1
|
Qiao Q, Wang X, Su Z, Han C, Zhao K, Qi K, Xie Z, Huang X, Zhang S. PuNDH9, a subunit of ETC Complex I regulates plant defense by interacting with PuPR1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112009. [PMID: 38316345 DOI: 10.1016/j.plantsci.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
NAD+ and NADH play critical roles in energy metabolism, cell death, and gene expression. The NADH-ubiquinone oxidoreductase complex (Complex I) has been long known as a key enzyme in NAD+ and NADH metabolism. In the present study, we found and analyzed a new subunit of Complex I (NDH9), which was isolated from Pyrus ussuriensis combined with RT-PCR. Following infection with A. alternata, RT-qPCR analysis demonstrated an increase in the expression of PuNDH9. Genetic manipulation of PuNDH9 levels suggested that PuNDH9 plays key roles in NADH/NAD+ homeostasis, defense enzyme activities, ROS generation, cell death, gene expression, energy metabolism, and mitochondrial functions during the pear- A. alternata interaction. Furthermore, Y2H, GST-pull down, and a split-luciferase complementation imaging assays revealed that PuNDH9 interacts with PuPR1. We discover that PuNDH9 and PuPR1 synergistically activate defense enzyme activities, ROS accumulation, cell death, and plant defenses. Collectively, our findings reveal that PuNDH9 is likely important for plant defenses.
Collapse
Affiliation(s)
- Qinghai Qiao
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Oizumi R, Sugimoto Y, Aibara H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR DERMATOLOGY 2024; 7:e51962. [PMID: 38483460 PMCID: PMC10979338 DOI: 10.2196/51962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The skin is an important organ of the human body and has moisturizing and barrier functions. Factors such as sunlight and lifestyle significantly affect these skin functions, with sunlight being extremely damaging. The effects of lifestyle habits such as smoking, diet, and sleep have been studied extensively. It has been found that smoking increases the risk of wrinkles, while excessive fat and sugar intake leads to skin aging. Lack of sleep and stress are also dangerous for the skin's barrier function. In recent years, the impact of exercise habits on skin function has been a focus of study. Regular exercise is associated with increased blood flow to the skin, elevated skin temperature, and improved skin moisture. Furthermore, it has been shown to improve skin structure and rejuvenate its appearance, possibly through promoting mitochondrial biosynthesis and affecting hormone secretion. Further research is needed to understand the effects of different amounts and content of exercise on the skin. OBJECTIVE This study aims to briefly summarize the relationship between lifestyle and skin function and the mechanisms that have been elucidated so far and introduce the expected effects of exercise on skin function. METHODS We conducted a review of the literature using PubMed and Google Scholar repositories for relevant literature published between 2000 and 2022 with the following keywords: exercise, skin, and life habits. RESULTS Exercise augments the total spectrum power density of cutaneous blood perfusion by a factor of approximately 8, and vasodilation demonstrates an enhancement of approximately 1.5-fold. Regular exercise can also mitigate age-related skin changes by promoting mitochondrial biosynthesis. However, not all exercise impacts are positive; for instance, swimming in chlorinated pools may harm the skin barrier function. Hence, the exercise environment should be considered for its potential effects on the skin. CONCLUSIONS This review demonstrates that exercise can potentially enhance skin function retention.
Collapse
Affiliation(s)
- Ryosuke Oizumi
- Faculty of Nursing, Shijonawate gakuen University, Daito-shi, Japan
| | | | | |
Collapse
|
3
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Baily Wang
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria B Marinova
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - David Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ewa Goldys
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Shin MJ, Lee CS, Kim SH. Screening for Lactic Acid Bacterial Strains as Probiotics Exhibiting Anti-inflammatory and Antioxidative Characteristic Via Immune Modulation in HaCaT Cell. Probiotics Antimicrob Proteins 2023; 15:1665-1680. [PMID: 36806154 DOI: 10.1007/s12602-023-10048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
In this study, the basic probiotic characteristics and functional properties of lactic acid bacteria (LAB) were investigated using two in vitro models of inflammation induced by lipopolysaccharide (LPS) and H2O2. Fifteen strains were prescreened out of 60 LAB candidates based on their radical scavenging activity to determine the antioxidant capacity of the strains. The top 15 candidates were further investigated to evaluate their survival rate under low pH and bile salt conditions that mimic the intestinal environment. Three strains, Levilactobacillus brevis D70 (Levilact), Lactiplantibacillus pentosus S16 (Lactipla), and Limosilactobacillus fermentum MF10 (Limosilact), were capable of scavenging free radicals and survived under artificial intestinal conditions. Therefore, Levilact. brevis D70, Lactipla. pentosus S16, and Limosilact. fermentum MF10 were selected for further antioxidant, anti-inflammation, and mitochondrial activity examinations via cell models of inflammation and oxidative stress. Among the three strains, Limosilact. fermentum MF10 showed the highest anti-inflammatory activities by significantly downregulating the relative mRNA expression levels of inflammatory biomarkers such as interleukin 8 (IL-8) and interferon-gamma (IFN-γ) induced by LPS (P < 0.05). Moreover, Limosilact. fermentum MF10 was also capable of upregulating the gene expression levels of antioxidative mediator glutathione peroxidase 4 (GPX4) induced by reactive oxygen species (ROS) in both human HT-29 epithelial cells and human HaCaT keratinocytes. Limosilact. fermentum MF10 was also capable of regulating mitochondrial membrane potential (MMP), which plays a key role in the mitochondrial activity of HaCaT cells. As a result, Limosilact. fermentum MF10 showed the highest potential for probiotic properties and impacts the immune-related gut-skin axis by altering proinflammatory cytokines, antioxidative biomarkers, and MMP.
Collapse
Affiliation(s)
- Min Jae Shin
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
6
|
Jiménez AG. Inflammaging in domestic dogs: basal level concentrations of IL-6, IL-1β, and TNF-α in serum of healthy dogs of different body sizes and ages. Biogerontology 2023:10.1007/s10522-023-10037-y. [PMID: 37195482 DOI: 10.1007/s10522-023-10037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Inflammaging, a "hallmark of aging," refers to a chronic, progressive increase in the proinflammatory status of mammals as they age, and this phenotype has been associated with many age-related diseases, including cardiovascular disease, arthritis and cancer. Though, inflammaging research is common in humans, there is a lack of data for this process for the domestic dog. Here, serum concentrations of IL-6, IL-1β and TNF-α in healthy dogs of different body sizes and ages were measured to determine whether inflammaging may play a mechanistic role in aging rates in dogs, similar to those found in humans. Using a four-way ANOVA, a significant decrease in IL-6 concentrations in young dogs with the rest of the age categories showing increased IL-6 concentrations was found, similar to humans. However, only young dogs have decreased IL-6 concentrations, with adult dogs having similar IL-6 concentrations to senior and geriatric dogs, implying differences in aging rates between humans and dogs. And, there was a marginally significant interaction between sex*spayed or neutered status and IL-1β concentrations with intact females having the lowest IL-1β concentrations compared with intact males, and spayed and neutered dogs. The presence of estrogen in intact females may, overall, decrease inflammatory pathways. This implies that age at spaying or neutering may be an important aspect to consider for inflammaging pathways in dogs. Furthermore, sterilized dogs often die of immune-related diseases, which could be linked to the increases in IL-1β in sterilized dogs found in this study.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA.
