1
|
Dao O, Burlacot A, Buchert F, Bertrand M, Auroy P, Stoffel C, Madireddi SK, Irby J, Hippler M, Peltier G, Li-Beisson Y. Cyclic and pseudo-cyclic electron pathways play antagonistic roles during nitrogen deficiency in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 197:kiae617. [PMID: 39560077 DOI: 10.1093/plphys/kiae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Nitrogen (N) scarcity frequently constrains global biomass productivity. N deficiency halts cell division, downregulates photosynthetic electron transfer (PET), and enhances carbon storage. However, the molecular mechanism downregulating photosynthesis during N deficiency and its relationship with carbon storage are not fully understood. Proton gradient regulator-like 1 (PGRL1) controlling cyclic electron flow (CEF) and flavodiiron proteins (FLV) involved in pseudo-CEF (PCEF) are major players in the acclimation of photosynthesis. To determine the role of PGRL1 or FLV in photosynthesis under N deficiency, we measured PET, oxygen gas exchange, and carbon storage in Chlamydomonas reinhardtii pgrl1 and flvB knockout mutants. Under N deficiency, pgrl1 maintained higher net photosynthesis and O2 photoreduction rates and higher levels of cytochrome b6f and PSI compared with the control and flvB. The photosynthetic activity of flvB and pgrl1 flvB double mutants decreased in response to N deficiency, similar to the control strains. Furthermore, the preservation of photosynthetic activity in pgrl1 was accompanied by an increased accumulation of triacylglycerol in certain genetic backgrounds but not all, highlighting the importance of gene-environment interaction in determining traits such as oil content. Our results suggest that in the absence of PGRL1-controlled CEF, FLV-mediated PCEF maintains net photosynthesis at a high level and that CEF and PCEF play antagonistic roles during N deficiency. This study further illustrate how a strain's nutrient status and genetic makeup can affect the regulation of photosynthetic energy conversion in relation to carbon storage and provide additional strategies for improving lipid productivity in algae.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM, CEA Cadarache, Saint Paul-Lez-Durance, 13118, France
| | - Adrien Burlacot
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Marie Bertrand
- Aix Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM, CEA Cadarache, Saint Paul-Lez-Durance, 13118, France
| | - Pascaline Auroy
- Aix Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM, CEA Cadarache, Saint Paul-Lez-Durance, 13118, France
| | - Carolyne Stoffel
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Sai Kiran Madireddi
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jacob Irby
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Gilles Peltier
- Aix Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM, CEA Cadarache, Saint Paul-Lez-Durance, 13118, France
| | - Yonghua Li-Beisson
- Aix Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnology of Aix Marseille, BIAM, CEA Cadarache, Saint Paul-Lez-Durance, 13118, France
| |
Collapse
|
2
|
Han Z, Wang KY, Liang RR, Yang Y, Huo J, Zhou HC. Linker Installation in a Metal-Organic Framework for Enhanced Quantitative Redox Species Recognition. Angew Chem Int Ed Engl 2024:e202420882. [PMID: 39688952 DOI: 10.1002/anie.202420882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Linker installation has proven to be an effective strategy for introducing diverse functional groups into metal-organic frameworks (MOFs). Reductants and oxidants are found in various environments, but their accumulation poses a danger due to their high reactivity, necessitating prompt monitoring instantly, particularly in natural environments and industrial processes. In this study, a series of redox-active dyes were successfully incorporated into a flexible Zr-based MOF, PCN-700, through linker installation strategy. Notably, both the reduction of PCN-700-Resazurin towards oxidants and oxidation of PCN-700-Amplex Red towards reductants result in the formation of PCN-700-Resorufin, which exhibit visible color changes and largely elevated luminescent intensities, giving rise to the quantitative recognition of reductants and oxidants. This work presents a straightforward approach to developing efficient luminescent sensors for the rapid qualitative and quantitative detection of reductants and oxidants, extending the sensing mechanism from common energy transfer to electron transfer and demonstrating the MOF's versability as a highly designable sensing material for target analytes.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Rong-Ran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
3
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Wang Y, Williams-Carrier R, Meeley R, Fox T, Chamusco K, Nashed M, Hannah LC, Gabay-Laughnan S, Barkan A, Chase C. Mutations in nuclear genes encoding mitochondrial ribosome proteins restore pollen fertility in S male-sterile maize. G3 (BETHESDA, MD.) 2024; 14:jkae201. [PMID: 39163571 DOI: 10.1093/g3journal/jkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The interaction of plant mitochondrial and nuclear genetic systems is exemplified by mitochondria-encoded cytoplasmic male sterility (CMS) under the control of nuclear restorer-of-fertility genes. The S type of CMS in maize is characterized by a pollen collapse phenotype and a unique paradigm for fertility restoration in which numerous nuclear restorer-of-fertility lethal mutations rescue pollen function but condition homozygous-lethal seed phenotypes. Two nonallelic restorer mutations recovered from Mutator transposon-active lines were investigated to determine the mechanisms of pollen fertility restoration and seed lethality. Mu Illumina sequencing of transposon-flanking regions identified insertion alleles of nuclear genes encoding mitochondrial ribosomal proteins RPL6 and RPL14 as candidate restorer-of-fertility lethal mutations. Both candidates were associated with lowered abundance of mitochondria-encoded proteins in developing maize pollen, and the rpl14 mutant candidate was confirmed by independent insertion alleles. While the restored pollen functioned despite reduced accumulation of mitochondrial respiratory proteins, normal-cytoplasm plants heterozygous for the mutant alleles showed a significant pollen transmission bias in favor of the nonmutant Rpl6 and Rpl14 alleles. CMS-S fertility restoration affords a unique forward genetic approach to investigate the mitochondrial requirements for, and contributions to, pollen and seed development.
Collapse
Affiliation(s)
- Yan Wang
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Robert Meeley
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Timothy Fox
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Karen Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Mina Nashed
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Christine Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Hernández ML, Jiménez-López J, Cejudo FJ, Pérez-Ruiz JM. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. PLANT PHYSIOLOGY 2024; 195:1521-1535. [PMID: 38386701 PMCID: PMC11142380 DOI: 10.1093/plphys/kiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.
