1
|
Chen Y, Zhang H, Ge Y, Zhu Z, Ji J, Luo D, Lu S. Perchlorate in foodstuffs from South China and its implication for human dietary exposure. Food Chem Toxicol 2024; 191:114876. [PMID: 39033870 DOI: 10.1016/j.fct.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Perchlorate, an aqueous-soluble compound resistant to degradation, is mainly used in the synthesis of pyrotechnics, herbicides, and other products. It serves as a pivotal component in the production of fireworks, rocket fuel, and explosives. Perchlorate was recognized as a pollutant owing to the potential toxic risk to thyroid function, which could pose a potential threat to the nervous system of infants and pregnant women. Some study had found that perchlorate existed in food, water and air. This study aimed to investigate the levels of perchlorate in six types of foods (n = 570) from South China, and evaluate potential exposure risks for residents. Vegetables were found to have the highest median levels of foods, attributed to elevated water content in leafy vegetables and facile solubility of perchlorate in water. The relatively low levels of perchlorate in food compared to other studies could attribute to the fact that the period of food we purchased in this study was during the wet season while the contaminants, such as perchlorate, were diluted. The maximum hazard quotient (HQ) values for all residents consuming different foods and water were all higher than 1 This suggested that there is a potential health risk of perchlorate to residents in South China. Those may be attributed to the high levels of perchlorate in some individual samples of meat and eggs. However, the 95th percentile of HQ values in all residents was less than 1, indicating that there is no potential health risk of perchlorate to most residents in South China.
Collapse
Affiliation(s)
- Yining Chen
- China Waterborne Transport Research Institute, Beijing, 100088, China; School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Zhanjiang, 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
King L, Wang Q, Xia L, Wang P, Jiang G, Li W, Huang Y, Liang X, Peng X, Li Y, Chen L, Liu L. Environmental exposure to perchlorate, nitrate and thiocyanate, and thyroid function in Chinese adults: A community-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2023; 171:107713. [PMID: 36565572 DOI: 10.1016/j.envint.2022.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Evidence on environmental exposure to perchlorate, nitrate, and thiocyanate, three thyroidal sodium iodine symporter (NIS) inhibitors, and thyroid function in the Chinese population remains limited. OBJECTIVE To investigate the associations of environmental exposure to perchlorate, nitrate, and thiocyanate with markers of thyroid function in Chinese adults. METHODS A total of 2441 non-pregnant adults (mean age 50.4 years and 39.1% male) with a median urinary iodine of 180.1 μg/L from four communities in Shenzhen were included in this cross-sectional study. Urinary perchlorate, nitrate, thiocyanate, and thyroid profiles, including serum free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH), were measured. Generalized linear model was applied to investigate the single-analyte associations. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were used to examine the association between the co-occurrence of three anions and thyroid profile. RESULTS The median levels of urinary perchlorate, nitrate, and thiocyanate were 5.8 μg/g, 76.4 mg/g, and 274.1 μg/g, respectively. After adjusting for confounders, higher urinary perchlorate was associated with lower serum FT4, TT4, and TT3, and higher serum FT3 and TSH (all P < 0.05). Comparing extreme tertiles, subjects in the highest nitrate tertile had marginally elevated TT3 (β: 0.02, 95% CI: 0.00-0.04). Each 1-unit increase in log-transformed urinary thiocyanate was associated with a 0.04 (95% CI: 0.02-0.06) pmol/L decrease in serum FT3. The WQS indices were inversely associated with serum FT4, TT4, and FT3 (all P < 0.05). In the BKMR model, the mixture of three anions was inversely associated with serum FT4, TT4, and FT3. CONCLUSIONS Our study provides evidence that individual and combined environmental exposure to perchlorate, nitrate, and thiocyanate are associated with significant changes in thyroid function markers in the Chinese population with adequate iodine intake.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Serrano-Nascimento C, Nunes MT. Perchlorate, nitrate, and thiocyanate: Environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health. Front Endocrinol (Lausanne) 2022; 13:995503. [PMID: 36339434 PMCID: PMC9633673 DOI: 10.3389/fendo.2022.995503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid disruptors are found in food, atmosphere, soil, and water. These contaminants interfere with the thyroid function through the impairment of thyroid hormone synthesis, plasma transport, peripheral metabolism, transport into the target cells, and thyroid hormone action. It is well known that iodide uptake mediated by the sodium-iodide symporter (NIS) is the first limiting step involved in thyroid hormones production. Therefore, it has been described that several thyroid disruptors interfere with the thyroid function through the regulation of NIS expression and/or activity. Perchlorate, nitrate, and thiocyanate competitively inhibit the NIS-mediated iodide uptake. These contaminants are mainly found in food, water and in the smoke of cigarettes. Although the impact of the human exposure to these anions is highly controversial, some studies indicated their deleterious effects in the thyroid function, especially in individuals living in iodine deficient areas. Considering the critical role of thyroid function and the production of thyroid hormones for growth, metabolism, and development, this review summarizes the impact of the exposure to these NIS-inhibitors on thyroid function and their consequences for human health.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
