1
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
2
|
Shaban NZ, El Swify LA, Abu-Serie MM, Maher AM, Habashy NH. A comparative study on the protective effects of cuminaldehyde, thymoquinone, and gallic acid against carbon tetrachloride-induced pulmonary and renal toxicity in rats by affecting ROS and NF-κB signaling. Biomed Pharmacother 2024; 175:116692. [PMID: 38701569 DOI: 10.1016/j.biopha.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
CCl4 toxicity is a fatal condition that can cause numerous organ dysfunctions. We evaluated and compared the protective effects of cuminaldehyde (CuA), thymoquinone (TQ), and gallic acid (GA) on CCl4-induced pulmonary and renal toxicity in rats. The impacts of these compounds on CCl4-induced oxidative stress, inflammation, and morphological alterations were examined. The results showed that the compounds under investigation prevented CCl4 from significantly increasing pulmonary and renal lipid peroxidation and NO levels, as well as massively depleting GSH levels and GPX and SOD activities. Moreover, they suppressed the CCl4-induced increase in mucus secretion in the lung and upregulated the gene expression of pulmonary and renal NF-ҡB, iNOS, TNF-α, and COX-2. The heatmap cluster plots showed that GA and TQ had better protective potencies than CuA. The external organ morphology, histopathological results, and chest X-ray analysis confirmed the toxicity of CCl4 and the protective influences of the tested compounds in both the lungs and kidneys of rats. These compounds displayed predicted competitive inhibitory effects on iNOS activity and may block the IL-13α2 receptor, as revealed by molecular docking analysis. Thus, CuA, TQ, and GA, particularly the latter two, are prospective protective compounds against the pulmonary and renal toxicity caused by CCl4.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamiaa A El Swify
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Fisher AB, Zani B, Han T, Dodia C, Melidone R, Keller S. Decreased LPS-induced lung injury in pigs treated with a lung surfactant protein A-derived nonapeptide that inhibits peroxiredoxin 6 activity and subsequent NOX1,2 activation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L458-L467. [PMID: 38349117 PMCID: PMC11281806 DOI: 10.1152/ajplung.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1β), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- Peroxitech, Inc., Philadelphia, Pennsylvania, United States
| | - Brett Zani
- CBSET, Inc., Lexington, Massachusetts, United States
| | - Thomas Han
- Peroxitech, Inc., Philadelphia, Pennsylvania, United States
| | - Chandra Dodia
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | | | - Steven Keller
- CBSET, Inc., Lexington, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Khan F, Chen Y, Hartwell HJ, Yan J, Lin YH, Freedman A, Zhang Z, Zhang Y, Lambe AT, Turpin BJ, Gold A, Ault AP, Szmigielski R, Fry RC, Surratt JD. Heterogeneous Oxidation Products of Fine Particulate Isoprene Epoxydiol-Derived Methyltetrol Sulfates Increase Oxidative Stress and Inflammatory Gene Responses in Human Lung Cells. Chem Res Toxicol 2023; 36:1814-1825. [PMID: 37906555 DOI: 10.1021/acs.chemrestox.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jin Yan
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Anastasia Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Atmospheric Sciences, Texas A&M University, College Station Texas 77843, United States
| | - Andrew T Lambe
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Han S, Moon S, Chung YW, Ryu JH. NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection. Immune Netw 2023; 23:e42. [PMID: 37970233 PMCID: PMC10643333 DOI: 10.4110/in.2023.23.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wild-type (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.
Collapse
Affiliation(s)
- Seunghan Han
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Kouki A, Ferjani W, Ghanem-Boughanmi N, Ben-Attia M, Dang PMC, Souli A, El-Benna J. The NADPH Oxidase Inhibitors Apocynin and Diphenyleneiodonium Protect Rats from LPS-Induced Pulmonary Inflammation. Antioxidants (Basel) 2023; 12:antiox12030770. [PMID: 36979018 PMCID: PMC10045801 DOI: 10.3390/antiox12030770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation is the body's response to insults, for instance, lung inflammation is generally caused by pathogens or by exposure to pollutants, irritants and toxins. This process involves many inflammatory cells such as epithelial cells, monocytes, macrophages and neutrophils. These cells produce and release inflammatory mediators such as pro-inflammatory cytokines, lipids and reactive oxygen species (ROS). Lung epithelial cells and phagocytes (monocytes, macrophages and neutrophils) produce ROS mainly by the NADPH oxidase NOX1 and NOX2, respectively. The aim of this study was to investigate the effects of two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI), on lipopolysaccharide (LPS)-induced lung inflammation in rats. Our results showed that apocynin and DPI attenuated the LPS-induced morphological and histological alterations of the lung, reduced edema and decreased lung permeability. The evaluation of oxidative stress markers in lung homogenates showed that apocynin and DPI inhibited LPS-induced NADPH oxidase activity, and restored superoxide dismutase (SOD) and catalase activity in the lung resulting in the reduction in LPS-induced protein and lipid oxidation. Additionally, apocynin and DPI decreased LPS-induced MPO activity in bronchoalveolar liquid and lung homogenates, TNF-α and IL-1β in rat plasma. NADPH oxidase inhibition could be a new therapeutic strategy for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Ahmed Kouki
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Wafa Ferjani
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Néziha Ghanem-Boughanmi
- Unité des Risques Liés aux Stress Environnementaux (UR17/ES20), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
| | - Abdelaziz Souli
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
| |
Collapse
|
9
|
Seyedrezazadeh E, Ghoushouni S, Sharifi A, Zafari V, Zarredar H. Association of the Toll-like receptor 4 and NOX4 gene and protein levels in asthmatic patients with metabolic syndrome: A case–control study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2023; 28:11. [PMID: 36974113 PMCID: PMC10039097 DOI: 10.4103/jrms.jrms_860_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/17/2022] [Accepted: 04/02/2022] [Indexed: 02/23/2023]
Abstract
Background Understanding the contributing of influence inflammatory biomarkers in asthmatic patients with metabolic syndrome is more important. Whereby, the present study considering the important association of NADPH oxidase4 (NOX4) and Toll- like receptor4 (TLR4) in the respiratory inflammatory responses in asthmatic patients with metabolic syndrome (AS-MetS) and asthmatic (AS) patients. Materials and Methods In this case-control study, 30 AS and 34 AS-MetS patients were enrolled. The Peripheral blood mononuclear cells (PBMCs) mRNA and protein levels of TLR4 and NOX4 were measured by qRT-PCR and western blot, respectively. Then their correlation was evaluated. Results The significant down-regulation of mRNA and protein PBMCs expression levels of TLR4 were observed in the AS-MetS group in comparison to AS one (P=0.03), but the NOX4 expression was non-significant. Additionally, the significant correlation was exhibited between mRNA expression levels of NOX4 and TLR4 in both AS-MetS (r= 0.440, P=0.009) and AS groups (r=0.909, P=0.0001). The association between TLR4 mRNA level and triglyceride in AS-MetS group (r=0.454, P=0.008,) and also white blood cells (WBC) in AS group (r= -0.507, P=0.006,) were significant. Conclusion The metabolic syndrome can significantly influence the expressions of TLR4 in AS-MetS. This study indicated that TLR4 and NOX4 altogether may provide valuable molecular knowledge of their relation with metabolic syndrome criteria for finding major pathways in different phenotype of asthma.
