1
|
Granato G, Baldassarre G. Bridging flexible goal-directed cognition and consciousness: The Goal-Aligning Representation Internal Manipulation theory. Neural Netw 2024; 176:106292. [PMID: 38657422 DOI: 10.1016/j.neunet.2024.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Goal-directed manipulation of internal representations is a key element of human flexible behaviour, while consciousness is commonly associated with higher-order cognition and human flexibility. Current perspectives have only partially linked these processes, thus preventing a clear understanding of how they jointly generate flexible cognition and behaviour. Moreover, these limitations prevent an effective exploitation of this knowledge for technological scopes. We propose a new theoretical perspective that extends our 'three-component theory of flexible cognition' toward higher-order cognition and consciousness, based on the systematic integration of key concepts from Cognitive Neuroscience and AI/Robotics. The theory proposes that the function of conscious processes is to support the alignment of representations with multi-level goals. This higher alignment leads to more flexible and effective behaviours. We analyse here our previous model of goal-directed flexible cognition (validated with more than 20 human populations) as a starting GARIM-inspired model. By bridging the main theories of consciousness and goal-directed behaviour, the theory has relevant implications for scientific and technological fields. In particular, it contributes to developing new experimental tasks and interpreting clinical evidence. Finally, it indicates directions for improving machine learning and robotics systems and for informing real-world applications (e.g., in digital-twin healthcare and roboethics).
Collapse
Affiliation(s)
- Giovanni Granato
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| | - Gianluca Baldassarre
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| |
Collapse
|
2
|
Drew J, Foti N, Nadkarni R, Larson E, Fox E, Kc Lee A. Using a linear dynamic system to measure functional connectivity from M/EEG. J Neural Eng 2024; 21:10.1088/1741-2552/ad5cc1. [PMID: 38936398 PMCID: PMC11332324 DOI: 10.1088/1741-2552/ad5cc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Objective.Measures of functional connectivity (FC) can elucidate which cortical regions work together in order to complete a variety of behavioral tasks. This study's primary objective was to expand a previously published model of measuring FC to include multiple subjects and several regions of interest. While FC has been more extensively investigated in vision and other sensorimotor tasks, it is not as well understood in audition. The secondary objective of this study was to investigate how auditory regions are functionally connected to other cortical regions when attention is directed to different distinct auditory stimuli.Approach.This study implements a linear dynamic system (LDS) to measure the structured time-lagged dependence across several cortical regions in order to estimate their FC during a dual-stream auditory attention task.Results.The model's output shows consistent functionally connected regions across different listening conditions, indicative of an auditory attention network that engages regardless of endogenous switching of attention or different auditory cues being attended.Significance.The LDS implemented in this study implements a multivariate autoregression to infer FC across cortical regions during an auditory attention task. This study shows how a first-order autoregressive function can reliably measure functional connectivity from M/EEG data. Additionally, the study shows how auditory regions engage with the supramodal attention network outlined in the visual attention literature.
Collapse
Affiliation(s)
- Jordan Drew
- Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
| | - Nicholas Foti
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Rahul Nadkarni
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Eric Larson
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, United States of America
| | - Emily Fox
- Departments of Statistics and Computer Science, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Adrian Kc Lee
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, United States of America
- Speech & Hearing Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
3
|
Coronel-Oliveros C, Medel V, Orellana S, Rodiño J, Lehue F, Cruzat J, Tagliazucchi E, Brzezicka A, Orio P, Kowalczyk-Grębska N, Ibáñez A. Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling. Neuroimage 2024; 293:120633. [PMID: 38704057 DOI: 10.1016/j.neuroimage.2024.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050, Australia; Department of Neuroscience, Universidad de Chile, Independencia 1027, Independencia, Santiago, Chile
| | - Sebastián Orellana
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Julio Rodiño
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile; Brain Dynamics Laboratory, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso, Chile
| | - Fernando Lehue
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Buenos Aires, Argentina
| | - Aneta Brzezicka
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, 03-815, Poland
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington, Playa Ancha, Valparaíso 287, Chile; Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1091, Playa Ancha, Valparaíso, Chile.
| | - Natalia Kowalczyk-Grębska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, 03-815, Poland.
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres, Peñalolén, Santiago 2640, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, Provincia de Buenos Aires, Argentina; Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2, Ireland.
| |
Collapse
|
4
|
Zhang X, Ravichandran S, Gee GC, Dong TS, Beltrán-Sánchez H, Wang MC, Kilpatrick LA, Labus JS, Vaughan A, Gupta A. Social Isolation, Brain Food Cue Processing, Eating Behaviors, and Mental Health Symptoms. JAMA Netw Open 2024; 7:e244855. [PMID: 38573637 PMCID: PMC11192185 DOI: 10.1001/jamanetworkopen.2024.4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 04/05/2024] Open
Abstract
Importance Perceived social isolation is associated with negative health outcomes, including increased risk for altered eating behaviors, obesity, and psychological symptoms. However, the underlying neural mechanisms of these pathways are unknown. Objective To investigate the association of perceived social isolation with brain reactivity to food cues, altered eating behaviors, obesity, and mental health symptoms. Design, Setting, and Participants This cross-sectional, single-center study recruited healthy, premenopausal female participants from the Los Angeles, California, community from September 7, 2021, through February 27, 2023. Exposure Participants underwent functional magnetic resonance imaging while performing a food cue viewing task. Main Outcomes and Measures The main outcomes included brain reactivity to food cues, body composition, self-reported eating behaviors (food cravings, reward-based eating, food addiction, and maladaptive eating behaviors), and mental health symptoms (anxiety, depression, positive and negative affect, and psychological resilience). Results The study included 93 participants (mean [SD] age, 25.38 [7.07] years). Participants with higher perceived social isolation reported higher fat mass percentage, lower diet quality, increased maladaptive eating behaviors (cravings, reward-based eating, uncontrolled eating, and food addiction), and poor mental health (anxiety, depression, and psychological resilience). In whole-brain comparisons, the higher social isolation group showed altered brain reactivity to food cues in regions of the default mode, executive control, and visual attention networks. Isolation-related neural changes in response to sweet foods correlated with various altered eating behaviors and psychological symptoms. These altered brain responses mediated the connection between social isolation and maladaptive eating behaviors (β for indirect effect, 0.111; 95% CI, 0.013-0.210; P = .03), increased body fat composition (β, -0.141; 95% CI, -0.260 to -0.021; P = .02), and diminished positive affect (β, -0.089; 95% CI, -0.188 to 0.011; P = .09). Conclusions and Relevance These findings suggest that social isolation is associated with altered neural reactivity to food cues within specific brain regions responsible for processing internal appetite-related states and compromised executive control and attentional bias and motivation toward external food cues. These neural responses toward specific foods were associated with an increased risk for higher body fat composition, worsened maladaptive eating behaviors, and compromised mental health. These findings underscore the need for holistic mind-body-directed interventions that may mitigate the adverse health consequences of social isolation.
