1
|
Ge F, Cheng S, Jiang A, Ren Y, Chen G, Li W. Cloning, heterologous expression, and activity analysis of NADPH-cytochrome P450 reductase from the Chinese white rabbit. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1394800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Fanglan Ge
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| | - Shijun Cheng
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| | - Anqi Jiang
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| | - Yao Ren
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| | - Guiying Chen
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| | - Wei Li
- Department of Biotechnology, College of Life Sciences, Sichuan Normal University, Chengdu, PR China
| |
Collapse
|
2
|
Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H. Over-expression ofICE2stabilizes cytochrome P450 reductase inSaccharomyces cerevisiaeandPichia pastoris. Biotechnol J 2015; 10:623-35. [DOI: 10.1002/biot.201400780] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/17/2014] [Accepted: 01/09/2015] [Indexed: 01/15/2023]
|
3
|
Chen X, Luo X, Cao F, Zhu T, Fan Y, Jia X, Shen Y. Molecular cloning, expression of CPR gene from Rhizopus oryzae into Rhizopus nigericans and its application in the 11α-hydroxylation of 16α, 17-epoxy-progesterone. Enzyme Microb Technol 2014; 66:28-34. [PMID: 25248696 DOI: 10.1016/j.enzmictec.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/27/2014] [Accepted: 08/09/2014] [Indexed: 11/27/2022]
Abstract
The hydroxylations of the steroid skeleton structure are catalyzed by a family of enzymes, the cytochromes P450 (CYPs). In this study, the pCB1004-PgpdA plasmid was used for cloning the cytochrome P450 reductase (CPR) gene from Rhizopus oryzae into Rhizopus nigericans to strengthen the expression of CPR gene in R. nigericans with REMI (Restriction Enzyme Mediate Integration) mediated protoplast transformation. The conditions for the protoplast production of R. nigericans were optimized as follows: 75 μg/mL yatalase, 50 μg/mL lywallzyme, fungus age of 12h, digestion time of 3 h and digestion temperature of 30°C. REMI mediated protoplast transformation with plasmid pCB1004-PgpdA into R. nigericans was performed to construct the transformants. More than 30 transformants were successfully selected from the hygromycin B-resistant plates and 6 transformants had the abilities to improve the biotransformation of 16α, 17-epoxyprogesterone. The highest biotransformation rate of the transformants was 65.38%, which was 7.06% higher than that of the original strain.
Collapse
Affiliation(s)
- Xiaolong Chen
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China.
| | - Xinrong Luo
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| | - Feifei Cao
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| | - Tingheng Zhu
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| | - Yongxian Fan
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| | - Xiaoqing Jia
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| | - Yinchu Shen
- Institute of Fermentation Engineering, College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 no. Chaowang Road, Hangzhou 310014, PR China
| |
Collapse
|
4
|
Geier M, Braun A, Emmerstorfer A, Pichler H, Glieder A. Production of human cytochrome P450 2D6 drug metabolites with recombinant microbes - a comparative study. Biotechnol J 2012; 7:1346-58. [DOI: 10.1002/biot.201200187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/31/2012] [Accepted: 08/24/2012] [Indexed: 01/11/2023]
|
5
|
Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb Cell Fact 2012; 11:106. [PMID: 22876969 PMCID: PMC3544689 DOI: 10.1186/1475-2859-11-106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/25/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. RESULTS For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems.Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. CONCLUSIONS Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes.
