1
|
Kounatidis D, Vallianou NG, Stratigou T, Voukali M, Karampela I, Dalamaga M. The Kidney in Obesity: Current Evidence, Perspectives and Controversies. Curr Obes Rep 2024; 13:680-702. [PMID: 39141201 DOI: 10.1007/s13679-024-00583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE OF REVIEW As obesity and chronic kidney disease (CKD) remain a public health issue, we aim to elaborate on their complex relationship regarding pathogenetic mechanisms and therapeutic potential as well. The purpose of this review is to enhance our understanding of the interplay between obesity and CKD in order to timely diagnose and treat obesity-related CKD. RECENT FINDINGS Obesity and CKD pose significant intertwined challenges to global health, affecting a substantial portion of the population worldwide. Obesity is recognized as an independent risk factor, intricately contributing to CKD pathogenesis through mechanisms such as lipotoxicity, chronic inflammation, and insulin resistance. Recent evidence highlights additional factors including hemodynamic changes and intestinal dysbiosis that exacerbate kidney dysfunction in obese individuals, leading to histologic alterations known as obesity-related glomerulopathy (ORG). This narrative review synthesizes current knowledge on the prevalence, pathophysiology, clinical manifestations, and diagnostic strategies of obesity-related kidney disease. Furthermore, it explores mechanistic insights to delineate current therapeutic approaches, future directions for managing this condition and controversies. By elucidating the multifaceted interactions between obesity and kidney health, this review aims to inform clinical practice and stimulate further research to address this global health epidemic effectively.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527, Athens, Greece
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece.
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolism, European and National Expertise Center for Rare Endocrine Disorders, Evangelismos General Hospital, 10676, Athens, Greece
| | - Maria Voukali
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
2
|
Nardi F, Del Prete R, Drago R, Di Rita A, Vallone FE, Ciofini S, Malchiodi M, Pezzella L, Tinti L, Cicaloni V, Salvini L, Licastro D, Pezacki AT, Chang CJ, Marotta G, Naldini A, Deaglio S, Vaisitti T, Gozzetti A, Bocchia M, Kabanova A. Apoliprotein E-mediated ferroptosis controls cellular proliferation in chronic lymphocytic leukemia. Leukemia 2024:10.1038/s41375-024-02442-0. [PMID: 39443737 DOI: 10.1038/s41375-024-02442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Unraveling vulnerabilities in chronic lymphocytic leukemia (CLL) represents a key approach to understand molecular basis for its indolence and a path toward developing tailored therapeutic approaches. In this study, we found that CLL cells are particularly sensitive to the inhibitory action of abundant serum protein, apolipoprotein E (ApoE). Physiological concentrations of ApoE affect CLL cell viability and inhibit CD40-driven proliferation. Transcriptomics of ApoE-treated CLL cells revealed a signature of redox and metal disbalance which prompted us to explore the underlying mechanism of cell death. We discover, on one hand, that ApoE treatment of CLL cells induces lipid peroxidation and ferroptosis. On the other hand, we find that ApoE is a copper-binding protein and that intracellular copper regulates ApoE toxicity. ApoE regulation tends to be lost in aggressive CLL. CLL cells from patients with high leukocyte counts are less sensitive to ApoE inhibition, while resistance to ApoE is possible in transformed CLL cells from patients with Richter syndrome (RS). Nevertheless, both aggressive CLL and RS cells maintain sensitivity to drug-induced ferroptosis. Our findings suggest a natural suppression axis that mediates ferroptotic disruption of CLL cell proliferation, building up the rationale for choosing ferroptosis as a therapeutic target in CLL and RS.
Collapse
Affiliation(s)
- Federica Nardi
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Roberta Drago
- Fondazione Toscana Life Sciences, Siena, Italy
- PhD program in Translational and Precision Medicine, University of Siena, Siena, Italy
| | - Anthea Di Rita
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Sara Ciofini
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Margherita Malchiodi
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Laura Tinti
- Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gozzetti
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Monica Bocchia
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | |
Collapse
|
3
|
Vu T, Wang Y, Fowler A, Simieou A, McCarty N. TRIM44, a Novel Prognostic Marker, Supports the Survival of Proteasome-Resistant Multiple Myeloma Cells. Cells 2024; 13:1431. [PMID: 39273003 PMCID: PMC11394402 DOI: 10.3390/cells13171431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44's significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Trung Vu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA
| | - Yuqin Wang
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA
| | - Annaliese Fowler
- The Department of Biomedical Engineering, Texas A&M University, Houston, TX 77030, USA
| | - Anton Simieou
- The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nami McCarty
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA
| |
Collapse
|
4
|
Tagliari de Oliveira S, Binato R, Ellen Broto G, Tomie Takakura E, Navarro Gordan Ferreira Martins L, Abdelhay E, Panis C. Transcriptome of bone marrow-Derived stem cells reveals new inflammatory mediators related to increased survival in patients with multiple myeloma. Cytokine 2024; 179:156613. [PMID: 38643632 DOI: 10.1016/j.cyto.2024.156613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Although multiple myeloma (MM) is a neoplasm that leads affected individuals to death, little is known about why some patients survive much longer than others. In this context, we investigated the transcriptomic profile of bone marrow hematopoietic stem cells obtained from MM patients and compared the clinical outcomes of death and survival six months after bone marrow transplantation. The leukapheresis products of 39 patients with MM eligible for autologous transplantation were collected and analyzed. After extraction, the RNA was analyzed using the GeneChip Human Exon 1.0 Array method. The transcriptome profile was analyzed in silico, and the differentially expressed signaling pathways of interest were validated. The results showed a difference in the expression of inflammation-related genes, immune response processes, and the oxidative stress pathway. The in silico study also pointed out the involvement of the NFκB transcription factor in the possible modulation of these genes. We chose to validate molecules participating in these processes, including the cytokines TNF-α, IFN-γ, and TGF-β1; in addition, we measured the levels of oxidative stress mediators (pro-oxidant profile and the total antioxidant capacity). TNF-α levels were significantly reduced in patients who died and were over 50 years old at diagnosis, as well as in patients with plasmacytoma. Increased TNF-α was detected in patients with very high levels of β2-microglobulin. IFN-γ reduction was observed in patients with a complete response to treatment compared to those with a very good response. Patients with plasmacytoma who died also had an increased pro-oxidant profile. These data show the profile of inflammatory response markers that are altered in patients with MM who die quickly and serve as a basis for the development of future studies of markers to predict better survival in this disease.