Collapse
Affiliation(s)
- Xiaobei Zhang
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Soumya Ravichandran
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- School of Medicine, University of California, San Diego, La Jolla, California
| | - Gilbert C. Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
- California Center for Population Research, University of California, Los Angeles
| | - Tien S. Dong
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Hiram Beltrán-Sánchez
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
- California Center for Population Research, University of California, Los Angeles
| | - May C. Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles
| | - Lisa A. Kilpatrick
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Jennifer S. Labus
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| | - Allison Vaughan
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, University of California, Los Angeles
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles
- David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
5
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
6
|
Coronel-Oliveros C, Medel V, Orellana S, Rodiño J, Lehue F, Cruzat J, Tagliazucchi E, Brzezicka A, Orio P, Kowalczyk-Grębska N, Ibáñez A. Gaming expertise induces meso-scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling Gaming expertise, neuroplasticity and functional dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554072. [PMID: 38077041 PMCID: PMC10705274 DOI: 10.1101/2023.08.21.554072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlaying mechanisms related to plasticity-induced brain structural changes and their impact in brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso-scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, with the aim of generating simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso-scale integration, with increased local connectivity in frontal, parietal and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso-scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light into the mechanisms underlying structural neural plasticity triggered by video game experiences.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown NSW 2050 (Australia)
- Department of Neuroscience, Universidad de Chile, Independencia 1027, Independencia, Santiago (Chile)
| | - Sebastián Orellana
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Julio Rodiño
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
- Brain Dynamics Laboratory, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso (Chile)
| | - Fernando Lehue
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Buenos Aires (Argentina)
| | - Aneta Brzezicka
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw (Poland)
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Playa Ancha, Valparaíso (Chile)
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1091, Playa Ancha, Valparaíso (Chile)
| | - Natalia Kowalczyk-Grębska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw (Poland)
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Penalolen, Santiago (Chile)
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Vito Dumas 284, Provincia de Buenos Aires (Argentina)
- Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2 (Ireland)
| |
Collapse
|
7
|
Ghaderi S, Mohammadi S, Mohammadi M. Obstructive sleep apnea and attention deficits: A systematic review of magnetic resonance imaging biomarkers and neuropsychological assessments. Brain Behav 2023; 13:e3262. [PMID: 37743582 PMCID: PMC10636416 DOI: 10.1002/brb3.3262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Obstructive sleep apnea (OSA) is a common sleep disorder that causes intermittent hypoxia and sleep fragmentation, leading to attention impairment and other cognitive deficits. Magnetic resonance imaging (MRI) is a powerful modality that can reveal the structural and functional brain alterations associated with attention impairment in OSA patients. The objective of this systematic review is to identify and synthesize the evidence on MRI biomarkers and neuropsychological assessments of attention deficits in OSA patients. METHODS We searched the Scopus and PubMed databases for studies that used MRI to measure biomarkers related to attention alteration in OSA patients and reported qualitative and quantitative data on the association between MRI biomarkers and attention outcomes. We also included studies that found an association between neuropsychological assessments and MRI findings in OSA patients with attention deficits. RESULTS We included 19 studies that met our inclusion criteria and extracted the relevant data from each study. We categorized the studies into three groups based on the MRI modality and the cognitive domain they used: structural and diffusion tensor imaging MRI findings, functional, perfusion, and metabolic MRI findings, and neuropsychological assessment findings. CONCLUSIONS We found that OSA is associated with structural, functional, and metabolic brain alterations in multiple regions and networks that are involved in attention processing. Treatment with continuous positive airway pressure can partially reverse some of the brain changes and improve cognitive function in some domains and in some studies. This review suggests that MRI techniques and neuropsychological assessments can be useful tools for monitoring the progression and response to treatment of OSA patients.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction StudiesSchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Sana Mohammadi
- Department of Medical SciencesSchool of MedicineIran University of Medical SciencesTehranIran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
9
|
Banks MI, Krause BM, Berger DG, Campbell DI, Boes AD, Bruss JE, Kovach CK, Kawasaki H, Steinschneider M, Nourski KV. Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology. PLoS Biol 2023; 21:e3002239. [PMID: 37651504 PMCID: PMC10499207 DOI: 10.1371/journal.pbio.3002239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - D. Graham Berger
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Declan I. Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Boes
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joel E. Bruss
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher K. Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Mitchell Steinschneider
- Department of Neurology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
10
|
Park S, Chun H, Etnier JL, Yun D. Exploring the Mediating Role of Executive Function in the Relationship between Aerobic Fitness and Academic Achievement in Adolescents. Brain Sci 2023; 13:brainsci13040614. [PMID: 37190579 DOI: 10.3390/brainsci13040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
(1) Background: The performance of physical activity at a sufficient volume can result in improvements in fitness. Aerobic fitness is a particular aspect of fitness that has consistently been shown to be related to both cognitive performance and academic achievement. Cognitive performance, particularly executive function, is itself predictive of academic achievement. It has been hypothesized that the benefits of aerobic fitness for academic achievement are due to improvements in executive function. This study explores the mediating role of cognitive performance on the relationship between physical fitness and academic achievement in high-school-aged adolescents. (2) Methods: High school students (N = 283, 127 male, 156 females, mean age = 16.05 years, SD = 0.41) performed a shuttle run test to assess aerobic fitness and completed the Stroop Color, Stroop Word, and Stroop Color–Word tests to measure information processing and inhibition. They also completed the National Union Academic Achievement Assessment (NUAAA) as part of their high school requirements. (3) Results: Mediation analyses showed that inhibition (performance in the Stroop Color–Word test) fully mediated the relationship between aerobic fitness and both mathematics and Korean performance. (4) Conclusions: This cross-sectional investigation suggests an important mediating role of cognitive performance related to executive function in understanding the relationship between aerobic fitness and the academic achievement of high-school-aged adolescents. This suggests that enhancements in performance related to executive function, which are attributed to increases in aerobic fitness, could explain the observed benefits for academic attainment.
Collapse
Affiliation(s)
- Seyun Park
- Department Sport Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Haeyong Chun
- Department of Kinesiology, Michigan State University, 109C IM Sports Circle Building 308 W. Circle Drive, East Lansing, MI 48824, USA
| | - Jennifer L. Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Daehyun Yun
- Department Sport Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Nelson A, Malmberg Gavelin H, Andersson M, Josefsson M, Eskilsson T, Slunga Järvholm L, Stigsdotter Neely A, Boraxbekk CJ. Subjective cognitive complaints and its associations to response inhibition and neural activation in patients with stress-related exhaustion disorder. Stress 2023; 26:2188092. [PMID: 36883330 DOI: 10.1080/10253890.2023.2188092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Stress-related exhaustion is associated with cognitive deficits, measured subjectively using questionnaires targeting everyday slips and failures or more objectively as performance on cognitive tests. Yet, only weak associations between subjective and objective cognitive measures in this group has been presented, theorized to reflect recruitment of compensational resources during cognitive testing. This explorative study investigated how subjectively reported symptoms of cognitive functioning and burnout levels relate to performance as well as neural activation during a response inhibition task. To this end, 56 patients diagnosed with stress-related exhaustion disorder (ED; ICD-10 code F43.8A) completed functional magnetic resonance imaging (fMRI) using a Flanker paradigm. In order to investigate associations between neural activity and subjective cognitive complaints (SCCs) and burnout, respectively, scores on the Prospective and Retrospective Memory Questionnaire (PRMQ) and the Shirom-Melamed Burnout Questionnaire (SMBQ) were added as covariates of interest to a general linear model at the whole-brain level. In agreement with previous research, the results showed that SCCs and burnout levels were largely unrelated to task performance. Moreover, we did not see any correlations between these self-report measures and altered neural activity in frontal brain regions. Instead, we observed an association between the PRMQ and increased neural activity in an occipitally situated cluster. We propose that this finding may reflect compensational processes at the level of basic visual attention which could go unnoticed in cognitive testing but still be reflected in the experience of deficits in everyday cognitive functioning.
Collapse
Affiliation(s)
- Andreas Nelson
- Department of Social and Psychological studies, Karlstad University, Karlstad, Sweden
- Department of Anaesthesiology, Central Hospital of Karlstad, Karlstad, Sweden
| | | | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, Sweden
- Department of Statistics, USBE, Umeå University, Umeå, Sweden
| | - Therese Eskilsson
- Department of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Lisbeth Slunga Järvholm
- Department of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, Umeå, Sweden
| | - Anna Stigsdotter Neely
- Department of Social and Psychological studies, Karlstad University, Karlstad, Sweden
- Department of Social Sciences, Technology and Arts; Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
12
|
Internal attention is the only retroactive mechanism for controlling precision in working memory. Atten Percept Psychophys 2022:10.3758/s13414-022-02628-7. [PMID: 36536206 PMCID: PMC10371937 DOI: 10.3758/s13414-022-02628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
AbstractRecent research has suggested that humans can assert control over the precision of working memory (WM) items. However, the mechanisms that enable this control are unclear. While some studies suggest that internal attention improves precision, it may not be the only factor, as previous work also demonstrated that WM storage is disentangled from attention. To test whether there is a precision control mechanism beyond internal attention, we contrasted internal attention and precision requirements within the same trial in three experiments. In every trial, participants memorized two items briefly. Before the test, a retro-cue indicated which item would be tested first, thus should be attended. Importantly, we encouraged participants to store the unattended item with higher precision by testing it using more similar lure colors at the probe display. Accuracy was analyzed on a small proportion of trials where the target-lure similarity, hence the task difficulty, was equal for attended and unattended items. Experiments 2 and 3 controlled for output interference by the first test and involuntary precision boost by the retro-cue, respectively. In all experiments, the unattended item had lower accuracy than the attended item, suggesting that individuals were not able to remember it more precisely than the attended item. Thus, we conclude that there is no precision control mechanism beyond internal attention, highlighting the close relationship between attentional and qualitative prioritization within WM. We discuss the important implications of these findings for our understanding of the fundamentals of WM and WM-driven behaviors.
Collapse
|
13
|
Ho NF, Lin AY, Tng JXJ, Chew QH, Cheung MWL, Javitt DC, Sim K. Abnormalities in visual cognition and associated impaired interactions between visual and attentional networks in schizophrenia and brief psychotic disorder. Psychiatry Res Neuroimaging 2022; 327:111545. [PMID: 36272310 DOI: 10.1016/j.pscychresns.2022.111545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022]
Abstract
The extent and nature of cognitive impairment in brief psychotic disorder remains unclear, being rarely studied unlike schizophrenia. The present study hence sought to directly compare the visual cognitive dysfunction and its associated brain networks in brief psychotic disorder and schizophrenia. Data from picture completion (a complex visual task) and whole-brain functional connectome from resting-state fMRI were acquired from a sample of clinically stable patients with an established psychotic disorder (twenty with brief psychotic disorder, twenty with schizophrenia) and twenty-nine healthy controls. Group differences and the inter-relationships in task performances and brain networks were tested. Picture completion task deficits were found in brief psychotic disorder compared with healthy controls, though the deficits were less than schizophrenia. Task performance also correlated with severity of psychotic symptoms in patients. The task performance was inversely correlated with the functional connectivity between peripheral visual and attentional networks (dorsal attention and salience ventral attention), with increased functional connectivity in brief psychotic disorder compared with healthy controls and in schizophrenia compared with brief psychotic disorder. Present findings showed pronounced visual cognitive impairments in brief psychotic disorder that were worse in schizophrenia, underpinned by abnormal interactions between higher-order attentional and lower-order visual processing networks.