King L, Huang Y, Li T, Wang Q, Li W, Shan Z, Yin J, Chen L, Wang P, Dun C, Zhuang L, Peng X, Liu L. Associations of urinary perchlorate, nitrate and thiocyanate with central sensitivity to thyroid hormones: A US population-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 164:107249. [PMID: 35468408 DOI: 10.1016/j.envint.2022.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are three well-known sodium iodine symporter inhibitors, however, associations of their individual and concurrent exposure with central thyroid hormones sensitivity remain unclear. OBJECTIVES To investigate the associations of urinary perchlorate, nitrate, thiocyanate, and their co-occurrence with central thyroid hormones sensitivity among US general adults. METHODS A total of 7598 non-pregnant adults (weighted mean age 45.9 years and 52.9% men) from National Health and Nutritional Examination Survey 2007-2012 were included in this cross-sectional study. Central sensitivity to thyroid hormones was estimated with the Parametric Thyroid Feedback Quantile-based Index (PTFQI). Ordinary least-squares regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were performed to examine the associations of three anions and their co-occurrence with PTFQI. RESULTS The weighted mean values of urinary perchlorate, nitrate, thiocyanate, and perchlorate equivalent concentration (PEC) were 5.48 μg/L, 57.59 mg/L, 2.65 mg/L, and 539.8 μg/L, respectively. Compared with the lowest quartile, the least-square means difference (LSMD) of PTFQI was -0.0516 (LSMD ± SE: -0.0516 ± 0.0185, P < 0.01) in the highest perchlorate quartile. On average, PTFQI decreased by 0.0793 (LSMD ± SE: -0.0793 ± 0.0205, P < 0.001) between the highest and lowest thiocyanate quartile. Compared with those in the lowest quartile, participants in the highest PEC quartile had significantly decreased PTFQI levels (LSMD ± SE: -0.0862 ± 0.0188, P < 0.001). The WQS of three goitrogens, was inversely associated with PTFQI (β: -0.051, 95% CI: -0.068, -0.034). In BKMR model, PTFQI significantly decreased when the levels of three anions were at or above their 60th percentiles compared to the median values. CONCLUSIONS Higher levels of urinary perchlorate, thiocyanate, and co-occurrence of three goitrogens were associated with increased central thyroid hormones sensitivity among US general adults. Further studies are warranted to replicate our results and elucidate the underlying causative mechanistic links.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changchang Dun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Litao Zhuang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Ali MM, Khater SA, Fayed AA, Sabry D, Ibrahim SF. Apoptotic endocrinal toxic effects of perchlorate in human placental cells. Toxicol Rep 2021; 8:863-870. [PMID: 33948439 PMCID: PMC8079966 DOI: 10.1016/j.toxrep.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perchlorate is a strong oxidizing agent and has many adverse health effects. This study investigated the potential oxidative, apoptotic, and endocrinal toxic effects of perchlorate in human placenta-derived mesenchymal stem cells (HP-MSCs). METHODS HP-MSCs were treated with two doses of perchlorate (5 and 15 μg/L) for three days. The perchlorate's effects were detected by histopathological examination, aromatase/CYP19 A1 activity, reactive oxygen species production (ROS), and Caspase-3 expression. RESULTS The highest perchlorate concentration (15 μg/L) caused significant placental histopathological changes. The placental cell viability was significantly affected by a significant increase in ROS generation; caspase-3 expression, and a significant reduction of CYP 19 activity. Despite the slight induction effect of the lowest perchlorate concentration (5 μg/L) on caspase 3 expression, CYP 19 activity, and ROS generation, it did not affect placental cellular viability. CONCLUSION This study suggested that perchlorate could modulate aromatase activity and placental cytotoxicity. The continuous monitoring of the actual perchlorate exposure is needed and could be cost-effective.
Collapse
Affiliation(s)
- Mona M. Ali
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Forensic Medicine and Clinical Toxicology, Taif University, Saudi Arabia
| | - Sarah A. Khater
- Forensic Medicine and Clinical Toxicology- Misr University for Science and Technology, Egypt
| | - Amel Ahmed Fayed
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
- Medical Biochemistry and Molecular Biology Departement, Faculty of Medicine, Badr University, Egypt
| | - Samah F. Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| |
Collapse
|
6
|
Haber LT, Schoeny RS, Allen BC. Impact of updated BMD modeling methods on perchlorate and chlorate assessments of human health hazard. Toxicol Lett 2021; 340:89-100. [PMID: 33429012 DOI: 10.1016/j.toxlet.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/09/2020] [Accepted: 01/01/2021] [Indexed: 11/26/2022]
Abstract
Several exposure limits for perchlorate have been developed based on an early key event, inhibition of radioactive iodide uptake (RAIU) by the thyroid. These assessments have used a variety of definitions of the point of departure. The current assessment revisited the modeling for inhibition of RAIU, using state of the science methods. Bayesian hierarchical modeling was used to account for the repeated measures on the same individuals in the key dataset, and the underlying Beta distribution used for the modeling correctly reflected the bounding of RAIU between 0 and 1. We defined the BMR as a point value of 8% RAIU (rather than a change in RAIU), based on descriptions in the medical literature that RAIU below this value is considered abnormal. Because a definition of the BMR based on the mean response would correspond to about 50% of the population with a response below the BMR at the benchmark dose, we used a hybrid definition of the BMR. That is, the BMD was defined as the dose at which it was estimated that there would be a 10% extra risk in the population of having RAIU of 8% or lower. The resulting point of departure based on the BMDL was 0.03 mg/kg-day.