| |
Collapse
|
7
|
Boonpraman N, Yoon S, Kim CY, Moon JS, Yi SS. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson's disease. Redox Biol 2023; 62:102698. [PMID: 37058998 PMCID: PMC10123376 DOI: 10.1016/j.redox.2023.102698] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction have been believed to play an important role in the pathogenesis of aging and neurodegenerative diseases, including Parkinson's disease (PD). The excess of reactive oxygen species (ROS) increases with age and causes a redox imbalance, which contributes to the neurotoxicity of PD. Accumulating evidence suggests that NADPH oxidase (NOX)-derived ROS, especially NOX4, belong to the NOX family and is one of the major isoforms expressed in the central nervous system (CNS), associated with the progression of PD. We have previously shown that NOX4 activation regulates ferroptosis via astrocytic mitochondrial dysfunction. We have previously shown that activation of NOX4 regulates ferroptosis through mitochondrial dysfunction in astrocytes. However, it remains unclear why an increase in NOX4 in neurodegenerative diseases leads to astrocyte cell death by certain mediators. Therefore, this study was designed to evaluate how NOX4 in the hippocampus is involved in PD by comparing an MPTP-induced PD mouse model compared to human PD patients. We could detect that the hippocampus was dominantly associated with elevated levels of NOX4 and α-synuclein during PD and the neuroinflammatory cytokines, myeloperoxidase (MPO) and osteopontin (OPN), were upregulated particularly in astrocytes. Intriguingly, NOX4 suggested a direct intercorrelation with MPO and OPN in the hippocampus. Upregulation of MPO and OPN induces mitochondrial dysfunction by suppressing five protein complexes in the mitochondrial electron transport system (ETC) and increases the level of 4-HNE leading to ferroptosis in human astrocytes. Overall, our findings indicate that the elevation of NOX4 cooperated with the MPO and OPN inflammatory cytokines through mitochondrial aberration in hippocampal astrocytes during PD.
Collapse
Affiliation(s)
- Napissara Boonpraman
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Sunmi Yoon
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Chae Young Kim
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang, Cheonan, 31151, Republic of Korea
| | - Sun Shin Yi
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea; Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
8
|
Castejon-Vega B, Cordero MD, Sanz A. How the Disruption of Mitochondrial Redox Signalling Contributes to Ageing. Antioxidants (Basel) 2023; 12:antiox12040831. [PMID: 37107206 PMCID: PMC10135186 DOI: 10.3390/antiox12040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the past, mitochondrial reactive oxygen species (mtROS) were considered a byproduct of cellular metabolism. Due to the capacity of mtROS to cause oxidative damage, they were proposed as the main drivers of ageing and age-related diseases. Today, we know that mtROS are cellular messengers instrumental in maintaining cellular homeostasis. As cellular messengers, they are produced in specific places at specific times, and the intensity and duration of the ROS signal determine the downstream effects of mitochondrial redox signalling. We do not know yet all the processes for which mtROS are important, but we have learnt that they are essential in decisions that affect cellular differentiation, proliferation and survival. On top of causing damage due to their capacity to oxidize cellular components, mtROS contribute to the onset of degenerative diseases when redox signalling becomes dysregulated. Here, we review the best-characterized signalling pathways in which mtROS participate and those pathological processes in which they are involved. We focus on how mtROS signalling is altered during ageing and discuss whether the accumulation of damaged mitochondria without signalling capacity is a cause or a consequence of ageing.
Collapse
|
9
|
Zhou X, Zhao S, Liu T, Yao L, Zhao M, Ye X, Zhang X, Guo Q, Tu P, Zeng K. Schisandrol A protects AGEs-induced neuronal cells death by allosterically targeting ATP6V0d1 subunit of V-ATPase. Acta Pharm Sin B 2022; 12:3843-3860. [PMID: 36213534 PMCID: PMC9532558 DOI: 10.1016/j.apsb.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 12/26/2022] Open
|
10
|
Zhang B, Pan C, Feng C, Yan C, Yu Y, Chen Z, Guo C, Wang X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep 2022; 27:45-52. [PMID: 35213291 PMCID: PMC8890532 DOI: 10.1080/13510002.2022.2046423] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the main source of reactive oxygen species (ROS) in cells. Early studies have shown that mitochondrial reactive oxygen species (mROS) are related to the occurrence and adverse outcomes of many diseases, and are thus regarded as an important risk factor that threaten human health. Recently, increasing evidence has shown that mROS are very important for an organism’s homeostasis. mROS can regulate a variety of signaling pathways and activate the adaptation and protection behaviors of an organism under stress. In addition, mROS also regulate important physiological processes, such as cell proliferation, differentiation, aging, and apoptosis. Herein, we review the mechanisms of production, transformation, and clearance of mROS and their biological roles in different physiological processes.
Collapse
Affiliation(s)
- Baoyi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Cunyao Pan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China.,Department of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China.,School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Changqing Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China.,School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yijing Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Olaniyan OP, Ajayi EIO. Phytochemicals and in vitro anti-apoptotic properties of ethanol and hot water extracts of Cassava (Manihot esculenta Crantz) peel biogas slurry following anaerobic degradation. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00311-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Wastes emanating from cassava (Manihot Esculenta Crantz) processing in African countries significantly contribute to environmental pollution, besides, such toxic wastes contribute to greenhouse gas emission. Although cassava peel has been successfully used as a raw material in mushroom cultivation, feedstock for livestock, biogas production but the bio-transformed products recovered from the anaerobic digestion of cassava wastes, especially the peels have often been overlooked. Therefore, this research aimed at quantifying the secondary metabolites in the slurry recovered from ethanol and hot water extraction of cassava peel subjected to biogas production, in vitro, for anti-apoptotic properties.
Methods
Fresh cassava peels were allowed to ferment anaerobically to produce three states of matter; gas, solid, and liquid/slurry. The slurry was extracted using 95 % ethanol and 100 oC hot water to obtain crude extracts, which were then subjected to anti-apoptotic screening using the mitochondrial swelling assay. The qualitative phytochemical analysis of the crude extracts was done using standard methods. Further characterization of the crude extracts was done by FTIR for the chemical elucidation of the functional groups present.
Results
The qualitative phytoconstituents revealed that the slurry extracts are naturally enriched with alkaloids, steroids, flavonoids, and saponins. The infrared spectrum of the crude extracts revealed the presence of hydroxyl, alkane, carboxyl groups in the ethanol extract, and hydroxyl, alkene, amide, carbonyl groups in the hot water extract. In the presence and absence of exogenous Ca2+, both extracts of the slurry induced liver mitochondrial permeability transition pore opening albeit at low amplitude swelling as the mean absorbance was less than one (at 540 nm).
Conclusions
Based on these results obtained, the crude extracts of cassava peel biogas slurry have been proven to possess bioactive compounds that could induce liver mitochondrial permeability transition pore opening, in vitro.