Collapse
Affiliation(s)
- New Fei Ho
- Institute of Mental Health, Singapore; Duke-National University of Singapore Medical School, Singapore.
| | | | | | | | | | | | - Kang Sim
- Institute of Mental Health, Singapore
| |
Collapse
|
14
|
Hebert JR, Filley CM. Multisensory integration and white matter pathology: Contributions to cognitive dysfunction. Front Neurol 2022; 13:1051538. [PMID: 36408503 PMCID: PMC9668060 DOI: 10.3389/fneur.2022.1051538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
The ability to simultaneously process and integrate multiple sensory stimuli is paramount to effective daily function and essential for normal cognition. Multisensory management depends critically on the interplay between bottom-up and top-down processing of sensory information, with white matter (WM) tracts acting as the conduit between cortical and subcortical gray matter (GM) regions. White matter tracts and GM structures operate in concert to manage both multisensory signals and cognition. Altered sensory processing leads to difficulties in reweighting and modulating multisensory input during various routine environmental challenges, and thus contributes to cognitive dysfunction. To examine the specific role of WM in altered sensory processing and cognitive dysfunction, this review focuses on two neurologic disorders with diffuse WM pathology, multiple sclerosis and mild traumatic brain injury, in which persistently altered sensory processing and cognitive impairment are common. In these disorders, cognitive dysfunction in association with altered sensory processing may develop initially from slowed signaling in WM tracts and, in some cases, GM pathology secondary to WM disruption, but also because of interference with cognitive function by the added burden of managing concurrent multimodal primary sensory signals. These insights promise to inform research in the neuroimaging, clinical assessment, and treatment of WM disorders, and the investigation of WM-behavior relationships.
Collapse
Affiliation(s)
- Jeffrey R. Hebert
- Physical Performance Laboratory, Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher M. Filley
- Behavorial Neurology Section, Department of Neurology and Psychiatry, Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
15
|
MacDowell CJ, Tafazoli S, Buschman TJ. A Goldilocks theory of cognitive control: Balancing precision and efficiency with low-dimensional control states. Curr Opin Neurobiol 2022; 76:102606. [PMID: 35870301 PMCID: PMC9653176 DOI: 10.1016/j.conb.2022.102606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Cognitive control orchestrates interactions between brain regions, guiding the transformation of information to support contextually appropriate and goal-directed behaviors. In this review, we propose a hierarchical model of cognitive control where low-dimensional control states direct the flow of high-dimensional representations between regions. This allows cognitive control to flexibly adapt to new environments and maintain the representational capacity to capture the richness of the world.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA. https://twitter.com/CamdenMacdowell
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA. https://twitter.com/tafazolisina
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA; Department of Psychology, Princeton University, Washington Rd, Princeton, NJ, USA.
| |
Collapse
|
16
|
Mulyana B, Tsuchiyagaito A, Misaki M, Kuplicki R, Smith J, Soleimani G, Rashedi A, Shereen D, Bergman TO, Cheng S, Paulus MP, Bodurka J, Ekhtiari H. Online closed-loop real-time tES-fMRI for brain modulation: A technical report. Brain Behav 2022; 12:e2667. [PMID: 36134450 PMCID: PMC9575607 DOI: 10.1002/brb3.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity may vary with respect to phase difference, frequency, intensity, and electrode's montage among individuals. Here, we propose a protocol for closed-loop tES-fMRI to optimize the frequency and phase difference of alternating current stimulation (tACS) for two nodes (frontal and parietal regions) in individual participants. We carefully considered the challenges in an online optimization of tES parameters with concurrent fMRI, specifically in its safety, artifact in fMRI image quality, online evaluation of the tES effect, and parameter optimization method, and we designed the protocol to run an effective study to enhance frontoparietal connectivity and working memory performance with the optimized tACS using closed-loop tES-fMRI. We provide technical details of the protocol, including electrode types, electrolytes, electrode montages, concurrent tES-fMRI hardware, online fMRI processing pipelines, and the optimization algorithm. We confirmed the implementation of this protocol worked successfully with a pilot experiment.
Collapse
Affiliation(s)
- Beni Mulyana
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Electrical and Computer EngineeringUniversity of OklahomaTulsaOklahomaUSA
| | | | - Masaya Misaki
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
| | | | - Jared Smith
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
| | - Ghazaleh Soleimani
- Department of Biomedical EngineeringAmirkabir University of Technology, Tehran, Iran
- Iranian National Center for Addiction StudiesTehran University of Medical SciencesTehranIran
| | | | - Duke Shereen
- The Graduate Center of the City University of New YorkNew YorkNew YorkUSA
| | - Til Ole Bergman
- Neuroimaging Center (NIC)University Medical Center of the Johannes Gutenberg University MainzGermany
- Leibniz Institute for Resilience Research (LIR)MainzGermany
| | - Samuel Cheng
- Electrical and Computer EngineeringUniversity of OklahomaTulsaOklahomaUSA
| | | | - Jerzy Bodurka
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOklahomaUSA
| | - Hamed Ekhtiari
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
17
|
Yu M, Xiao S, Tian F, Li Y. Frontal-occipital network alterations while viewing 2D & 3D movies: a source-level EEG and graph theory approach. BIOMED ENG-BIOMED TE 2022; 67:161-172. [PMID: 35576610 DOI: 10.1515/bmt-2021-0300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
Many researchers have measured the differences in electroencephalography (EEG) while viewing 2D and 3D movies to uncover the neuromechanism underlying distinct viewing experiences. Using whole-brain network analyses of scalp EEG, our previous study reported that beta and gamma bands presented higher global efficiencies while viewing 3D movies. However, scalp EEG is influenced by volume conduction, not allowing inference from a neuroanatomy perspective; thus, source reconstruction techniques are recommended. This paper is the first to measure the differences in the frontal-occipital networks in EEG source space during 2D and 3D movie viewing. EEG recordings from 40 subjects were performed during 2D and 3D movie viewing. We constructed frontal-occipital networks of alpha, beta, and gamma bands in EEG source space and analyzed network efficiencies. We found that the beta band exhibited higher global efficiency in 3D movie viewing than in 2D movie viewing; however, the alpha global efficiency was not statistically significant. In addition, a support vector machine (SVM) classifier, taking functional connectivities as classification features, was built to identify whether the frontal-occipital networks contain patterns that could distinguish 2D and 3D movie viewing. Using the 6 most important functional connectivity features of the beta band, we obtained the best accuracy of 0.933. Our findings shed light on uncovering the neuromechanism underlying distinct experiences while viewing 2D and 3D movies.
Collapse
Affiliation(s)
- Minchang Yu
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shasha Xiao
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Feng Tian
- Shanghai Film Academy, Shanghai University, Shanghai, China
| | - Yingjie Li
- School of Life Sciences, College of International Education, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Learning induces coordinated neuronal plasticity of metabolic demands and functional brain networks. Commun Biol 2022; 5:428. [PMID: 35534605 PMCID: PMC9085889 DOI: 10.1038/s42003-022-03362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
The neurobiological basis of learning is reflected in adaptations of brain structure, network organization and energy metabolism. However, it is still unknown how different neuroplastic mechanisms act together and if cognitive advancements relate to general or task-specific changes. Therefore, we tested how hierarchical network interactions contribute to improvements in the performance of a visuo-spatial processing task by employing simultaneous PET/MR neuroimaging before and after a 4-week learning period. We combined functional PET and metabolic connectivity mapping (MCM) to infer directional interactions across brain regions. Learning altered the top-down regulation of the salience network onto the occipital cortex, with increases in MCM at resting-state and decreases during task execution. Accordingly, a higher divergence between resting-state and task-specific effects was associated with better cognitive performance, indicating that these adaptations are complementary and both required for successful visuo-spatial skill learning. Simulations further showed that changes at resting-state were dependent on glucose metabolism, whereas those during task performance were driven by functional connectivity between salience and visual networks. Referring to previous work, we suggest that learning establishes a metabolically expensive skill engram at rest, whose retrieval serves for efficient task execution by minimizing prediction errors between neuronal representations of brain regions on different hierarchical levels. Brain network analyses reveal coupled changes between functional connectivity and metabolic demands that relate to cognitive performance improvements induced by learning a challenging visuo-spatial task for four weeks.
Collapse
|
19
|
Kawagoe T. Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life (Basel) 2022; 12:416. [PMID: 35330167 PMCID: PMC8953678 DOI: 10.3390/life12030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
This special issue concerning Brain Functional and Structural Connectivity and Cognition aims to expand our understanding of brain connectivity. Herein, I review related topics including the principle and concepts of functional MRI, brain activation, and functional/structural connectivity in aging for uninitiated readers. Visuospatial attention, one of the well-studied functions in aging, is discussed from the perspective of neuroimaging.