Collapse
Affiliation(s)
- Stefania Tagliari de Oliveira
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil; Rede de Assistência a Saúde Metropolitana de Sarandi - Programa de Residência Médica em Clínica Médica - Sarandi - Paraná, Brazil
| | - Renata Binato
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Geise Ellen Broto
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | - Erika Tomie Takakura
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | | | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil.
| |
Collapse
|
5
|
Correia da Silva D, Valentão P, Pereira DM. Naturally occurring small molecules with dual effect upon inflammatory signaling pathways and endoplasmic reticulum stress response. J Physiol Biochem 2024; 80:421-437. [PMID: 38502466 DOI: 10.1007/s13105-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The endoplasmic reticulum (ER) is determinant to maintain cellular proteostasis. Upon unresolved ER stress, this organelle activates the unfolded protein response (UPR). Sustained UPR activates is known to occur in inflammatory processes, deeming the ER a potential molecular target for the treatment of inflammation. This work characterizes the inflammatory/UPR-related molecular machinery modulated by an in-house library of natural products, aiming to pave the way for the development of new selective drugs that act upon the ER to counter inflammation-related chronic diseases. Starting from a library of 134 compounds of natural occurrence, mostly occurring in medicinal plants, nontoxic molecules were screened for their inhibitory capacity against LPS-induced nuclear factor kappa B (NF-κB) activation in a luciferase-based reporter gene assay. Since several natural products inhibited NF-κB expression in THP-1 macrophages, their effect on reactive oxygen species (ROS) production and inflammasome activation was assessed, as well as their transcriptional outcome regarding ER stress. The bioactivities of several natural products are described herein for the first time. We report the anti-inflammatory potential of guaiazulene and describe 5-deoxykaempferol as a novel inhibitor of inflammasome activation. Furthermore, we describe the dual potential of 5-deoxykaempferol, berberine, guaiazulene, luteolin-4'-O-glucoside, myricetin, quercetagetin and sennoside B to modulate inflammatory signaling ER stress. Our results show that natural products are promising molecules for the discovery and pharmaceutical development of chemical entities able to modulate the inflammatory response, as well as proteostasis and the UPR.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal.
| |
Collapse
|
6
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
7
|
van Gorp C, de Lange IH, Hütten MC, López-Iglesias C, Massy KRI, Kessels L, Knoops K, Cuijpers I, Sthijns MMJPE, Troost FJ, van Gemert WG, Spiller OB, Birchenough GMH, Zimmermann LJI, Wolfs TGAM. Antenatal Ureaplasma Infection Causes Colonic Mucus Barrier Defects: Implications for Intestinal Pathologies. Int J Mol Sci 2024; 25:4000. [PMID: 38612809 PMCID: PMC11011967 DOI: 10.3390/ijms25074000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Ilse H. de Lange
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Matthias C. Hütten
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Neonatology, Department of Pediatrics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Kimberly R. I. Massy
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Lilian Kessels
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Wim G. van Gemert
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Owen B. Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
| | - George M. H. Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Luc J. I. Zimmermann
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Wang R, Huang Y, He J, Jin S, Li X, Tan K, Xia W. The endoplasmic reticulum stress-related genes and molecular typing predicts prognosis and reveals characterization of tumor immune microenvironment in lung squamous cell carcinoma. Discov Oncol 2024; 15:37. [PMID: 38363409 PMCID: PMC10873263 DOI: 10.1007/s12672-024-00887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) acts critical roles on cell growth, proliferation, and metastasis in various cancers. However, the relationship between ERs and lung squamous cell carcinoma (LUSC) prognoses still remains unclear. METHODS The consensus clustering analysis of ERS-related genes and the differential expression analysis between clusters were investigated in LUSC based on TCGA database. Furthermore, ERS-related prognostic risk models were constructed by LASSO regression and Cox regression analyses. Then, the predictive effect of the risk model was evaluated by Kaplan-Meier, Cox regression, and ROC Curve analyses, as well as validated in the GEO cohort. According to the optimal threshold, patients with LUSC were divided into high- and low- risk groups, and somatic mutations, immune cell infiltration, chemotherapy response and immunotherapy effect were systematically analyzed. RESULTS Two ERS-related clusters were identified in patients with LUSC that had distinct patterns of immune cell infiltration. A 5-genes ERS-related prognostic risk model and nomogram were constructed and validated. Kaplan-Meier curves and Cox regression analysis showed that ERS risk score was an independent prognostic factor (p < 0.001, HR = 1.317, 95% CI = 1.159-1.496). Patients with low-risk scores presented significantly lower TIDE scores and significantly lower IC50 values for common chemotherapy drugs such as cisplatin and gemcitabine. CONCLUSION ERS-related risk signature has certain prognostic value and may be a potential therapeutic target and prognostic biomarker for LUSC patients.
Collapse
Affiliation(s)
- Ruolan Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Yanhua Huang
- Department of Procurement Management, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Juan He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Shan Jin
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Xin Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Kun Tan
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Wei Xia
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China.