Collapse
Affiliation(s)
- María Luisa Hernández
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Julia Jiménez-López
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Soudthedlath K, Nakamura T, Ushiwatari T, Fukazawa J, Osakabe K, Osakabe Y, Maruyama-Nakashita A. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. PLANT & CELL PHYSIOLOGY 2024; 65:770-780. [PMID: 38424724 DOI: 10.1093/pcp/pcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Collapse
Affiliation(s)
- Khamsalath Soudthedlath
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
- Ministry of Agriculture and Forestry, Biotechnology and Ecology Institute, Vientiane 01170, Laos
| | - Toshiki Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tsukasa Ushiwatari
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Tokyo, 226-8503, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
7
|
Ilek A, Gąsecka M, Magdziak Z, Saitanis C, Siegert CM. Seasonality Affects Low-Molecular-Weight Organic Acids and Phenolic Compounds' Composition in Scots Pine Litterfall. PLANTS (BASEL, SWITZERLAND) 2024; 13:1293. [PMID: 38794363 PMCID: PMC11125096 DOI: 10.3390/plants13101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND AIMS Secondary plant metabolites, including organic acids and phenolic compounds, have a significant impact on the properties of organic matter in soil, influencing its structure and function. How the production of these compounds in foliage that falls to the forest floor as litterfall varies across tree age and seasonality are of considerable interest for advancing our understanding of organic matter dynamics. METHODS Monthly, we collected fallen needles of Scots pine (Pinus sylvestris L.) across stands of five different age classes (20, 40, 60, 80, and 100 years) for one year and measured the organic acids and phenolic compounds. RESULTS Seven low-molecular-weight organic acids and thirteen phenolic compounds were detected in the litterfall. No differences were observed across stand age. Significant seasonal differences were detected. Most compounds peaked during litterfall in the growing season. Succinic acid was the most prevalent organic acid in the litterfall, comprising 78% of total organic acids (351.27 ± 34.27 µg g- 1), and was 1.5 to 11.0 times greater in the summer than all other seasons. Sinapic acid was the most prevalent phenolic compound in the litterfall (42.15 µg g- 1), representing 11% of the total phenolic compounds, and was 39.8 times greater in spring and summer compared to autumn and winter. Growing season peaks in needle concentrations were observed for all thirteen phenolic compounds and two organic acids (lactic, succinic). Citric acid exhibited a definitive peak in late winter into early spring. CONCLUSIONS Our results highlight the seasonal dynamics of the composition of secondary plant metabolites in litterfall, which is most different at the onset of the growing season. Fresh inputs of litterfall at this time of emerging biological activity likely have seasonal impacts on soil's organic matter composition as well.
Collapse
Affiliation(s)
- Anna Ilek
- Department of Botany and Forest Habitats, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625 Poznań, Poland
| | - Monika Gąsecka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland; (M.G.); (Z.M.)
| | - Zuzanna Magdziak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland; (M.G.); (Z.M.)
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;
| | - Courtney M. Siegert
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, 775 Stone Boulevard, Mississippi State, MS 39762, USA;
| |
Collapse
|
8
|
Nogueira M, Enfissi EMA, Price EJ, Menard GN, Venter E, Eastmond PJ, Bar E, Lewinsohn E, Fraser PD. Ketocarotenoid production in tomato triggers metabolic reprogramming and cellular adaptation: The quest for homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:427-444. [PMID: 38032727 PMCID: PMC10826984 DOI: 10.1111/pbi.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.
Collapse
Affiliation(s)
- Marilise Nogueira
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | | | - Elliott J. Price
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Present address:
RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Eudri Venter
- Plant Sciences for the Bioeconomy, Rothamsted ResearchHarpendenUK
| | | | - Einat Bar
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Efraim Lewinsohn
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Paul D. Fraser
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| |
Collapse
|
9
|
Zeng Z, Zhang W, Shi Y, Wei H, Zhou C, Huang X, Chen Z, Xiang T, Wang L, Han N, Bian H. Coordinated Transcriptome and Metabolome Analyses of a Barley hvhggt Mutant Reveal a Critical Role of Tocotrienols in Endosperm Starch Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1146-1161. [PMID: 38181192 DOI: 10.1021/acs.jafc.3c06301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Tocotrienols and tocopherols (vitamin E) are potent antioxidants that are synthesized in green plants. Unlike ubiquitous tocopherols, tocotrienols predominantly accumulate in the endosperm of monocot grains, catalyzed by homogentiate geranylgeranyl transferase (HGGT). Previously, we generated a tocotrienol-deficient hvhggt mutant with shrunken barley grains. However, the relationship between tocotrienols and grain development remains unclear. Here, we found that the hvhggt lines displayed hollow endosperms with defective transfer cells and reduced aleurone layers. The carbohydrate and starch contents of the hvhggt endosperm decreased by approximately 20 and 23%, respectively. Weighted gene coexpression network analyses identified a critical gene module containing HvHGGT, which was strongly associated with the hvhggt mutation and enriched with gene functions in starch and sucrose metabolism. Metabolome measurements revealed an elevated soluble sugar content in the hvhggt endosperm, which was significantly associated with the identified gene modules. The hvhggt endosperm had significantly higher NAD(H) and NADP(H) contents and lower levels of ADPGlc (regulated by redox balance) than the wild-type, consistent with the absence of tocotrienols. Interestingly, exogenous α-tocotrienol spraying on developing hvhggt spikes partially rescued starch accumulation and endosperm defects. Our study supports a potential novel function of tocotrienols in grain starch accumulation and endosperm development in monocot crops.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Wenqian Zhang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yaqi Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haonan Wei
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Zhou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Lilin Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Derbali I, Derbali W, Gharred J, Manaa A, Slama I, Koyro HW. Mitigating Salinity Stress in Quinoa ( Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments. PLANTS (BASEL, SWITZERLAND) 2023; 13:92. [PMID: 38202399 PMCID: PMC10780479 DOI: 10.3390/plants13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.