Collapse
Affiliation(s)
- Toshikazu Kawagoe
- Liberal Arts Education Centre, Kyushu Campus, Tokai University, Toroku 9-1-1, Kumamoto-City 862-8652, Kumamoto, Japan
| |
Collapse
|
20
|
Zhao J, Wang J, Huang C, Liang P. Involvement of the dorsal and ventral attention networks in visual attention span. Hum Brain Mapp 2022; 43:1941-1954. [PMID: 34984762 PMCID: PMC8933248 DOI: 10.1002/hbm.25765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Visual attention span (VAS), which refers to the window size of multielement parallel processing in a short time, plays an important role in higher‐level cognition (e.g., reading) as required by encoding large amounts of information input. However, it is still a matter of debate about the underlying neural mechanism of VAS. In the present study, a modified visual 1‐back task was designed by using nonverbal stimuli and nonverbal responses, in which possible influences of target presence and position were considered to identify more pure VAS processing. A task‐driven functional magnetic resonance imaging (fMRI) experiment was then performed, and 30 healthy adults participated in this study. Results of confirmatory and exploratory analyses consistently revealed that both dorsal attention network (DAN) and ventral attention network (VAN) were significantly activated during this visual simultaneous processing. In particular, more significant activation in the left superior parietal lobule (LSPL), as compared to that in the bilateral inferior frontal gyrus (IFGs), suggested a greater involvement of DAN in VAS‐related processing in contrast to VAN. In addition, it was also found that the activation in temporoparietal junctions (TPJs) were suppressed during multielement processing only in the target‐absent condition. The current results suggested the recruitment of LSPL in covert attentional shifts and top‐down control of VAS resources distribution during the rapid visual simultaneous processing, as well as the involvement of bilateral IFGs (especially RIFG) in both VAS processing and inhibitory control. The present findings might bring some enlightenments for diagnosis of the atypicality of attentional disorders and reading difficulties.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Junkai Wang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Chen Huang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Peipeng Liang
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
21
|
Kumar M, Singh S, Rana P, Modi S, Sekhri T, Kanwar R, D'Souza M, Khushu S. Brain functional connectivity in patients with hyperthyroidism after anti-thyroid treatment. J Neuroendocrinol 2022; 34:e13075. [PMID: 34905237 DOI: 10.1111/jne.13075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Thyroid disease is known to affect brain metabolism and cognitive function, although the recovery of thyroid-induced brain functional changes after treatment remains unclear. We aimed to investigate the alteration in brain functional connectivity and its correlation with neuropsychological variables in hyperthyroid patients before and after anti-thyroid treatment using a resting-state functional magnetic resonance imaging (rsfMRI) technique. This is a follow-up rsfMRI study of previous work that showed impaired brain functional connectivity in hyperthyroid patients compared to healthy controls. We included rsfMRI and neuropsychological data from 21 hyperthyroid patients out of an original cohort of 28 patients, before and after anti-thyroid treatment for 30 weeks. Functional connectivity analysis and neuropsychological scores were compared using paired t tests in patients at baseline and at follow-up. Patients showed an improvement in some of the memory (p < .05) and executive, visuospatial and motor (p < .001) functions after treatment, and also showed increased functional connectivity in the regions of the right fronto-parietal network, left fronto-parietal network, and default mode network (DMN) (p < .05). At follow-up, the functional connectivity of the right fronto-parietal network showed a significantly positive correlation with the recognition of objects memory score. The overall findings suggest that anti-thyroid treatment with carbimazole improves the functional connectivity within some of the resting state networks in the hyperthyroid patients, whereas the remaining networks still show impairment.
Collapse
Affiliation(s)
- Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Sadhana Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Shilpi Modi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Tarun Sekhri
- Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Ratnesh Kanwar
- Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Maria D'Souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India
| |
Collapse
|
22
|
Guo P, Lang S, Jiang M, Wang Y, Zeng Z, Wen Z, Liu Y, Chen BT. Alterations of Regional Homogeneity in Children With Congenital Sensorineural Hearing Loss: A Resting-State fMRI Study. Front Neurosci 2021; 15:678910. [PMID: 34690668 PMCID: PMC8526795 DOI: 10.3389/fnins.2021.678910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Brain functional alterations have been observed in children with congenital sensorineural hearing loss (CSNHL). The purpose of this study was to assess the alterations of regional homogeneity in children with CSNHL. Methods: Forty-five children with CSNHL and 20 healthy controls were enrolled into this study. Brain resting-state functional MRI (rs-fMRI) for regional homogeneity including the Kendall coefficient consistency (KCC-ReHo) and the coherence-based parameter (Cohe-ReHo) was analyzed and compared between the two groups, i.e., the CSNHL group and the healthy control group. Results: Compared to the healthy controls, children with CSNHL showed increased Cohe-ReHo values in left calcarine and decreased values in bilateral ventrolateral prefrontal cortex (VLPFC) and right dorsolateral prefrontal cortex (DLPFC). Children with CSNHL also had increased KCC-ReHo values in the left calcarine, cuneus, precentral gyrus, and right superior parietal lobule (SPL) and decreased values in the left VLPFC and right DLPFC. Correlations were detected between the ReHo values and age of the children with CSNHL. There were positive correlations between ReHo values in the pre-cuneus/pre-frontal cortex and age (p < 0.05). There were negative correlations between ReHo values in bilateral temporal lobes, fusiform gyrus, parahippocampal gyrus and precentral gyrus, and age (p < 0.05). Conclusion: Children with CSNHL had RoHo alterations in the auditory, visual, motor, and other related brain cortices as compared to the healthy controls with normal hearing. There were significant correlations between ReHo values and age in brain regions involved in information integration and processing. Our study showed promising data using rs-fMRI ReHo parameters to assess brain functional alterations in children with CSNHL.
Collapse
Affiliation(s)
- Pingping Guo
- Department of Medical Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Siyuan Lang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muliang Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zisan Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuguang Wen
- Department of Radiology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yikang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
23
|
Internal manipulation of perceptual representations in human flexible cognition: A computational model. Neural Netw 2021; 143:572-594. [PMID: 34332343 DOI: 10.1016/j.neunet.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Executive functions represent a set of processes in goal-directed cognition that depend on integrated cortical-basal ganglia brain systems and form the basis of flexible human behaviour. Several computational models have been proposed for studying cognitive flexibility as a key executive function and the Wisconsin card sorting test (WCST) that represents an important neuropsychological tool to investigate it. These models clarify important aspects that underlie cognitive flexibility, particularly decision-making, motor response, and feedback-dependent learning processes. However, several studies suggest that the categorisation processes involved in the solution of the WCST include an additional computational stage of category representation that supports the other processes. Surprisingly, all models of the WCST ignore this fundamental stage and they assume that decision making directly triggers actions. Thus, we propose a novel hypothesis where the key mechanisms of cognitive flexibility and goal-directed behaviour rely on the acquisition of suitable representations of percepts and their top-down internal manipulation. Moreover, we propose a neuro-inspired computational model to operationalise this hypothesis. The capacity of the model to support cognitive flexibility was validated by systematically reproducing and interpreting the behaviour exhibited in the WCST by young and old healthy adults, and by frontal and Parkinson patients. The results corroborate and further articulate the hypothesis that the internal manipulation of representations is a core process in goal-directed flexible cognition.
Collapse
|
24
|
Zhang Z, Luh WM, Duan W, Zhou GD, Weinschenk G, Anderson AK, Dai W. Longitudinal effects of meditation on brain resting-state functional connectivity. Sci Rep 2021; 11:11361. [PMID: 34059702 PMCID: PMC8166909 DOI: 10.1038/s41598-021-90729-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Changes in brain resting-state functional connectivity (rsFC) were investigated using a longitudinal design by following a 2-month focused attention meditation (FAM) practice and analyzing their association with FAM practice time. Ten novice meditators were recruited from a university meditation course. Participants were scanned with a resting-state fMRI sequence with multi-echo EPI acquisition at baseline and at the 2-month follow-up. Total FAM practice time was calculated from the daily log of the participants. We observed significantly increased rsFC between the posterior cingulate cortex (PCC) and dorsal attention network (DAN), the right middle temporal (RMT) region and default mode network (DMN), the left and right superior parietal lobules (LSPL/RSPL) and DMN, and the LSPL/RSPL and DAN. Furthermore, the rsFC between the LSPL and medial prefrontal cortex was significantly associated with the FAM practice time. These results demonstrate increased connectivity within the DAN, between the DMN and DAN, and between the DMN and visual cortex. These findings demonstrate that FAM can enhance the brain connection among and within brain networks, especially DMN and DAN, indicating potential effect of FAM on fast switching between mind wandering and focused attention and maintaining attention once in the attentive state.
Collapse
Affiliation(s)
- Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Wen-Ming Luh
- National Institute on Aging, National Institute of Health, Baltimore, MD, 21225, USA
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Grace D Zhou
- Department of Human Development, Cornell University, Ithaca, NY, 14853, USA
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA
| | - Adam K Anderson
- Department of Human Development, Cornell University, Ithaca, NY, 14853, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Pkwy E, Binghamton, NY, 13902, USA.
| |
Collapse
|
25
|
Taylor BK, Eastman JA, Frenzel MR, Embury CM, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence. Dev Cogn Neurosci 2021; 49:100961. [PMID: 33984667 PMCID: PMC8131898 DOI: 10.1016/j.dcn.2021.100961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
A cohort of 9- to 16-year-olds completed a classic flanker task during MEG. There were developmentally-sensitive interference effects in key attention regions. Youth showed sexually-divergent patterns of age-related interference activity. Maturational differences among males supported improved task behavior.