| |
Collapse
|
9
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Wang Q, Zhao M, Zhang T, Zhang B, Zheng Z, Lin Z, Zhou S, Zheng D, Chen Z, Zheng S, Zhang Y, Lin X, Dong R, Chen J, Qian H, Hu X, Zhuang Y, Zhang Q, Jiang S, Ma Y. Comprehensive analysis of ferroptosis-related genes in immune infiltration and prognosis in multiple myeloma. Front Pharmacol 2023; 14:1203125. [PMID: 37608887 PMCID: PMC10440437 DOI: 10.3389/fphar.2023.1203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background: One particular type of cellular death that is known as ferroptosis is caused by the excessive lipid peroxidation. It is a regulated form of cell death that can affect the response of the tumor cells. Currently, it is not known if the presence of this condition can affect the prognosis of patients with multiple myeloma (MM). Methods: In this study, we studied the expression differences and prognostic value of ferroptosis-related genes (FRGs) in MM, and established a ferroptosis risk scoring model. In order to improve the prediction accuracy and clinical applicability, a nomogram was also established. Through gene enrichment analysis, pathways closely related to high-risk groups were identified. We then explored the differences in risk stratification in drug sensitivity and immune patterns, and evaluated their value in prognostic prediction and treatment response. Lastly, we gathered MM cell lines and samples from patients to confirm the expression of marker FRGs using quantitative real-time PCR (qRT-PCR). Results: The ability to predict the survival of MM patients is a challenging issue. Through the use of a risk model derived from ferroptosis, we were able to develop a more accurate prediction of the disease's prognosis. They were then validated by a statistical analysis, which showed that the model is an independent factor in the prognosis of MM. Patients of high ferroptosis risk scores had a much worse chance of survival than those in the low-risk groups. The calibration and power of the nomogram were also strong. We noted that the link between the ferroptosis risk score and the clinical treatment was suggested by the FRG's significant correlation with the immune checkpoint genes and the medication sensitivity. We validated the predictive model using qRT-PCR. Conclusion: We demonstrated the association between FRGs and MM, and developed a new risk model for prognosis in MM patients. Our study sheds light on the potential clinical relevance of ferroptosis in MM and highlights its potential as a therapeutic target for patients with this disease.
Collapse
Affiliation(s)
- Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Misheng Zhao
- Department of Clinical Laboratory, Wenzhou People’s Hospital, Wenzhou, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rujiao Dong
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
14
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
15
|
Ren L, Cui H, Wang Y, Ju F, Cai Y, Gang X, Wang G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed Pharmacother 2023; 161:114465. [PMID: 36870280 DOI: 10.1016/j.biopha.2023.114465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lipotoxicity is the dysregulation of the lipid environment and/or intracellular composition that leads to accumulation of harmful lipids and ultimately to organelle dysfunction, abnormal activation of intracellular signaling pathways, chronic inflammation and cell death. It plays an important role in the development of acute kidney injury and chronic kidney disease, including diabetic nephropathy, obesity-related glomerulopathy, age-related kidney disease, polycystic kidney disease, and the like. However, the mechanisms of lipid overload and kidney injury remain poorly understood. Herein, we discuss two pivotal aspects of lipotoxic kidney injury. First, we analyzed the mechanism of lipid accumulation in the kidney. Accumulating data indicate that the mechanisms of lipid overload in different kidney diseases are inconsistent. Second, we summarize the multiple mechanisms by which lipotoxic species affect the kidney cell behavior, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, dysregulated autophagy, and inflammation, highlighting the central role of oxidative stress. Blocking the molecular pathways of lipid accumulation in the kidney and the damage of the kidney by lipid overload may be potential therapeutic targets for kidney disease, and antioxidant drugs may play a pivotal role in the treatment of kidney disease in the future.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Ju
- Department of Orthopedics, Yuci District People's Hospital, Yuci 030600, Shanxi, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
16
|
Wang L, Wang CC. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem Sci 2023; 48:40-52. [PMID: 35871147 DOI: 10.1016/j.tibs.2022.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/09/2023]
Abstract
In eukaryotic cells, oxidative protein folding occurs in the lumen of the endoplasmic reticulum (ER), catalyzed by ER sulfhydryl oxidase 1 (Ero1) and protein disulfide isomerase (PDI). The efficiency and fidelity of oxidative protein folding are vital for the function of secretory cells. Here, we summarize oxidative protein folding in yeast, plants, and mammals, and discuss how the conformation and activity of human Ero1-PDI machinery is regulated through various post-translational modifications (PTMs). We propose that oxidative protein folding fidelity and ER redox homeostasis are maintained by both the precise control of Ero1 oxidase activity and the division of labor between PDI family members. We also discuss how deregulated Ero1-PDI functions contribute to human diseases and can be leveraged for therapeutic interventions.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
18
|
Shu L, Liu S, Tao Y. Development and validation of a prognosis prediction model based on 18 endoplasmic reticulum stress-related genes for patients with lung adenocarcinoma. Front Oncol 2022; 12:902353. [PMID: 36110953 PMCID: PMC9469654 DOI: 10.3389/fonc.2022.902353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress had a crucial impact on cell survival, proliferation, and metastasis in various cancers. However, the role of ER stress in lung adenocarcinoma remains unclear. Method Gene expression and clinical data of lung adenocarcinoma (LUAD) samples were extracted from The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets. ER stress score (ERSS) was constructed based on hub genes selected from 799 ER stress-related genes by least absolute shrinkage and selection operator (LASSO) regression. A Cox regression model, integrating ERSS and the TNM stage, was developed to predict overall survival (OS) in TCGA cohort and was validated in GEO cohorts. Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and gene mutation analyses were performed to further understand the molecular features of ERSS. The tumor immune infiltration was evaluated by ESTIMATE, CIBERSORT, and xCell algorithms. The receiver operating characteristic (ROC) curves were used to evaluate the predictive value of the risk model. p< 0.05 was considered statistically significant. Results One hundred fifty-seven differentially expressed genes (DEGs) were identified between tumor and para-carcinoma tissues, and 45 of them significantly correlated with OS. Next, we identified 18 hub genes and constructed ERSS by LASSO regression. Multivariate analysis demonstrated that higher ERSS (p< 0.0001, hazard ratio (HR) = 3.8, 95%CI: 2.8–5.2) and TNM stage (p< 0.0001, HR = 1.55, 95%CI: 1.34–1.8) were independent predictors for worse OS. The prediction model integrating ERSS and TNM stage performed well in TCGA cohort (area under the curve (AUC) at five years = 0.748) and three GEO cohorts (AUC at 5 years = 0.658, 0.717, and 0.739). Pathway enrichment analysis showed that ERSS significantly correlated with unfolded protein response. Meanwhile, pathways associated with the cell cycle, growth, and metabolism were significantly enriched in the high ERSS group. Patients with SMARCA4, TP53, and EGFR mutations showed significantly higher ERSS (p = 4e−04, 0.0027, and 0.035, respectively). Tissues with high ERSS exhibited significantly higher infiltration of M1 macrophages, activated dendritic cells, and lower infiltration of CD8+ T cells and B cells, which indicate an activated tumor antigen-presenting but suppressive immune response status. Conclusion We developed and validated an ER stress-related risk model that exhibited great predictive value for OS in patients with LUAD. Our work also expanded the understanding of the role of ER stress in LUAD.
