIV-1 viremia.
Collapse
Affiliation(s)
- Andrea D Raymond
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104-4268, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gonzalez VD, Landay AL, Sandberg JK. Innate immunity and chronic immune activation in HCV/HIV-1 co-infection. Clin Immunol 2010; 135:12-25. [PMID: 20100670 DOI: 10.1016/j.clim.2009.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 02/07/2023]
Abstract
Innate immune responses are critical in the defense against viral infections. NK cells, myeloid and plasmacytoid dendritic cells, and invariant CD1d-restricted NKT cells mediate both effector and regulatory functions in this early immune response. In chronic uncontrolled viral infections such as HCV and HIV-1, these essential immune functions are compromised and can become a double edged sword contributing to the immunopathogenesis of viral disease. In particular, recent findings indicate that innate immune responses play a central role in the chronic immune activation which is a primary driver of HIV-1 disease progression. HCV/HIV-1 co-infection is affecting millions of people and is associated with faster viral disease progression. Here, we review the role of innate immunity and chronic immune activation in HCV and HIV-1 infection, and discuss how mechanisms of innate immunity may influence protection as well as immunopathogenesis in the HCV/HIV-1 co-infected human host.
Collapse
Affiliation(s)
- Veronica D Gonzalez
- Center for Infection Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Cummins N, Badley A. The TRAIL to viral pathogenesis: the good, the bad and the ugly. Curr Mol Med 2009; 9:495-505. [PMID: 19519406 DOI: 10.2174/156652409788167078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the discovery of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) in 1995, much has been learned about the protein, its receptors and signaling cascade to induce apoptosis and the regulation of its expression. However, the physiologic role or roles that TRAIL may play in vivo are still being explored. The expression of TRAIL on effector T cells and the ability of TRAIL to induce apoptosis in virally infected cells provided early clues that TRAIL may play an active role in the immune defense against viral infections. However, increasing evidence is emerging that TRAIL may have a dual function in the immune system, both as a means to kill virally infected cells and in the regulation of cytokine production. TRAIL has been implicated in the immune response to viral infections (good), and in the pathogenesis of multiple viral infections (bad). Furthermore, several viruses have evolved mechanisms to manipulate TRAIL signaling to increase viral replication (ugly). It is likely that whether TRAIL ultimately has a proviral or antiviral effect will be dependent on the specific virus and the overall cytokine milieu of the host. Knowledge of the factors that determine whether TRAIL is proviral or antiviral is important because the TRAIL system may become a target for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Nathan Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
40
|
Plasmacytoid dendritic cells express TRAIL and induce CD4+ T-cell apoptosis in HIV-1 viremic patients. Blood 2009; 114:3854-63. [PMID: 19690337 DOI: 10.1182/blood-2009-04-217927] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Artificial Toll-like receptor 7/8 (TLR7/8) ligands can endow plasmacytoid dendritic cells (pDCs) with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent lytic properties. Keeping in mind that ssRNA serves as natural TLR7/8 ligand, we searched for TRAIL-expressing cells in persons infected with HIV and identified TRAIL+ pDCs in HIV-1 viremic persons, but not in nonviremic and healthy persons. TRAIL expression on pDCs was directly correlated with individual viral loads. Conversely, HIV-1 viremia was found to be associated with the up-regulation of the apoptosis-transmitting receptor TRAIL R1 on activated CD4+ T cells. As a consequence, the latter became susceptible to TRAIL-dependent pDC-mediated killing. In contrast, initiation of antiretroviral therapy led to the up-regulation of apoptosis-inhibiting TRAIL R4 on CD4+ T cells, which subsequently became resistant against pDC-mediated cellular injury. Definition of pDCs as killers of CD4+ T cells implies a new mechanism of disease progression in HIV infection.