Collapse
Affiliation(s)
- Imed Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Walid Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Jihed Gharred
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Inès Slama
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
| |
Collapse
|
11
|
Chouhan N, Marriboina S, Kumari A, Singh P, Yadav RM, Gupta KJ, Subramanyam R. Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii. Photochem Photobiol Sci 2023; 22:2635-2650. [PMID: 37751074 DOI: 10.1007/s43630-023-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Chlamydomonas (C.) reinhardtii metabolomic changes in cyclic electron flow-dependent mutants are still unknown. Here, we used mass spectrometric analysis to monitor the changes in metabolite levels in wild-type, cyclic electron-deficient mutants pgrl1 and pgr5 grown under high-light stress. A total of 55 metabolites were detected using GC-MS analysis. High-light stress-induced selective anaplerotic amino acids in pgr5. In addition, pgr5 showed enhancement in carbohydrate, polyamine, and polyol metabolism by 2.5-fold under high light. In response to high light, pgr5 triggers an increase in several metabolites involved in regulating osmotic pressure. Among these metabolites are glycerol pathway compounds such as glycerol-3-phosphate and glyceryl-glycoside, which increase significantly by 1.55 and 3.07 times, respectively. In addition, pgr5 also enhanced proline and putrescine levels by 2.6- and 1.36-fold under high light. On the other hand, pgrl1-induced metabolites, such as alanine and serine, are crucial for photorespiration when subjected to high-light stress. We also observed a significant increase in levels of polyols and glycerol by 1.37- and 2.97-fold in pgrl1 under high-light stress. Both correlation network studies and KEGG pathway enrichment analysis revealed that metabolites related to several biological pathways, such as amino acid, carbohydrate, TCA cycle, and fatty acid metabolism, were positively correlated in pgrl1 and pgr5 under high-light stress conditions. The relative mRNA expression levels of genes related to the TCA cycle, including PDC3, ACH1, OGD2, OGD3, IDH3, and MDH4, were significantly upregulated in pgrl1 and pgr5 under HL. In pgr5, the MDH1 level was significantly increased, while ACS1, ACS3, IDH2, and IDH3 levels were reduced considerably in pgrl1 under high-light stress. The current study demonstrates both pgr5 and prgl1 showed a differential defense response to high-light stress at the primary metabolites and mRNA expression level, which can be added to the existing knowledge to explore molecular regulatory responses of prg5 and pgrl1 to high-light stress.
Collapse
Affiliation(s)
- Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 8499000, Beersheba, Israel
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Singh
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
12
|
Adar O, Hollander A, Ilan Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv Respir Med 2023; 91:350-367. [PMID: 37736974 PMCID: PMC10514877 DOI: 10.3390/arm91050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Variability characterizes breathing, cellular respiration, and the underlying quantum effects. Variability serves as a mechanism for coping with changing environments; however, this hypothesis does not explain why many of the variable phenomena of respiration manifest randomness. According to the constrained disorder principle (CDP), living organisms are defined by their inherent disorder bounded by variable boundaries. The present paper describes the mechanisms of breathing and cellular respiration, focusing on their inherent variability. It defines how the CDP accounts for the variability and randomness in breathing and respiration. It also provides a scheme for the potential role of respiration variability in the energy balance in biological systems. The paper describes the option of using CDP-based artificial intelligence platforms to augment the respiratory process's efficiency, correct malfunctions, and treat disorders associated with the respiratory system.
Collapse
Affiliation(s)
- Ofek Adar
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Adi Hollander
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| |
Collapse
|
13
|
Dahmani I, Qin K, Zhang Y, Fernie AR. The formation and function of plant metabolons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1080-1092. [PMID: 36906885 DOI: 10.1111/tpj.16179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Metabolons are temporary structural-functional complexes of sequential enzymes of a metabolic pathway that are distinct from stable multi-enzyme complexes. Here we provide a brief history of the study of enzyme-enzyme assemblies with a particular focus on those that mediate substrate channeling in plants. Large numbers of protein complexes have been proposed for both primary and secondary metabolic pathways in plants. However, to date only four substrate channels have been demonstrated. We provide an overview of current knowledge concerning these four metabolons and explain the methodologies that are currently being applied to unravel their functions. Although the assembly of metabolons has been documented to arise through diverse mechanisms, the physical interaction within the characterized plant metabolons all appear to be driven by interaction with structural elements of the cell. We therefore pose the question as to what methodologies could be brought to bear to enhance our knowledge of plant metabolons that assemble via different mechanisms? In addressing this question, we review recent findings in non-plant systems concerning liquid droplet phase separation and enzyme chemotaxis and propose strategies via which such metabolons could be identified in plants. We additionally discuss the possibilities that could be opened up by novel approaches based on: (i) subcellular-level mass spectral imaging, (ii) proteomics, and (iii) emergent methods in structural and computational biology.
Collapse
Affiliation(s)
- Ismail Dahmani
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kezhen Qin
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
14
|
De Brasi-Velasco S, Sánchez-Guerrero A, Castillo MC, Vertommen D, León J, Sevilla F, Jiménez A. Thioredoxin TRXo1 is involved in ABA perception via PYR1 redox regulation. Redox Biol 2023; 63:102750. [PMID: 37269685 DOI: 10.1016/j.redox.2023.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Abscisic acid (ABA) plays a fundamental role in plant growth and development processes such as seed germination, stomatal response or adaptation to stress, amongst others. Increases in the endogenous ABA content is recognized by specific receptors of the PYR/PYL/RCAR family that are coupled to a phosphorylation cascade targeting transcription factors and ion channels. Just like other receptors of the family, nuclear receptor PYR1 binds ABA and inhibits the activity of type 2C phosphatases (PP2Cs), thus avoiding the phosphatase-exerted inhibition on SnRK2 kinases, positive regulators which phosphorylate targets and trigger ABA signalling. Thioredoxins (TRXs) are key components of cellular redox homeostasis that regulate specific target proteins through a thiol-disulfide exchange, playing an essential role in redox homeostasis, cell survival, and growth. In higher plants, TRXs have been found in almost all cellular compartments, although its presence and role in nucleus has been less studied. In this work, affinity chromatography, Dot-blot, co-immunoprecipitation, and bimolecular fluorescence complementation assays allowed us to identify PYR1 as a new TRXo1 target in the nucleus. Studies on recombinant HisAtPYR1 oxidation-reduction with wild type and site-specific mutagenized forms showed that the receptor underwent redox regulation involving changes in the oligomeric state in which Cys30 and Cys65 residues were implied. TRXo1 was able to reduce previously-oxidized inactive PYR1, thus recovering its capacity to inhibit HAB1 phosphatase. In vivo PYR1 oligomerization was dependent on the redox state, and a differential pattern was detected in KO and over-expressing Attrxo1 mutant plants grown in the presence of ABA compared to WT plants. Thus, our findings suggest the existence of a redox regulation of TRXo1 on PYR1 that may be relevant for ABA signalling and had not been described so far.