Collapse
Affiliation(s)
- Long Shu
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao, ; Shuang Liu,
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao, ; Shuang Liu,
| |
Collapse
|
19
|
Pritchard KA, Jing X, Teng M, Wells C, Jia S, Afolayan AJ, Jarzembowski J, Day BW, Naylor S, Hessner MJ, Konduri GG, Teng RJ. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One 2022; 17:e0269564. [PMID: 36018859 PMCID: PMC9417039 DOI: 10.1371/journal.pone.0269564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.
Collapse
Affiliation(s)
- Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Xigang Jing
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Clive Wells
- Electron Microscope Facility, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Adeleye J. Afolayan
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Jason Jarzembowski
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Billy W. Day
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Stephen Naylor
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Martin J. Hessner
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - G. Ganesh Konduri
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,* E-mail:
| |
Collapse
|
20
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
21
|
Jiang C, Xu X, Yao C. A ratiometric fluorescence probe for imaging endoplasmic reticulum (ER) hypochlorous acid in living cells undergoing excited state intramolecular proton transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121075. [PMID: 35231763 DOI: 10.1016/j.saa.2022.121075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Hypochlorous acid (HOCl), one of the most important ROS in living organisms, appears to serve an important role in the immune system in vivo. Endoplasmic reticulum (ER), the largest organelle in cells, manages many biological processes connected to vital activities. To better obtain insight into the relationship of ER stress and HOCl level, a ratiometric fluorescent probe RHE, based on rhodamine combined with HBT and ER-targeting group, was designed and synthesized for HOCl detection in the ER. Probe RHE shows a large stokes shift about 155 nm, which is derived to ESIPT principle. In addition, probe RHE exhibited excellent properties such as fast response (<80 s), high sensitivity with a low detection limit (40 nM), high selectivity and anti-interference. Moreover, probe RHE displayed an excellent ER-targeting ability and had been successfully applied for detection of exogenous and endogenous HOCl in HepG2 cells.
Collapse
Affiliation(s)
- Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xueru Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
22
|
Robinson RM, Basar AP, Reyes L, Duncan RM, Li H, Dolloff NG. PDI inhibitor LTI6426 enhances panobinostat efficacy in preclinical models of multiple myeloma. Cancer Chemother Pharmacol 2022; 89:643-653. [PMID: 35381875 PMCID: PMC9054865 DOI: 10.1007/s00280-022-04425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
The histone deacetylase inhibitor (HDACi), panobinostat (Pano), is approved by the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of relapsed/refractory multiple myeloma (MM). Despite regulatory approvals, Pano is used on a limited basis in MM due largely to an unfavorable toxicity profile. The MM treatment landscape continues to evolve, and for Pano to maintain a place in that paradigm it will be necessary to identify treatment regimens that optimize its effectiveness, particularly those that permit dose reductions to eliminate unwanted toxicity. Here, we propose such a regimen by combining Pano with LTI6426, a first-in-class orally bioavailable protein disulfide isomerase (PDI) inhibitor. We show that LTI6426 dramatically enhances the anti-MM activity of Pano in vitro and in vivo using a proteasome inhibitor resistant mouse model of MM and a low dose of Pano that exhibited no signs of toxicity. We go on to characterize a transcriptional program that is induced by the LTI6426/Pano combination, demonstrating a convergence of the two drugs on endoplasmic reticulum (ER) stress pathway effectors ATF3 (Activating Transcription Factor 3), DDIT3/CHOP (DNA Damage Inducible Transcript 3, a.k.a. C/EBP Homologous Protein), and DNAJB1 (DnaJ homolog subfamily B member 1, a.k.a. HSP40). We conclude that LTI6426 may safely enhance low-dose Pano regimens and that ATF3, DDIT3/CHOP, and DNAJB1 are candidate pharmacodynamic biomarkers of response to this novel treatment regimen.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ashton P Basar
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Leticia Reyes
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ravyn M Duncan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Hong Li
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
23
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
24
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
25
|
Reza AHMM, Zhu X, Qin J, Tang Y. Microalgae-Derived Health Supplements to Therapeutic Shifts: Redox-Based Study Opportunities with AIE-Based Technologies. Adv Healthc Mater 2021; 10:e2101223. [PMID: 34468087 DOI: 10.1002/adhm.202101223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, serve the normal signaling in different cell types. Targeting ROS as the chemical signals, different stress based strategies have been developed to synthesis different anti-inflammatory molecules in microalgae. These molecules could be utilized as health supplements in human. To provoke the ROS-mediated defence systems, their connotation with the associated conditions must be well understood, therefore, proper tools for studying ROS in natural state are essential. The in vivo detection of ROS with phosphorescent probes offers promising opportunities to study these molecules in a non-invasive manner. Most of the common problems in the traditional fluorescent probes are lower photostability, excitation intensity, slow responsiveness, and the microenvironment that challenge their performance. Some ROS-specific aggregationinduced emission luminogens (AIEgens) with pronounced spatial and temporal resolution have recently demonstrated high selectivity, rapid responsiveness, and efficacies to resolve the aggregation-caused quenching issues. The nanocomposites of some AIE-photosensitizers can also improve the ROS-mediated photodynamic therapy. These AIEgens could be used to induce bioactive components in microalgae through altering the ROS signaling, therefore are more auspicious for biomedical research. This study reviews the prospects of AIEgen-based technologies to understand the ROS mediated bio-physiological processes in microalgae for better healthcare benefits.