Collapse
|
10
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
11
|
Rangarajan S, Locy ML, Chanda D, Kurundkar A, Kurundkar D, Larson‐Casey JL, Londono P, Bagchi RA, Deskin B, Elajaili H, Nozik ES, Deshane JS, Zmijewski JW, Eickelberg O, Thannickal VJ. Mitochondrial uncoupling protein-2 reprograms metabolism to induce oxidative stress and myofibroblast senescence in age-associated lung fibrosis. Aging Cell 2022; 21:e13674. [PMID: 35934931 PMCID: PMC9470902 DOI: 10.1111/acel.13674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary Sciences and Critical Care, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Morgan L. Locy
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Diptiman Chanda
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ashish Kurundkar
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Deepali Kurundkar
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Larson‐Casey
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pilar Londono
- Division of Pulmonary Sciences and Critical Care, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Rushita A. Bagchi
- Division of Cardiology, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Brian Deskin
- Division of Pulmonary and Critical Care, Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Hanan Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Jessy S. Deshane
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jaroslaw W. Zmijewski
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Victor J. Thannickal
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
12
|
Dailah HG. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022; 27:molecules27175542. [PMID: 36080309 PMCID: PMC9458015 DOI: 10.3390/molecules27175542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing and major global health problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place when various reactive species and free radicals swamp the availability of antioxidants. Reactive nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important for host defense and physiological signaling pathways, and the development and progression of inflammation. During the disturbance of their normal steady states, imbalances between antioxidants and oxidants might induce pathological mechanisms that can further result in many non-respiratory and respiratory diseases including COPD. ROS might be either endogenously produced in response to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS), and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine, erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease OS and affect the expressions of several pro-inflammatory genes and genes that are involved with redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous chemicals, particularly antioxidants in the treatment of COPD.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Murugesan P, Zhang P, Xu S, Peng L, Wang C, Cai H. NADPH Oxidase Isoforms in COPD Patients and Acute Cigarette Smoke-Exposed Mice: Induction of Oxidative Stress and Lung Inflammation. Antioxidants (Basel) 2022; 11:antiox11081539. [PMID: 36009258 PMCID: PMC9405243 DOI: 10.3390/antiox11081539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke (CS) is a major risk factor for chronic obstructive pulmonary disease (COPD), which represents the third leading cause of death worldwide. CS induces reactive oxygen species (ROS) production, leading to pulmonary inflammation and remodeling. NADPH oxidases (NOXs) represent essential sources of ROS production in the cardiovascular system. Whether and how NOX isoforms are activated in COPD patients and in response to acute cigarette smoke (ACS) remains incompletely understood. In the present study, the expression of NOX isoforms was examined in the lungs of end-stage COPD patients. In addition, mice silenced of NOX1 or NOX4 expression using in vivo RNA interference (RNAi), and NOX2-deficient (NOX2−/y) mice, were exposed to ACS for 1 h using a standard TE-10B smoking machine. In lung sections isolated from COPD patients undergoing lung transplantation, protein expression of NOX1, NOX2, NOX4, or NOX5 was markedly upregulated compared to non-smoking donor controls. Likewise, ACS upregulated protein expression of NOX1, NOX2, and NOX4, production of ROS, inflammatory cell infiltration, and mRNA expression of proinflammatory cytokines TNF-α and KC in the mouse lung. In vivo RNAi knockdown of NOX1 or NOX4 decreased ACS induced ROS production, inflammatory cell influx, and the expression of TNF-α and KC, which were accompanied by inhibition of the NF-κB-COX-2 axis. Although ACS induced ROS production was reduced in the lungs of NOX2−/y mice, inflammatory cell influx and expression of NF-κB/COX-2 were increased. Taken together, our results demonstrate for the first time that NOX isoforms 1, 2, 4 and 5 all remain activated in end-stage COPD patients, while NOX1 and NOX4 mediate oxidative stress and inflammatory responses in response to acute cigarette smoke. Therefore, targeting different isoforms of NOX might be necessary to treat COPD at different stages of the disease, which represents novel mechanistic insights enabling improved management of the devastating disease.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Priya Murugesan
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Shiqing Xu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Liang Peng
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (C.W.); (H.C.)