Collapse
Affiliation(s)
- Lynne T Haber
- University of Cincinnati, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Rita S Schoeny
- Rita Schoeny LLC, 726 5th St NE, Washington DC, 20002, USA
| | - Bruce C Allen
- Independent Consultant, 101 Corbin Hill Circle, Chapel Hill, NC 27514, USA
| |
Collapse
|
7
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
8
|
Pleus RC, Corey LM. Environmental exposure to perchlorate: A review of toxicology and human health. Toxicol Appl Pharmacol 2018; 358:102-109. [PMID: 30184474 DOI: 10.1016/j.taap.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022]
Abstract
Perchlorate pharmacology and toxicology studies date back at least 65 years in the peer-reviewed literature. Repeated studies in animals and humans have demonstrated perchlorate's mechanism of action, dose-response, and adverse effects over a range of doses. The first measurable effect of perchlorate is inhibition of iodine uptake to the thyroid gland. Adequate levels of thyroid hormones are critical for the development of the fetal nervous system. With sufficient dose and exposure duration, perchlorate can reduce thyroid hormones in the pregnant or non-pregnant woman via this mechanism. The developing fetus is the most sensitive life stage for chemical agents that affect iodide uptake to the thyroid. Perchlorate has a half-life of eight hours, is not metabolized, does not bioaccumulate, is not a mutagen or carcinogen, and is not reprotoxic or immunotoxic. More recently, epidemiological and biomonitoring studies have been published in the peer-reviewed literature characterizing the thyroidal effects of perchlorate and other goitrogens. While the results from most populations report no consistent association, a few studies report thyroidal effects at environmentally relevant levels of perchlorate. We reviewed the literature on health effects of perchlorate at environmental exposure levels, with a focus on exposures during pregnancy and neurodevelopmental effects. Based on the studies we reviewed, health effects are expected to only occur at doses substantially higher than environmental levels.
Collapse
Affiliation(s)
- Richard C Pleus
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States.
| | - Lisa M Corey
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States
| |
Collapse
|
9
|
Determination of Thresholds of Radioactive Iodine Uptake Response With Clinical Exposure to Perchlorate. J Occup Environ Med 2018; 60:e199-e206. [DOI: 10.1097/jom.0000000000001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Serrano-Nascimento C, Calil-Silveira J, Dalbosco R, Zorn TT, Nunes MT. Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:209-219. [PMID: 29139221 DOI: 10.1002/tox.22509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4 /T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.
Collapse
Affiliation(s)
| | - Jamile Calil-Silveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Rafael Dalbosco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Telma Tenorio Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
11
|
Weterings PJ, Loftus C, Lewandowski TA. Derivation of the critical effect size/benchmark response for the dose-response analysis of the uptake of radioactive iodine in the human thyroid. Toxicol Lett 2016; 257:38-43. [DOI: 10.1016/j.toxlet.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022]
|
12
|
Abstract
Perchlorate exposure occurs from ingestion of natural or man-made perchlorate in food or water. Perchlorate is used in a variety of industrial products including missile fuel, fireworks, and fertilizers, and industrial contamination of drinking water supplies has occurred in a number of areas. Perchlorate blocks iodide uptake into the thyroid and decreases the production of thyroid hormone, a critical hormone for metabolism, neurodevelopment, and other physiologic functions. Occupational and clinical dosing studies have not identified clear adverse effects, but may be limited by small sample sizes, short study durations, and the inclusion of mostly healthy adults. Expanding evidence suggests that young children, pregnant women, fetuses, and people co-exposed to similarly acting agents may be especially susceptible to perchlorate. Given the ubiquitous nature of perchlorate exposure, and the importance of thyroid hormone for brain development, studying the impact of perchlorate on human health could have far-reaching public health implications.
Collapse
Affiliation(s)
- Craig M Steinmaus
- School of Public Health, University of California Berkeley, 1950 Addison St, Suite #204, Berkeley, CA, 94704, USA.
| |
Collapse
|
13
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
14
|
Scientific Opinion on the risks to public health related to the presence of perchlorate in food, in particular fruits and vegetables. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3869] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2012] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mervish N, Blount B, Valentin-Blasini L, Brenner B, Galvez MP, Wolff MS, Teitelbaum SL. Temporal variability in urinary concentrations of perchlorate, nitrate, thiocyanate and iodide among children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:212-8. [PMID: 22166811 PMCID: PMC3288286 DOI: 10.1038/jes.2011.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perchlorate, nitrate and thiocyanate are ubiquitous in the environment, and human exposure to these chemicals is accurately measured in urine. Biomarkers of these chemicals represent a person's recent exposure, however, little is known on the temporal variability of the use of a single measurement of these biomarkers. Healthy Hispanic and Black children (6-10-year-old) donated urine samples over 6 months. To assess temporal variability, we used three statistical methods (n=29; 153 urine samples): intraclass correlation coefficient (ICC), Spearman's correlation coefficient between concentrations measured at different timepoints and surrogate category analysis to assess how well tertile ranking by a single biomarker measurement represented the average concentration over 6 months. The ICC measure of reproducibility was poor (0.10-0.12) for perchlorate, nitrate and iodide; and fair for thiocyanate (0.36). The correlations for each biomarker across multiple sampling times ranged from 0.01-0.57. Surrogate analysis showed consistent results for almost every surrogate tertile. Results demonstrate fair temporal reliability in the spot urine concentrations of the three NIS inhibitors and iodide. Surrogate analysis show that single-spot urine samples reliably categorize participant's exposure providing support for the use of a single sample as an exposure measure in epidemiological studies that use relative ranking of exposure.