Collapse
Affiliation(s)
- Andreas Braun
- Institute of Molecular Biotechnology, Graz University of Technology, ACIB GmbH, Petersgasse 14, Graz, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The cytochrome P450 (CYP) superfamily is one of the most important groups of enzymes involved in drug metabolism. It is responsible for the metabolism of a large number of drugs. Many CYP isoforms are expressed polymorphically, and catalytic alterations of allelic variant proteins can affect the metabolic activities of many drugs. The CYP2D6, CYP2C9, CYP2C19, and CYP2B6 genes are particularly polymorphic, whereas CYP1A1, CYP1A2, CYP2E1, and CYP3A4 are relatively well conserved without common functional polymorphisms. In vitro studies using cDNA expression systems are useful tools for evaluating functional alterations of the allelic variants of CYP, particularly for low-frequency alleles. Recombinant CYPs have been successfully expressed in bacteria, yeast, baculoviruses, and several mammalian cells. Determination of CYP variant-mediated kinetic parameters (Km and Vmax) in vitro can be useful for predicting drug dosing and clearance in humans. This review focuses on the advantages and disadvantages of the various cDNA-expression systems used to determine the kinetic parameters for CYP allelic variants, the methods for determining the kinetic parameters, and the findings of in vitro studies on highly polymorphic CYPs, including CYP2D6, CYP2C9, CYP2C19, and CYP2B6.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Jang HH, Jamakhandi AP, Sullivan SZ, Yun CH, Hollenberg PF, Miller GP. Beta sheet 2-alpha helix C loop of cytochrome P450 reductase serves as a docking site for redox partners. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1285-93. [PMID: 20152939 DOI: 10.1016/j.bbapap.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/26/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein-protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1*CPR complex and inactive (CYP2B1)(2)*CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge-charge interactions between CPR and complex partners.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Sanglard D, Beretta I, Wagner M, Käppeli O, Fiechter A. Functional Expression of the Alkane-Inducible Monooxygenase System of the Yeast: Candida tropicalis IN Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429008998184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- D. Sanglard
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - I. Beretta
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - M. Wagner
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - O. Käppeli
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - A. Fiechter
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Kong S, Ngo SNT, McKinnon RA, Stupans I. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:1-9. [PMID: 19444989 DOI: 10.1016/j.cbpc.2009.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.
Collapse
Affiliation(s)
- Sandra Kong
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
10
|
Waterman MR. Heterologous expression of mammalian P450 enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:37-66. [PMID: 8154325 DOI: 10.1002/9780470123140.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
11
|
Cheng J, Wan DF, Gu JR, Gong Y, Yang SL, Hao DC, Yang L. Establishment of a yeast system that stably expresses human cytochrome P450 reductase: Application for the study of drug metabolism of cytochrome P450s in vitro. Protein Expr Purif 2006; 47:467-76. [PMID: 16434211 DOI: 10.1016/j.pep.2005.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/20/2005] [Accepted: 11/25/2005] [Indexed: 11/30/2022]
Abstract
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Jan YH, Mishin V, Busch CM, Thomas PE. Generation of specific antibodies and their use to characterize sex differences in four rat P450 3A enzymes following vehicle and pregnenolone 16alpha-carbonitrile treatment. Arch Biochem Biophys 2006; 446:101-10. [PMID: 16448623 DOI: 10.1016/j.abb.2005.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/09/2005] [Accepted: 11/11/2005] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to identify isozyme-specific antibodies and use them to determine the expression levels of four P450 3A enzymes in the livers of vehicle- and pregnenolone 16alpha-carbonitrile (PCN)-treated rats of both sexes, since previous work on mRNA levels has shown considerable sexual dimorphism. Using Western blot analysis with four isozyme-specific antibodies, we show that P450 3A1, 3A2, and 3A9 were expressed in vehicle-treated adult female rats at very low levels whereas P450 3A18 was not detected. PCN treatment of females strongly induced the expression of P450 3A1 in the livers with protein product increases of 214-, 3-, and 5-fold for P450 3A1, 3A2, and 3A9, respectively, and P450 3A18 was induced to 3.7 pmol/mg protein. In contrast, all four P450 3As were detected in livers of vehicle-treated males, in the order of 3A2 >> 3A18 > 3A9 approximately = 3A1. The protein product increases induced by PCN treatment of male rats were 92-, 3-, 6-, and 16-fold for P450 3A1, 3A2, 3A9, and 3A18, respectively.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