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (C.W.); (H.C.)
| |
Collapse
|
14
|
Harijith A, Basa P, Ha A, Thomas J, Jafri A, Fu P, MacFarlane PM, Raffay TM, Natarajan V, Sudhadevi T. NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Front Pharmacol 2022; 13:880878. [PMID: 35662702 PMCID: PMC9160661 DOI: 10.3389/fphar.2022.880878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Prathima Basa
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alison Ha
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jaya Thomas
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas M. Raffay
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Lee SH, Shin MH, Leem AY, Lee SH, Chung KS, Kim YS, Park MS. NADPH oxidase 4 signaling in a ventilator-induced lung injury mouse model. Respir Res 2022; 23:73. [PMID: 35346198 PMCID: PMC8962540 DOI: 10.1186/s12931-022-01992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background For patients with acute respiratory distress syndrome, a ventilator is essential to supply oxygen to tissues, but it may also cause lung damage. In this study, we investigated the role of NOX4 using NOX4 knockout (KO) mice and NOX4 inhibitors in a ventilator-induced lung injury (VILI) model. Methods Wild-type (WT) male C57BL/6J mice and NOX4 knockout (KO) male mice were divided into five groups: (1) control group; (2) high tidal ventilation (HTV) group: WT mice + HTV ± DMSO; (3) NOX4 KO group; (4) NOX4 KO with HTV group; (5) NOX4 inhibitor group: WT mice + HTV + NOX4 inhibitor. In the VILI model, the supine position was maintained at 24 mL/kg volume, 0 cm H2O PEEP, 100/min respiratory rate, and 0.21 inspired oxygen fraction. In the NOX4 inhibitor group, 50 μL anti-GKT 137831 inhibitor was injected intraperitoneally, 2 h after ventilator use. After 5 h of HTV, mice in the ventilator group were euthanized, and their lung tissues were obtained for further analysis. In addition, the relationship between EphA2 (which is related to lung injury) and NOX4 was investigated using EphA2 KO mice, and NOX4 and EphA2 levels in the bronchoalveolar lavage fluid (BALF) of 38 patients with pneumonia were examined. Results Cell counts from BALFs were significantly lower in the NOX4 KO with HTV group (p < 0.01) and EphA2 KO with HTV group (p < 0.001) compared to that in the HTV group. In the NOX4 inhibitor group, cell counts and protein concentrations from BALF were significantly lower than those in the HTV group (both, p < 0.001). In the NOX4 KO group and the NOX4 inhibitor group, EphA2 levels were significantly lower than those in the HTV group (p < 0.001). In patients with respiratory disease, NOX4 and EphA2 levels were significantly higher in patients with pneumonia and patients who received ventilator treatment in the intensive care unit. Conclusion In the VILI model with high tidal volume, NOX4 KO, EphA2 KO or monoclonal antibodies attenuated the VILI. NOX4 and EphA2 levels were significantly higher in patients with pneumonia and especially in mechanical ventilated in the ICU. Inhibition of Nox4 is a potential therapeutic target for the prevention and reduction of VILI. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01992-0.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
16
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
17
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
18
|
XU L, SONG Q, OUYANG Z, ZHENG M, ZHANG X, ZHANG C. Efficacy of silymarin in treatment of COPD via P47phox signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lin XU
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Qingying SONG
- Guizhou College of Traditional Chinese Medicine, China
| | | | | | - Xiangyan ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Cheng ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| |
Collapse
|
19
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
21
|
Association Between NOX4 And Nrf2 Genes in Non-Small-Cell Lung Carcinoma: A Case-Control Study. Rep Biochem Mol Biol 2021; 10:327-333. [PMID: 34604422 DOI: 10.52547/rbmb.10.2.327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
Background Epithelial malignancy in lung cancer, which is initiated with myofibroblast differentiation and remodeling, promotes hypoxia and intracellular ROS generation most affected by the prototypical enzyme, NADPH oxidase 4 (NOX4). In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a critical transcription factor by stimulating antioxidant proteins as redox homeostasis regulators. The aim of this study was to investigate a possible correlation between lung tissue NOX4 and Nrf2 genes (NOX4 and Nrf2) mRNA expression and bronchoalveolar lavage fluid (BALF) protein expression in non-small-cell lung carcinoma (NSCLC) patients. Methods Samples from 25 patients with various NSCLC types and stages and 20 healthy controls were collected. NOX4 and Nrf2 mRNA were measured by qRT-PCR, and protein by western blot analysis. Results NOX4 mRNA and protein expression was significantly up-regulated in NSCLC patients' lung tissues and BALFs (p= 0.03 and 0.01, respectively). In addition, by adjusting for age, sex, and NSCLC types and stages, a significant and positive correlation was observed between NOX4 and Nrf2 mRNA expression (r= 0.927, p= 0.001). This was also true when not adjusted as above (r= 0.944, p< 0.001). Conclusion NOX4 mRNA and protein expression is significantly up-regulated in NSCLC patients' lung tissues and BALFs, and NOX4 and Nrf2 mRNA expression is positively correlated in NSCLC tissues.
Collapse
|
22
|
Ruan H, Luan J, Gao S, Li S, Jiang Q, Liu R, Liang Q, Zhang R, Zhang F, Li X, Zhou H, Yang C. Fedratinib Attenuates Bleomycin-Induced Pulmonary Fibrosis via the JAK2/STAT3 and TGF-β1 Signaling Pathway. Molecules 2021; 26:molecules26154491. [PMID: 34361644 PMCID: PMC8347567 DOI: 10.3390/molecules26154491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix deposition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine causing fibrosis, promoting abnormal epithelial-mesenchymal communication and fibroblast-to-myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pulmonary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.
Collapse
Affiliation(s)
- Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
- Correspondence:
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (H.R.); (J.L.); (S.G.); (S.L.); (Q.J.); (R.L.); (Q.L.); (R.Z.); (F.Z.); (X.L.); (C.Y.)
- High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| |
Collapse
|
23
|
Massalska MA, Gober HJ. How Children Are Protected From COVID-19? A Historical, Clinical, and Pathophysiological Approach to Address COVID-19 Susceptibility. Front Immunol 2021; 12:646894. [PMID: 34177895 PMCID: PMC8226076 DOI: 10.3389/fimmu.2021.646894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
The origin and the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) in early 2020 was accompanied by high rates of mortality in regions belonging to the ancient silk road, such as the south of China, Iran, Turkey and the northern parts of Italy. However, children seem to be spared in the epidemic as very small percentage worldwide being ill. The protection of children and neonates suggests the involvement of a specific component of adaptive immunity present at early development. Native immunoglobulin belonging to the class of IgM is abundantly present in neonates and children and is known for its recognition of self- and altered self-antigens. Native IgM may be able to neutralize virus by the recognition of endogenous "danger signal" encoded in the viral envelope and originally imprinted in the membranes of infected and stressed cells. Noteworthy, thrombosis and vasculitis, two symptoms in severely affected adult and pediatric patients are shared between COVID-19 and patients with Behcet's disease, an autoimmune disorder exhibiting a region-specific prevalence in countries of the former silk road. Molecular mechanisms and clinical indicators suggest reactive oxygen species as trigger factor for severe progression of COVID-19 and establish a link to the innate immune defense against bacteria. The selective pressure exerted by bacterial pathogens may have shaped the genetics of inhabitants at this ancient trade route in favor of bacterial defense, to the detriment of severe COVID-19 progression in the 21th century.