Collapse
Affiliation(s)
| | | | - Mari-Cruz Castillo
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform UCLouvain, 1200, Brussels, Belgium.
| | - José León
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| |
Collapse
|
15
|
Asghar MA, Kulman K, Szalai G, Gondor OK, Mednyánszky Z, Simon-Sarkadi L, Gaudinova A, Dobrev PI, Vanková R, Kocsy G. Effect of ascorbate and hydrogen peroxide on hormone and metabolite levels during post-germination growth in wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13887. [PMID: 36894826 DOI: 10.1111/ppl.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.
Collapse
Affiliation(s)
- Muhammad Ahsan Asghar
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Orsolya Kinga Gondor
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Zsuzsa Mednyánszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Livia Simon-Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| |
Collapse
|
16
|
The atypical thioredoxin 'Alr2205', a newly identified partner of the typical 2-Cys-Peroxiredoxin, safeguards the cyanobacterium Anabaena from oxidative stress. Biochem J 2023; 480:87-104. [PMID: 36594794 DOI: 10.1042/bcj20220524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous proteins that play vital roles in several physiological processes. Alr2205, a thioredoxin-like protein from Anabaena PCC 7120, was found to be evolutionarily closer to the Trx-domain of the NADPH-Thioredoxin Reductase C than the other thioredoxins. The Alr2205 protein showed disulfide reductase activity despite the presence a non-canonical active site motif 'CPSC'. Alr2205 not only physically interacted with, but also acted as a physiological reductant of Alr4641 (the typical 2-Cys-Peroxiredoxin from Anabaena), supporting its peroxidase function. Structurally, Alr2205 was a monomeric protein that formed an intramolecular disulfide bond between the two active site cysteines (Cys-38 and Cys-41). However, the Alr2205C41S protein, wherein the resolving cysteine was mutated to serine, was capable of forming intermolecular disulfide bond and exist as a dimer when treated with H2O2. Overproduction of Alr2205 in E. coli protected cells from heavy metals, but not oxidative stress. To delve into its physiological role, Alr2205/Alr2205C41S was overexpressed in Anabaena, and the ability of the corresponding strains (An2205+ or An2205C41S+) to withstand environmental stresses was assessed. An2205+ showed higher resistance to H2O2 than An2205C41S+, indicating that the disulfide reductase function of this protein was critical to protect cells from this peroxide. Although, An2205+ did not show increased capability to withstand cadmium stress, An2205C41S+ was more susceptible to this heavy metal. This is the first study that provides a vital understanding into the function of atypical thioredoxins in countering the toxic effects of heavy metals/H2O2 in prokaryotes.
Collapse
|
17
|
Wan X, Zeng W, Zhang D, Wang L, Lei M, Chen T. Changes in the concentration, distribution, and speciation of arsenic in the hyperaccumulator Pteris vittata at different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156708. [PMID: 35718183 DOI: 10.1016/j.scitotenv.2022.156708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The arsenic (As) hyperaccumulator has become a model plant for the study of the interaction between plants and trace elements. However, the change in As concentration, distribution and speciation of hyperaccumulator Pteris vittata at different growth stages, especially with the aging process remains unknown. We collected P. vittata at different growth ages and analyzed As concentration, distribution, and speciation. Furthermore, metabolic profiling was conducted for P. vittata at different growth stages. With aging, the reduced glutathione/ oxidized glutathione ratio decreased while the malondialdehyde content increased, accompanied by the change in the main As speciation in P. vittata from arsenite to arsenate. Metabolic profiling also indicated significant difference in the compositions of metabolites during different growth stages. Specifically, flavonoid compounds were found to be positively correlated with As concentration. Results indicated that with the aging of P. vittata, the redox potential increased in the pinnae, leading to the oxidation of As, which may have impacted the distribution of As in this fern. Furthermore, the correlation between As concentration and flavonoid compounds implied the essential role of flavonoid metabolism in the accumulation and transport of As in this plant.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Honghe University, Mengzi 661199, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
19
|
Ngo HPT, Nguyen DQ, Park H, Park YS, Kwak K, Kim T, Lee JH, Cho KS, Kang LW. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Rep 2022; 55:439-446. [PMID: 36104257 PMCID: PMC9537024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 03/08/2024] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are ubiquitous, catalyzing various biochemical reactions of approximately 4% of all classified enzymatic activities. They transform amines and amino acids into important metabolites or signaling molecules and are important drug targets in many diseases. In the crystal structures of PLP-dependent enzymes, organic cofactor PLP showed diverse conformations depending on the catalytic step. The conformational change of PLP is essential in the catalytic mechanism. In the study, we review the sophisticated catalytic mechanism of PLP, especially in transaldimination reactions. Most drugs targeting PLP-dependent enzymes make a covalent bond to PLP with the transaldimination reaction. A detailed understanding of organic cofactor PLP will help develop a new drug against PLP-dependent enzymes. [BMB Reports 2022; 55(9): 439-446].