Selective attention processes are critical to everyday functioning and are known to develop through at least young adulthood. Although numerous investigations have studied the maturation of attention systems in the brain, these studies have largely focused on the spatial configuration of these systems; there is a paucity of research on the neural oscillatory dynamics serving selective attention, particularly among youth. Herein, we examined the developmental trajectory of neural oscillatory activity serving selective attention in 53 typically developing youth age 9-to-16 years-old. Participants completed the classic arrow-based flanker task during magnetoencephalography, and the resulting data were imaged in the time-frequency domain. Flanker interference significantly modulated theta and alpha/beta oscillations within prefrontal, mid-cingulate, cuneus, and occipital regions. Interference-related neural activity also increased with age in the temporoparietal junction and the rostral anterior cingulate. Sex-specific effects indicated that females had greater theta interference activity in the anterior insula, whereas males showed differential effects in theta and alpha/beta oscillations across frontoparietal regions. Finally, males showed age-related changes in alpha/beta interference in the cuneus and middle frontal gyrus, which predicted improved behavioral performance. Taken together, these data suggest sexually-divergent developmental trajectories underlying selective attention in youth.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| |
Collapse
|
26
|
Wang H, Wen H, Li J, Chen Q, Li S, Wang Y, Wang Z. Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study. Korean J Radiol 2021; 22:1142-1151. [PMID: 33987989 PMCID: PMC8236370 DOI: 10.3348/kjr.2020.0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Objective To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = −0.448 to −0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Attention allocation is a possible mediator of cultural variations in spontaneous trait and situation inferences: Eye-tracking evidence. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2021. [DOI: 10.1016/j.jesp.2021.104115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Li R, Hu C, Wang L, Liu D, Liu D, Liao W, Xiao B, Chen H, Feng L. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy. Brain Imaging Behav 2021; 14:762-771. [PMID: 30617780 DOI: 10.1007/s11682-018-0014-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growing evidence has demonstrated widespread brain network alterations in temporal lobe epilepsy (TLE). However, the relatively accurate portrait of the subcortical-cortical relationship for impaired consciousness in TLE remains unclear. We proposed that consciousness-impairing seizures may invade subcortical arousal system and corresponding cortical regions, resulting in functional abnormalities and information flow disturbances between subcortical and cortical networks. We performed resting-state fMRI in 26 patients with TLE and 30 matched healthy controls. All included patients were diagnosed with impaired awareness during focal temporal lobe seizures. Functional connectivity density was adopted to determine whether local or distant network alterations occurred in TLE, and Granger causality analysis (GCA) was utilized to assess the direction and magnitude of causal influence among these altered brain networks further. Patients showed increased local functional connectivity in several arousal structures, such as the midbrain, thalamus, and cortical regions including bilateral prefrontal cortex (PFC), left superior temporal pole, left posterior insula, and cerebellum (P < 0.05, FDR corrected). GCA analysis revealed that the casual effects among these regions in patients were significantly sparser than those in controls (P < 0.05, uncorrected), including decreased excitatory and inhibitory effects among the midbrain, thalamus and PFC, and decreased inhibitory effect from the cerebellum to PFC. These findings suggested that consciousness-impairing seizures in TLE are associated with functional alterations and disruption of information process between the subcortical arousal system and cortical network. Understanding the functional networks and innervation pathway involved in TLE can provide insights into the mechanism underlying seizure-related loss of consciousness.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Chongyu Hu
- Department of Neurology, Hunan Provincial People's Hospital, Changsha, 410005, People's Republic of China
| | - Liangcheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
29
|
De Koninck BP, Guay S, Blais H, De Beaumont L. Parametric study of transcranial alternating current stimulation for brain alpha power modulation. Brain Commun 2021; 3:fcab010. [PMID: 34085039 PMCID: PMC8165484 DOI: 10.1093/braincomms/fcab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Transcranial alternating current stimulation, a non-invasive brain stimulation technique, has been used to increase alpha (8-12 Hz) power, the latter being associated with various brain functions and states. Heterogeneity among stimulation parameters across studies makes it difficult to implement reliable transcranial alternating current stimulation protocols, explaining the absence of consensus on optimal stimulation parameters to modulate the alpha rhythm. This project documents the differential impact of controlling for key transcranial alternating current stimulation parameters, namely the intensity, the frequency and the stimulation site (anterior versus posterior). Phase 1:20 healthy participants underwent 4 different stimulation conditions. In each experimental condition, stimulation via 2 electrodes was delivered for 20 min. Stimulation conditions were administered at PO7-PO8 or F3-F4 at individual's alpha frequency, or at individual's theta frequency or sham. Stimulation intensity was set according to each participant's comfort following a standardized unpleasantness scale (≤ 40 out of 100) and could not exceed 6 mA. All conditions were counterbalanced. Phase 2: participants who tolerated higher intensity of stimulation (4-6 mA) underwent alpha-frequency stimulation applied over PO7-PO8 at 1 mA to investigate within-subject modulation of stimulation response according to stimulation intensity. Whether set over posterior or anterior cortical sites, alpha-frequency stimulation showed greater increase in alpha power relative to stimulation at theta frequency and sham stimulation. Posterior alpha-frequency stimulation showed a greater increase in alpha power relative to the adjacent frequency bands over frontal and occipito-parietal brain areas. Low intensity (1 mA) posterior alpha stimulation showed a similar increase in alpha power than at high (4-6 mA) intensity when measured immediately after stimulation. However, when tested at 60 min or 120 min, low intensity stimulation was associated with significantly superior alpha power increase relative to high intensity stimulation. This study shows that posterior individual's alpha frequency stimulation at higher intensities is well tolerated but fails to increase stimulation aftereffects recorded within 2 h of stimulation on brain oscillations of the corresponding frequency band. In sharp contrast, stimulating at 1 mA (regardless of phosphene generation or sensory perception) effectively and selectively modulates alpha power within that 2-h time window, thus validating that it as a reliable stimulus intensity for future studies. This study also shows that posterior alpha-frequency stimulation preferentially modulates endogenous brain oscillations of the corresponding frequency band. Moreover, our data suggest that posterior alpha-frequency transcranial alternating current stimulation is a reliable and precise non-invasive brain stimulation technique for persistent modulation of both frontal and occipito-parietal alpha power.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Samuel Guay
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Hélène Blais
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
| | - Louis De Beaumont
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| |
Collapse
|
30
|
Gaillard C, Ben Hamed S. The neural bases of spatial attention and perceptual rhythms. Eur J Neurosci 2020; 55:3209-3223. [PMID: 33185294 DOI: 10.1111/ejn.15044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
Attentional processes allow the brain to overcome its processing capacities limitations by enhancing relevant visual information and suppressing irrelevant information. Thus attention plays a critical role, shaping our perception of the world. Several models have been proposed to describe the neuronal bases of attention and its mechanistic underlyings. Recent electrophysiological evidence show that attentional processes rely on oscillatory brain activities that correlate with rhythmic changes in cognitive performance. In the present review, we first take a historical perspective on how attention is viewed, from the initial spotlight theory of attention to the recent dynamic view of attention selection and we review their supporting psychophysical evidence. Based on recent prefrontal electrophysiological evidence, we refine the most recent models of attention sampling by proposing a rhythmic and continuous model of attentional sampling. In particular, we show that attention involves a continuous exploration of space, shifting within and across visual hemifield at specific alpha and theta rhythms, independently of the current attentional load. In addition, we show that this prefrontal attentional spotlight implements conjointly selection and suppression mechanisms, and is captured by salient incoming items. Last, we argue that this attention spotlight implements a highly flexible alternation of attentional exploration and exploitation epochs, depending on ongoing task contingencies. In a last part, we review the local and network oscillatory mechanisms that correlate with rhythmic attentional sampling, describing multiple rhythmic generators and complex network interactions.
Collapse
Affiliation(s)
- Corentin Gaillard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, Université de Lyon - CNRS, Bron, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, Université de Lyon - CNRS, Bron, France
| |
Collapse
|
31
|
Fitzhugh MC, Schaefer SY, Baxter LC, Rogalsky C. Cognitive and neural predictors of speech comprehension in noisy backgrounds in older adults. LANGUAGE, COGNITION AND NEUROSCIENCE 2020; 36:269-287. [PMID: 34250179 PMCID: PMC8261331 DOI: 10.1080/23273798.2020.1828946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2020] [Indexed: 06/13/2023]
Abstract
Older adults often experience difficulties comprehending speech in noisy backgrounds, which hearing loss does not fully explain. It remains unknown how cognitive abilities, brain networks, and age-related hearing loss may uniquely contribute to speech in noise comprehension at the sentence level. In 31 older adults, using cognitive measures and resting-state fMRI, we investigated the cognitive and neural predictors of speech comprehension with energetic (broadband noise) and informational masking (multi-speakers) effects. Better hearing thresholds and greater working memory abilities were associated with better speech comprehension with energetic masking. Conversely, faster processing speed and stronger functional connectivity between frontoparietal and language networks were associated with better speech comprehension with informational masking. Our findings highlight the importance of the frontoparietal network in older adults' ability to comprehend speech in multi-speaker backgrounds, and that hearing loss and working memory in older adults contributes to speech comprehension abilities related to energetic, but not informational masking.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA
- College of Health Solutions, Arizona State University, Tempe, AZ
| | - Sydney Y. Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | | | | |
Collapse
|
32
|
Semjonova G, Vetra J, Cauce V, Oks A, Katashev A, Eizentals P. Improving the Recovery of Patients with Subacromial Pain Syndrome with the DAid Smart Textile Shirt. SENSORS 2020; 20:s20185277. [PMID: 32942730 PMCID: PMC7570826 DOI: 10.3390/s20185277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
Wearable technologies provide many possibilities for applications in medicine, and especially in physiotherapy, where tracking and evaluation of body motion are of utmost importance. Despite the existence of multiple smart garments produced for applications in physiotherapy, there is limited information available on the actual impact of these technologies on the clinical outcomes. The objective of this paper is to evaluate the impact of the Double Aid (DAid) smart shirt, a purely textile-based system, on the training process of patients with subacromial pain syndrome. A randomized controlled trial was performed where patients with subacromial pain syndrome had to perform the assigned training exercises while employing the DAid smart shirt system. The core point of each exercise was to perform a movement while holding the shoulders stationary. The smart shirt was designed to sense even slight shoulder motion thus providing the patient with feedback on the accuracy of the motion, and allowing the patient to adjust the movement. The appropriate muscles should be strengthened through an increased effort to control the shoulder motion. The recovery of patients using the feedback system at the end of the treatment was compared to that of a reference group through standardized tests—the Disabilities of the Arm, Shoulder, and Hand score (DASH score), Closed Kinetic Chain Upper Extremity Stability test (CKCUES test), and internal/external rotation ratio. The test group that used the DAid system demonstrated significantly better results of the performed tests for all applied outcome measures compared to the reference group (p < 0.001). An overall positive impact on the patient recovery was observed from the DAid smart shirt system when applied for rehabilitation training of patients with subacromial pain syndrome.