Collapse
Affiliation(s)
- A. H. M. Mohsinul Reza
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Xiaochen Zhu
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Jianguang Qin
- College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Youhong Tang
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| |
Collapse
|
26
|
Cargo proteins in extracellular vesicles: potential for novel therapeutics in non-alcoholic steatohepatitis. J Nanobiotechnology 2021; 19:372. [PMID: 34789265 PMCID: PMC8600817 DOI: 10.1186/s12951-021-01120-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are recognized as novel cell-free therapeutics. Non-alcoholic steatohepatitis (NASH) remains a critical health problem. Herein, we show that EVs from pan peroxisome proliferator-activated receptor agonist-primed induced mesenchymal stem cell (pan PPAR-iMSC-EVs) has unique cargo protein signatures, and demonstrate its therapeutic function in NASH. RESULTS A unique protein signatures were identified in pan PPAR-iMSC-EVs against those from non-stimulated iMSC-EVs. NASH mice receiving pan PPAR-iMSC-EVs showed reduced steatotic changes and ameliorated ER stress and mitochondiral oxidative stress induced by inflammation. Moreover, pan PPAR-iMSC-EVs promoted liver regeneration via inhibiting apoptosis and enhancing proliferation. CONCLUSIONS We conclude that our strategy for enriching unique cargo proteins in EVs may facilitate the development of novel therapeutic option for NASH.
Collapse
|
27
|
Zhao Y, Huang Z, Peng H. Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Front Oncol 2021; 11:743006. [PMID: 34778060 PMCID: PMC8582018 DOI: 10.3389/fonc.2021.743006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia–reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China.,Institute of Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
28
|
Jia J, Chen SQ, Pan WZ, Yu SN, Zhao XT, Hao Y, Shen YM, Cheng Y, Wei CL, Tian FJ, Yan XY, Qiu YL. Mechanism of subchronic vinyl chloride exposure combined with a high-fat diet on hepatic steatosis. J Appl Toxicol 2021; 42:490-505. [PMID: 34601724 DOI: 10.1002/jat.4234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Vinyl chloride (VC) is a common industrial organic chlorine and environmental pollutant. In recent years, the dietary structure of residents especially Chinese has gradually shifted to western dietary patterns. VC aggravates dietary fatty acid-induced hepatic steatosis, but its mechanism is still unclear. And if the risk factors for steatosis persist, more severe diseases such as fibrosis and cirrhosis will occur. Therefore, we studied the effects and mechanisms of VC (160 and 800 mg/m3 ) and its metabolite (chloroacetaldehyde, 2.25, 4.5, and 9 μM) on hepatic steatosis of high-fat diet (HFD)-fed mice and palmitic acid (PA, 100 μM) treated HepG2 cells. Liver and serum biochemical indicators and pathological staining of the liver showed that the hepatic steatosis of VC combined with HFD groups was more severe than that of single-exposure groups (HFD group, low-dose VC group, and high-dose VC group). Moreover, VC enhanced HFD-induced oxidative stress (OS) and endoplasmic reticulum stress (ERS) and further upregulated the expression of sterol regulatory element-binding protein 1 (SREBP-1) and FAS. Besides, antioxidants and ERS inhibitors reduced the steatosis of HepG2 cells induced by VC metabolites and PA. These results suggest that VC exposure can enhance the degree of hepatic steatosis in HFD-fed mice. VC combined with HFD led to OS and ERS and upregulated the expression of de novo lipogenesis-related proteins, which may be related to the occurrence of hepatic steatosis. And the increased expression of CYP2E1 induced by VC combined with HFD may be the cause of OS.
Collapse
Affiliation(s)
- Jin Jia
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shi-Qi Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wei-Zhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Sheng-Nan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao-Tian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yan Hao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yong-Mei Shen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ying Cheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Cai-Ling Wei
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao-Yan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yu-Lan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
30
|
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J, Zhang S. Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Front Cell Dev Biol 2021; 9:683940. [PMID: 34136492 PMCID: PMC8201605 DOI: 10.3389/fcell.2021.683940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jie Ni
- Cancer Care Center, St. George Hospital, Sydney, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
31
|
The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 2021; 32:108162. [PMID: 32966780 DOI: 10.1016/j.celrep.2020.108162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.
Collapse
|
32
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
33
|
Effects of Edible Insect Tenebrio molitor Larva Fermentation Extract as a Substitute Protein on Hepatosteatogenesis and Proteomic Changes in Obese Mice Induced by High-Fat Diet. Int J Mol Sci 2021; 22:ijms22073615. [PMID: 33807173 PMCID: PMC8037111 DOI: 10.3390/ijms22073615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mealworms (Tenebrio molitor larva) are an edible insect and a protein-rich food; however, research on mealworms as a substitute protein is insufficient. In this study, mealworm fermentation extract (TMP) was assessed as a replacement for soy protein (SP) in a control diet (CON) or a high-fat diet (HFD) of mice for 12 weeks. TMP substitution reduced body weight, body weight gain, body fat mass (perirenal and mesenteric), fat size, glucose intolerance, and insulin resistance compared to the HFD-SP group. TMP alleviated hepatic steatosis (lipid contents and lipid droplets) in high-fat-fed mice and down-regulated the PPARγ, CD36, and DGAT2 gene levels. Proteomic analysis showed that a HFD for 12 weeks up-regulated 20 proteins and down-regulated 17 proteins in mice fed SP. On the other hand, TMP reversed the protein profiles. TMP significantly down-regulated KHK, GLO1, ATP5H, SOD, and DDAH1 and up-regulated DLD, Mup1, CPS1, Ces3b, PDI, and HYOU1 compared to the HFD-SP group. These proteins are involved in the glucose, lipid, and amino acid metabolism, as well as in oxidative stress and endoplasmic reticulum stress. Thus, substituting SP for TMP helped improve HFD-induced obesity, steatosis, and insulin resistance in mice. These results suggest that TMP is a potential substitute for commonly used protein sources.