Collapse
|
41
|
Abstract
The members of the tumour necrosis factor (TNF) superfamily of cytokines play important roles in the regulation of various immune-cell functions. Likewise, induction of cell death by apoptosis is indispensable for the normal functioning of the immune system. There are two major pathways of apoptosis induction. The intrinsic, or mitochondrial, pathway is regulated by the activation and interaction of members of the Bcl-2 family. The extrinsic, or death receptor, pathway is triggered by certain TNF family members when they engage their respective cognate receptors on the surface of the target cell. Hence, cell-to-cell-mediated death signals are induced by activation of these death receptor-ligand systems. Besides TNF itself and the CD95 (Fas/APO-1) ligand (FasL/Apo1L), the TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) belongs to the subfamily of ligands that is responsible for extrinsic induction of cell death. Depending on their status of stimulation, TRAIL can be expressed by various cells of the immune system, amongst them natural killer (NK) cells, T cells, natural killer T cells (NKT cells), dendritic cells and macrophages. TRAIL has been implicated in immunosuppressive, immunoregulatory and immune-effector functions. With respect to pathological challenges, TRAIL and its receptors have been shown to play important roles in the immune response to viral infections and in immune surveillance of tumours and metastases. In this review we summarize the current knowledge on the role of TRAIL and its receptors in the immune system and, based on this, we discuss future directions of research into the diverse functions of this fascinating receptor-ligand system.
Collapse
|
42
|
Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol 2009; 83:9743-58. [PMID: 19605470 DOI: 10.1128/jvi.00125-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that CD4C/human immunodeficiency virus (HIV)(Nef) transgenic (Tg) mice, expressing Nef in CD4(+) T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4(+) T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4(+) T cells, DCs, and macrophages (CD4E/HIV(Nef)); in CD4(+) T cells and DCs (mCD4/HIV(Nef) and CD4F/HIV(Nef)); in macrophages and DCs (CD68/HIV(Nef)); or mainly in DCs (CD11c/HIV(Nef)). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIV(Nef) Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4(+) T cells showed CD4(+) T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4(+) T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.
Collapse
|
43
|
Law HKW, Cheung CY, Sia SF, Chan YO, Peiris JSM, Lau YL. Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells. BMC Immunol 2009; 10:35. [PMID: 19505311 PMCID: PMC2700820 DOI: 10.1186/1471-2172-10-35] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 06/08/2009] [Indexed: 02/06/2023] Open
Abstract
Background The SARS outbreak in 2003 provides a unique opportunity for the study of human responses to a novel virus. We have previously reported that dendritic cells (DCs) might be involved in the immune escape mechanisms for SARS-CoV. In this study, we focussed on the gene expression of toll-like receptors (TLRs), chemokine receptors (CCRs) and death receptor ligands in SARS-CoV infected DCs. We also compared adult and cord blood (CB) DCs to find a possible explanation for the age-dependent severity of SARS. Results Our results demonstrates that SARS-CoV did not modulate TLR-1 to TLR-10 gene expression but significantly induced the expression of CCR-1, CCR-3, and CCR-5. There was also strong induction of TNF-related apoptosis-inducing ligand (TRAIL), but not Fas ligand gene expression in SARS-CoV infected DCs. Interestingly, the expressions of most genes studied were higher in CB DCs than adult DCs. Conclusion The upregulation of chemokines and CCRs may facilitate DC migration from the infection site to the lymph nodes, whereas the increase of TRAIL may induce lymphocyte apoptosis. These findings may explain the increased lung infiltrations and lymphoid depletion in SARS patients. Further explorations of the biological significance of these findings are warranted.