Collapse
Affiliation(s)
- Nancy Mervish
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ozpinar A, Golub MS, Poppenga RH, Blount BC, Gillespie JR. Thyroid status of female rhesus monkeys and preliminary information on impact of perchlorate administration. Lab Anim 2011; 45:209-14. [DOI: 10.1258/la.2011.010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thyroid status was assessed in adult female rhesus monkey breeders at the California National Primate Research Center at the beginning of the breeding season. The 95% confidence intervals for thyrotropin (TSH), thyroxine (T4) and triiodothyronine (T3) ( n = 66–80) were similar to those previously reported in smaller samples of macaque monkeys. Based on human criteria, 10 of 80 monkeys (12%) were hypothyroid (TSH > 2.0 µIU/mL). Because hypothyroxinaemia can be a risk factor in pregnancy, T4 status was compared with past breeding history, breeding outcome for that season and general health records in a subset of 42 breeders. Age, weight and parity did not differ between monkeys in the lowest T4 quartile as compared with those in the upper three quartiles. However, T4 concentrations were significantly associated with the number of missed menstrual cycles during the previous breeding season. In additional work, three healthy lactating rhesus monkeys were given three different doses of environmental contaminant and thyroid iodine uptake inhibitor, ammonium perchlorate (0.006, 0.34, 12.8 mg/kg/day, respectively) in food for two weeks. Thyroid status variables (TSH, T4, T3, thyroid radioactive iodine uptake) were then measured. In the monkey receiving the highest perchlorate dose, iodine uptake was suppressed relative to baseline. The study shows the availability of tools to study thyroid status in rhesus monkeys, the variability of thyroid status in the breeder colony and the potential ability of environmental factors to influence thyroid status.
Collapse
Affiliation(s)
- Aysel Ozpinar
- Department of Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Mari S Golub
- CNPRC, BMB, University of California, Davis, CA 95616, USA
| | - Robert H Poppenga
- California Animal Health & Food Safety Laboratory (CAHFS), School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Benjamin C Blount
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Mail Stop F47, Atlanta, GA 30341, USA
| | - Jerry R Gillespie
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Abstract
Iodine is a necessary element for the production of thyroid hormone. We will review the impact of dietary iodine status on thyroid function in pregnancy. We will discuss iodine metabolism, homeostasis, and nutritional recommendations for pregnancy. We will also discuss the possible effects of environmental contaminants on iodine utilization in pregnant women.
Collapse
Affiliation(s)
- Christina Yarrington
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, MA 02118, USA
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 88 East Newton Street, Evans 201, Boston, MA 02118, USA
| |
Collapse
|
19
|
Zoeller RT. Endocrine Disruption of the Thyroid and its Consequences in Development. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2011. [DOI: 10.1007/978-3-642-22775-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Pearce EN, Lazarus JH, Smyth PPA, He X, Dall'amico D, Parkes AB, Burns R, Smith DF, Maina A, Bestwick JP, Jooman M, Leung AM, Braverman LE. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women. J Clin Endocrinol Metab 2010; 95:3207-15. [PMID: 20427488 DOI: 10.1210/jc.2010-0014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT Thyroid hormone, requiring adequate maternal iodine intake, is critical for fetal neurodevelopment. Perchlorate decreases thyroidal iodine uptake by competitively inhibiting the sodium/iodide symporter. It is unclear whether environmental perchlorate exposure adversely affects thyroid function in pregnant women. Thiocyanate, derived from foods and cigarette smoke, is a less potent competitive sodium/iodide symporter inhibitor than perchlorate. OBJECTIVE Our objective was to determine whether environmental perchlorate and/or thiocyanate exposure is associated with alterations in thyroid function in pregnancy. DESIGN AND SETTING We conducted a cross-sectional study at health centers in Cardiff, Wales, and Turin, Italy. PATIENTS During 2002-2006, 22,000 women at less than 16 wk gestation were enrolled in the Controlled Antenatal Thyroid Screening Study. Subsets of 261 hypothyroid/hypothyroxinemic and 526 euthyroid women from Turin and 374 hypothyroid/hypothyroxinemic and 480 euthyroid women from Cardiff were selected based on availability of stored urine samples and thyroid function data. MAIN OUTCOME MEASURES Urinary iodine, thiocyanate, and perchlorate and serum TSH, free T(4) (FT(4)), and thyroperoxidase antibody were measured. RESULTS Urinary iodine was low: median 98 microg/liter in Cardiff and 52 microg/liter in Turin. Urine perchlorate was detectable in all women. The median (range) urinary perchlorate concentration was 5 microg/liter (0.04-168 microg/liter) in Turin and 2 microg/liter (0.02-368 microg/liter) in Cardiff. There were no associations between urine perchlorate concentrations and serum TSH or FT(4) in the individual euthyroid or hypothyroid/hypothyroxinemic cohorts. In multivariable linear analyses, log perchlorate was not a predictor of serum FT(4) or TSH. CONCLUSIONS Low-level perchlorate exposure is ubiquitous but did not affect thyroid function in this cohort of iodine-deficient pregnant women.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, 88 East Newton Street, Evans 201, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In pharmacologic doses, perchlorate inhibits thyroidal iodine uptake and subsequently decreases thyroid hormone production. Although pharmacologic doses may be used in the treatment of hyperthyroidism, recent literature has focussed on the detection of low levels of perchlorate in the environment, groundwater and foodstuffs and their potential adverse effects on human thyroid function. This is of particular concern to the developing foetus and infant, whose normal neurodevelopment depends on adequate iodine intake for the production of thyroid hormones. Further research is needed to clarify the potential health effects of low-level chronic environmental perchlorate exposure. The health impact of environmental perchlorate may be dependent upon adequate iodine intake and should be interpreted in combination with other environmental exposures that are also potential thyroidal endocrine disruptors.