Collapse
|
34
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
35
|
The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med 2021; 53:151-167. [PMID: 33558590 PMCID: PMC8080639 DOI: 10.1038/s12276-021-00560-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle of eukaryotic cells. Its main functions include protein synthesis, proper protein folding, protein modification, and the transportation of synthesized proteins. Any perturbations in ER function, such as increased demand for protein folding or the accumulation of unfolded or misfolded proteins in the ER lumen, lead to a stress response called the unfolded protein response (UPR). The primary aim of the UPR is to restore cellular homeostasis; however, it triggers apoptotic signaling during prolonged stress. The core mechanisms of the ER stress response, the failure to respond to cellular stress, and the final fate of the cell are not yet clear. Here, we discuss cellular fate during ER stress, cross talk between the ER and mitochondria and its significance, and conditions that can trigger ER stress response failure. We also describe how the redox environment affects the ER stress response, and vice versa, and the aftermath of the ER stress response, integrating a discussion on redox imbalance-induced ER stress response failure progressing to cell death and dynamic pathophysiological changes. The endoplasmic reticulum (ER), a cellular organelle responsible for protein folding, is sensitive to chemical imbalances that can induce stress, leading to cell death and disease. Researchers in South Korea, led by Han-Jung Chae from Jeonbuk National University in Jeonju and Hyung-Ryong Kim from Dankook University in Cheonan, review how the ER counters changes in its environment that spur protein folding defects by activating a series of signaling pathways, known collectively as the unfolded protein response. Redox imbalance, may fail adaptive ER stress response that can damage the ER and surrounding mitochondria by modifying cysteine residues. The interaction between the two stress systems, ER stress and oxidative stress, has profound negative impacts on normal physiology. Targeting one or both of these stress mechanisms may therefore be an effective means of treating disease.
Collapse
|
36
|
Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants (Basel) 2021; 10:antiox10020256. [PMID: 33562328 PMCID: PMC7915308 DOI: 10.3390/antiox10020256] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. However, recent findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies. This review focuses on all of these aspects of PON2.
Collapse
|
37
|
Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 2021; 21:71-88. [PMID: 33214692 PMCID: PMC7927882 DOI: 10.1038/s41568-020-00312-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 201.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Protein handling, modification and folding in the endoplasmic reticulum (ER) are tightly regulated processes that determine cell function, fate and survival. In several tumour types, diverse oncogenic, transcriptional and metabolic abnormalities cooperate to generate hostile microenvironments that disrupt ER homeostasis in malignant and stromal cells, as well as infiltrating leukocytes. These changes provoke a state of persistent ER stress that has been demonstrated to govern multiple pro-tumoural attributes in the cancer cell while dynamically reprogramming the function of innate and adaptive immune cells. Aberrant activation of ER stress sensors and their downstream signalling pathways have therefore emerged as key regulators of tumour growth and metastasis as well as response to chemotherapy, targeted therapies and immunotherapy. In this Review, we discuss the physiological inducers of ER stress in the tumour milieu, the interplay between oncogenic signalling and ER stress response pathways in the cancer cell and the profound immunomodulatory effects of sustained ER stress responses in tumours.
Collapse
Affiliation(s)
- Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
39
|
Shomali T, Ashrafi M. Statins, cancer, and oxidative stress. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells 2020; 9:cells9102314. [PMID: 33080949 PMCID: PMC7603117 DOI: 10.3390/cells9102314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide, including sources within and near the ER. Focusing on three ER-localized proteins-the molecular chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2-we discuss how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review how changed activities for these three proteins upon oxidation can modulate signaling events, and also how cysteine oxidation can serve to limit the cellular damage that is most often associated with elevated peroxide levels.
Collapse
|
41
|
A novel PPARɣ ligand, PPZ023, overcomes radioresistance via ER stress and cell death in human non-small-cell lung cancer cells. Exp Mol Med 2020; 52:1730-1743. [PMID: 33046822 PMCID: PMC8080717 DOI: 10.1038/s12276-020-00511-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARɣ) agonists exert powerful anticancer effects by suppressing tumor growth. In this study, we developed PPZ023 (1-(2-(ethylthio)benzyl)-4-(2-methoxyphenyl)piperazine), a novel PPAR ligand candidate, and investigated the underlying signaling pathways in both non-small-cell lung cancer (NSCLC) and radio-resistant NSCLC cells. To identify whether PPZ023 has anticancer effects in NSCLC and radioresistant NSCLC cells, we performed WST-1, LDH, Western blot, and caspase-3 and -9 activity assays. Furthermore, we isolated exosomes from PPZ023-treated NSCLC cells and studied cell death signaling. PPZ023 reduces cell viability and increases LDH cytotoxicity and caspase-3 activity in NSCLC cells. PPZ023 induces cell death by generating reactive oxygen species (ROS) and triggering mitochondrial cytochrome c release. PPZ023 treatment causes cell death via the PERK–eIF2α–CHOP axis in both NSCLC cell lysates and exosomes, and PERK and CHOP knockdown significantly blocks ER stress-mediated apoptosis by reducing cleaved caspase-3. Interestingly, diphenyleneiodonium (DPI, a Nox inhibitor) inhibits PPZ023-induced cell death via ER stress, and PPARɣ knockdown inhibits PPZ023-induced ROS, ER stress, and cell death. Moreover, PPZ023, in combination with radiation, causes synergic cell death via exosomal ER stress in radioresistant NSCLC cells, indicating that PPZ023/radiation overcomes radioresistance. Taken together, our results suggest that PPZ023 is a powerful anticancer reagent for overcoming radioresistance. A novel small molecule drug candidate known as PPZ023 could be a powerful anti-cancer agent due to its ability to overcome the resistance of tumors to radiation therapy. Sung Hee Hong and colleagues at the Korea Institute of Radiological and Medical Sciences in Seoul, South Korea, investigated the effects of the molecule on lung cancer cells, including cells that that had acquired resistance to radiotherapy. PPZ023 induces the death of cancer cells by binding to a protein in a known signaling pathway, which generates damaging chemicals known as reactive oxygen species. The researchers identified additional molecular details of the anti-cancer activity. They found the radiotherapy resistance of cancer cells is reversed when PPZ023 promotes cell death via a pathway interfering with the folding of newly formed proteins in a cell structure called the endoplasmic reticulum.