Collapse
Affiliation(s)
- Helen K W Law
- Department of Paediatrics and Adolescent Medicine, Hong Kong Jockey Club Clinical Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, PR China.
| | | | | | | | | | | |
Collapse
|
44
|
Shepard BD, Badley AD. The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases. ACTA ACUST UNITED AC 2009; 8:87-101. [PMID: 21857885 DOI: 10.2174/187152109787846060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a key mediator of the innate immune response to infection. While TRAIL-mediated apoptosis plays an essential role in the clearance of virus-infected cells, its physiologic role also includes immunosurveilance for cancer cells. Therapeutics that induce TRAIL-mediated apoptosis in cancer cells remain a focus of ongoing investigation in clinical trials, and much has been learned from these studies regarding the efficacy and toxicity of these interventions. These data, combined with data from numerous preclinical studies that detail the important and multifaceted role of TRAIL during infection with human immunodeficiency virus and other viruses, suggest that therapeutic exploitation of TRAIL signaling offers a novel and efficacious strategy for the management of infectious diseases.
Collapse
Affiliation(s)
- Brett D Shepard
- Mayo Clinic College of Medicine, Division of Infectious Diseases, Rochester, MN, 55905, USA
| | | |
Collapse
|
45
|
HAART reduces death ligand but not death receptors in lymphoid tissue of HIV-infected patients and simian immunodeficiency virus-infected macaques. AIDS 2009; 23:35-40. [PMID: 19050384 DOI: 10.1097/qad.0b013e32831cb907] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine how antiretroviral therapy (ART) or HAART affects the expression of apoptotic ligands and their death receptors in the blood and lymphoid tissues of HIV-infected patients and simian immunodeficiency virus-infected macaques. METHODS We analyzed the mRNA expression of death molecules [tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and FasL] and their receptors (DR5 and Fas) in blood and tonsils from HIV-infected patients (HIV positive), HIV-infected patients receiving HAART and HIV-uninfected (HIV negative) donors in a cross-sectional study. We comparatively analyzed mRNA expression of TRAIL and DR5 in blood and lymph nodes collected longitudinally from simian immunodeficiency virus-infected macaques before and after ART. RESULTS Expression of TRAIL, FasL, DR5 and Fas was elevated in circulating CD4 T cells from a group of HIV-positive patients as compared with that from both HIV-negative donors and HAART patients. In a different study group, TRAIL, FasL, DR5 and Fas were increased in tonsils of HIV-positive patients as compared with HIV-negative donors and HAART patients. However, tonsils from HAART patients showed reduced expression of TRAIL and FasL but not DR5 and Fas as compared with HIV-positive patients. Similarly, data obtained in a longitudinal study of simian immunodeficiency virus-infected macaques showed that ART reduced both TRAIL and DR5 in peripheral blood but only TRAIL and not DR5 in lymph nodes from the same animals. CONCLUSION These findings suggest that HAART or ART is ineffective in reducing the expression of apoptotic death receptors in lymphoid tissue. However, analysis limited to blood leukocytes may not reveal such a defect. Our results highlight the persistence of an underlying immunologic condition that may prevent therapy-induced restoration of CD4 T cells in lymphoid tissue.
Collapse
|
46
|
Chauvin C, Josien R. Dendritic cells as killers: mechanistic aspects and potential roles. THE JOURNAL OF IMMUNOLOGY 2008; 181:11-6. [PMID: 18566364 DOI: 10.4049/jimmunol.181.1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DC) are professional APC endowed with the unique capacity to activate naive T cells. DC also have important effector functions during the innate immune response, such as pathogen recognition and cytokine production. In fact, DC represent the crucial link between innate and adaptive immune responses. However, DC are quite heterogeneous and various subsets endowed with specific pathogen recognition mechanisms, locations, phenotypes, and functions have been described both in rodents and in humans. A series of studies indicated that rodent as well as human DC could also mediate another important innate function, i.e., cell-mediated cytotoxicity, mostly toward tumor cells. In this article, we will review the phenotypes of these so-called killer DC, their killing mechanism, and putative implication in the immune response.