Collapse
|
12
|
Jimenez AG, Downs CJ, Lalwani S, Cipolli W. Cellular metabolism and IL-6 concentrations during stimulated inflammation in primary fibroblasts from small and large dog breeds as they age. J Exp Biol 2021; 224:jeb233734. [PMID: 33257435 DOI: 10.1242/jeb.233734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
The immune system undergoes marked changes during aging characterized by a state of chronic, low-grade inflammation termed 'inflammaging'. We explore this phenomenon in domestic dogs, which are the most morphologically and physiologically diverse group of mammals, with the widest range in body sizes for a single species. Additionally, smaller dogs tend to live significantly longer than larger dogs across all breeds. Body size is intricately linked to mass-specific metabolism and aging rates, which suggests that dogs are exemplary for studies in inflammaging. Dermal fibroblast cells play an important role in skin inflammation, making them a good model for inflammatory patterns across dog breed, body sizes and ages. Here, we examined aerobic and glycolytic cellular metabolism, and IL-6 concentrations in primary fibroblast cells isolated from small and large dog breeds, that were either recently born puppies or old dogs after death. We found no differences in cellular metabolism when isolated fibroblasts were treated with lipopolysaccharide (LPS) from Escherichia coli to stimulate an inflammatory phenotype. Unlike responses observed in mice and humans, there was a less drastic amplification of IL-6 concentration after LPS treatment in the geriatric population of dogs compared with recently born dogs. In young dogs, we also found evidence that untreated fibroblasts from large breeds had significantly lower IL-6 concentrations than observed for smaller breeds. This implies that the patterns of inflammaging in dogs may be distinct and different from other mammals commonly studied.
Collapse
Affiliation(s)
| | - Cynthia J Downs
- State University of New York College of Environmental Science and Forestry, Department of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, NY 13210, USA
| | - Sahil Lalwani
- Colgate University, Department of Mathematics, 13 Oak Dr., Hamilton, NY 13346, USA
| | - William Cipolli
- Colgate University, Department of Mathematics, 13 Oak Dr., Hamilton, NY 13346, USA
| |
Collapse
|
13
|
Abstract
Across Mammalia, body size and lifespan are positively correlated. However, in domestic dogs, the opposite is true: small dogs have longer lives compared with large dogs. Here, I present literature-based data on life-history traits that may affect dog lifespan, including adaptations at the whole-organism, and organ-level. Then, I compare those same traits to wild canids. Because oxidative stress is a byproduct of aerobic metabolism, I also present data on oxidative stress in dogs that suggests that small breed dogs accumulate significantly more circulating lipid peroxidation damage compared with large breed dogs, in opposition to lifespan predictions. Further, wild canids have increased antioxidant concentrations compared with domestic dogs, which may aid in explaining why wild canids have longer lifespans than similar-sized domestic dogs. At the cellular level, I describe mechanisms that differ across size classes of dogs, including increases in aerobic metabolism with age, and increases in glycolytic metabolic rates in large breed dogs across their lifespan. To address potential interventions to extend lifespan in domestic dogs, I describe experimental alterations to cellular architecture to test the "membrane pacemaker" hypotheses of metabolism and aging. This hypothesis suggests that increased lipid unsaturation and polyunsaturated fatty acids in cell membranes can increase cellular metabolic rates and oxidative damage, leading to potential decreased longevity. I also discuss cellular metabolic changes of primary fibroblast cells isolated from domestic dogs as they are treated with commercially available drugs that are linked to lifespan and health span expansion.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
14
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
15
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
16
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
17
|
The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021; 12:58. [PMID: 33431811 PMCID: PMC7801447 DOI: 10.1038/s41419-020-03355-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.
Collapse
|
18
|
Tamanna N, Munro D, Kroeker K, Banh S, Treberg JR. The effect of short-term methionine restriction on hydrogen peroxide metabolism in Fischer-344 rat skeletal muscle mitochondria. Mitochondrion 2020; 55:1-7. [PMID: 32882439 DOI: 10.1016/j.mito.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Skeletal muscle, a significant contributor to resting energy expenditure and reactive oxygen species, may play a critical role in body-weight regulation and aging processes. Methionine restriction (MR) is a dietary intervention which extends lifespan, lowers body-weight and enhances energy expenditure in rodents, all of which have been linked to mitochondrial function in various tissues including liver, kidney, heart and brown adipose tissue; however, mitochondrial responses to MR in skeletal muscle is largely unknown. Given the importance of skeletal muscle on energy metabolism and aging-related processes, we investigated if there are changes in skeletal muscle mitochondrial energetics in response to MR. Although MR lowers body-weight in rats, neither respiration, proton leak nor hydrogen peroxide metabolism were altered in isolated skeletal muscle mitochondria. This suggests that mitochondrial function in skeletal muscle remains conserved while MR alters metabolism in other tissues.
Collapse
Affiliation(s)
- Nahid Tamanna
- Department of Biological Sciences, University of Manitoba, Canada.
| | - Daniel Munro
- Department of Biological Sciences, University of Manitoba, Canada.
| | - Kathryn Kroeker
- Department of Biological Sciences, University of Manitoba, Canada.
| | - Sheena Banh
- Department of Biological Sciences, University of Manitoba, Canada.
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Canada; Centre on Aging, University of Manitoba, Canada.
| |
Collapse
|
19
|
An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants (Basel) 2020; 9:antiox9060472. [PMID: 32498250 PMCID: PMC7346187 DOI: 10.3390/antiox9060472] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are quantifiably the most important sources of superoxide (O2●-) and hydrogen peroxide (H2O2) in mammalian cells. The overproduction of these molecules has been studied mostly in the contexts of the pathogenesis of human diseases and aging. However, controlled bursts in mitochondrial ROS production, most notably H2O2, also plays a vital role in the transmission of cellular information. Striking a balance between utilizing H2O2 in second messaging whilst avoiding its deleterious effects requires the use of sophisticated feedback control and H2O2 degrading mechanisms. Mitochondria are enriched with H2O2 degrading enzymes to desensitize redox signals. These organelles also use a series of negative feedback loops, such as proton leaks or protein S-glutathionylation, to inhibit H2O2 production. Understanding how mitochondria produce ROS is also important for comprehending how these organelles use H2O2 in eustress signaling. Indeed, twelve different enzymes associated with nutrient metabolism and oxidative phosphorylation (OXPHOS) can serve as important ROS sources. This includes several flavoproteins and respiratory complexes I-III. Progress in understanding how mitochondria generate H2O2 for signaling must also account for critical physiological factors that strongly influence ROS production, such as sex differences and genetic variances in genes encoding antioxidants and proteins involved in mitochondrial bioenergetics. In the present review, I provide an updated view on how mitochondria budget cellular H2O2 production. These discussions will focus on the potential addition of two acyl-CoA dehydrogenases to the list of ROS generators and the impact of important phenotypic and physiological factors such as tissue type, mouse strain, and sex on production by these individual sites.
Collapse
|
20
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
21
|
Scialò F, Sriram A, Stefanatos R, Spriggs RV, Loh SHY, Martins LM, Sanz A. Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster. Redox Biol 2020; 32:101450. [PMID: 32146156 PMCID: PMC7264463 DOI: 10.1016/j.redox.2020.101450] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
Reactive Oxygen Species (ROS) are essential cellular messengers required for cellular homeostasis and regulate the lifespan of several animal species. The main site of ROS production is the mitochondrion, and within it, respiratory complex I (CI) is the main ROS generator. ROS produced by CI trigger several physiological responses that are essential for the survival of neurons, cardiomyocytes and macrophages. Here, we show that CI produces ROS when electrons flow in either the forward (Forward Electron Transport, FET) or reverse direction (Reverse Electron Transport, RET). We demonstrate that ROS production via RET (ROS-RET) is activated under thermal stress conditions and that interruption of ROS-RET production, through ectopic expression of the alternative oxidase AOX, attenuates the activation of pro-survival pathways in response to stress. Accordingly, we find that both suppressing ROS-RET signalling or decreasing levels of mitochondrial H2O2 by overexpressing mitochondrial catalase (mtCAT), reduces survival dramatically in flies under stress. Our results uncover a specific ROS signalling pathway where hydrogen peroxide (H2O2) generated by CI via RET is required to activate adaptive mechanisms, maximising survival under stress conditions.