Collapse
Affiliation(s)
- Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Diem Quynh Nguyen
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Taejoon Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
20
|
Takahashi H. Cyclic electron flow A to Z. JOURNAL OF PLANT RESEARCH 2022; 135:539-541. [PMID: 35727481 DOI: 10.1007/s10265-022-01402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Hiroko Takahashi
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
21
|
Novientri G, Sadikin M, Jusman SW. Isolated Diaphorase From Bovine Erythrocyte Cannot Reduce Oxidized Cytoglobin (Metcygb). Rep Biochem Mol Biol 2022; 11:289-298. [PMID: 36164636 PMCID: PMC9455195 DOI: 10.52547/rbmb.11.2.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cytoglobin (Cygb) is a relatively newly identified globin protein that acts as an oxygen transporter in tissues like hemoglobin (Hb) in erythrocytes and myoglobin (Mb) in muscles. The natural oxidation of the Fe2+ ion in its heme group into metglobin (globin-Fe3+) made the loses of oxygen binding functions. It is known metHb and metMb can be reduced enzymatically using diaphorase or cyb5r3. However, metCygb reductase had not been previously identified. This study aims to analyze the reducing activity of bovine diaphorase on metCygb. METHODS Diaphorase was isolated from bovine erythrocyte and purified using gel filtration and cationic-exchanger chromatography. Its purity was verified by SDS-PAGE and western blot (WB). The metCygb was obtained from Cygb oxidation with potassium ferrocyanide and its reducing activity was determined by spectroscopy. RESULTS The diaphorase (MW=30.09 kDa) was purified 10.77-fold from crude enzyme with specific activity against metHb 8.479 U/mg. The purity was confirmed by WB using primary antibody anti-cyb5r3. The purified enzyme reduced metCygb at 0.785 µgmin-1, which was 13.7 times less than the Vmax of metHb. DISCUSSION In conclusion, the purified diaphorase from bovine erythrocytes did not significantly reduce metCygb rather than metHb, a natural substrate in cells.
Collapse
Affiliation(s)
- Gissi Novientri
- Master Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia.
| | - Sri Widia Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia.
| |
Collapse
|
22
|
Zhang B, Sun D, Zhang X, Sun X, Xu N. Transcriptomics and metabolomics reveal the adaptive mechanisms of Gracilariopsis lemaneiformis in response to blue light. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants (Basel) 2022; 11:antiox11071311. [PMID: 35883801 PMCID: PMC9312225 DOI: 10.3390/antiox11071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Both light intensity and spectrum (280–800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.
Collapse
|
24
|
Koyro HW, Huchzermeyer B. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. PLANTS 2022; 11:plants11131654. [PMID: 35807605 PMCID: PMC9269222 DOI: 10.3390/plants11131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.
Collapse
Affiliation(s)
- Hans-Werner Koyro
- Institute of Plantecology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30416 Hannover, Germany; or
- AK Biotechnology, VDI-BV-Hannover, Hanomagstr. 12, 30449 Hannover, Germany
| |
Collapse
|
25
|
Wieloch T, Sharkey TD, Werner RA, Schleucher J. Intramolecular carbon isotope signals reflect metabolite allocation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2558-2575. [PMID: 35084456 PMCID: PMC9015809 DOI: 10.1093/jxb/erac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/24/2022] [Indexed: 05/26/2023]
Abstract
Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Thomas David Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Roland Anton Werner
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
26
|
Okegawa Y, Tsuda N, Sakamoto W, Motohashi K. Maintaining the Chloroplast Redox Balance through the PGR5-Dependent Pathway and the Trx System Is Required for Light-Dependent Activation of Photosynthetic Reactions. PLANT & CELL PHYSIOLOGY 2022; 63:92-103. [PMID: 34623443 DOI: 10.1093/pcp/pcab148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Light-dependent activation of chloroplast enzymes is required for the rapid induction of photosynthesis after a shift from dark to light. The thioredoxin (Trx) system plays a central role in this process. In chloroplasts, the Trx system consists of two pathways: the ferredoxin (Fd)/Trx pathway and the nicotinamide adenine dinucleotide phosphate (NADPH)-Trx reductase C (NTRC) pathway. In Arabidopsis (Arabidopsis thaliana) mutants defective in either pathway, the photoreduction of thiol enzymes was impaired, resulting in decreased carbon fixation. The close relationship between the Fd/Trx pathway and proton gradient regulation 5 (PGR5)-dependent photosystem I cyclic electron transport (PSI CET) in the induction of photosynthesis was recently elucidated. However, how the PGR5-dependent pathway is involved in the NTRC pathway is unclear, although NTRC has been suggested to physically interact with PGR5. In this study, we analyzed Arabidopsis mutants lacking either the PGR5 or the chloroplast NADH dehydrogenase-like complex (NDH)-dependent PSI CET pathway in the ntrc mutant background. The ntrc pgr5 double mutant suppressed both the growth defects and the high non-photochemical quenching phenotype of the ntrc mutant when grown under long-day conditions. By contrast, the inactivation of NDH activity with the chlororespiratory reduction 2-2 mutant failed to suppress either phenotype. We discovered that the phenotypic rescue of ntrc by pgr5 is caused by the partial restoration of Trx-dependent reduction of thiol enzymes. These results suggest that electron partitioning to the PGR5-dependent pathway and the Trx system needs to be properly regulated for the activation of the Calvin-Benson-Bassham cycle enzymes during the induction of photosynthesis.
Collapse
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| | - Natsuki Tsuda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Ken Motohashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| |
Collapse
|
27
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Zimmer D, Swart C, Graf A, Arrivault S, Tillich M, Proost S, Nikoloski Z, Stitt M, Bock R, Mühlhaus T, Boulouis A. Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. SCIENCE ADVANCES 2021; 7:eabi8307. [PMID: 34919428 PMCID: PMC8682995 DOI: 10.1126/sciadv.abi8307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/03/2021] [Indexed: 05/03/2023]
Abstract
Photosynthetically produced electrons provide energy for various metabolic pathways, including carbon reduction. Four Calvin-Benson cycle enzymes and several other plastid proteins are activated in the light by reduction of specific cysteines via thioredoxins, a family of electron transporters operating in redox regulation networks. How does this network link the photosynthetic chain with cellular metabolism? Using a time-resolved redox proteomic method, we have investigated the redox network in vivo during the dark–to–low light transition. We show that redox states of some thioredoxins follow the photosynthetic linear electron transport rate. While some redox targets have kinetics compatible with an equilibrium with one thioredoxin (TRXf), reduction of other proteins shows specific kinetic limitations, allowing fine-tuning of each redox-regulated step of chloroplast metabolism. We identified five new redox-regulated proteins, including proteins involved in Mg2+ transport and 1O2 signaling. Our results provide a system-level functional view of the photosynthetic redox regulation network.