Collapse
Affiliation(s)
- Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 643, Nantes, France
| | | |
Collapse
|
47
|
Attenuated disease in SIV-infected macaques treated with a monoclonal antibody against FasL. Clin Dev Immunol 2008; 2007:93462. [PMID: 18317535 PMCID: PMC2248700 DOI: 10.1155/2007/93462] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
Abstract
Acute SIVmac infection in macaques is accompanied by high levels of plasma viremia that decline with the appearance of viral immunity and is a model for acute HIV disease in man. Despite specific immune responses, the virus establishes a chronic, persistent infection. The destruction of CD4+
and CD4- lymphocyte subsets in macaques
contributes to viral persistence and suggests the
importance of mechanisms for depleting both infected
and uninfected (bystander) cells. Bystander cell killing
can occur when FasL binds the Fas receptor on activated lymphocytes,
which include T and B cell subpopulations that are responding to the
infection. Destruction of specific immune cells could be an important
mechanism for blunting viral immunity and establishing persistent infection
with chronic disease. We inhibited the Fas pathway in vivo with a monoclonal
antibody against FasL (RNOK203). Here we show that treatment with anti-FasL
reduced cell death in circulating T and B cells, increased CTL and antibody
responses to viral proteins, and lowered the setpoint viremia. By blocking
FasL during only the first few weeks after infection, we attenuated SIVmac
disease and increased the life span for infected and treated macaques.
Collapse
|
48
|
Abstract
The role of plasmacytoid dendritic cells (pDC) in anti-HIV immunity is mostly represented by the production of type I IFN in response to HIV infection in vitro and in vivo. This production is decreased in HIV-1 infected patients at the time of primary infection and during chronic disease in association with progression of disease. Circulating pDC counts are decreased concomitantly with type I IFN, and both factors correlate inversely overall with viral loads and positively with CD4+ T-cell counts. These parameters might be used in clinical immunology to monitor treatment and as predictive factors of immune control of HIV-1 replication to help decide whether to interrupt antiretroviral treatment. They may be related to control of HIV replication as well as to pathogenesis of infection, perhaps in setting the balance between immunity or tolerance to the virus. A better understanding of these parameters is required while attempts to use IFN-alpha or ligands of Toll-like receptors found on pDC are being made.
Collapse
Affiliation(s)
- Michaela Müller-Trutwin
- Unité de Biologie des Rétrovirus, Institut Pasteur, Université Paris V René Descartes, Paris, France
| | | |
Collapse
|
49
|
HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha. Proc Natl Acad Sci U S A 2007; 104:17453-8. [PMID: 17956986 DOI: 10.1073/pnas.0707244104] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.
Collapse
|
50
|
Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:284-92. [PMID: 17942609 DOI: 10.1128/cvi.00221-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatments for human immunodeficiency virus type 1 (HIV-1)-positive individuals that augment HIV-1 suppression and have potential for achieving long-term control of HIV-1 viremia in the absence of antiretroviral therapy (ART) are urgently needed. We therefore conducted a phase I, clinical safety trial of a dendritic cell (DC)-based vaccination strategy as immunotherapy for HIV-1-positive individuals on ART. We studied 18 HIV-1-positive subjects on ART who underwent leukapheresis to obtain peripheral blood mononuclear cells for DC generation from monocytes cultured with cytokines. Mature DC were pulsed with three HIV-1 HLA*A0201 Gag, Env, and Pol peptides and one influenza A virus matrix protein peptide. The vaccine was administered to donors randomized to receive two vaccinations, either intravenously or subcutaneously. The primary end points were safety and tolerability of two doses of peptide-DC vaccine (3 million versus 10 million). Secondary end points included gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses and clinical correlates of an immune response to vaccination. Autologous DC-peptide vaccine was safe, well tolerated, and feasible for use in all participants. Adverse events were rare. Although the trial was not powered to assess an immunologic response, a significantly increased frequency of HIV-1 peptide-specific IFN-gamma-positive cells was observed 2 weeks following the second vaccine, with three individuals responding to all four peptides. DC vaccination was safe, was feasible, and showed promise of immunogenicity in ART-treated, HIV-1-positive individuals. Additional studies of DC immunization strategies for HIV-1 infection are warranted.
Collapse
|