Collapse
Affiliation(s)
- Guna Semjonova
- Department of Morphology, Faculty of Medicine, Riga Stradins University, LV-1010 Riga, Latvia; (G.S.); (J.V.)
| | - Janis Vetra
- Department of Morphology, Faculty of Medicine, Riga Stradins University, LV-1010 Riga, Latvia; (G.S.); (J.V.)
| | - Vinita Cauce
- Statistics Unit, Faculty of Medicine, Riga Stradins University, LV-1046 Riga, Latvia;
| | - Alexander Oks
- Institute of Design Technologies, Riga Technical University, LV-1048 Riga, Latvia;
| | - Alexei Katashev
- Institute of Biomedical Engineering and Nanotechnology, Riga Technical University, LV-1048 Riga, Latvia;
| | - Peteris Eizentals
- Institute of Biomedical Engineering and Nanotechnology, Riga Technical University, LV-1048 Riga, Latvia;
- Correspondence:
| |
Collapse
|
33
|
Tu MC, Hsu YH, Yang JJ, Huang WH, Deng JF, Lin SY, Lin CY, Kuo LW. Attention and Functional Connectivity Among Patients With Early-Stage Subcortical Ischemic Vascular Disease and Alzheimer's Disease. Front Aging Neurosci 2020; 12:239. [PMID: 32903858 PMCID: PMC7439096 DOI: 10.3389/fnagi.2020.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
The current study compared attention profiles and functional connectivity of frontal regions in patients with early-stage subcortical ischemic vascular disease (SIVD) and Alzheimer's disease (AD). Twenty patients with SIVD, 32 patients with AD, and 23 subjects with normal cognition (NC) received cognition and resting-state functional MRI (rs-fMRI) evaluations. The Cognitive Abilities Screening Instrument (CASI) was used to assess global cognition, and simple attention, processing speed, divided attention, and vigilance/sustained attention were evaluated using the Digit Span Forward, Trail Making Test, Symbol Digit Modality Test, and Conners Continuous Performance Test, respectively. Voxel-based regional homogeneity (ReHo) derived from rs-fMRI data was analyzed to identify significant clusters, which were further correlated with attention profiles. Although the patients with SIVD and AD had comparable global cognitive ability, those with SIVD exhibited worse divided attention and vigilance/sustained attention than those with AD. Compared with the NC group, the patients with SIVD exhibited decreased ReHo within the right middle frontal gyrus (MFG) and left anterior cingulate gyrus (ACG), whereas the patients with AD exhibited increased ReHo within the right orbital part of frontal regions. Correlations between these three clusters with attention exhibited distinct patterns according to the dementia subtype, as did attention indices with significance in predicting global cognition. In summary, our study suggested that worse attention performance was associated with functional disconnection within the frontal regions among patients with SIVD than in those with AD. Frontal functional disconnection may underlie the pathogenesis responsible for defective divided attention, vigilance/sustained attention, and notable within-group variations identified in SIVD.
Collapse
Affiliation(s)
- Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| | - Jir-Jei Yang
- Department of Medical Imaging, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Wen-Hui Huang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Jie Fu Deng
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Shih-Yen Lin
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | | | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Ren Y, Pan L, Du X, Hou Y, Li X, Song Y. Functional brain network mechanism of executive control dysfunction in temporal lobe epilepsy. BMC Neurol 2020; 20:137. [PMID: 32295523 PMCID: PMC7161158 DOI: 10.1186/s12883-020-01711-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Executive control dysfunction is observed in a sizable number of patients with temporal lobe epilepsy (TLE). Neural oscillations in the theta band are increasingly recognized as having a crucial role in executive control network. The purpose of this study was to investigate the alterations in the theta band in executive control network and explore the functional brain network mechanisms of executive control dysfunction in TLE patients. Methods A total of 20 TLE patients and 20 matched healthy controls (HCs) were recruited in the present study. All participants were trained to perform the executive control task by attention network test while the scalp electroencephalogram (EEG) data were recorded. The resting state signals were collected from the EEG in the subjects with quiet and closed eyes conditions. Functional connectivity among EEGs in the executive control network and resting state network were respectively calculated. Results We found the significant executive control impairment in the TLE group. Compared to the HCs, the TLE group showed significantly weaker functional connectivity among EEGs in the executive control network. Moreover, in the TLE group, we found that the functional connectivity was significantly positively correlated with accuracy and negatively correlated with EC_effect. In addition, the functional connectivity of the executive control network was significantly higher than that of the resting state network in the HCs. In the TLE group, however, there was no significant change in functional connectivity strengths between the executive control network and resting state network. Conclusion Our results indicate that the decreased functional connectivity in theta band may provide a potential mechanism for executive control deficits in TLE patients.
Collapse
Affiliation(s)
- Yanping Ren
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Liping Pan
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xueyun Du
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yuying Hou
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xun Li
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|
35
|
Wu J, Hameed NF. Functional remodeling of brain language networks. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_12_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Jennings JE, Kassam AB, Fukui MB, Monroy-Sosa A, Chakravarthi S, Kojis N, Rovin RA. The Surgical White Matter Chassis: A Practical 3-Dimensional Atlas for Planning Subcortical Surgical Trajectories. Oper Neurosurg (Hagerstown) 2019; 14:469-482. [PMID: 28961936 DOI: 10.1093/ons/opx177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/13/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The imperative role of white matter preservation in improving surgical functional outcomes is now recognized. Understanding the fundamental white matter framework is essential for translating the anatomic and functional literature into practical strategies for surgical planning and neuronavigation. OBJECTIVE To present a 3-dimensional (3-D) atlas of the structural and functional scaffolding of human white matter-ie, a "Surgical White Matter Chassis (SWMC)"-that can be used as an organizational tool in designing precise and individualized trajectory-based neurosurgical corridors. METHODS Preoperative diffusion tensor imaging magnetic resonance images were obtained prior to each of our last 100 awake subcortical resections, using a clinically available 3.0 Tesla system. Tractography was generated using a semiautomated deterministic global seeding algorithm. Tract data were conceptualized as a 3-D modular chassis based on the 3 major fiber types, organized along median and paramedian planes, with special attention to limbic and neocortical association tracts and their interconnections. RESULTS We discuss practical implementation of the SWMC concept, and highlight its use in planning select illustrative cases. Emphasis has been given to developing practical understanding of the arcuate fasciculus, uncinate fasciculus, and vertical rami of the superior longitudinal fasciculus, which are often-neglected fibers in surgical planning. CONCLUSION A working knowledge of white matter anatomy, as embodied in the SWMC, is of paramount importance to the planning of parafascicular surgical trajectories, and can serve as a basis for developing reliable safe corridors, or modules, toward the goal of "zero-footprint" transsulcal access to the subcortical space.
Collapse
Affiliation(s)
- Jonathan E Jennings
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Amin B Kassam
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Melanie B Fukui
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Alejandro Monroy-Sosa
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Srikant Chakravarthi
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Nathan Kojis
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Richard A Rovin
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
37
|
Maksimenko VA, Frolov NS, Hramov AE, Runnova AE, Grubov VV, Kurths J, Pisarchik AN. Neural Interactions in a Spatially-Distributed Cortical Network During Perceptual Decision-Making. Front Behav Neurosci 2019; 13:220. [PMID: 31607873 PMCID: PMC6769171 DOI: 10.3389/fnbeh.2019.00220] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Behavioral experiments evidence that attention is not maintained at a constant level, but fluctuates with time. Recent studies associate such fluctuations with dynamics of attention-related cortical networks, however the exact mechanism remains unclear. To address this issue, we consider functional neuronal interactions during the accomplishment of a reaction time (RT) task which requires sustained attention. The participants are subjected to a binary classification of a large number of presented ambiguous visual stimuli with different degrees of ambiguity. Generally, high ambiguity causes high RT and vice versa. However, we demonstrate that RT fluctuates even when the stimulus ambiguity remains unchanged. The analysis of neuronal activity reveals that the subject's behavioral response is preceded by the formation of a distributed functional network in the β-frequency band. This network is characterized by high connectivity in the frontal cortex and supposed to subserve a decision-making process. We show that neither the network structure nor the duration of its formation depend on RT and stimulus ambiguity. In turn, RT is related to the moment of time when the β-band functional network emerges. We hypothesize that RT is affected by the processes preceding the decision-making stage, e.g., encoding visual sensory information and extracting decision-relevant features from raw sensory information.