Collapse
|
42
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181:1307-1328.e15. [PMID: 32502393 DOI: 10.1016/j.cell.2020.04.049] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yosef Kaplan Dor
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keishi Nambara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Iron Causes Lipid Oxidation and Inhibits Proteasome Function in Multiple Myeloma Cells: A Proof of Concept for Novel Combination Therapies. Cancers (Basel) 2020; 12:cancers12040970. [PMID: 32295216 PMCID: PMC7226326 DOI: 10.3390/cancers12040970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Adaptation to import iron for proliferation makes cancer cells potentially sensitive to iron toxicity. Iron loading impairs multiple myeloma (MM) cell proliferation and increases the efficacy of the proteasome inhibitor bortezomib. Here, we defined the mechanisms of iron toxicity in MM.1S, U266, H929, and OPM-2 MM cell lines, and validated this strategy in preclinical studies using Vk*MYC mice as MM model. High-dose ferric ammonium citrate triggered cell death in all cell lines tested, increasing malondialdehyde levels, the by-product of lipid peroxidation and index of ferroptosis. In addition, iron exposure caused dose-dependent accumulation of polyubiquitinated proteins in highly iron-sensitive MM.1S and H929 cells, suggesting that proteasome workload contributes to iron sensitivity. Accordingly, high iron concentrations inhibited the proteasomal chymotrypsin-like activity of 26S particles and of MM cellular extracts in vitro. In all MM cells, bortezomib-iron combination induced persistent lipid damage, exacerbated bortezomib-induced polyubiquitinated proteins accumulation, and triggered cell death more efficiently than individual treatments. In Vk*MYC mice, addition of iron dextran or ferric carboxymaltose to the bortezomib-melphalan-prednisone (VMP) regimen increased the therapeutic response and prolonged remission without causing evident toxicity. We conclude that iron loading interferes both with redox and protein homeostasis, a property that can be exploited to design novel combination strategies including iron supplementation, to increase the efficacy of current MM therapies.
Collapse
|
44
|
Thirupathi A, Pinho RA, Chang YZ. Physical exercise: An inducer of positive oxidative stress in skeletal muscle aging. Life Sci 2020; 252:117630. [PMID: 32294473 DOI: 10.1016/j.lfs.2020.117630] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is the core of most pathological situations, and its attribution toward disease conversion is not yet well established. The adaptive capacity of a cell can overcome ROS-induced pathology. However, when a cell fails to extend its maximum adaptive capacity against oxidative stress, it could lead a cell to misbehave or defunct from its normal functions. Any type of physical activity can increase the cells' maximum adaptive capacity, but aging can limit this. However, whether aging is the initiating point of reducing cells' adaptive capacity against oxidative stress or oxidative stress can induce the aging process is a mystery, and it could be the key to solving several uncured diseases. Paradoxically, minimum ROS is needed for cellular homeostasis. Nevertheless, finding factors that can limit or nullify the production of ROS for cellular homeostasis is a million-dollar question. Regular physical exercise is considered to be one of the factors that can limit the production of ROS and increase the ROS-induced benefits in the cells through inducing minimum oxidative stress and increasing maximum adapting capacity against oxidative stress-induced damages. The type and intensity of exercise that can produce such positive effects in the cells remain unclear. Therefore, this review discusses how physical exercise can help to produce minimal positive oxidative stress in preventing skeletal muscle aging.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province 050024, China.
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province 050024, China
| |
Collapse
|
45
|
Johnson BD, Geldenhuys WJ, Hazlehurst LA. The Role of ERO1α in Modulating Cancer Progression and Immune Escape. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:103-115. [PMID: 33615311 PMCID: PMC7894644 DOI: 10.33696/cancerimmunol.2.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum oxidoreductin-1 alpha (ERO1α) was originally shown to be an endoplasmic reticulum (ER) resident protein undergoing oxidative cycles in concert with protein disulfide isomerase (PDI) to promote proper protein folding and to maintain homeostasis within the ER. ERO1α belongs to the flavoprotein family containing a flavin adenine dinucleotide utilized in transferring of electrons during oxidation-reduction cycles. This family is used to maintain redox potentials and protein homeostasis within the ER. ERO1α's location and function has since been shown to exist beyond the ER. Originally thought to exist solely in the ER, it has since been found to exist in the golgi apparatus, as well as in exosomes purified from patient samples. Besides aiding in protein folding of transmembrane and secretory proteins in conjunction with PDI, ERO1α is also known for formation of de novo disulfide bridges. Public databases, such as the Cancer Genome Atlas (TCGA) and The Protein Atlas, reveal ERO1α as a poor prognostic marker in multiple disease settings. Recent evidence indicates that ERO1α expression in tumor cells is a critical determinant of metastasis. However, the impact of increased ERO1α expression in tumor cells extends into the tumor microenvironment. Secretory proteins requiring ERO1α expression for proper folding have been implicated as being involved in immune escape through promotion of upregulation of programmed death ligand-1 (PD-L1) and stimulation of polymorphonuclear myeloid derived suppressor cells (PMN-MDSC's) via secretion of granulocytic colony stimulating factor (G-CSF). Hereby, ERO1α plays a pivotal role in cancer progression and potentially immune escape; making ERO1α an emerging attractive putative target for the treatment of cancer.