Collapse
Affiliation(s)
- Filippo Scialò
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, United Kingdom; Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| | - Ashwin Sriram
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, United Kingdom
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, United Kingdom
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, United Kingdom; Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
22
|
The Nootropic Drug Α-Glyceryl-Phosphoryl-Ethanolamine Exerts Neuroprotective Effects in Human Hippocampal Cells. Int J Mol Sci 2020; 21:ijms21030941. [PMID: 32023864 PMCID: PMC7038199 DOI: 10.3390/ijms21030941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Brain aging involves changes in the lipid membrane composition that lead to a decrease in membrane excitability and neurotransmitter release. These membrane modifications have been identified as contributing factors in age-related memory decline. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and produce valuable therapeutic effects in brain aging. Among promising drugs, alpha-glycerylphosphorylethanolamine (GPE) has demonstrated protective effects in amyloid-injured astrocytes and in an aging model of human neural stem cells. However, the compound properties on mature neuronal cells remain unexplored. Herein, GPE was tested in human hippocampal neurons, which are involved in learning and memory, and characterized by a functional cholinergic transmission, thus representing a valuable cellular model to explore the beneficial properties of GPE. GPE induced the release of the main membrane phospholipids and of the acetylcholine neurotransmitter. Moreover, the compound reduced lipid peroxidation and enhanced membrane fluidity of human brain cells. GPE counteracted the DNA damage and viability decrease observed in in vitro aged neurons. Among GPE treatment effects, the autophagy was found positively upregulated. Overall, these results confirm the beneficial effects of GPE treatment and suggest the compound as a promising drug to preserve hippocampal neurons and virtually memory performances.
Collapse
|
23
|
Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a Countermeasure. BIOLOGY 2019; 8:biology8020040. [PMID: 31083586 PMCID: PMC6627948 DOI: 10.3390/biology8020040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
24
|
Gabriela Jimenez A. "The Same Thing That Makes You Live Can Kill You in the End": Exploring the Effects of Growth Rates and Longevity on Cellular Metabolic Rates and Oxidative Stress in Mammals and Birds. Integr Comp Biol 2019; 58:544-558. [PMID: 29982421 DOI: 10.1093/icb/icy090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All aerobic organisms are subjected to metabolic by-products known as reactive species (RS). RS can wreak havoc on macromolecules by structurally altering proteins and inducing mutations in DNA, among other deleterious effects. To combat accumulating damage, organisms have an antioxidant system to sequester RS before they cause cellular damage. The balance between RS production, antioxidant defences, and accumulated cellular damage is termed oxidative stress. Physiological ecologists, gerontologists, and metabolic biochemists have turned their attention to whether oxidative stress is the principal, generalized mechanism that mediates and limits longevity, growth rates, and other life-history trade-offs in animals, as may be the case in mammals and birds. At the crux of this theory lies the regulation and activities of the mitochondria with respect to the organism and its metabolic rate. At the whole-animal level, evolutionary theory suggests that developmental trajectories and growth rates can shape the onset and rate of aging. Mitochondrial function is important for aging since it is the main source of energy in cells, and the main source of RS. Altering oxidative stress levels, either increase in oxidative damage or reduction in antioxidants, has proven to also decrease growth rates, which implies that oxidative stress is a cost of, as well as a constraint on, growth. Yet, in nature, many animals exhibit fast growth rates that lead to higher loads of oxidative stress, which are often linked to shorter lifespans. In this article, I summarize the latest findings on whole-animal life history trade-offs, such as growth rates and longevity, and how these can be affected by mitochondrial cellular metabolism, and oxidative stress.
Collapse
|
25
|
Abstract
The role of immune system is to protect the organism from the not built-in program-like alterations inside and against the agents penetrating from outside (bacteria, viruses, and protozoa). These functions were developed and formed during the evolution. Considering these functions, the immune system promotes the lengthening of lifespan and helps longevity. However, some immune functions have been conveyed by men to medical tools (e.g., pharmaceuticals, antibiotics, and prevention), especially in our modern age, which help the struggle against microbes, but evolutionarily weaken the immune system. Aging is a gradual slow attrition by autoimmunity, directed by the thymus and regulated by the central nervous system and pineal gland. Considering this, thymus could be a pacemaker of aging. The remodeling of the immune system, which can be observed in elderly people and centenarians, is probably not a cause of aging, but a consequence of it, which helps to suit immunity to the requirements. Oxidative stress also helps the attrition of the immune cells and antioxidants help to prolong lifespan. There are gender differences in the aging of the immune system as well as in the longevity. There is an advantage for women in both cases. This can be explained by hormonal differences (estrogens positively influences both processes); however, social factors are also not excluded. The endocrine disruptor chemicals act similar to estrogens, like stimulating or suppressing immunity and provoking autoimmunity; however, their role in longevity is controversial. There are some drugs (rapamycin, metformin, and selegiline) and antioxidants (as vitamins C and E) that prolong lifespan and also improve immunity. It is difficult to declare that longevity is exclusively dependent on the state of the immune system; however, there is a parallelism between the state of immune system and lifespan. It seems likely that there is not a real decline of immunity during aging, but there is a remodeling of the system according to the claims of senescence. This is manifested in the remaining (sometimes stronger) function of memory cells in contrast to the production and number of the new antigen-reactive naive T-cells.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Sun S, Guo H, Wang J, Dai J. Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:955-962. [PMID: 31159145 DOI: 10.1016/j.envpol.2018.12.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) toxicity is of considerable concern due to its wide application, environmental persistence, and bioaccumulation. In the current study, we used a scaffold-free three-dimensional (3D) spheroid model of mouse liver cells (AML12) to explore the toxicity of PFOA and emerging alternatives (HFPO-DA and PFO4DA). Comparing the short-term (24 and 72 h treatment) toxicity of PFOA between conventional 2D monolayer cells and 3D spheroids, we found that spheroids had higher EC50 values and lower ROS levels after treatment, indicating their greater resistance to PFOA. Cell viability (i.e., adenosine triphosphate (ATP) content and lactate dehydrogenase (LDH) leakage) and liver-specific function (i.e., albumin secretion) were stable in spheroids through 28 day of culture. However, under 100 and 200 μM-PFOA treatment for 28 day, ROS levels, LDH leakage, and caspase3/7 activity all increased significantly. As a sensitive parameter, ROS showed a significant increase at 21 day, even in the 50 μM-PFOA group. Consistent with the elevation of ROS and caspase3/7, the expressions of oxidative stress- and apoptosis-related genes, including Gsta2, Nqo1, Ho-1, caspase3, p53, and p21, were induced in dose- and time-dependent manners after PFOA exposure. The peroxisome proliferator-activated receptor alpha (PPARα) pathway was also activated after treatment, with significant induction of its target genes, Fabp4 and Scd1. Similar to PFOA, both HFPO-DA and PFO4DA activated the PPARα pathway, induced ROS levels, and initiated cell damage, though at a relatively lower extent than that of PFOA. Our results imply that the 3D spheroid model is a valuable tool in chronic toxicological studies.