13
|
Hanatani T, Fukuda T, Ikeda M, Imaoka S, Hiroi T, Funae Y, Azuma J. CYP2C9*3 influences the metabolism and the drug-interaction of candesartan in vitro. THE PHARMACOGENOMICS JOURNAL 2002; 1:288-92. [PMID: 11908770 DOI: 10.1038/sj.tpj.6500063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candesartan cilexetil is an angiotensin II receptor antagonist, and candesartan, its active metabolite, is metabolized by CYP2C9. However, the effect of CYP2C9*3 on candesartan metabolism is not established. We characterized the kinetics of candesartan by CYP2C9*1/*1 and CYP2C9*1/*3 in human liver microsomes. The difference between the two was not significant. Subsequently, CYP2C9*1 and CYP2C9*3 (Leu359) were expressed in yeast, and the kinetics of candesartan were determined. The wild-type showed the lower Km (345 vs 439 microM; 3/4) and higher Vmax/Km (1/3) than the Leu359 variant. Also, we investigated potential interaction between candesartan and warfarin with both the wild-type and the Leu359 variant. Candesartan had no effect on S-warfarin 7-hydroxylation. In contrast, S-warfarin inhibited candesartan metabolism by the wild-type (K = 17microM) greater than by the Leu359 variant (Ki = 36 microM). These findings suggest that CYP2C9*3 may change not only the metabolic activity but also the inhibitory susceptibility compared with CYP2C9*1.
Collapse
Affiliation(s)
- T Hanatani
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Hashizume T, Imaoka S, Mise M, Terauchi Y, Fujii T, Miyazaki H, Kamataki T, Funae Y. Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J Pharmacol Exp Ther 2002; 300:298-304. [PMID: 11752129 DOI: 10.1124/jpet.300.1.298] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to elucidate human intestinal cytochrome P450 isoform(s) involved in the metabolism of an antihistamine, ebastine, having two major pathways of hydroxylation and N-dealkylation. The ebastine dealkylase in human intestinal microsomes was CYP3A4, based on the inhibition studies with antibodies against CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A isoforms and their selective inhibitors. However, ebastine hydroxylase could not be identified. We then examined the inhibitory effects of anti-CYP4F antibody and 17-octadecynoic acid, an inhibitor of the CYP4 family, on ebastine hydroxylation in intestinal microsomes, since CYP4F was recently found to be the predominant ebastine hydroxylase in monkey intestine; and a novel CYP4F isoform (CYP4F12), also capable of hydroxylating ebastine, was found to exist in human intestine. However, the inhibitory effects were only partial (about 20%) and thus it was thought that, although human CYP4F was involved in ebastine hydroxylation, another predominant enzyme exists. Further screening showed that the hydroxylation was inhibited by arachidonic acid. CYP2J2 was selected as a candidate expressed in the intestine and closely related to arachidonic acid metabolism. The catalytic activity of recombinant CYP2J2 was much higher than that of CYP4F12. Anti-CYP2J antibody inhibited the hydroxylation to about 70% in human intestinal microsomes. These results demonstrate that CYP2J2 is the predominant ebastine hydroxylase in human intestinal microsomes. Thus, the present paper for the first time indicates that, in human intestinal microsomes, both CYP2J and CYP4F subfamilies not only metabolize endogenous substrates but also are involved in the drug metabolism.
Collapse
Affiliation(s)
- Takanori Hashizume
- Pharmacokinetics and Physico-Chemical Property Research Laboratories, Dainippon Pharmaceutical Company, Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hashizume T, Imaoka S, Hiroi T, Terauchi Y, Fujii T, Miyazaki H, Kamataki T, Funae Y. cDNA cloning and expression of a novel cytochrome p450 (cyp4f12) from human small intestine. Biochem Biophys Res Commun 2001; 280:1135-41. [PMID: 11162645 DOI: 10.1006/bbrc.2000.4238] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA encoding a novel human CYP4F enzyme (designated CYP4F12) was cloned by PCR from a human small intestine cDNA library. RT-PCR analysis demonstrated that CYP4F12 is expressed in human small intestine and liver. This cDNA contains an entire coding region of a 524-amino-acid protein that is 81.7, 78.3, and 78.2% identical to CYP4F2, CYP4F3, and CYP4F8, respectively. When expressed in Saccharomyces cerevisiae, the P450 catalyzes leukotriene B(4) omega-hydroxylation and arachidonic acid omega-hydroxylation, typical reactions of CYP4F isoforms. Their activity levels are, however, much lower than those of CYP4F2. Interestingly, CYP4F12 catalyzes the hydroxylation of the antihistamine ebastine with significantly higher catalytic activity relative to CYP4F2 (385 vs 5 pmol/min/nmol P450). These results indicate that CYP4F12 has a different profile of substrate specificity from other CYP4F isoforms, enzymes responsible for metabolizing endogenous autacoids, therefore suggesting that it may play an important role in xenobiotic biotransformation in the human small intestine.