Collapse
Affiliation(s)
- Magdalena Anna Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
24
|
Schiffers C, Lundblad LKA, Hristova M, Habibovic A, Dustin CM, Daphtary N, Aliyeva M, Seward DJ, Janssen-Heininger YMW, Wouters EFM, Reynaert NL, van der Vliet A. Downregulation of DUOX1 function contributes to aging-related impairment of innate airway injury responses and accelerated senile emphysema. Am J Physiol Lung Cell Mol Physiol 2021; 321:L144-L158. [PMID: 33951398 DOI: 10.1152/ajplung.00021.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lennart K A Lundblad
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
25
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
26
|
NOX4-Derived ROS Promotes Collagen I Deposition in Bronchial Smooth Muscle Cells by Activating Noncanonical p38MAPK/Akt-Mediated TGF- β Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668971. [PMID: 33824697 PMCID: PMC8007363 DOI: 10.1155/2021/6668971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
Background Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD). NADPH oxidase 4- (NOX4-) mediated reactive oxygen species (ROS) production plays a crucial role in cell differentiation and extracellular matrix (ECM) synthesis in ASM remodeling. However, the precise mechanisms underpinning its pathogenic roles remain elusive. Methods The expression of NOX4 and TGF-β1 in the airway of the lung was measured in COPD patients and the control group. Cigarette smoke- (CS-) induced emphysema mice were generated, and the alteration of α-SMA, NOX4, TGF-β1, and collagen I was accessed. The changes of the expression of ECM markers, NOX4, components of TGF-β/Smad, and MAPK/Akt signaling in human bronchial smooth muscle cells (HBSMCs) were ascertained for delineating mechanisms of NOX4-mediated ROS production on cell differentiation and remodeling in human ASM cells. Results An increased abundance of NOX4 and TGF-β1 proteins in the epithelial cells and ASM of lung was observed in COPD patients compared with the control group. Additionally, an increased abundance expression of NOX4 and α-SMA was observed in the lungs of the CS-induced emphysema mouse model. TGF-β1 displayed abilities to increase the oxidative burden and collagen I production, along with enhanced phosphorylation of ERK, p38MAPK, and p-Akt473 in HBSMCs. These effects of TGF-β1 could be inhibited by the ROS scavenger N-acetylcysteine (NAC), siRNA-mediated knockdown of Smad3 and NOX4, and pharmacological inhibitors SB203580 (p38MAPK inhibitor) and LY294002 (Akt inhibitor). Conclusions NOX4-mediated ROS production alters TGF-β1-induced cell differentiation and collagen I protein synthesis in HBSMCs in part through the p38MAPK/Akt signaling pathway in a Smad-dependent manner.
Collapse
|
27
|
Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646923. [PMID: 33628371 PMCID: PMC7889360 DOI: 10.1155/2021/6646923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.
Collapse
Affiliation(s)
- Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, AL 57072-900, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Univ Rennes, Rennes, France
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| |
Collapse
|
28
|
Tuberculous Fibrosis Enhances Tumorigenic Potential via the NOX4-Autophagy Axis. Cancers (Basel) 2021; 13:cancers13040687. [PMID: 33567693 PMCID: PMC7916030 DOI: 10.3390/cancers13040687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Although previous studies have reported coexistence of pulmonary TB and carcinoma, the underlying mechanism of tuberculous fibrosis-induced tumorigenicity remains to be investigated. We previously reported that NOX4 signaling mediates tuberculous pleural fibrosis by activating ERK–ROS–EMT pathways. We were interested in the role of NOX4 in the tumor microenvironment changed by tuberculosis fibrosis. Our results showed that lung cancer cells enhanced the NOX4 expression and invasive potential after exposure to the conditioned medium of heat-killed Mycobacterium tuberculosis stimulated mesothelial cells or tuberculous pleural effusion. NOX4–autophagy signaling axis contributes to the interaction between tuberculosis fibrosis and lung cancer. Silencing of NOX4 signaling in tuberculous fibrosis reduced the metastatic potential by enhancing autophagy in both in vivoand in vitro studies. This result suggests that NOX4-P62 might serve as a therapeutic target for tuberculous fibrosis-associated lung cancer. Abstract While a higher incidence of lung cancer in subjects with previous tuberculous infection has been reported in epidemiologic data, the mechanism by which previous tuberculosis affects lung cancer remains unclear. We investigated the role of NOX4 in tuberculous pleurisy-assisted tumorigenicity both in vitro and in vivo.Heat-killed Mycobacterium tuberculosis-stimulated mesothelial cells augmented the migrationand invasive potential of lung cancer cells in a NOX4-dependent manner. Mice with Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection exhibited increased expression of NOX4 and enhanced malignant potential of lung cancer compared to mice with intrathoracic injection of phosphate-buffered saline. The BCG+ KLN205 (KLN205 cancer cell injection after BCG treatment) NOX4 KO mice group showed reduced tuberculous fibrosis-promoted metastatic potential of lung cancer, increased autophagy, and decreased expression of TGF-β, IL-6, and TNF-α compared to the BCG+KLN205 WT mice group. Finally, NOX4 silencing mitigated the malignant potential of A549 cells that was enhanced by tuberculous pleural effusion and restored autophagy signaling. Our results suggest that the NOX4–autophagy axis regulated by tuberculous fibrosis could result in enhanced tumorigenic potential and that NOX4-P62 might serve as a target for tuberculous fibrosis-induced lung cancer.