Collapse
Affiliation(s)
| | - Elizabeth N. Pearce
- Corresponding author. Tel.: +1 617 414 1348; Fax: +1 617 638 7221. (E.N. Pearce)
| | | |
Collapse
|
22
|
Abstract
Common environmental exposures may affect thyroid function in humans. Foetuses and infants are most vulnerable to these effects because they need thyroid hormone for normal neurodevelopment. Perchlorate, thiocyanate and nitrate are all competitive inhibitors of the sodium/iodine symporter (NIS) in pharmacologic doses, but their effects on human thyroid function at environmental exposure levels remain unclear. Many compounds, including polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs), bisphenol-A (BPA) and triclosan, may have direct actions on the thyroid hormone receptor, but these effects are complex and are not yet well understood. Isoflavones inhibit thyroperoxidase (TPO) activity, and, therefore, may cause goitre and hypothyroidism if ingested at high levels, particularly in iodine-deficient individuals. Organochlorine pesticides and dioxins may decrease serum T(4) half-life by activating hepatic enzymes. Additional studies are needed to further elucidate the risk posed by these and other potentially thyroid-disrupting compounds.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, 88 East Newton street, Evans 201, Boston, MA 02118, USA.
| | | |
Collapse
|
23
|
Affiliation(s)
- Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| |
Collapse
|
24
|
Srinivasan A, Viraraghavan T. Perchlorate: health effects and technologies for its removal from water resources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:1418-42. [PMID: 19440526 PMCID: PMC2681191 DOI: 10.3390/ijerph6041418] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/03/2009] [Indexed: 11/17/2022]
Abstract
Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water.
Collapse
Affiliation(s)
- Asha Srinivasan
- Faculty of Engineering, University of Regina, Regina, SK, S4S 0A2, Canada; E-Mail:
| | | |
Collapse
|
25
|
Abstract
Perchlorate is a competitive inhibitor of the sodium/iodine symporter, decreasing the active transport of iodine into the thyroid. It was used as an antithyroid drug in the treatment of hyperthyroidism in the 1950s and 1960s but was discontinued because of the occasional occurrence of aplastic anemia. More recently, lower doses of perchlorate have been used successfully in the treatment of iodine-induced hyperthyroidism. There has been concern that naturally occurring perchlorate and industrial contamination of water supplies with perchlorate might pose a health hazard by inducing or aggravating underlying thyroid dysfunction. In a series of studies in normal volunteers, administration of perchlorate from 2 weeks to 6 months and in perchlorate production workers exposed intermittently to high levels of perchlorate for years, no abnormalities of circulating thyroid hormones, thyroid-stimulating hormone, thyroglobulin, or ultrasound evaluation of thyroid structure were observed even though the thyroid (123)I uptake was decreased in some studies. Further studies of the effects of perchlorate on thyroid function in normal volunteers will now be difficult to carry out due to the adverse publicity that perchlorate and the studies on its effect have received.
Collapse
Affiliation(s)
- Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Paulus BF, Bazar MA, Salice CJ, Mattie DR, Major MA. Perchlorate inhibition of iodide uptake in normal and iodine-deficient rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1142-9. [PMID: 17558809 DOI: 10.1080/15287390701252741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Perchlorate-induced inhibition of thyroidal iodide uptake was measured in normal and iodine-deficient female Sprague-Dawley rats. Rats that were made iodine-deficient by long-term restriction of iodine in the diet absorbed a gavage dose of 131I to the thyroid in proportionally greater amounts than rats fed a normal diet. Furthermore, the iodine-deficient rats maintained their high rates of absorption even when challenged by levels of perchlorate in their drinking water sufficient to produce pronounced inhibition of 131I uptake in rats fed a normal diet. Every dose of perchlorate used in this study (1.1, 5.6, and 28 mg/L) produced significant inhibition of iodide uptake in normally fed rats, but only the highest level of perchlorate (28 mg/L) significantly inhibited thyroidal uptake of 131I in the iodine-deficient rats. Taken together, these results demonstrate that iodide-deficient animals exhibit increased resistance to the inhibition of iodine absorption resulting from perchlorate exposure.
Collapse
Affiliation(s)
- Brian F Paulus
- Directorate of Toxicology, Health Effects Research Program, U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, Maryland 21010, USA
| | | | | | | | | |
Collapse
|
27
|
Braverman LE, Pearce EN, He X, Pino S, Seeley M, Beck B, Magnani B, Blount BC, Firek A. Effects of six months of daily low-dose perchlorate exposure on thyroid function in healthy volunteers. J Clin Endocrinol Metab 2006; 91:2721-4. [PMID: 16636123 DOI: 10.1210/jc.2006-0184] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CONTEXT Perchlorate has been detected in U.S. drinking water supplies at levels ranging from 4 to 200 microg/liter as well as in agricultural products. Perchlorate is known to be a competitive inhibitor of iodine uptake by the thyroid through the sodium-iodide symporter. OBJECTIVE The objective of the study was to determine whether prolonged exposure (6 months) to low levels of perchlorate would perturb thyroid function. DESIGN This was a prospective, double-blinded, randomized trial. PARTICIPANTS The study population consisted of 13 healthy volunteers. INTERVENTION INTERVENTIONs included placebo vs. 0.5 mg or 3.0 mg potassium perchlorate daily. MAIN OUTCOME MEASURES Serum thyroid function tests, 24-h radioactive iodine uptake, serum thyroglobulin (Tg), urinary iodine and perchlorate, and serum perchlorate were measured. RESULTS Mean urinary perchlorate value during ingestion of 0.5 mg perchlorate daily was 332.7 +/- 66.1 microg per 24 h or 248.5 +/- 64.5 microg/g creatinine and mean values for the four subjects who received 3 mg perchlorate daily were 2079.5 +/- 430.0 microg per 24 h or 1941.7 +/- 138.5 microg/g creatinine. There was no significant change in the thyroid (123)I uptakes during perchlorate administration. There were no significant changes in serum T(3), free T(4) index, TSH, or Tg concentrations during the exposure period, compared to baseline or postexposure values. Urine iodine values for the 3-mg perchlorate group were higher, but not significantly so, at baseline than during perchlorate exposure. CONCLUSIONS We observed that a 6-month exposure to perchlorate at doses up to 3 mg/d had no effect on thyroid function, including inhibition of thyroid iodide uptake as well as serum levels of thyroid hormones, TSH, and Tg.