Collapse
Affiliation(s)
- T Hashizume
- Developmental Research Laboratories, Dainippon Pharmaceutical Company, Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hayashi K, Sakaki T, Kominami S, Inouye K, Yabusaki Y. Coexpression of genetically engineered fused enzyme between yeast NADPH-P450 reductase and human cytochrome P450 3A4 and human cytochrome b5 in yeast. Arch Biochem Biophys 2000; 381:164-70. [PMID: 11019832 DOI: 10.1006/abbi.2000.1953] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency.
Collapse
Affiliation(s)
- K Hayashi
- Biotechnology Laboratory, Sumitomo Chemical Company, Ltd., Hyogo, Japan
| | | | | | | | | |
Collapse
|
17
|
Fukuda T, Nishida Y, Imaoka S, Hiroi T, Naohara M, Funae Y, Azuma J. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch Biochem Biophys 2000; 380:303-8. [PMID: 10933885 DOI: 10.1006/abbi.2000.1936] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CYP2D6 exhibits genetic polymorphism with interindividual differences in metabolic activity. We have found a significant influence on the pharmacokinetics of venlafaxine by the CYP2D6*10 allele in a Japanese population. CYP2D6.10, which is translated from CYP2D6*10, has two amino acid substitutions: Pro34 --> Ser and Ser486 --> Thr. In this study, CYP2D6.10 was expressed in Saccharomyces cerevisiae and its catalytic activity for CYP2D6 substrates was investigated. The CYP2D6*10B- and *10C-associated cDNA were isolated from human lymphocyte genotyped as CYP2D6*10. In addition, three forms of CYP2D6, Pro34/Thr486 (PT), Ser34/Ser486 (SS), and Pro34/Ser486 (wild type, CYP2D6.1), were constructed by PCR-site mutagenesis to clarify the effects of the two amino-acid substitutions. The expression of CYP2D6 protein was confirmed by immunoblotting using CYP2D antibody. The absorbance at 450 nm was measured by CO-reduced difference spectra from five all microsome preparations. The CYP2D6 forms with Pro34 --> Ser amino acid substitution were at a lower expression than CYP2D6.1 from the findings of immunoblotting and spectral analysis. The apparent K(m) values of CYP2D6.1, CYP2D6.10A, and CYP2D6.10C were 1.7, 8.5, and 49.7 microM, respectively, for bufuralol 1'-hydroxylation, and 9.0, 51.9, and 117.4 microM, respectively, for venlafaxine O-demethylation, respectively. The V(max) values were not significantly different among the three variants. These findings suggest that the decreased in vivo clearance by CYP2D6*10 was caused not only by low expression of but also the increased K(m) value of CYP2D6.