Collapse
Affiliation(s)
- David Zimmer
- Computational Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Corné Swart
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
- Laboratory of Chloroplast Biology and Light-sensing in Microalgae, UMR7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
29
|
Medeiros DB, Aarabi F, Martinez Rivas FJ, Fernie AR. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153521. [PMID: 34537467 DOI: 10.1016/j.jplph.2021.153521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of specialized cellular compartments in higher plants express an extraordinary degree of intracellular organization, which provides efficient mechanisms to avoid misbalancing of the metabolism. This offers the flexibility by which plants can quickly acclimate to fluctuating environmental conditions. For that, a fine temporal and spatial regulation of metabolic pathways is required and involves several players e.g. organic acids. In this review we discuss different facets of the organic acid metabolism within plant cells with special focus to those related to the interactions between organic acids compartmentalization and the partitioning of carbon and nitrogen. The connections between organic acids and CO2 assimilation, tricarboxylic acid (TCA) cycle, amino acids metabolism, and redox status are highlighted. Moreover, the key enzymes and transporters as well as their function on the coordination of interorganellar metabolic exchanges are discussed.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
30
|
Krämer M, Kunz HH. Indirect Export of Reducing Equivalents From the Chloroplast to Resupply NADP for C 3 Photosynthesis-Growing Importance for Stromal NAD(H)? FRONTIERS IN PLANT SCIENCE 2021; 12:719003. [PMID: 34745158 PMCID: PMC8564385 DOI: 10.3389/fpls.2021.719003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 05/06/2023]
Abstract
Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.g., through a lack of stromal NADP ready to accept electrons from PSI. This situation can occur when oscillations in growth light and temperature result in a drop of CO2 fixation and concomitant NADPH consumption. Plants have evolved a plethora of pathways at the thylakoid membrane but also in the chloroplast stroma to avoid acceptor side limitation. For instance, reduced ferredoxin can be recycled in cyclic electron flow or reducing equivalents can be indirectly exported from the organelle via the malate valve, a coordinated effort of stromal malate dehydrogenases and envelope membrane transporters. For a long time, the NADP(H) was assumed to be the only nicotinamide adenine dinucleotide coenzyme to participate in diurnal chloroplast metabolism and the export of reductants via this route. However, over the last years several independent studies have indicated an underappreciated role for NAD(H) in illuminated leaf plastids. In part, it explains the existence of the light-independent NAD-specific malate dehydrogenase in the stroma. We review the history of the malate valve and discuss the potential role of stromal NAD(H) for the plant survival under adverse growth conditions as well as the option to utilize the stromal NAD(H) pool to mitigate PSI damage.
Collapse
Affiliation(s)
| | - Hans-Henning Kunz
- Department I, Plant Biochemistry and Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
31
|
Zhang H, Liu X, Zhang H, Wang Y, Li T, Che Y, Wang J, Guo D, Sun G, Li X. Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:831-839. [PMID: 34530327 DOI: 10.1016/j.plaphy.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxin-like protein CDSP32 (Trx CDSP32), a thioredoxin-like (Trx-like) protein located in the chloroplast, can regulate photosynthesis and the redox state of plants under stress. In order to examine the role of Trx CDSP32 in the photosynthetic apparatus of plants exposed to cadmium (Cd), the effects of Trx CDSP32 on photosynthetic function and photoprotection in tobacco leaves under Cd exposure were studied using a proteomics approach with wild-type (WT) and Trx CDSP32 overexpression (OE) tobacco plants. Cd exposure reduced stomatal conductance, blocked PSII photosynthetic electron transport, and inhibited carbon assimilation. Increased water use efficiency (WUE), cyclic electron flow (CEF) of the proton gradient regulation 5 pathway (PGR5-CEF), and regulated energy dissipation [Y(NPQ)] are important mechanisms of Cd adaptation. However, CEF of the NAD(P)H dehydrogenase pathway (NDH-CEF) was inhibited by Cd exposure. Relative to control conditions, the expression levels of violaxanthin de-epoxidase (VDE) and photosystem II 22 kDa protein (PsbS) in OE leaves were significantly increased under Cd exposure, but those in WT leaves did not change significantly. Moreover, the expression of zeaxanthin epoxidase (ZE) under Cd exposure was significantly higher than that in WT leaves. Thus, Trx CDSP32 increased Y(NPQ) and alleviated PSII photoinhibition under Cd exposure. Trx CDSP32 not only increased PGR5-like protein 1A and 1B expression, but also alleviated the down-regulation of NAD(P)H-quinone oxidoreductase subunits induced by Cd exposure. Thus, Trx CDSP32 promotes CEF in Cd-exposed tobacco leaves. Thus, Trx CDSP32 alleviates the Cd-induced photoinhibition in tobacco leaves by regulating two photoprotective mechanisms: CEF and xanthophyll cycle-dependent energy dissipation.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Tong Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yanhui Che
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiechen Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Dandan Guo
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Xin Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; School of Forestry, State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
32
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
33
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
34
|
Sng BJR, Mun B, Mohanty B, Kim M, Phua ZW, Yang H, Lee DY, Jang IC. Combination of red and blue light induces anthocyanin and other secondary metabolite biosynthesis pathways in an age-dependent manner in Batavia lettuce. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110977. [PMID: 34315593 DOI: 10.1016/j.plantsci.2021.110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Lettuce is commonly consumed around the world, spurring the cultivation of green- and red-leaf varieties in indoor farms. One common consideration for indoor cultivation is the light wavelengths/spectrum, which is an important factor for regulating growth, development, and the accumulation of metabolites. Here, we show that Batavia lettuce (Lactuca sativa cv. "Batavia") grown under a combination of red (R) and blue (B) light (RB, R:B = 3:1) displayed better growth and accumulated more anthocyanin than lettuce grown under fluorescent light (FL). Anthocyanin concentration was also higher in mature stage than early stage lettuce. By performing a comparative transcriptome analysis of early and mature stage lettuce grown under RB or FL (RB or FL-lettuce), we found that RB induced the expression of genes related to oxidation-reduction reaction and secondary metabolite biosynthesis. Furthermore, plant age affected the transcriptome response to RB, as mature RB-lettuce had six times more differentially expressed genes than early RB-lettuce. Also, genes related to the accumulation of secondary metabolites such as flavonoids and anthocyanins were more induced in mature RB-lettuce. A detailed analysis of the anthocyanin biosynthesis pathway revealed key genes that were up-regulated in mature RB-lettuce. Concurrently, branching pathways for flavonol and lignin precursors were down-regulated.