Collapse
Affiliation(s)
- Vladimir A Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Nikita S Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Alexander E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Anastasia E Runnova
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Vadim V Grubov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Jürgen Kurths
- Research Domain IV "Complexity Science", Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Faculty of Biology, Saratov State University, Saratov, Russia
| | - Alexander N Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| |
Collapse
|
38
|
Ahrens MM, Veniero D, Freund IM, Harvey M, Thut G. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex 2019; 117:168-181. [DOI: 10.1016/j.cortex.2019.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
|
39
|
Santos TEG, Baggio JAO, Rondinoni C, Machado L, Weber KT, Stefano LH, Santos AC, Pontes-Neto OM, Leite JP, Edwards DJ. Fractional Anisotropy of Thalamic Nuclei Is Associated With Verticality Misperception After Extra-Thalamic Stroke. Front Neurol 2019; 10:697. [PMID: 31379702 PMCID: PMC6650785 DOI: 10.3389/fneur.2019.00697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Verticality misperception after stroke is a frequent neurological deficit that leads to postural imbalance and a higher risk of falls. The posterior thalamic nuclei are described to be involved with verticality perception, but it is unknown if extra-thalamic lesions can have the same effect via diaschisis and degeneration of thalamic nuclei. We investigated the relationship between thalamic fractional anisotropy (FA, a proxy of structural integrity), and verticality perception, in patients after stroke with diverse encephalic extra-thalamic lesions. We included 11 first time post-stroke patients with extra-thalamic primary lesions, and compared their region-based FA to a group of 25 age-matched healthy controls. For the patient sample, correlation and regression analyses evaluated the relationship between thalamic nuclei FA and error of postural vertical (PV) and haptic vertical (HV) in the roll (PVroll/HVroll) and pitch planes (PVpitch/HVpitch). Relative to controls, patients showed decreased FA of anterior, ventral anterior, ventral posterior lateral, dorsal, and pulvinar thalamic nuclei, despite the primary lesions being extra-thalamic. We found a significant correlation between HVroll, and FA in the anterior and dorsal nuclei, and PVroll with FA in the anterior nucleus. FA in the anterior, ventral anterior, ventral posterior lateral, dorsal and pulvinar nuclei predicted PV, and FA in the ventral anterior, ventral posterior lateral and dorsal nuclei predicted HV. While prior studies indicate that primary lesions of the thalamus can result in verticality misperception, here we present evidence supporting that secondary degeneration of thalamic nuclei via diaschisis can also be associated with verticality misperception after stroke.
Collapse
Affiliation(s)
- Taiza E. G. Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jussara A. O. Baggio
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlo Rondinoni
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Laura Machado
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karina T. Weber
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz H. Stefano
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antonio C. Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Octavio M. Pontes-Neto
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Joao P. Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Dylan J. Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
40
|
Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children. Brain Connect 2019; 9:580-592. [PMID: 31144523 DOI: 10.1089/brain.2019.0679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The American Academy of Pediatrics recommends that parents read with their children early and often and limits on screen-based media. While book sharing may benefit attention in children, effects of animated content are controversial, and the influence of either on attention networks has not previously been studied. This study involved functional magnetic resonance imaging (fMRI) of three separate active-task scans composed of similar 5-min stories presented in the same order for each child (audio → illustrated → animated), followed by assessment of comprehension. Five functional brain networks were defined a priori through literature review: dorsal attention network (DAN), ventral attention network (VAN), language (L), visual imagery (VI), and visual perception (VP). Analyses involved comparison of functional connectivity (FC) within- and between networks across formats, applying false discovery rate correction. Twenty-seven of 33 children completed fMRI (82%; 15 boys, 12 girls; mean 58 ± 8 months old). Comprehension of audio and illustrated stories was equivalent and lower for animation (p < 0.05). For illustration relative to audio, FC within DAN and VAN and between each of these and all other networks was similar, lower within-L, and higher between VI-VP, suggesting reduced strain on the language network using illustrations and imagery. For animation relative to illustration, FC was lower between DAN-L, VAN-VP, VAN-VI, L-VI, and L-VP, suggesting less focus on narrative, reorienting to imagery, and visual-language integration. These findings suggest that illustrated storybooks may be optimal at this age to encourage integration of attention, visual, and language networks, while animation may bias attention toward VP.
Collapse
Affiliation(s)
- John S Hutton
- Division of General and Community Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Reading and Literacy Discovery Center, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Pediatric Neuroimaging Research Consortium, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tzipi Horowitz-Kraus
- Division of General and Community Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Reading and Literacy Discovery Center, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Pediatric Neuroimaging Research Consortium, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Educational Neuroimaging Center, Technion, Israel
| | - Tom DeWitt
- Division of General and Community Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Reading and Literacy Discovery Center, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Scott K Holland
- Reading and Literacy Discovery Center, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Pediatric Neuroimaging Research Consortium, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Medpace, Inc., Cincinnati, Ohio
| |
Collapse
|
41
|
Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Parisi V, Serrao M, Calistri V, Tardioli S, Cartocci G, Schoenen J, Caramia F, Di Piero V, Pierelli F. Aberrant interactions of cortical networks in chronic migraine. Neurology 2019; 92:e2550-e2558. [DOI: 10.1212/wnl.0000000000007577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
ObjectiveWe investigated resting-state (RS)-fMRI using independent component analysis (ICA) to determine the functional connectivity (FC) between networks in chronic migraine (CM) patients and their correlation with clinical features.MethodsTwenty CM patients without preventive therapy or acute medication overuse underwent 3T MRI scans and were compared to a group of 20 healthy controls (HC). We used MRI to collect RS data in 3 selected networks, identified using group ICA: the default mode network (DMN), the executive control network (ECN), and the dorsal attention system (DAS).ResultsCompared to HC, CM patients had significantly reduced functional connectivity between the DMN and the ECN. Moreover, in patients, the DAS showed significantly stronger FC with the DMN and weaker FC with the ECN. The higher the severity of headache, the increased the strength of DAS connectivity, and the lower the strength of ECN connectivity.ConclusionThese results provide evidence for large-scale reorganization of functional cortical networks in chronic migraine. They suggest that the severity of headache is associated with opposite connectivity patterns in frontal executive and dorsal attentional networks.
Collapse
|
42
|
Ortiz-Mantilla S, Cantiani C, Shafer VL, Benasich AA. Minimally-verbal children with autism show deficits in theta and gamma oscillations during processing of semantically-related visual information. Sci Rep 2019; 9:5072. [PMID: 30911038 PMCID: PMC6433949 DOI: 10.1038/s41598-019-41511-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
To acquire language, children must build phonemic representations of their native language, learn to associate auditory words to visual objects and assemble a lexicon. It is not clear however, whether the limited linguistic ability seen in minimally-verbal (MV) children with Autism Spectrum Disorder (ASD) relates to deficits in cortical representation of an object and/or in linking an object to its semantic information. This EEG-based study investigated neural mechanisms underlying visual processing of common objects in MV-ASD and control children. Ten MV-ASD children, 4- to 7- years-old and 15 age/gender-matched controls, were presented with a picture-word matching paradigm. Time-frequency analyses were conducted at the sources generating the event-related responses at both early and late visual processing. Permutation testing identified spectral power and phase coherence clusters that significantly differed between the groups. As compared to controls, MV-ASD children exhibited smaller amplitudes and longer source latencies; decreased gamma and theta power with less theta phase coherence in occipital regions, and reduced frontal gamma power. Our results confirm that visual processing is altered in MV-ASD children and suggest that some of the linguistic differences observed in these children arise from impaired object/label cortical representations and reduced allocation of attention, which would impact lexical acquisition.
Collapse
Affiliation(s)
- Silvia Ortiz-Mantilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| | - Chiara Cantiani
- Scientific Institute, IRCCS E. Medea, Child Psychopatology Unit, Bosisio Parini, Lecco, Italy
| | | | - April A Benasich
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
43
|
Matusz PJ, Turoman N, Tivadar RI, Retsa C, Murray MM. Brain and Cognitive Mechanisms of Top–Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging. J Cogn Neurosci 2019; 31:412-430. [DOI: 10.1162/jocn_a_01360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In real-world environments, information is typically multisensory, and objects are a primary unit of information processing. Object recognition and action necessitate attentional selection of task-relevant from among task-irrelevant objects. However, the brain and cognitive mechanisms governing these processes remain not well understood. Here, we demonstrate that attentional selection of visual objects is controlled by integrated top–down audiovisual object representations (“attentional templates”) while revealing a new brain mechanism through which they can operate. In multistimulus (visual) arrays, attentional selection of objects in humans and animal models is traditionally quantified via “the N2pc component”: spatially selective enhancements of neural processing of objects within ventral visual cortices at approximately 150–300 msec poststimulus. In our adaptation of Folk et al.'s [Folk, C. L., Remington, R. W., & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044, 1992] spatial cueing paradigm, visual cues elicited weaker behavioral attention capture and an attenuated N2pc during audiovisual versus visual search. To provide direct evidence for the brain, and so, cognitive, mechanisms underlying top–down control in multisensory search, we analyzed global features of the electrical field at the scalp across our N2pcs. In the N2pc time window (170–270 msec), color cues elicited brain responses differing in strength and their topography. This latter finding is indicative of changes in active brain sources. Thus, in multisensory environments, attentional selection is controlled via integrated top–down object representations, and so not only by separate sensory-specific top–down feature templates (as suggested by traditional N2pc analyses). We discuss how the electrical neuroimaging approach can aid research on top–down attentional control in naturalistic, multisensory settings and on other neurocognitive functions in the growing area of real-world neuroscience.