Collapse
|
29
|
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam K, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7:e06350. [PMID: 33655086 PMCID: PMC7899028 DOI: 10.1016/j.heliyon.2021.e06350] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-19 (COVID-19), a devastating respiratory illness caused by SARS-associated coronavirus-2 (SARS-CoV-2), has already affected over 64 million people and caused 1.48 million deaths, just 12 months from the first diagnosis. COVID-19 patients develop serious complications, including severe pneumonia, acute respiratory distress syndrome (ARDS), and or multiorgan failure due to exaggerated host immune response following infection. Currently, drugs that were effective against SARS-CoV are being repurposed for SARS-CoV-2. During this public health emergency, food nutraceuticals could be promising prophylactic therapeutics for COVID-19. Curcumin, a bioactive compound in turmeric, exerts diverse pharmacological activities and is widely used in foods and traditional medicines. This review presents several lines of evidence, which suggest curcumin as a promising prophylactic, therapeutic candidate for COVID-19. First, curcumin exerts antiviral activity against many types of enveloped viruses, including SARS-CoV-2, by multiple mechanisms: direct interaction with viral membrane proteins; disruption of the viral envelope; inhibition of viral proteases; induce host antiviral responses. Second, curcumin protects from lethal pneumonia and ARDS via targeting NF-κB, inflammasome, IL-6 trans signal, and HMGB1 pathways. Third, curcumin is safe and well-tolerated in both healthy and diseased human subjects. In conclusion, accumulated evidence indicates that curcumin may be a potential prophylactic therapeutic for COVID-19 in the clinic and public health settings.
Collapse
Affiliation(s)
- Rajesh K. Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - K.J.Thirumalai Subramaniam
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Gowthamarajan Kuppusamy
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
30
|
Birru RL, Bein K, Wells H, Bondarchuk N, Barchowsky A, Di YP, Leikauf GD. Phloretin, an Apple Polyphenol, Inhibits Pathogen-Induced Mucin Overproduction. Mol Nutr Food Res 2021; 65:e2000658. [PMID: 33216464 PMCID: PMC8163070 DOI: 10.1002/mnfr.202000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Bacterial infection induces mucus overproduction, contributing to acute exacerbations and lung function decline in chronic respiratory diseases. A diet enriched in apples may provide protection from pulmonary disease development and progression. This study examined whether phloretin, an apple polyphenol, inhibits mucus synthesis and secretion induced by the predominant bacteria associated with chronic respiratory diseases. METHODS AND RESULTS The expression of mucus constituent mucin 5AC (MUC5AC) in FVB/NJ mice and NCI-H292 epithelial cells is analyzed. Nontypeable Haemophilus influenzae (NTHi)-infected mice developed increased MUC5AC mRNA, which a diet containing phloretin inhibited. In NCI-H292 cells, NTHi, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa increased MUC5AC mRNA, which phloretin inhibited. Phloretin also diminished NTHi-induced MUC5AC protein secretion. NTHi-induced increased MUC5AC required toll-like receptor 4 (TLR4) and NADH oxidase 4 (NOX4) signaling and subsequent activation of the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Phloretin inhibited NTHi-induced TLR4/NOX4 and EGFR/MAPK signaling, thereby preventing increased MUC5AC mRNA. EGFR activation can also result from increased EGFR ligand synthesis and subsequent ligand activation by matrix metalloproteinases (MMPs). In NCI-H292 cells, NTHi increased EGFR ligand and MMP1 and MMP13 mRNA, which phloretin inhibited. CONCLUSIONS In summary, phloretin is a promising therapeutic candidate for preventing bacterial-induced mucus overproduction.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
31
|
Veith C, Hristova M, Danyal K, Habibovic A, Dustin CM, McDonough JE, Vanaudenaerde BM, Kreuter M, Schneider MA, Kahn N, van Schooten FJ, Boots AW, van der Vliet A. Profibrotic epithelial TGF-β1 signaling involves NOX4-mitochondria cross talk and redox-mediated activation of the tyrosine kinase FYN. Am J Physiol Lung Cell Mol Physiol 2020; 320:L356-L367. [PMID: 33325804 DOI: 10.1152/ajplung.00444.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-β (TGF-β) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-β signaling is not known. Here, we demonstrate that TGF-β1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-β1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-β-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-β1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - John E McDonough
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
32
|
Jayawardena TU, Sanjeewa KKA, Lee HG, Nagahawatta DP, Yang HW, Kang MC, Jeon YJ. Particulate Matter-Induced Inflammation/Oxidative Stress in Macrophages: Fucosterol from Padina boryana as a Potent Protector, Activated via NF-κB/MAPK Pathways and Nrf2/HO-1 Involvement. Mar Drugs 2020; 18:E628. [PMID: 33317054 PMCID: PMC7763233 DOI: 10.3390/md18120628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Fucosterol is a phytosterol that is abundant in marine brown algae and is a renowned secondary metabolite. However, its ability to protect macrophages against particulate matter (PM) has not been clarified with regard to inflammation; thus, this study aimed to illustrate the above. Padina boryana, a brown algae that is widespread in Indo-Pacific waters, was applied in the isolation of fucosterol. Isolation was conducted using silica open columns, while identification was assisted with gas chromatography-mass spectroscopy (GC-MS) and NMR. Elevated levels of PM led the research objectives toward the implementation of it as a stimulant. Both inflammation and oxidative stress were caused due the fact of its effect. RAW 264.7 macrophages were used as a model system to evaluate the process. It was apparent that the increased NO production levels, due to the PM, were mediated through the inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines (i.e., interleukin-6 (IL-6), interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α), including prostaglandin E2 (PGE2)). Further, investigations provided solid evidence regarding the involvement of NF-κB and mitogen-activated protein kinases (MAPKs) in the process. Oxidative stress/inflammation which are inseparable components of the cellular homeostasis were intersected through the Nrf2/HO-1 pathway. Conclusively, fucosterol is a potent protector against PM-induced inflammation in macrophages and hence be utilized as natural product secondary metabolite in a sustainable manner.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - K. K. Asanka Sanjeewa