Collapse
Affiliation(s)
| | - Werner J. Geldenhuys
- WVU School of Pharmacy, Morgantown, WV, 25606, USA
- WVU Neuroscience Institute, Morgantown, WV, 25606, USA
| | - Lori A. Hazlehurst
- WVU Cancer Institute, Morgantown, WV 26506, USA
- WVU School of Pharmacy, Morgantown, WV, 25606, USA
| |
Collapse
|
46
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Perfluorobutanesulfonic Acid (PFBS) Induces Fat Accumulation in HepG2 Human Hepatoma. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020; 102:585-606. [PMID: 33762794 PMCID: PMC7986581 DOI: 10.1080/02772248.2020.1808894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Per- and poly-fluoroalkyl substances, especially perfluorooctanesulfonic acid, have been extensively used for over 50 years. A growing body of evidence has emerged demonstrating the potential adverse effects of these substances, including its effect on the development of non-alcoholic fatty liver disease, as one of the most prevalent chronic liver diseases. Nonetheless, there is no report of effects of perfluorobutanesulfonic acid, the major replacement for perfluorooctanesulfonic acid, on non-alcoholic fatty liver disease. Therefore, the effects of perfluorobutanesulfonic acid exposure on fat accumulation in a human hepatoma cell line were examined. Cells were exposed to perfluorobutanesulfonic acid with or without 300 μmol/L fatty acid mixture (oleic acid:palmitic acid = 2:1) conjugated by bovine serum albumin as an inducer of steatosis for 48 hours. Perfluorobutanesulfonic acid at 200 μmol/L significantly increased the triglyceride level in the presence of fatty acid compared to the control, but not without fatty acid, which was abolished by a specific peroxisome proliferator-activated receptor gamma antagonist. Perfluorobutanesulfonic acid upregulated key genes controlling lipogenesis and fatty acid uptake. Perfluorobutanesulfonic acid treatment also promoted the production of reactive oxygen species, an endoplasmic reticulum stress marker and cytosolic calcium. In conclusion, perfluorobutanesulfonic acid increased fat accumulation, in part, via peroxisome proliferator-activated receptor gamma-mediated pathway in hepatoma cells.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
- Corresponding author: Phone (413) 545-1018,
| |
Collapse
|
47
|
Abo El-khair SM, Ghoneim FM, Shabaan DA, Elsamanoudy AZ. Molecular and ultrastructure study of endoplasmic reticulum stress in hepatic steatosis: role of hepatocyte nuclear factor 4α and inflammatory mediators. Histochem Cell Biol 2019; 153:49-62. [DOI: 10.1007/s00418-019-01823-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
|
48
|
Janker L, Mayer RL, Bileck A, Kreutz D, Mader JC, Utpatel K, Heudobler D, Agis H, Gerner C, Slany A. Metabolic, Anti-apoptotic and Immune Evasion Strategies of Primary Human Myeloma Cells Indicate Adaptations to Hypoxia. Mol Cell Proteomics 2019; 18:936-953. [PMID: 30792264 PMCID: PMC6495257 DOI: 10.1074/mcp.ra119.001390] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple Myeloma (MM) is an incurable plasma cell malignancy primarily localized within the bone marrow (BM). It develops from a premalignant stage, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage, smoldering MM (SMM). The mechanisms of MM progression have not yet been fully understood, all the more because patients with MGUS and SMM already carry similar initial mutations as found in MM cells. Over the last years, increased importance has been attributed to the tumor microenvironment and its role in the pathophysiology of the disease. Adaptations of MM cells to hypoxic conditions in the BM have been shown to contribute significantly to MM progression, independently from the genetic predispositions of the tumor cells. Searching for consequences of hypoxia-induced adaptations in primary human MM cells, CD138-positive plasma cells freshly isolated from BM of patients with different disease stages, comprising MGUS, SMM, and MM, were analyzed by proteome profiling, which resulted in the identification of 6218 proteins. Results have been made fully accessible via ProteomeXchange with identifier PXD010600. Data previously obtained from normal primary B cells were included for comparative purposes. A principle component analysis revealed three clusters, differentiating B cells as well as MM cells corresponding to less and more advanced disease stages. Comparing these three clusters pointed to the alteration of pathways indicating adaptations to hypoxic stress in MM cells on disease progression. Protein regulations indicating immune evasion strategies of MM cells were determined, supported by immunohistochemical staining, as well as transcription factors involved in MM development and progression. Protein regulatory networks related to metabolic adaptations of the cells became apparent. Results were strengthened by targeted analyses of a selected panel of metabolites in MM cells and MM-associated fibroblasts. Based on our data, new opportunities may arise for developing therapeutic strategies targeting myeloma disease progression.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rupert L Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dominique Kreutz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hermine Agis
- Department of Oncology, University Clinic for Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria;.
| |
Collapse
|
49
|
Siegenthaler KD, Sevier CS. Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chem Res Toxicol 2019; 32:342-344. [PMID: 30721036 PMCID: PMC9901302 DOI: 10.1021/acs.chemrestox.8b00379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The concept that reactive oxygen species (ROS) are primarily toxic, mitochondria-generated molecules has persisted for decades. Here we highlight the emerging complexity for ROS-based events, emphasizing the evolving importance of the endoplasmic reticulum as a source and platform for redox signaling.
Collapse
|
50
|
Correll RN, Grimes KM, Prasad V, Lynch JM, Khalil H, Molkentin JD. Overlapping and differential functions of ATF6α versus ATF6β in the mouse heart. Sci Rep 2019; 9:2059. [PMID: 30765833 PMCID: PMC6375966 DOI: 10.1038/s41598-019-39515-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 01/22/2023] Open
Abstract
Hemodynamic stress on the mammalian heart results in compensatory hypertrophy and activation of the unfolded protein response through activating transcription factor 6α (ATF6α) in cardiac myocytes, but the roles of ATF6α or the related transcription factor ATF6β in regulating this hypertrophic response are not well-understood. Here we examined the effects of loss of ATF6α or ATF6β on the cardiac response to pressure overload. Mice gene-deleted for Atf6 or Atf6b were subjected to 2 weeks of transverse aortic constriction, and each showed a significant reduction in hypertrophy with reduced expression of endoplasmic reticulum (ER) stress-associated proteins compared with controls. However, with long-term pressure overload both Atf6 and Atf6b null mice showed enhanced decompensation typified by increased heart weight, pulmonary edema and reduced function compared to control mice. Our subsequent studies using cardiac-specific transgenic mice expressing the transcriptionally active N-terminus of ATF6α or ATF6β revealed that these factors control overlapping gene expression networks that include numerous ER protein chaperones and ER associated degradation components. This work reveals previously unappreciated roles for ATF6α and ATF6β in regulating the pressure overload induced cardiac hypertrophic response and in controlling the expression of genes that condition the ER during hemodynamic stress.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Kelly M Grimes
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Jeffrey M Lynch
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Hadi Khalil
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Howard Hughes Medical Institute, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|