Collapse
Affiliation(s)
- Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Bonggyu Mun
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Bijayalaxmi Mohanty
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mijung Kim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zhi Wei Phua
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
35
|
Hernández ML, Cejudo FJ. Chloroplast Lipids Metabolism and Function. A Redox Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:712022. [PMID: 34421962 PMCID: PMC8375268 DOI: 10.3389/fpls.2021.712022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Plant productivity is determined by the conversion of solar energy into biomass through oxygenic photosynthesis, a process performed by protein-cofactor complexes including photosystems (PS) II and I, and ATP synthase. These complexes are embedded in chloroplast thylakoid membrane lipids, which thus function as structural support of the photosynthetic machinery and provide the lipid matrix to avoid free ion diffusion. The lipid and fatty acid composition of thylakoid membranes are unique in chloroplasts and cyanobacteria, which implies that these molecules are specifically required in oxygenic photosynthesis. Indeed, there is extensive evidence supporting a relevant function of glycerolipids in chloroplast biogenesis and photosynthetic efficiency in response to environmental stimuli, such as light and temperature. The rapid acclimation of higher plants to environmental changes is largely based on thiol-based redox regulation and the disulphide reductase activity thioredoxins (Trxs), which are reduced by ferredoxin (Fdx) via an Fdx-dependent Trx reductase. In addition, chloroplasts harbour an NADPH-dependent Trx reductase C, which allows the use of NADPH to maintain the redox homeostasis of the organelle. Here, we summarise the current knowledge of chloroplast lipid metabolism and the function of these molecules as structural basis of the complex membrane network of the organelle. Furthermore, we discuss evidence supporting the relevant role of lipids in chloroplast biogenesis and photosynthetic performance in response to environmental cues in which the redox state of the organelle plays a relevant role.
Collapse
|
36
|
Ancín M, Larraya L, Florez-Sarasa I, Bénard C, Fernández-San Millán A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I. Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4949-4964. [PMID: 33963398 PMCID: PMC8219043 DOI: 10.1093/jxb/erab193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/27/2021] [Indexed: 06/02/2023]
Abstract
In plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Luis Larraya
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Jon Veramendi
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Avda. Pamplona 123, 31192 Mutilva, Spain
| | - Inmaculada Farran
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| |
Collapse
|
37
|
Wieloch T. A cytosolic oxidation-reduction cycle in plant leaves. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4186-4189. [PMID: 33739373 PMCID: PMC8163049 DOI: 10.1093/jxb/erab128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The viewpoint proposes a carbon-neutral biochemical cycle in the cytosol of plant leaves that is up-regulated by reactive oxygen species. Cycling provides NADPH and dissipates energy to counteract oxidative stress.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
- Correspondence:
| |
Collapse
|
38
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
39
|
Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. PLANT PHYSIOLOGY 2021; 186:142-167. [PMID: 33779763 PMCID: PMC8154072 DOI: 10.1093/plphys/kiaa117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.
Collapse
Affiliation(s)
- Ricarda Höhner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sandra E Zimmermann
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Laura S Lopez
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Moritz Krämer
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf D-40225, Germany
| | - Stephan Krueger
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
40
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
41
|
Colon R, Rein KS. Essential components of the xanthophyll cycle differ in high and low toxin Karenia brevis. HARMFUL ALGAE 2021; 103:102006. [PMID: 33980446 PMCID: PMC10246377 DOI: 10.1016/j.hal.2021.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. Herein, we investigate physiological differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and reduced thiol content of the proteome. We demonstrate that gene and protein expression of the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (Dde) and monogalactosyldiacylglycerol (MGDG) synthase are not significantly different in the two cultures. Using redox proteomics, we report a significantly higher reduced cysteine content in the low toxin proteome, including plastid localized thioredoxin reductase (Trx) which can result in inactivation of Dde and activation of MGDG synthase. We also report significant differences in the lipidomes of KbHT and KbLT with respect to MGDG, which facilitates the xanthophyll cycle.
Collapse
Affiliation(s)
- Ricardo Colon
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States.
| |
Collapse
|
42
|
Murai R, Okegawa Y, Sato N, Motohashi K. Evaluation of CBSX Proteins as Regulators of the Chloroplast Thioredoxin System. FRONTIERS IN PLANT SCIENCE 2021; 12:530376. [PMID: 33664754 PMCID: PMC7921703 DOI: 10.3389/fpls.2021.530376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The chloroplast-localized cystathionine β-synthase X (CBSX) proteins CBSX1 and CBSX2 have been proposed as modulators of thioredoxins (Trxs). In this study, the contribution of CBSX proteins to the redox regulation of thiol enzymes in the chloroplast Trx system was evaluated both in vitro and in vivo. The in vitro biochemical studies evaluated whether CBSX proteins alter the specificities of classical chloroplastic Trx f and Trx m for their target proteins. However, addition of CBSX proteins did not alter the specificities of Trx f and Trx m for disulfide bond reduction of the photosynthesis-related major thiol enzymes, FBPase, SBPase, and NADP-MDH. In vivo analysis showed that CBSX-deficient mutants grew similarly to wild type plants under continuous normal light conditions and that CBSX deficiency did not affect photo-reduction of photosynthesis-related thiol enzymes by Trx system at several light intensities. Although CBSX proteins have been suggested as modulators in the chloroplast Trx system, our results did not support this model, at least in the cases of FBPase, SBPase, and NADP-MDH in leaves. However, fresh weights of the cbsx2 mutants were decreased under short day. Since Trxs regulate many proteins participating in various metabolic reactions in the chloroplast, CBSX proteins may function to regulate other chloroplast Trx target proteins, or serve as modulators in non-photosynthetic plastids of flowers. As a next stage, further investigations are required to understand the modulation of Trx-dependent redox regulation by plastidal CBSX proteins.