Collapse
Affiliation(s)
- Lewis E Braverman
- Boston University Medical Center, 88 East Newton Street, Evans 201, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ting D, Howd RA, Fan AM, Alexeeff GV. Development of a health-protective drinking water level for perchlorate. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:881-6. [PMID: 16759989 PMCID: PMC1480484 DOI: 10.1289/ehp.8684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We evaluated animal and human toxicity data for perchlorate and identified reduction of thyroidal iodide uptake as the critical end point in the development of a health-protective drinking water level [also known as the public health goal (PHG)] for the chemical. This work was performed under the drinking water program of the Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency. For dose-response characterization, we applied benchmark-dose modeling to human data and determined a point of departure (the 95% lower confidence limit for 5% inhibition of iodide uptake) of 0.0037 mg/kg/day. A PHG of 6 ppb was calculated by using an uncertainty factor of 10, a relative source contribution of 60%, and exposure assumptions specific to pregnant women. The California Department of Health Services will use the PHG, together with other considerations such as economic impact and engineering feasibility, to develop a California maximum contaminant level for perchlorate. We consider the PHG to be adequately protective of sensitive subpopulations, including pregnant women, their fetuses, infants, and people with hypothyroidism.
Collapse
Affiliation(s)
- David Ting
- Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California 94612, USA.
| | | | | | | |
Collapse
|
29
|
Martinelango PK, Gümüş G, Dasgupta PK. Matrix interference free determination of perchlorate in urine by ion association–ion chromatography–mass spectrometry. Anal Chim Acta 2006; 567:79-86. [PMID: 17723382 DOI: 10.1016/j.aca.2006.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/05/2006] [Accepted: 02/09/2006] [Indexed: 11/18/2022]
Abstract
Quantitative measurement of perchlorate in biological fluids is of importance to assess its toxicity and to study its effects on the thyroid gland. Whenever possible, urine samples are preferred in toxicologic/epidemiologic studies because sample collection is non-invasive. We present here a pretreatment method for the determination of perchlorate in urine samples that lead to a clean matrix. Urine samples, spiked with isotopically labeled perchlorate, are exposed to UV to destroy/decompose organic molecules and then sequentially treated with an H+-form cation exchange resin to remove protolyzable compounds, with ammonia to raise the pH to 10-11 and finally passed through a mini-column of basic alumina to remove the color and other organic matter. After filtration through a 0.45 microm syringe filter, the sample thus prepared can be directly injected into an ion chromatograph (IC). We use ion association-electrospray ionization-mass spectrometry (ESI-MS) to detect and quantify perchlorate. The proposed sample preparation method leads to excellent limits of detection (LOD's) for perchlorate since there is essentially no dilution of sample and the matrix effects are eliminated. Results of urine samples from both men and women volunteers are reported for perchlorate, as well as for iodide and thiocyanate, which are generally present at much higher concentrations and for which a "dilute and shoot" approach is adequate. The limit of detection (S/N=3) for iodide, thiocyanate and perchlorate by the present method was 0.40, 0.10 and 0.080 microg l(-1), respectively.
Collapse
Affiliation(s)
- P Kalyani Martinelango
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79401-1061, United States
| | | | | |
Collapse
|
30
|
Bradford CM, Rinchard J, Carr JA, Theodorakis C. Perchlorate affects thyroid function in eastern mosquitofish (Gambusia holbrooki) at environmentally relevant concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:5190-5. [PMID: 16082946 DOI: 10.1021/es0484505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to determine the effects of perchlorate on thyroid function in mosquitofish. Adult mosquitofish were exposed to 0, 0.1, 1, 10, 100, and 1000 mg/L sodium perchlorate for 2, 10, and 30 d. Whole body thyroxin (T4) content and histological assessment of thyroid follicles (e.g., follicular epithelial height, hyperplasia, hypertrophy, and colloid depletion) were used to gauge alterations in thyroid function. Follicular epithelial cell height, hyperplasia, and hypertrophy increased with increasing perchlorate concentration, especially in fish exposed for 30 d, and these effects were statistically significantly different from control at concentrations as low as 0.1 mg/L (nominal concentration). The percent occurrence of follicles with depleted colloid decreased with increasing perchlorate concentration, which is contrary to what is expected with thyroid inhibition. There also was a decrease in whole body T4 concentration in fish exposed to perchlorate for 30 d, but clear dose-response relationships were less evident for whole body T4 than for histopathological endpoints. In conclusion, thyroid histopathology provides a sensitive biomarker for thyroid endocrine disruption at environmentally relevant concentrations of sodium perchlorate, and whole body T4 is a less sensitive indicator of perchlorate exposure than is histopathology.