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Min-Cheol Kang
- Research Group of Process Engineering, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
33
|
Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol 2020; 9:1. [PMID: 33294307 PMCID: PMC7716628 DOI: 10.1007/s40203-020-00058-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Proposing a theory about the pathophysiology of cytokine storm in COVID19, we were to find the potential drugs to treat this disease and to find any effect of these drugs on the virus infectivity through an in silico study. COVID-19-induced ARDS is linked to a cytokine storm phenomenon not explainable solely by the virus infectivity. Knowing that ACE2, the hydrolyzing enzyme of AngII and SARS-CoV2 receptor, downregulates when the virus enters the host cells, we hypothesize that hyperacute AngII upregulation is the eliciting factor of this ARDS. We were to validate this theory through reviewing previous studies to figure out the role of overzealous activation of AT1R in ARDS. According to this theory losartan may attenuate ARDS in this disease. Imatinib, has previously been elucidated to be promising in modulating lung inflammatory reactions and virus infectivity in SARS and MERS. We did an in silico study to uncover any probable other unconsidered inhibitory effects of losartan and imatinib against SARS-CoV2 pathogenesis. Reviewing the literature, we could find that over-activation of AT1R could explain precisely the mechanism of cytokine storm in COVID19. Our in silico study revealed that losartan and imatinib could probably: (1) decline SARS-CoV2 affinity to ACE2. (2) inhibit the main protease and furin, (3) disturb papain-like protease and p38MAPK functions. Our reviewing on renin-angiotensin system showed that overzealous activation of AT1R by hyper-acute excess of AngII due to acute downregulation of ACE2 by SARS-CoV2 explains precisely the mechanism of cytokine storm in COVID-19. Besides, based on our in silico study we concluded that losartan and imatinib are promising in COVID19.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shahir Sadr
- Bioinformatics Research Center, Cheragh Medical Institute and Hospital, Kabul, Afghanistan
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
34
|
Hong Y, Woo S, Kim Y, Lee JJ, Hong JY. Plasma concentrations of NOX4 are predictive of successful liberation from mechanical ventilation and 28-day mortality in intubated patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1376. [PMID: 33313121 PMCID: PMC7723573 DOI: 10.21037/atm-20-4252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzymes play important roles in generating reactive oxygen species (ROS); in particular, NOX4 plays a distinct role in regulating lung inflammation and apoptosis. Methods We determined whether plasma NOX4 level can be used as a prognostic biomarker to guide weaning from mechanical ventilation and to predict mortality in intubated patients. Plasma levels of NOX4 were measured at days 1 (NOX4 D1) and 7 (NOX4 D7) after initiation of mechanical ventilation in 184 patients. Results With increase in day 7 NOX4 quartile, the success of weaning tended to decrease and 28-day mortality tended to increase. On multivariate logistic regression, Acute Physiology, Age, Chronic Health Evaluation II (APACHE II) [odds ratio (OR): 1.10; 95% CI, 1.02–1.18], duration of mechanical ventilation (OR: 1.12; 95% CI: 1.06–1.18), and NOX4 D7 levels >18.2 ng/mL (OR: 4.40; 95% CI: 1.91–10.06) were independently associated with weaning failure. Also, Cox-hazard proportional model showed that NOX4 D7 level >18.2 ng/mL (hazard ratio [HR], 2.29; 95% CI, 1.26–4.16), APACHE II (HR: 1.07; 95% CI: 1.02–1.14), Sequential Organ Failure Assessment (SOFA) (HR: 1.10; 95% CI: 1.01–1.20) and coexisting cancer (HR: 1.99; 95% CI, 1.01–3.94), were independently associated with 28-day mortality. The longitudinal trend of NOX4 level varied according to the clinical outcomes. Conclusions An increased plasma NOX4 D7 level was associated with weaning failure and 28-day mortality in patients with mechanical ventilation. Our results suggest that NOX4-directed management may lead to improved outcomes in patients with mechanical ventilation.
Collapse
Affiliation(s)
- Yoonki Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Seongji Woo
- Institute of New frontier Research, Hallym University College of Medicine, Republic of Korea
| | - Youngmi Kim
- Institute of New frontier Research, Hallym University College of Medicine, Republic of Korea
| | - Jae Jun Lee
- Institute of New frontier Research, Hallym University College of Medicine, Republic of Korea
| | - Ji Young Hong
- Institute of New frontier Research, Hallym University College of Medicine, Republic of Korea.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Gangwon-do, Republic of Korea.,Lung Research Institute of Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
35
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
36
|
Yoo JY, Cha DR, Kim B, An EJ, Lee SR, Cha JJ, Kang YS, Ghee JY, Han JY, Bae YS. LPS-Induced Acute Kidney Injury Is Mediated by Nox4-SH3YL1. Cell Rep 2020; 33:108245. [PMID: 33086058 DOI: 10.1016/j.celrep.2020.108245] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Cytosolic proteins are required for regulation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) isozymes. Here we show that Src homology 3 (SH3) domain-containing YSC84-like 1 (SH3YL1), as a Nox4 cytosolic regulator, mediates lipopolysaccharide (LPS)-induced H2O2 generation, leading to acute kidney injury. The SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins (SYLF) region and SH3 domain of SH3YL1 contribute to formation of a complex with Nox4-p22phox. Interaction of p22phox with SH3YL1 is triggered by LPS, and the complex induces H2O2 generation and pro-inflammatory cytokine expression in mouse tubular epithelial cells. After LPS injection, SH3YL1 knockout mice show lower levels of acute kidney injury biomarkers, decreased secretion of pro-inflammatory cytokines, decreased infiltration of macrophages, and reduced tubular damage compared with wild-type (WT) mice. The results strongly suggest that SH3YL1 is involved in renal failure in LPS-induced acute kidney injury (AKI) mice. We demonstrate that formation of a ternary complex of p22phox-SH3YL1-Nox4, leading to H2O2 generation, induces severe renal failure in the LPS-induced AKI model.