Collapse
Affiliation(s)
- Pawel J. Matusz
- University of Applied Sciences Western Switzerland (HES-SO Valais)
- University Hospital Centre and University of Lausanne
- Vanderbilt University, Nashville, TN
| | - Nora Turoman
- University Hospital Centre and University of Lausanne
| | - Ruxandra I. Tivadar
- University Hospital Centre and University of Lausanne
- University of Lausanne and Fondation Asile des Aveugles
| | - Chrysa Retsa
- University Hospital Centre and University of Lausanne
| | - Micah M. Murray
- University Hospital Centre and University of Lausanne
- Vanderbilt University, Nashville, TN
- University of Lausanne and Fondation Asile des Aveugles
| |
Collapse
|
44
|
Kumar M, Rana P, Modi S, Tyagi R, Kaur P, Kanwar R, Sekhri T, D'souza M, Khushu S. Aberrant intra and inter network resting state functional connectivity in thyrotoxicosis. J Neuroendocrinol 2019; 31:e12683. [PMID: 30600576 DOI: 10.1111/jne.12683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Abstract
Thyroid hormones epigenetically play an important role in the regularisation of neural networks and in neural differentiation during brain development. The present study aimed to explore the intra and inter network resting state functional connectivity changes underlying the neurobehavioural symptoms in thyrotoxicosis. To understand the pathophysiological changes, we investigated the correlation between functional connectivity and clinical and behavioural measures. Twenty-eight freshly diagnosed thyrotoxicosis patients suffering with symptoms such as palpitation, loss of weight, trembling and heat intolerance from days to weeks and 28 healthy controls were recruited for the study. Thyrotoxicosis patients showed significantly decreased functional connectivity in sensorimotor network, fronto-temporal network, default mode network, right fronto-parietal network, left fronto-parietal network and salience network. Inter network functional connectivity was significantly reduced between the basal ganglia network and sensorimotor network and increased between the salience network and fronto-temporal network in thyrotoxicosis. Cognitive functions such as visual retention, recognition of objects, mental balance and performance on neuropsychological tests (ie, the Bender Gestalt test, Nahar-Benson test and Mini Mental State Examination) also showed significant decline in thyrotoxicosis patients. The altered intrinsic resting state functional connectivity might underlie these cognitive deficits. The increased functional connectivity between the salience network and fronto-temporal network suggests the recruitment of additional neuronal circuitry needed to compensate for the neuropathology in the primary neural network in thyrotoxicosis.
Collapse
Affiliation(s)
- Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Shilpi Modi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Ritu Tyagi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Prabhjot Kaur
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | | | - Tarun Sekhri
- Thyroid Research Centre, INMAS, DRDO, New Delhi, India
| | - Maria D'souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| |
Collapse
|
45
|
Rothlein D, DeGutis J, Esterman M. Attentional Fluctuations Influence the Neural Fidelity and Connectivity of Stimulus Representations. J Cogn Neurosci 2018; 30:1209-1228. [PMID: 30004852 DOI: 10.1162/jocn_a_01306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Attention is thought to facilitate both the representation of task-relevant features and the communication of these representations across large-scale brain networks. However, attention is not "all or none," but rather it fluctuates between stable/accurate (in-the-zone) and variable/error-prone (out-of-the-zone) states. Here we ask how different attentional states relate to the neural processing and transmission of task-relevant information. Specifically, during in-the-zone periods: (1) Do neural representations of task stimuli have greater fidelity? (2) Is there increased communication of this stimulus information across large-scale brain networks? Finally, (3) can the influence of performance-contingent reward be differentiated from zone-based fluctuations? To address these questions, we used fMRI and representational similarity analysis during a visual sustained attention task (the gradCPT). Participants ( n = 16) viewed a series of city or mountain scenes, responding to cities (90% of trials) and withholding to mountains (10%). Representational similarity matrices, reflecting the similarity structure of the city exemplars ( n = 10), were computed from visual, attentional, and default mode networks. Representational fidelity (RF) and representational connectivity (RC) were quantified as the interparticipant reliability of representational similarity matrices within (RF) and across (RC) brain networks. We found that being in the zone was characterized by increased RF in visual networks and increasing RC between visual and attentional networks. Conversely, reward only increased the RC between the attentional and default mode networks. These results diverge with analogous analyses using functional connectivity, suggesting that RC and functional connectivity in tandem better characterize how different mental states modulate the flow of information throughout the brain.
Collapse
Affiliation(s)
| | | | - Michael Esterman
- VA Boston Healthcare System.,Boston University School of Medicine
| |
Collapse
|
46
|
Piispala J, Starck T, Jansson-Verkasalo E, Kallio M. Decreased occipital alpha oscillation in children who stutter during a visual Go/Nogo task. Clin Neurophysiol 2018; 129:1971-1980. [PMID: 30029047 DOI: 10.1016/j.clinph.2018.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Our goal was to discover attention- and inhibitory control-related differences in the main oscillations of the brain of children who stutter (CWS) compared to typically developed children (TDC). METHODS We performed a time-frequency analysis using wavelets, fast Fourier transformation (FFT) and the Alpha/Theta power ratio of EEG data collected during a visual Go/Nogo task in 7-9 year old CWS and TDC, including also the time window between consecutive tasks. RESULTS CWS showed significantly reduced occipital alpha power and Alpha/Theta ratio in the "resting" or preparatory period between visual stimuli especially in the Nogo condition. CONCLUSIONS The CWS demonstrate reduced inhibition of the visual cortex and information processing in the absence of visual stimuli, which may be related to problems in attentional gating. SIGNIFICANCE Occipital alpha oscillation is elementary in the control and inhibition of visual attention and the lack of occipital alpha modulation indicate fundamental differences in the regulation of visual information processing in CWS. Our findings support the view of stuttering as part of a wide-ranging brain dysfunction most likely involving also attentional and inhibitory networks.
Collapse
Affiliation(s)
- Johanna Piispala
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| | - Tuomo Starck
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| | - Eira Jansson-Verkasalo
- Department of Psychology and Speech-Language Pathology, Speech-Language Pathology, University of Turku, Finland.
| | - Mika Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| |
Collapse
|
47
|
Tompson SH, Falk EB, Vettel JM, Bassett DS. Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience. PERSONALITY NEUROSCIENCE 2018; 1:e5. [PMID: 30221246 PMCID: PMC6133307 DOI: 10.1017/pen.2018.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Over the past decade, advances in the interdisciplinary field of network science have provided a framework for understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this work has focused on patterns of functional connectivity derived from non-invasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important subset of these efforts has bridged the computational approaches of network science with the rich empirical data and biological hypotheses of neuroscience, and this research has begun to identify features of brain networks that explain individual differences in social, emotional, and cognitive functioning. The most common approach estimates connections assuming a single configuration of edges that is stable across the experimental session. In the literature, this is referred to as a static network approach, and researchers measure static brain networks while a subject is either at rest or performing a cognitively demanding task. Research on social and emotional functioning has primarily focused on linking static brain networks with individual differences, but recent advances have extended this work to examine temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and flexibility of time-evolving brain networks influence individual differences in executive function, attention, working memory, and learning. In this review, we first examine the current evidence for brain networks involved in cognitive functioning. Then we review some preliminary evidence linking static network properties to individual differences in social and emotional functioning. We then discuss the applicability of emerging dynamic network methods for examining individual differences in social and emotional functioning. We close with an outline of important frontiers at the intersection between network science and neuroscience that will enhance our understanding of the neurobiological underpinnings of social behavior.
Collapse
Affiliation(s)
- Steven H. Tompson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Emily B. Falk
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M. Vettel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Weber R, Alicea B, Huskey R, Mathiak K. Network Dynamics of Attention During a Naturalistic Behavioral Paradigm. Front Hum Neurosci 2018; 12:182. [PMID: 29780313 PMCID: PMC5946671 DOI: 10.3389/fnhum.2018.00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigates the dynamics of attention during continuous, naturalistic interactions in a video game. Specifically, the effect of repeated distraction on a continuous primary task is related to a functional model of network connectivity. We introduce the Non-linear Attentional Saturation Hypothesis (NASH), which predicts that effective connectivity within attentional networks increases non-linearly with decreasing distraction over time, and exhibits dampening at critical parameter values. Functional magnetic resonance imaging (fMRI) data collected using a naturalistic behavioral paradigm coupled with an interactive video game is used to test the hypothesis. As predicted, connectivity in pre-defined regions corresponding to attentional networks increases as distraction decreases. Moreover, the functional relationship between connectivity and distraction is convex, that is, network connectivity somewhat increases as distraction decreases during the continuous primary task, however, connectivity increases considerably as distraction falls below critical levels. This result characterizes the non-linear pattern of connectivity within attentional networks, particularly with respect to their dynamics during behavior. These results are also summarized in the form of a network structure analysis, which underscores the role of various nodes in regulating the global network state. In conclusion, we situate the implications of this research in the context of cognitive complexity and an emerging theory of flow during media exposure.
Collapse
Affiliation(s)
- René Weber
- Media Neuroscience Lab, Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Bradly Alicea
- Orthogonal Research and Teaching Laboratory, Champaign, IL, United States
| | - Richard Huskey
- Cognitive Communication Science Lab, School of Communication, The Ohio State University, Columbus, OH, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
49
|
Zheng Y, Wu C, Li J, Li R, Peng H, She S, Ning Y, Li L. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions. BMC Psychiatry 2018; 18:90. [PMID: 29618332 PMCID: PMC5885301 DOI: 10.1186/s12888-018-1675-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/26/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. METHODS Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. RESULTS The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. CONCLUSIONS In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.
Collapse
Affiliation(s)
- Yingjun Zheng
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Chao Wu
- 0000 0004 1789 9964grid.20513.35Faculty of Psychology, Beijing Normal University, Beijing, 100875 China
| | - Juanhua Li
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Ruikeng Li
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Hongjun Peng
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Shenglin She
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Yuping Ning
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370 China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception (Ministry of Education), Peking University, 5 Yiheyuan Road, Beijing, 100080, People's Republic of China. .,Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Ruiz-Rizzo AL, Neitzel J, Müller HJ, Sorg C, Finke K. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks. Front Hum Neurosci 2018; 12:89. [PMID: 29662444 PMCID: PMC5890144 DOI: 10.3389/fnhum.2018.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 02/04/2023] Open
Abstract
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.
Collapse
Affiliation(s)
- Adriana L Ruiz-Rizzo
- Department of General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Neitzel
- Department of General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Hermann J Müller
- Department of General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,School of Psychological Science, Birkbeck College, University of London, London, United Kingdom
| | - Christian Sorg
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kathrin Finke
- Department of General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany.,Hans-Berger Department of Neurology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|