Collapse
Affiliation(s)
- Carrie M Bradford
- The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Box 41163, Lubbock, Texas 79409-1163, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Ammonium perchlorate, used in the solid-propellant of rocket engines, has contaminated some water supplies and represents a potential public health hazard. Its toxicity is the result of the inhibition of the sodium iodide symporter resulting in reduced iodide uptake, possibly leading to reduced production of thyroid hormone. The fetus is the most vulnerable subject. Studies of newborn screening for thyroid function have yielded conflicting results and have not measured perchlorate or iodine intake. Based on short-term clinical studies in adults, less than 0.5 mg perchlorate per 70-kg adult will not lower thyroid uptake of radioiodine, while 1.6 mg/kg per day will lower thyroid uptake by 20%. To avoid interference with thyroid function, the California Office of Environmental Health Hazard Assessment recommended a public health goal of 6 microg perchlorate per liter of drinking water, but approximately three times that concentration is likely to be safe.
Collapse
Affiliation(s)
- Jerome M Hershman
- Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| |
Collapse
|
32
|
Braverman LE, He X, Pino S, Cross M, Magnani B, Lamm SH, Kruse MB, Engel A, Crump KS, Gibbs JP. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J Clin Endocrinol Metab 2005; 90:700-6. [PMID: 15572417 DOI: 10.1210/jc.2004-1821] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Perchlorate (ClO(4)(-)) and thiocyanate (SCN(-)) are potent and nitrate (NO(3)(-)) a weak competitive inhibitor of the thyroid sodium-iodide symporter. To determine the effects of long-term, high ClO(4)(-) exposure on thyroid function, we conducted a study of 29 workers employed for at least 1.7 yr (50% over 5.9 yr) in an ammonium ClO(4)(-) production plant in Utah. Serum ClO(4)(-), SCN(-), and NO(3)(-); serum T(4), free T(4) index, total T(3), thyroglobulin (Tg), and TSH; 14-h thyroid radioactive iodine uptake (RAIU); and urine iodine (I) and ClO(4)(-) were assessed after 3 d off (Pre) and during the last of three 12-h night shifts in the plant (During) and in 12 volunteers (C) not working in the plant. Serum and urine ClO(4)(-) were not detected in C; urine ClO(4)(-) was not detected in 12 of 29 and was 272 microg/liter in 17 Pre workers; serum ClO(4)(-) was not detected in 27 of 29 Pre; and serum and urine ClO(4)(-) were markedly elevated during ClO(4)(-) exposure to 868 microg/liter and 43 mg/g creatinine, respectively. Serum SCN(-) and NO(3)(-) concentrations were similar in all groups. Thyroid RAIUs were markedly decreased in During compared with Pre (13.5 vs. 21.5%; P < 0.01, paired t) and were associated with an increase in urine I excretion (230 vs. 148 microg I/g Cr; P = 0.02, paired t) but were similar to those in the C group (14.4%). Serum TSH and Tg concentrations were normal and similar in the three groups. Serum T(4) (8.3 vs. 7.7 microg/dl), free T(4) index (2.4 vs. 2.2), and total T(3) (147 vs. 134 ng/dl) were slightly but significantly increased in the During vs. Pre workers (P < 0.01, paired t). Thyroid volumes and patterns by ultrasound were similar in the 29 workers and 12 community volunteers. In conclusion, high ClO(4)(-) absorption during three nights work exposure decreased the 14-h thyroid RAIU by 38% in ClO(4)(-) production workers compared with the RAIU after 3 d off. However, serum TSH and Tg concentrations and thyroid volume by ultrasound were not affected by ClO(4)(-), suggesting that long-term, intermittent, high exposure to ClO(4)(-) does not induce hypothyroidism or goiter in adults.
Collapse
Affiliation(s)
- Lewis E Braverman
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts 02118-2347, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lewandowski TA, Seeley MR, Beck BD. Interspecies differences in susceptibility to perturbation of thyroid homeostasis: a case study with perchlorate. Regul Toxicol Pharmacol 2004; 39:348-62. [PMID: 15135213 DOI: 10.1016/j.yrtph.2004.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 11/22/2022]
Abstract
Despite many physiological similarities, humans and rats exhibit notably different susceptibilities to thyroid perturbation. Considerable research has recently been conducted on the thyroid-active chemical perchlorate, a chemical of emerging environmental and regulatory interest. While the data indicate humans and rats exhibit similar dose-response relationships in terms of acute inhibition of thyroidal iodide uptake, the two species appear to exhibit notable differences in terms of thyroid hormone response, the toxicologically significant consequence of iodide uptake inhibition. We analyzed dose-response data for changes in serum T(3), T(4), and TSH levels from studies in humans, rats, mice, and rabbits. We found that thyroid homeostasis in the rat appears to be strikingly more sensitive to perchlorate than any of the other species. Rats exhibited an increase in serum TSH at 0.1mg/kg-day whereas other species remained unresponsive even at doses of 10mg/kg-day. Less pronounced but consistent effects were seen with serum T(3) and T(4). These cross-species comparisons provide strong evidence that data obtained from rat studies should be critically evaluated for their relevance to humans. If rat data are used to develop toxicity criteria for perchlorate, we propose that this is an instance where an inter-species uncertainty factor less than one is supportable. DISCLOSURE STATEMENT: One of the authors (BDB) has been hired by Lockheed Martin Corporation as an expert in litigation involving perchlorate. A portion of the initial research presented in this paper was conducted in conjunction with her role in that matter.