Collapse
Affiliation(s)
- Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Borim Kim
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Eun Jung An
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Sae Rom Lee
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Jung Yeon Ghee
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do 425-020, Korea
| | - Jee Young Han
- Department of Pathology, Inha University, Incheon, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
37
|
Rana AK, Rahmatkar SN, Kumar A, Singh D. Glycogen synthase kinase-3: A putative target to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cytokine Growth Factor Rev 2020; 58:92-101. [PMID: 32948440 PMCID: PMC7446622 DOI: 10.1016/j.cytogfr.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 19 (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) had turned out to be highly pathogenic and transmittable. Researchers throughout the globe are still struggling to understand this strain's aggressiveness in search of putative therapies for its control. Crosstalk between oxidative stress and systemic inflammation seems to support the progression of the infection. Glycogen synthase kinase-3 (Gsk-3) is a conserved serine/threonine kinase that mainly participates in cell proliferation, development, stress, and inflammation in humans. Nucleocapsid protein of SARS-CoV-2 is an important structural protein responsible for viral replication and interferes with the host defence mechanism by the help of Gsk-3 protein. The viral infected cells show activated Gsk-3 protein that degrades the Nuclear factor erythroid 2-related factor (Nrf2) protein, resulting in excessive oxidative stress. Activated Gsk-3 also modulates CREB-DNA activity, phosphorylates NF-κB, and degrades β-catenin, thus provokes systemic inflammation. Interaction between these two pathophysiological events, oxidative stress, and inflammation enhance mucous secretion, coagulation cascade, and hypoxia, which ultimately leads to multiple organs failure, resulting in the death of the infected patient. The present review aims to highlight the pathogenic role of Gsk-3 in viral replication, initiation of oxidative stress, and inflammation during SARS-CoV-2 infection. The review also summarizes the potential Gsk-3 pathway modulators as putative therapeutic interventions in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Amit Kumar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
38
|
Abstract
ABSTRACT Neutrophils play a critical role in the eradication of pathogenic organisms, particularly bacteria. However, in the septic patient the prolonged activation and accumulation of neutrophils may augment tissue and organ injury. This review discusses the different activation states and chemotaxis of neutrophils in septic patients. Neutrophil killing of bacteria and the formation of neutrophil extracellular traps represent important components of the innate immune response and they become dysregulated during sepsis, possibly through changes in their metabolism. Delayed neutrophil apoptosis may contribute to organ injury, or allow better clearance of pathogens. Neutrophils provide a friendly immune response to clear infections, but excessive activation and recruitment has the potential to turn them into potent foes.
Collapse
|
39
|
Lee SF, Harris R, Stout-Delgado HW. Targeted antioxidants as therapeutics for treatment of pneumonia in the elderly. Transl Res 2020; 220:43-56. [PMID: 32268130 PMCID: PMC7989851 DOI: 10.1016/j.trsl.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
Community acquired pneumonia is a leading cause of mortality in the United States. Along with predisposing comorbid health status, age is an independent risk factor for determining the outcome of pneumonia. Research over the last few decades has contributed to better understanding the underlying immunodysregulation and imbalanced redox homeostasis tied to this aged population group that increases susceptibility to a wide range of pathologies. Major approaches include targeting oxidative stress by reducing ROS generation at its main sources of production which includes the mitochondrion. Mitochondria-targeted antioxidants have a number of molecular strategies that include targeting the biophysical properties of mitochondria, mitochondrial localization of catalytic enzymes, and mitigating mitochondrial membrane potential. Results of several antioxidant studies both in vitro and in vivo have demonstrated promising potential as a therapeutic in the treatment of pneumonia in the elderly. More human studies will need to be conducted to evaluate its efficacy in this clinical setting.
Collapse
Affiliation(s)
- Stefi F Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Rebecca Harris
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Heather W Stout-Delgado
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
40
|
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd, THT 541E, Birmingham, AL, 35294, USA.
| |
Collapse
|
41
|
To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq F, Oseghale O, Anthony D, McQualter J, Bozinovski S, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Mitochondrial Reactive Oxygen Species Contribute to Pathological Inflammation During Influenza A Virus Infection in Mice. Antioxid Redox Signal 2020; 32:929-942. [PMID: 31190565 PMCID: PMC7104903 DOI: 10.1089/ars.2019.7727] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Reactive oxygen species (ROS) are highly reactive molecules generated in different subcellular sites or compartments, including endosomes via the NOX2-containing nicotinamide adenine dinucleotide phosphate oxidase during an immune response and in mitochondria during cellular respiration. However, while endosomal NOX2 oxidase promotes innate inflammation to influenza A virus (IAV) infection, the role of mitochondrial ROS (mtROS) has not been comprehensively investigated in the context of viral infections in vivo. Results: In this study, we show that pharmacological inhibition of mtROS, with intranasal delivery of MitoTEMPO, resulted in a reduction in airway/lung inflammation, neutrophil infiltration, viral titers, as well as overall morbidity and mortality in mice infected with IAV (Hkx31, H3N2). MitoTEMPO treatment also attenuated apoptotic and necrotic neutrophils and macrophages in airway and lung tissue. At an early phase of influenza infection, that is, day 3 there were significantly lower amounts of IL-1β protein in the airways, but substantially higher amounts of type I IFN-β following MitoTEMPO treatment. Importantly, blocking mtROS did not appear to alter the initiation of an adaptive immune response by lung dendritic cells, nor did it affect lung B and T cell populations that participate in humoral and cellular immunity. Innovation/Conclusion: Influenza virus infection promotes mtROS production, which drives innate immune inflammation and this exacerbates viral pathogenesis. This pathogenic cascade highlights the therapeutic potential of local mtROS antioxidant delivery to alleviate influenza virus pathology.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan R Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Felicia Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Raymond Luong
- Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Farisha Esaq
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Osezua Oseghale
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - John J O'Leary
- Department of Histopathology Trinity College Dublin, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Doug A Brooks
- Division of Health Sciences, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| |
Collapse
|
42
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
43
|
Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 2020; 40:1183-1197. [DOI: 10.1002/jat.3965] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Thelma Pavesi
- Centro de Estudos da Saúde do Trabalhador e Ecologia HumanaEscola Nacional de Saúde Pública, Fundação Oswaldo Cruz Rio de Janeiro Brazil