Collapse
Affiliation(s)
- Sujie Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| |
Collapse
|
27
|
Vágási CI, Vincze O, Pătraș L, Osváth G, Pénzes J, Haussmann MF, Barta Z, Pap PL. Longevity and life history coevolve with oxidative stress in birds. Funct Ecol 2019; 33:152-161. [PMID: 34290466 PMCID: PMC8291348 DOI: 10.1111/1365-2435.13228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
1. The mechanisms that underpin the evolution of ageing and life histories remain elusive. Oxidative stress, which results in accumulated cellular damages, is one of the mechanisms suggested to play a role. 2. In this paper, we set out to test the "oxidative stress theory of ageing" and the "oxidative stress hypothesis of life histories" using a comprehensive phylogenetic comparison based on an unprecedented dataset of oxidative physiology in 88 free-living bird species. 3. We show for the first time that bird species with longer lifespan have higher non-enzymatic antioxidant capacity and suffer less oxidative damage to their lipids. We also found that bird species featuring a faster pace-of-life either have lower non-enzymatic antioxidant capacity or are exposed to higher levels of oxidative damage, while adult annual mortality does not relate to oxidative state. 4. These results reinforce the role of oxidative stress in the evolution of lifespan and also corroborate the role of oxidative state in the evolution of life histories among free-living birds.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Laura Pătraș
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gergely Osváth
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Museum of Zoology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Zoltán Barta
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter L. Pap
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Saldmann F, Viltard M, Leroy C, Friedlander G. The Naked Mole Rat: A Unique Example of Positive Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4502819. [PMID: 30881592 PMCID: PMC6383544 DOI: 10.1155/2019/4502819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023]
Abstract
The oxidative stress theory of aging, linking reactive oxygen species (ROS) to aging, has been accepted for more than 60 years, and numerous studies have associated ROS with various age-related diseases. A more precise version of the theory specifies that mitochondrial oxidative stress is a direct cause of aging. The naked mole rat, a unique animal with exceptional longevity (32 years in captivity), appears to be an ideal model to study successful aging and the role of ROS in this process. Several studies in the naked mole rat have shown that these animals exhibit a remarkable resistance to oxidative stress. At low concentrations, ROS serve as second messengers, and these important intracellular signalling functions are crucial for the regulation of cellular processes. In this review, we examine the literature on ROS and their functions as signal transducers. We focus specifically on the longest-lived rodent, the naked mole rat, which is a perfect example of the paradox of living an exceptionally long life with slow aging despite high levels of oxidative damage from a young age.
Collapse
Affiliation(s)
- Frédéric Saldmann
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Melanie Viltard
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Christine Leroy
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Gérard Friedlander
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| |
Collapse
|
29
|
Almaida-Pagan PF, Ortega-Sabater C, Lucas-Sanchez A, Gonzalez-Silvera D, Martinez-Nicolas A, Rol de Lama MA, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius furzeri.: comparison with a longer-living Nothobranchius species. Biogerontology 2018; 20:83-92. [PMID: 30306289 DOI: 10.1007/s10522-018-9778-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Membrane compositions, particularly of mitochondria, could be critical factors in the mechanisms of growth and aging, especially during phases of high oxidative stress that result in molecular damage. Changes affecting lipid class or fatty acid (FA) compositions could affect phospholipid (PL) properties and alter mitochondrial function. In the present study, mitochondrial membrane PL compositions were analysed throughout the life-cycle of Nothobranchius furzeri, a species with explosive growth and one of the shortest-lived vertebrates. Mitochondrial PLs showed several changes with age. Proportions of total PLs and PC were reduced while an increase in PS, CL and PE was observed, mainly between the 2.5 and 5 months of fish age, the time during which animals doubled their weight. FA compositions of individual PLs in mitochondria were also significantly affected with age suggesting the existence of increasing damage to mitochondrial lipids during the life-cycle of N. furzeri that could be one of the main contributors to degraded mitochondrial function associated with aging. The peroxidation index values from N. furzeri mitochondrial PLs were significantly lower than those reported in N. rachovii, a species with a twofold longer life span than N. furzeri, which seems to contradict the membrane pacemaker theory of animal metabolism.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain. .,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. .,Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Carmen Ortega-Sabater
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sanchez
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Angeles Rol de Lama
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Pilar Mendiola
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jorge de Costa
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
30
|
Sanz A, Navas P. Editorial: Coenzyme Q Redox State and Cellular Homeostasis. Front Physiol 2018; 9:912. [PMID: 30104979 PMCID: PMC6077213 DOI: 10.3389/fphys.2018.00912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and CIBERER, ISCIII, Seville, Spain
| |
Collapse
|
31
|
M Cordeiro R. Reactive Oxygen and Nitrogen Species at Phospholipid Bilayers: Peroxynitrous Acid and Its Homolysis Products. J Phys Chem B 2018; 122:8211-8219. [PMID: 30078319 DOI: 10.1021/acs.jpcb.8b07158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxynitrite is a powerful and long-lived oxidant generated in vivo. Peroxynitrous acid (ONOOH), its protonated form, may penetrate into phospholipid bilayers and undergo homolytic cleavage to nitrogen dioxide (·NO2) and hydroxyl radicals (·OH), causing severe nitro-oxidative damage. The membrane environment is thought to influence ONOOH reactions, but the mechanisms remain speculative. Most experimental techniques lack the level of resolution required to keep track of the motion of very reactive species and their interactions with the membrane. Here, we performed molecular dynamics simulations of the permeation, interactions, and dynamics of ONOOH and its homolysis products in the phospholipid membrane environment. We started by developing an ONOOH model that successfully accounted for its conformational equilibria and solvation energies. Membrane permeation of ONOOH was accompanied by conformational changes. ONOOH exhibited a strong tendency to bind to and accumulate at the membrane headgroup region. There, ONOOH homolysis led to ·NO2 radicals, which in turn partitioned to the membrane interior. About one-third of the ·OH radicals readily escaped to the aqueous phase within 1 ns. However, a significant number of ·OH radicals became trapped at the lipid headgroup region for a longer period. The possible implications for membrane-based nitration and oxidation processes were discussed.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , Avenida dos Estados 5001 , CEP 09210-580 Santo André , São Paulo , Brazil
| |
Collapse
|
32
|
Odinokova IV, Baburina YL, Kruglov AG, Santalova IM, Azarashvili TS, Krestinina OV. Operation of the Permeability Transition Pore in Rat Heart Mitochondria in Aging. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818020101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Jimenez AG, Winward J, Beattie U, Cipolli W. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. PLoS One 2018; 13:e0195832. [PMID: 29694441 PMCID: PMC5918822 DOI: 10.1371/journal.pone.0195832] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 12/19/2022] Open
Abstract
Among species, larger animals tend to live longer than smaller ones, however, the opposite seems to be true for dogs-smaller dogs tend to live significantly longer than larger dogs across all breeds. We were interested in the mechanism that may allow for small breeds to age more slowly compared with large breeds in the context of cellular metabolism and oxidative stress. Primary dermal fibroblasts from small and large breed dogs were grown in culture. We measured basal oxygen consumption (OCR), proton leak, and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of reactive species (RS) production, reduced glutathione (GSH) content, mitochondrial content, lipid peroxidation (LPO) damage and DNA (8-OHdg) damage. Our data suggests that as dogs of both size classes age, proton leak is significantly higher in older dogs, regardless of size class. We found that all aspects of glycolysis were significantly higher in larger breeds compared with smaller breeds. We found significant differences between age classes in GSH concentration, and a negative correlation between DNA damage in puppies and mean breed lifespan. Interestingly, RS production showed no differences across size and age class. Thus, large breed dogs may have higher glycolytic rates, and DNA damage, suggesting a potential mechanism for their decreased lifespan compared with small breed dogs.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, Hamilton, New York, United States of America
| | - Josh Winward
- Colgate University, Department of Biology, Hamilton, New York, United States of America
| | - Ursula Beattie
- Colgate University, Department of Biology, Hamilton, New York, United States of America
| | - William Cipolli
- Colgate University, Department of Mathematics, Hamilton, New York, United States of America
| |
Collapse
|
34
|
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2017; 592:743-758. [PMID: 29106705 DOI: 10.1002/1873-3468.12902] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Scialò F, Fernández-Ayala DJ, Sanz A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front Physiol 2017; 8:428. [PMID: 28701960 PMCID: PMC5486155 DOI: 10.3389/fphys.2017.00428] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET). RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.