Collapse
Affiliation(s)
- T A Lewandowski
- Gradient Corporation, 600 Stewart St., Suite 803, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
34
|
Strawson J, Zhao Q, Dourson M. Reference dose for perchlorate based on thyroid hormone change in pregnant women as the critical effect. Regul Toxicol Pharmacol 2004; 39:44-65. [PMID: 14746779 DOI: 10.1016/j.yrtph.2003.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most relevant data for developing a reference dose (RfD) for perchlorate exposures comes from human epidemiology and clinical studies, supplemented with available and extensive information on experimental animals. Specifically, serum T4 decrease is the critical effect of perchlorate, based on a mode-of-action analysis and the evidence provided by the body of rodent studies on perchlorate. However, no T4 decreases have been observed in human populations following perchlorate exposure at non-therapeutic doses. An RfD of 0.002 mg/kg-day can be derived using an epidemiology study. A freestanding NOAEL of 0.006 mg/kg-day for T4 decrease was identified in children from the epidemiology study. The use of this NOAEL has the advantage of a being identified in a sensitive subgroup, neonates and children. Data are sufficient to estimate an overall uncertainty factor of 3-fold with this NOAEL based on expected differences in toxicokinetics and toxicodynamics between children, and pregnant women and their fetuses, the second identified sensitive subgroup for perchlorate, and concerns about the over-iodination of this population. This RfD is supported by a human clinical study using inhibition of iodine uptake in adults as a measurable surrogate for the critical effect of T4 decrease in humans. However, although this latter study has a well-established dose-response curve for inhibition of iodine uptake, even perchlorate doses that result in a 70% inhibition of iodine uptake have no apparent effect on human T4 levels. Thus, the use of this study as the primary basis of the RfD is problematic. Nevertheless, a benchmark dose of 0.01 mg/kg-day was identified in this clinical study, which supports a threshold value of 0.006 mg/kg-day identified by its authors and the RfD of 0.002 mg/kg-day estimated in this paper.
Collapse
Affiliation(s)
- Joan Strawson
- Toxicology Excellence for Risk Assessment, 1757 Chase Ave., Cincinnati, OH 45223, USA.
| | | | | |
Collapse
|
35
|
Kelsh MA, Buffler PA, Daaboul JJ, Rutherford GW, Lau EC, Barnard JC, Exuzides AK, Madl AK, Palmer LG, Lorey FW. Primary Congenital Hypothyroidism, Newborn Thyroid Function, and Environmental Perchlorate Exposure Among Residents of a Southern California Community. J Occup Environ Med 2003; 45:1116-27. [PMID: 14534454 DOI: 10.1097/01.jom.0000091683.25325.55] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objectives of this study were to evaluate whether there were higher rates of primary congenital hypothyroidism (PCH) or elevated concentrations of thyroid-stimulating hormone (TSH) in a community where perchlorate was detected in groundwater wells. The adjusted PCH prevalence ratio and 95% confidence interval (CI) comparing the study community to San Bernardino and Riverside counties combined was 0.45 (95% CI=0.06-1.64). The odds ratios for elevated TSH concentration were 1.24 (95% CI=0.89-1.68) among all newborns screened and 0.69 (95% CI=0.27-1.45) for newborns whose age at screening was 18 hours or greater. Age of the newborn at time of screening was the most important predictor of the TSH level. These findings suggest that residence in a community with potential perchlorate exposure has not impacted PCH rates or newborn thyroid function.
Collapse
Affiliation(s)
- Michael A Kelsh
- Exponent, Inc, 149 Commonwealth Drive, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brucker-Davis F, Thayer K, Colborn T, Fenichel P. Perchlorate: low dose exposure and susceptible populations. Thyroid 2002; 12:739; author reply 739-40. [PMID: 12225646 DOI: 10.1089/105072502760258749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Fueger BJ, Zettinig G, Dudczak R. To treat or not to treat? The unusual story of two unmarried sisters with goiter. Thyroid 2002; 12:740-1. [PMID: 12225647 DOI: 10.1089/105072502760258767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Li FX, Squartsoff L, Lamm SH. Prevalence of thyroid diseases in Nevada counties with respect to perchlorate in drinking water. J Occup Environ Med 2001; 43:630-4. [PMID: 11464394 DOI: 10.1097/00043764-200107000-00010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perchlorate is well-known to inhibit the uptake of iodine by the thyroid and has been shown to do so at doses in the milligrams-per-day range and higher. Perchlorate has been found in the water supply of Clark County (Las Vegas), Nevada, at 4 to 24 micrograms/L (parts per billion) and may provide exposure dosages in the tens of micrograms per day. An analysis of the Medicaid database from Nevada was undertaken to determine whether an increase in the prevalence of any thyroid disease was associated with that level of perchlorate content. The prevalence of persons being seen for thyroid disease or for specific thyroid diseases (goiter, nodule, thyrotoxicosis, congenital hypothyroidism, acquired hypothyroidism, thyroiditis, and other thyroid disorders) and for thyroid cancer among the Medicaid-eligible population of each county was calculated for the 2-year period 1997 to 1998. The prevalences in Clark County were compared with those in Washoe County (i.e., Reno), the second most populous county in the state, and with those for the rest of the state. There was no evidence of an increased rate of thyroid disease (or of any specific thyroid disease) associated with perchlorate exposure. Generally, the prevalences in the metropolitan parts of the state were lower than for the rest of the state, particularly for acquired hypothyroidism. This analysis found no evidence that perchlorate-containing drinking water at the given level increased the prevalence of acquired hypothyroidism or of any other thyroid condition.
Collapse
Affiliation(s)
- F X Li
- Department of Community Health Sciences, University of Calgary
| | | | | |
Collapse
|