| | - Josino Costa Moreira
- Centro de Estudos da Saúde do Trabalhador e Ecologia HumanaEscola Nacional de Saúde Pública, Fundação Oswaldo Cruz Rio de Janeiro Brazil
| |
Collapse
|
44
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
Wang M, Luo L. An Effective NADPH Oxidase 2 Inhibitor Provides Neuroprotection and Improves Functional Outcomes in Animal Model of Traumatic Brain Injury. Neurochem Res 2020; 45:1097-1106. [PMID: 32072445 DOI: 10.1007/s11064-020-02987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) has become a leading cause of death and disability all over the world. Pharmacological suppression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) can inhibit oxidative stress which is implicated in the pathology of TBI. GSK2795039 was reported to target NOX2 to inhibit [Formula: see text] and ROS production. The present study aimed to investigate the effect of GSK2795039 on NOX2 activity and neurological deficits in a TBI mouse model. TBI mouse model was established by a weight-drop to mouse skull. GSK2795039 at a dose of 100 mg/kg was administrated to mice 30 min before TBI. NOX2 expression and activity were detected by Western blot and biochemical method. Neurological damage and apoptosis were detected by behavioral test and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. GSK2795039 significantly inhibited NOX2 expression and activity in the TBI mouse model. It also attenuated TBI-induced neurological deficits, apoptosis, and neurological recovery. The results indicate that GSK2795039 can be used as a potential drug for TBI treatment.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Emergency, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| | - Le Luo
- Shanghai Zhuole Biotechnology Center, No. 2066 Wangyuan Road, Shanghai, 201499, China
| |
Collapse
|
46
|
Zheng K, Hao J, Xiao L, Wang M, Zhao Y, Fan D, Li Y, Wang X, Zhang L. Expression of nicotinamide adenine dinucleotide phosphate oxidase in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2020; 10:646-655. [PMID: 32052917 DOI: 10.1002/alr.22530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces reactive oxygen species (ROS) involved in oxidative stress and signal transduction. Recent studies have suggested that NADPH oxidase is associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). The aim of this study was to detect the expression of NADPH oxidase subunits and 4-hydroxynonenal (4-HNE) in nasal polyp tissue and normal nasal mucosa, in order to explore the possible role played by NADPH oxidase in the pathogenesis of CRSwNP. METHODS Thirteen patients with CRSwNP and 9 normal control subjects were selected to participate in this study, in which we evaluated the expression of different NADPH oxidase subunits (gp91phox , p67phox , p47phox , and p22phox ) in nasal polyp (NP) tissue and control mucosa by Western blotting and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence staining were used to detect expression of the p67phox subunit and 4-HNE in NP tissue and normal nasal mucosa. RESULTS Western blot and real-time PCR results showed that p67phox expression was significantly increased in NP tissue when compared with its expression in control mucosa (p = 0.004). p67phox was expressed in the eosinophils and neutrophils found in NP tissue, but not in the macrophages. Additionally, the levels of 4-HNE expression were also significantly increased in NP tissue when compared with control mucosa (p = 0.001). CONCLUSION The levels of p67phox messenger RNA (mRNA) and protein as well as 4-HNE were both upregulated in NP tissue, suggesting that p67phox and oxidative stress play roles in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Kaili Zheng
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jin Hao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Lei Xiao
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Min Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Dachuan Fan
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
47
|
Li D, Cong Z, Yang C, Zhu X. Inhibition of LPS-induced Nox2 activation by VAS2870 protects alveolar epithelial cells through eliminating ROS and restoring tight junctions. Biochem Biophys Res Commun 2020; 524:575-581. [PMID: 32019675 DOI: 10.1016/j.bbrc.2020.01.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting the production of reactive oxygen species (ROS) in alveolar epithelial cells (AECs) under oxidative distress becomes a new therapeutic strategy for acute respiratory distress syndrome (ARDS). Herein in the present study, we investigated effects of Nox2, the catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase type 2, on LPS-induced epithelium injury in ARDS mice and in human alveolar epithelial A549 cells. Severe lung injury, disruption of alveolar-capillary barrier with the loss of zonula occluden (ZO)-1 and up-regulated expression of Nox2 in AECs were exhibited in ARDS mice. In vitro, LPS induced decreased cell viability coupled with activated Nox2, high level of ROS, and destroyed ZO-1 distribution. Moreover, VAS2870 proved to inhibit Nox2 expression, reduce ROS generation, restore epithelium barrier integrity, and preserve cell viability in LPS-induced A549 cells. These data demonstrate that Nox2/ROS/ZO-1 axis is of great importance in AECs damage induced by LPS, and the utilization of VAS2870 to inhibit this pathway might lighten LPS-induced ARDS.
Collapse
Affiliation(s)
- Dan Li
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Zhukai Cong
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Cui Yang
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
48
|
Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7120104 DOI: 10.1007/978-981-32-9366-3_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.
Collapse
|
49
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
50
|
Veith C, Boots AW, Idris M, van Schooten FJ, van der Vliet A. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria. Antioxid Redox Signal 2019; 31:1092-1115. [PMID: 30793932 PMCID: PMC6767863 DOI: 10.1089/ars.2019.7742] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Idiopathic pulmonary fibrosis (IPF) is a progressive age-related lung disease with a median survival of only 3 years after diagnosis. The pathogenic mechanisms behind IPF are not clearly understood, and current therapeutic approaches have not been successful in improving disease outcomes. Recent Advances: IPF is characterized by increased production of reactive oxygen species (ROS), primarily by NADPH oxidases (NOXes) and mitochondria, as well as altered antioxidant defenses. Recent studies have identified the NOX isoform NOX4 as a key player in various important aspects of IPF pathology. In addition, mitochondrial dysfunction is thought to enhance pathological features of IPF, in part by increasing mitochondrial ROS (mtROS) production and altering cellular metabolism. Recent findings indicate reciprocal interactions between NOX enzymes and mitochondria, which affect regulation of NOX activity as well as mitochondrial function and mtROS production, and collectively promote epithelial injury and profibrotic signaling. Critical Issues and Future Directions: The precise molecular mechanisms by which ROS from NOX or mitochondria contribute to IPF pathology are not known. This review summarizes the current knowledge with respect to the various aspects of ROS imbalance in the context of IPF and its proposed roles in disease development, with specific emphasis on the importance of inappropriate NOX activation, mitochondrial dysfunction, and the emerging evidence of NOX-mitochondria cross-talk as important drivers in IPF pathobiology.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Agnes W. Boots
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Musa Idris
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Address correspondence to: Dr. Albert van der Vliet, Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, HSRF 216, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|