Collapse
Affiliation(s)
- Filippo Scialò
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and CIBERER-ISCIIISeville, Spain
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
Liu J, Qin WT, Wu HJ, Yang CQ, Deng JC, Iqbal N, Liu WG, Du JB, Shu K, Yang F, Wang XC, Yong TW, Yang WY. Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L. Merr.) seeds. Food Chem 2017; 223:104-113. [PMID: 28069115 DOI: 10.1016/j.foodchem.2016.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022]
Abstract
The effects of storage duration on the seed germination and metabolite profiling of soybean seeds with five different coloured coats were studied. Their germination, constituents and transcript expressions of isoflavones and free fatty acids (FFAs) were compared using chromatographic metabolomic profiling and transcriptome sequencing. The seed water content was characterized using nuclear magnetic resonance (NMR) relaxometry. Results showed that dark-coloured seeds were less inactivated than light-coloured seeds. The aglycone and β-glucoside concentrations of upstream constituents increased significantly, whereas the acetylglucosides and malonylglucosides of downstream constituents decreased with an increase in the storage period. FFAs increased considerably in the soybean seeds as a result of storage. These results indicate that dark-coloured soybean seeds have better storability than light-coloured seeds, and seed water content plays a role in seed inactivation. It was concluded that there are certain metabolic regularities that are associated with different coloured seed coats of soybeans under storage conditions.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wen-Ting Qin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Hai-Jun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Cai-Qiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Jun-Cai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Nasir Iqbal
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wei-Guo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Bo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Xiao-Chun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Tai-Wen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wen-Yu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
37
|
Mahasneh AA, Zhang Y, Zhao H, Ambrosone CB, Hong CC. Lifestyle predictors of oxidant and antioxidant enzyme activities and total antioxidant capacity in healthy women: a cross-sectional study. J Physiol Biochem 2016; 72:745-762. [DOI: 10.1007/s13105-016-0513-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
|
38
|
Wawrzyniak NR, Joseph AM, Levin DG, Gundermann DM, Leeuwenburgh C, Sandesara B, Manini TM, Adhihetty PJ. Idiopathic chronic fatigue in older adults is linked to impaired mitochondrial content and biogenesis signaling in skeletal muscle. Oncotarget 2016; 7:52695-52709. [PMID: 27447862 PMCID: PMC5288142 DOI: 10.18632/oncotarget.10685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Fatigue is a symptom of many diseases, but it can also manifest as a unique medical condition, such as idiopathic chronic fatigue (ICF). While the prevalence of ICF increases with age, mitochondrial content and function decline with age, which may contribute to ICF. The purpose of this study was to determine whether skeletal muscle mitochondrial dysregulation and oxidative stress is linked to ICF in older adults. Sedentary, old adults (n = 48, age 72.4 ± 5.3 years) were categorized into ICF and non-fatigued (NF) groups based on the FACIT-Fatigue questionnaire. ICF individuals had a FACIT score one standard deviation below the mean for non-anemic adults > 65 years and were excluded according to CDC diagnostic criteria for ICF. Vastus lateralis muscle biopsies were analyzed, showing reductions in mitochondrial content and suppression of mitochondrial regulatory proteins Sirt3, PGC-1α, NRF-1, and cytochrome c in ICF compared to NF. Additionally, mitochondrial morphology proteins, antioxidant enzymes, and lipid peroxidation were unchanged in ICF individuals. Our data suggests older adults with ICF have reduced skeletal muscle mitochondrial content and biogenesis signaling that cannot be accounted for by increased oxidative damage.
Collapse
Affiliation(s)
- Nicholas R. Wawrzyniak
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Anna-Maria Joseph
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | - David G. Levin
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - David M. Gundermann
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | - Bhanuprasad Sandesara
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | - Todd M. Manini
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | - Peter J. Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Chmielewski P, Borysławski K, Strzelec B. Contemporary views on human aging and longevity. ANTHROPOLOGICAL REVIEW 2016. [DOI: 10.1515/anre-2016-0010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Aging is currently stimulating intense interest of both researchers and the general public. In developed countries, the average life expectancy has increased by roughly 30 years within the last century, and human senescence has been delayed by around a decade. Although aging is arguably the most familiar aspect of human biology, its proximate and ultimate causes have not been elucidated fully and understood yet. Nowadays there are two main approaches to the ultimate causes of aging. These are deterministic and stochastic models. The proximate theories constitute a distinct group of explanations. They focus on mechanistic causes of aging. In this view, there is no reason to believe that there is only one biological mechanism responsible for aging. The aging process is highly complex and results from an accumulation of random molecular damage. Currently, the disposable soma theory (DST), proposed by Thomas Kirkwood, is the most influential and coherent line of reasoning in biogerontology. This model does not postulate any particular mechanism underpinning somatic defense. Therefore, it is compatible with various models, including mechanistic and evolutionary explanations. Recently, however, an interesting theory of hyper-function of mTOR as a more direct cause of aging has been formulated by Mikhail Blagosklonny, offering an entirely different approach to numerous problems and paradoxes in current biogerontology. In this view, aging is quasi-programmed, which means that it is an aimless continuation of developmental growth. This mTOR-centric model allows the prediction of completely new relationships. The aim of this article is to present and compare the views of both parties in the dispute, based on the results of some recent experimental studies, and the contemporary knowledge of selected major aspects of human aging and longevity
Collapse
Affiliation(s)
- Piotr Chmielewski
- Department of Anatomy, Faculty of Medicine, Wroclaw Medical University, ul. Chałubińskiego 6a, 50-368 Wrocław, Poland
| | - Krzysztof Borysławski
- Department of Anthropology, Institute of Biology, Wroclaw University of Environmental and Life Sciences
| | | |
Collapse
|
40
|
Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1116-1126. [PMID: 26997500 DOI: 10.1016/j.bbabio.2016.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, University of Newcastle, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
41
|
Chmielewski P, Borysławski K, Chmielowiec K, Chmielowiec J. Longitudinal and cross-sectional changes with age in selected anthropometric and physiological traits in hospitalized adults: an insight from the Polish Longitudinal Study of Aging (PLSA). ANTHROPOLOGICAL REVIEW 2015. [DOI: 10.1515/anre-2015-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Longitudinal studies of aging concerning individuals with comparable lifestyle, diet, health profile, socioeconomic status, and income remain extraordinarily rare. The purposes of our ongoing project are as follows: (i) to collect extensive data on biological and medical aspects of aging in the Polish population, (ii) to determine factors affecting the rate and course of aging, (iii) to understand how aging unfolds as a dynamic and malleable process in ontogeny, and (iv) to find novel predictors of longevity. Our investigation followed 142 physically healthy asylum inmates, including 68 males and 74 females, for at least 25 years from the age of 45 years onward. Cross-sectional assessment involved 225 inmates, including 113 males and 112 females. All the patients lived for a very long time under similar and good environmental conditions at the hospital in Cibórz, Lubuskie Province. They maintained virtually the same daily schedule and lifestyle. The rate and direction of changes with age in selected anthropometric and physiological traits were determined using ANOVA, t-test, and regression analysis. There were sex differences in the rate and pattern of age-related changes in certain characteristics such as relative weight, red blood cell count, monocyte count, thymol turbidity value, systolic blood pressure, and body temperature. Body weight, the body mass index (BMI), and total bilirubin level increased with advancing age, while body height decreased with age in both sexes. In conclusion, the aging process was associated with many regressive alterations in biological traits in both sexes but the rate and pattern of these changes depended on biological factors such as age and sex. There were only few characteristics which did not change significantly during the period under study. On the basis of comparison between the pattern of longitudinal changes with aging and the pattern of cross-sectional changes with age in the analyzed traits, we were able to predict which pattern of changes is associated with longer lifespan.