Collapse
Affiliation(s)
- Ryota Murai
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuki Okegawa
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Nozomi Sato
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
43
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
44
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
45
|
Okegawa Y, Motohashi K. M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1. THE PLANT CELL 2020; 32:3866-3883. [PMID: 33037145 PMCID: PMC7721319 DOI: 10.1105/tpc.20.00304] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 05/11/2023]
Abstract
In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (Arabidopsis thaliana), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)-dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the m-type thioredoxins (Trx m). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx m and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx m specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx m4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx m4-PGRL1 complex formation. Furthermore, the Trx m4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx m directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
46
|
Okegawa Y, Basso L, Shikanai T, Motohashi K. Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin f. PLANT PHYSIOLOGY 2020; 184:1291-1302. [PMID: 32917772 PMCID: PMC7608166 DOI: 10.1104/pp.20.00741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
In response to light, plants efficiently induce photosynthesis. Light activation of thiol enzymes by the thioredoxin (Trx) systems and cyclic electron transport by the PROTON GRADIENT REGULATION5 (PGR5)-dependent pathway contribute substantially to regulation of photosynthesis. Arabidopsis (Arabidopsis thaliana) mutants lacking f-type Trxs (trx f1f2) show delayed activation of carbon assimilation due to impaired photoreduction of Calvin-Benson cycle enzymes. To further study regulatory mechanisms that contribute to efficiency during the induction of photosynthesis, we analyzed the contributions of PSI donor- and acceptor-side regulation in the trx f1f2 mutant background. The cytochrome b 6 f complex is involved in PSI donor-side regulation, whereas PGR5-dependent PSI cyclic electron transport is required for both donor and acceptor functions. Introduction of the pgr1 mutation, which is conditionally defective in cytochrome b 6 f complex activity, into the trx f1f2 mutant background did not further affect the induction of photosynthesis, but the combined deficiency of Trx f and PGR5 severely impaired photosynthesis and suppressed plant growth under long-day conditions. In the pgr5 trx f1f2 mutant, the acceptor-side of PSI was almost completely reduced, and quantum yields of PSII and PSI hardly increased during the induction of photosynthesis. We also compared the photoreduction of thiol enzymes between the trx f1f2 and pgr5 trxf1f2 mutants. The pgr5 mutation did not result in further impaired photoreduction of Calvin-Benson cycle enzymes or ATP synthase in the trx f1f2 mutant background. These results indicated that acceptor-side limitations in the pgr5 trx f1f2 mutant suppress photosynthesis initiation, suggesting that PGR5 is required for efficient photosynthesis induction.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Leonardo Basso
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
47
|
Paradiso A, Domingo G, Blanco E, Buscaglia A, Fortunato S, Marsoni M, Scarcia P, Caretto S, Vannini C, de Pinto MC. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. PLANT, CELL & ENVIRONMENT 2020; 43:2727-2742. [PMID: 32876347 DOI: 10.1111/pce.13878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.
Collapse
Affiliation(s)
| | - Guido Domingo
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Alessio Buscaglia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | | - Milena Marsoni
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sofia Caretto
- Institute of Sciences of Food Production, CNR, Research Division Lecce, Lecce, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | |
Collapse
|
48
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
49
|
Zhang Y, Krahnert I, Bolze A, Gibon Y, Fernie AR. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. ACTA ACUST UNITED AC 2020; 5:e20115. [PMID: 32841544 DOI: 10.1002/cppb.20115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As the principal co-factors of many metabolic pathways, the measurement of both adenine nucleotides and nicotinamide adenine dinucleotide provides important information about cellular energy metabolism. However, given their rapid and reversible conversion as well as their relatively low concentration ranges, it is difficult to measure these compounds. Here, we describe a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides in plants. In addition, nicotinamide adenine dinucleotide is a crucially important redox-active substrate for multiple catabolic and anabolic reactions with the ratios of NAD+ /NADH and NADP+ /NADPH being suggested as indicators of the general intracellular redox potential and hence metabolic state. Here, we describe highly sensitive enzyme cycling-based colorimetric assays (with a detection limit in the pmol range) performed subsequent to a simple extraction procedure involving acid or base extraction to allow the measurement of the cellular levels of these metabolites. © 2020 The Authors. Basic Protocol 1: Preparation of plant material for the measurement Basic Protocol 2: Measurement of ATP, ADP, and AMP via HPLC Basic Protocol 3: NAD+ /NADP+ measurements Basic Protocol 4: NADH/NADPH measurements Basic Protocol 5: Data analysis and quality control approaches.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Antje Bolze
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Yves Gibon
- Institut National de la Recherche Agronomique (INRAE), University of Bordeaux, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
50
|
Sytykiewicz H, Łukasik I, Goławska S, Sprawka I, Goławski A, Sławianowska J, Kmieć K. Expression of Thioredoxin/Thioredoxin Reductase System Genes in Aphid-Challenged Maize Seedlings. Int J Mol Sci 2020; 21:ijms21176296. [PMID: 32878074 PMCID: PMC7503728 DOI: 10.3390/ijms21176296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (Trxs) and thioredoxin reductases (TrxRs) encompass a highly complex network involved in sustaining thiol-based redox homeostasis in plant tissues. The purpose of the study was to gain a new insight into transcriptional reprogramming of the several genes involved in functioning of Trx/TrxR system in maize (Zea mays L.) seedlings, exposed to the bird cherry-oat aphid (Rhopalosiphum padi L.) or the rose-grass aphid (Metopolophium dirhodum Walk.) infestation. The biotests were performed on two maize genotypes (susceptible Złota Karłowa and relatively resistant Waza). The application of real-time qRT-PCR technique allowed to identify a molecular mechanism triggered in more resistant maize plants, linked to upregulation of thioredoxins-encoding genes (Trx-f, Trx-h, Trx-m, Trx-x) and thioredoxin reductase genes (Ftr1, Trxr2). Significant enhancement of TrxR activity in aphid-infested Waza seedlings was also demonstrated. Furthermore, we used an electrical penetration graph (EPG) recordings of M. dirhodum stylet activities in seedlings of the two studied maize varieties. Duration of phloem phase (E1 and E2 models) of rose-grass aphids was about three times longer while feeding in Waza plants, compared to Złota Karłowa cv. The role of activation of Trx/TrxR system in maintaining redox balance and counteracting oxidative-induced damages of macromolecules in aphid-stressed maize plants is discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-25-643-12-98
| | - Iwona Łukasik
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Sylwia Goławska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Iwona Sprawka
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Artur Goławski
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Julia Sławianowska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Katarzyna Kmieć
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| |
Collapse
|