Collapse
Affiliation(s)
- Piotr Chmielewski
- Department of Anatomy, Faculty of Medicine, Wrocław Medical University, T. Chałubińskiego 6a, 50-368 Wrocław
| | - Krzysztof Borysławski
- Department of Anthropology, Institute of Biology, Wrocław University of Environmental and Life Sciences
| | - Krzysztof Chmielowiec
- Regional Psychiatric Hospital for People with Mental Disorders, Cibórz, Lubuskie Province, Poland
| | | |
Collapse
|
42
|
Betancor MB, Almaida-Pagán PF, Hernández A, Tocher DR. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1187-204. [PMID: 26156499 DOI: 10.1007/s10695-015-0079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/16/2015] [Indexed: 05/25/2023]
Abstract
Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.
Collapse
Affiliation(s)
- M B Betancor
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - P F Almaida-Pagán
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - A Hernández
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - D R Tocher
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| |
Collapse
|
43
|
Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2015; 465:845-50. [PMID: 26319556 DOI: 10.1016/j.bbrc.2015.08.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/18/2022]
Abstract
NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan.
Collapse
|
44
|
Inducible NO synthase is constitutively expressed in porcine myocardium and its level decreases along with tachycardia-induced heart failure. Cardiovasc Pathol 2015; 25:3-11. [PMID: 26361649 DOI: 10.1016/j.carpath.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/24/2015] [Accepted: 08/09/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The adverse effects of oxidative stress and the presence of proinflammatory factors in the heart have been widely demonstrated mainly on rodent models. However, larger clinical trials focusing on inflammation or oxidative stress in heart failure (HF) have not been carried out. This may be due to differences in the anatomy and physiology of the cardiovascular system between small rodents and large mammals. Thus, we investigated myocardial inflammatory factors, such as inducible NO synthase (iNOS) and oxidative stress indices in female pigs with chronic tachycardia-induced cardiomyopathy. METHODS Homogenous female siblings of Large White breed swine (n=15) underwent continuous right ventricular (RV) pacing at 170bpm, whereas five sham-operated subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were euthanized at subsequent stages of the disease: mild, moderate and severe HF. Left ventricle (LV) sections were examined with electron microscopy. The relative expression of iNOS in LV was determined by quantitative PCR. The protein level of iNOS was determined by Western blotting and immunohistochemistry. The level of the S-nitrosylated (S-NO) protein in LV was determined after S-NO moieties were substituted by biotin, followed by a colorimetrical detection with streptavidin. Malondialdehyde (MDA), a marker of lipid peroxidation, was evaluated in the LV and serum using thiobarbituric acid. The aconitase activity (based on measurement of the concomitant formation of NADPH from NADP(+)), a marker of oxidative stress, was analyzed in mitochondrial and cytosolic LV fractions. The concentration of interleukin-1β (IL-1β) was measured in LV homogenates using enzyme-linked immunosorbent assay. RESULTS RV pacing resulted in an impairment of LV systolic function, LV dilatation and neurohormonal activation. The electron microscopy revealed abnormalities within the cardiomyocytes of failing hearts, i.e. swollen mitochondria and myofibril derangement. iNOS was expressed in the control LV myocardium. The development of HF was accompanied by a decrease in iNOS mRNA (P<.05), which was also reflected at a protein level, and a decrease in the protein S-nitrosylation (P<.05). Both iNOS mRNA and S-NO relative moiety levels were inversely related to the dilatation of the LV (P<.05). There was no difference in the concentration of MDA in the LV and serum. Similarly, no differences in the concentration of IL-1β LV were found between diseased and healthy animals. Aconitase activity was decreased only in the LV mitochondrial fraction of pigs with severe HF. CONCLUSIONS iNOS was shown to be constitutively expressed within porcine LV. Its level decreases during the progression of systolic nonischemic HF in the pig model. Thus, it can be assumed that an up-regulation of proinflammatory factors is not involved in porcine tachycardia-induced cardiomyopathy and that the impact of oxidative stress may be restricted to the mitochondria in this HF model.
Collapse
|
45
|
Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015; 576:8-16. [PMID: 25841340 PMCID: PMC4843805 DOI: 10.1016/j.abb.2015.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/31/2015] [Indexed: 01/09/2023]
Abstract
The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel's second axiom that "evolution is smarter than we are" and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Miranda E Orr
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Karl A Rodriguez
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Rochelle Buffenstein
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
46
|
Isaksson C, While GM, Olsson M, Komdeur J, Wapstra E. Oxidative stress physiology in relation to life history traits of a free-living vertebrate: the spotted snow skink, Niveoscincus ocellatus. Integr Zool 2015; 6:140-149. [PMID: 21645278 DOI: 10.1111/j.1749-4877.2011.00237.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent research suggests that oxidative stress, via its links to metabolism and senescence, is a key mechanism linking life history traits such as fecundity and growth with survival; however, this has rarely been put under empirical scrutiny within free-living populations. Using a wild population of live-bearing skinks, we explored how plasma antioxidant activity (OXY), reactive oxidative metabolites (ROM), and the estimated oxidative stress index are associated with female and male life history. We found that male skinks have a significantly higher ROM and estimated oxidative stress index than female skinks, but this was not accompanied by a sex difference in mortality. Both sexes showed a non-linear association between OXY and age, indicating that the oldest and youngest individuals had the lowest OXY. Interestingly, female skinks with high OXY showed a decreased probability of survival to the following season. However, we found no significant associations between female reproductive investment (litter size or litter mass) or parturition date (i.e. metabolism) and oxidative status. Combined, our results offer mixed support for a role of oxidative stress in mediating life history traits and suggest that future studies need to explore oxidative stress during vitellogenesis in addition to using an intra-individual approach to understand the cost of reproduction and patterns of aging.
Collapse
Affiliation(s)
- Caroline Isaksson
- University of Groningen, Animal Ecology Group, Haren, The NetherlandsUniversity of Wollongong, School of Biological Sciences, Wollongong, New South WalesUniversity of Tasmania, School of Zoology, Hobart, Tasmania, Australia
| | - Geoffrey M While
- University of Groningen, Animal Ecology Group, Haren, The NetherlandsUniversity of Wollongong, School of Biological Sciences, Wollongong, New South WalesUniversity of Tasmania, School of Zoology, Hobart, Tasmania, Australia
| | - Mats Olsson
- University of Groningen, Animal Ecology Group, Haren, The NetherlandsUniversity of Wollongong, School of Biological Sciences, Wollongong, New South WalesUniversity of Tasmania, School of Zoology, Hobart, Tasmania, Australia
| | - Jan Komdeur
- University of Groningen, Animal Ecology Group, Haren, The NetherlandsUniversity of Wollongong, School of Biological Sciences, Wollongong, New South WalesUniversity of Tasmania, School of Zoology, Hobart, Tasmania, Australia
| | - Erik Wapstra
- University of Groningen, Animal Ecology Group, Haren, The NetherlandsUniversity of Wollongong, School of Biological Sciences, Wollongong, New South WalesUniversity of Tasmania, School of Zoology, Hobart, Tasmania, Australia
| |
Collapse
|
47
|
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014; 37:1929-40. [PMID: 25325492 DOI: 10.5665/sleep.4244] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI
| | | | - Aniko Szabo
- Department of Population Health, The Medical College of Wisconsin, Milwaukee, WI
| | - Neil Hogg
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
48
|
Almaida-Pagán PF, De Santis C, Rubio-Mejía OL, Tocher DR. Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages. J Comp Physiol B 2014; 185:73-86. [PMID: 25398637 DOI: 10.1007/s00360-014-0870-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
Abstract
Mitochondria are among the first responders to various stressors that challenge the homeostasis of cells and organisms. Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL), particularly cardiolipin (CL), and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, liver mitochondrial membrane PL compositions, lipid peroxidation, and mtDNA gene expression were analyzed in rainbow trout fed three diets with the same base formulation but with lipid supplied either by fish oil (FO), rapeseed oil (RO), or high DHA oil (DHA) during 6 weeks. Specifically, two feeding trials were performed using fish from the same population of two ages (1 and 3 years), and PL class compositions of liver mitochondria, fatty acid composition of individual PL classes, TBARS content, and mtDNA expression were determined. Dietary fatty acid composition strongly affected mitochondrial membrane composition from trout liver but observed changes did not fully reflect the diet, particularly when it contained high DHA. The changes were PL specific, CL being particularly resistant to changes in DHA. Some significant differences observed in expression of mtDNA with diet may suggest long-term dietary effects in mitochondrial gene expression which could affect electron transport chain function. All the changes were influenced by fish age, which could be related to the different growth rates observed between 1- and 3-year-old trout but that could also indicate age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.
Collapse
Affiliation(s)
- P F Almaida-Pagán
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK,
| | | | | | | |
Collapse
|
49
|
Stavropoulos-Kalinoglou A, Deli C, Kitas GD, Jamurtas AZ. Muscle wasting in rheumatoid arthritis: The role of oxidative stress. World J Rheumatol 2014; 4:44-53. [DOI: 10.5499/wjr.v4.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA), the commonest inflammatory arthritis, is a debilitating disease leading to functional and social disability. In addition to the joints, RA affects several other tissues of the body including the muscle. RA patients have significantly less muscle mass compared to the general population. Several theories have been proposed to explain this. High grade inflammation, a central component in the pathophysiology of the disease, has long been proposed as the key driver of muscle wasting. More recent findings however, indicate that inflammation on its own cannot fully explain the high prevalence of muscle wasting in RA. Thus, the contribution of other potential confounders, such as nutrition and physical activity, has also been studied. Results indicate that they play a significant role in muscle wasting in RA, but again neither of these factors seems to be able to fully explain the condition. Oxidative stress is one of the major mechanisms thought to contribute to the development and progression of RA but its potential contribution to muscle wasting in these patients has received limited attention. Oxidative stress has been shown to promote muscle wasting in healthy populations and people with several chronic conditions. Moreover, all of the aforementioned potential contributors to muscle wasting in RA (i.e., inflammation, nutrition, and physical activity) may promote pro- or anti-oxidative mechanisms. This review aims to highlight the importance of oxidative stress as a driving mechanism for muscle wasting in RA and discusses potential interventions that may promote muscle regeneration via reduction in oxidative stress.
Collapse
|
50
|
Belenguer Varea Á, Mohamed Abdelaziz K, Avellana Zaragoza JA, Borrás Blasco C, Sanchis Aguilar P, Viña Ribes J. [Oxidative stress and longevity; a case-control study]. Rev Esp Geriatr Gerontol 2014; 50:16-21. [PMID: 25110143 DOI: 10.1016/j.regg.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Human longevity is a complex issue influenced by genetic and environmental factors. Oxidative stress (OE) could play an important role in this process. Succesful aging could be related with the organism ability facing OE. In the present study we compared malondialdehyde (MDA) and oxidized proteins (OP) plasma levels, in elderly people older than 97 years and 70-80 years old, to better understand the effects of OE on human longevity. MATERIAL AND METHODS Population-based case control study. We considered as cases patients who were born and live on la Ribera county in Valencia (Spain) older than 97 years old and who accepted to participate in the study. Controls were from the same poblational base, chosen randomly, and 70-80 years old. We made a descriptive analysis of sociodemographic, clinic and functional variables; an odds ratio (OR) estimation of being centenarian by OP and MDA quartiles; and a tendency analysis by Mantel-Haenszel test. RESULTS Twenty eight cases and 31 controls were included. Functional state and robust percentage were worse in cases. MDA (1,44±0,45 vs 1,84±0,59, p=0,005), and OP (64,29±15,73 vs. 76,52±13,44, p=0,002) levels, were significantly lower in cases. The OR of being centenarian in lower/higher quartile were 3,8 for MDA and 5,7 for OP, with a Mantel-Haenszel signification of 0,029 and 0,044 respectively. CONCLUSIONS In our study OE level were lower in centenarians than in younger elderly, and the lower the OE grade, the higher were the likelihood of being centenarian.
Collapse
Affiliation(s)
- Ángel Belenguer Varea
- Sección de Geriatría, Hospital Universitario de La Ribera de Alzira, Valencia, España.
| | | | | | - Consuelo Borrás Blasco
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, España
| | - Paula Sanchis Aguilar
- Sección de Traumatología, Hospital Universitario de La Ribera de Alzira, Valencia, España
| | - José Viña Ribes
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, España
| |
Collapse
|