Collapse
Affiliation(s)
- T Fukuda
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Matsuda H, Kimura S, Iyanagi T. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:106-16. [PMID: 10924903 DOI: 10.1016/s0005-2728(00)00117-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin electron transferases can catalyze one- or two-electron reduction of quinones including bioreductive antitumor quinones. The recombinant neuronal nitric oxide synthase (nNOS) reductase domain, which contains the FAD-FMN prosthetic group pair and calmodulin-binding site, catalyzed aerobic NADPH-oxidation in the presence of the model quinone compound menadione (MD), including antitumor mitomycin C (Mit C) and adriamycin (Adr). Calcium/calmodulin (Ca2+/CaM) stimulated the NADPH oxidation of these quinones. The MD-mediated NADPH oxidation was inhibited in the presence of NAD(P)H:quinone oxidoreductase (QR), but Mit C- and Adr-mediated NADPH oxidations were not. In anaerobic conditions, cytochrome b5 as a scavenger for the menasemiquinone radical (MD*-) was stoichiometrically reduced by the nNOS reductase domain in the presence of MD, but not of QR. These results indicate that the nNOS reductase domain can catalyze a only one-electron reduction of bivalent quinones. In the presence or absence of Ca2+/CaM, the semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by MD, but the fully reduced flavin species did not significantly accumulate under these conditions. Air-stable semiquinone did not react rapidly with MD, but the fully reduced species of both flavins, FAD and FMN, could donate one electron to MD. The intramolecular electron transfer between the two flavins is the rate-limiting step in the catalytic cycle [H. Matsuda, T. Iyanagi, Biochim. Biophys. Acta 1473 (1999) 345-355). These data suggest that the enzyme functions between the 1e- <==> 3e- level during one-electron reduction of MD, and that the rates of quinone reductions are stimulated by a rapid electron exchange between the two flavins in the presence of Ca2+/CaM.
Collapse
Affiliation(s)
- H Matsuda
- Department of Life Science, Faculty of Science, Himeji, Institute of Technology, Harima Science Garden City, Hyogo, Japan
| | | | | |
Collapse
|
19
|
Lacour T, Ohkawa H. Engineering and biochemical characterization of the rat microsomal cytochrome P4501A1 fused to ferredoxin and ferredoxin-NADP(+) reductase from plant chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:87-102. [PMID: 10446362 DOI: 10.1016/s0167-4838(99)00154-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusion proteins of rat cytochrome P4501A1 with maize ferredoxin I (Fd) and pea ferredoxin NADP(+) reductase (FNR), the last electron transfer proteins of the photosynthetic channel in plant chloroplasts, were obtained by gene fusion in the yeast expression vector pAAH5N. The encoded fusion proteins P4501A1-Fd, P4501A1-FNR, P4501A1-Fd-FNR and P4501A1-FNR-Fd were produced in microsomes of the yeast Saccharomyces cerevisiae AH22. Enzymatic assays were carried out in vitro with the isolated microsomes. P4501A1-Fd-FNR and P4501A1-FNR-Fd were found to catalyze P450-monooxygenase activities towards 7-ethoxycoumarin and the herbicide chlortoluron. P4501A1-Fd-FNR was the most efficient enzyme as measured in vitro in ferricyanide and cytochrome c reductions, as well as P450-monooxygenase assays. Apparent K(m) and k(cat) of P4501A1-Fd-FNR were 70 microM and 7800 min(-1) for NADPH, 13.2 microM and 51.1 min(-1) for 7-ethoxycoumarin, and 21.3 microM and 23. 8 min(-1) for the herbicide chlortoluron, respectively. Fd in P4501A1-Fd-FNR fusion enzyme was found to be a limiting factor compared to P4501A1 fused to the yeast NADPH-cytochrome P450 reductase, an artificial enzyme described previously. The efficiency of electron transfer in the P4501A1 fusion proteins and a possible in vivo molecular coupling of Fd and FNR with microsomal cytochrome P4501A1 produced in plant chloroplasts are discussed.
Collapse
Affiliation(s)
- T Lacour
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | |
Collapse
|
20
|
Yamada M, Ohta Y, Sakaki T, Yabusaki Y, Ohkawa H, Kawato S. Dynamic mobility of genetically expressed fusion protein between cytochrome P4501A1 and NADPH-cytochrome P450 reductase in yeast microsomes. Biochemistry 1999; 38:9465-70. [PMID: 10413523 DOI: 10.1021/bi990648s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fusion protein of rat liver CYP1A1 with NADPH-cytochrome P450 reductase was expressed genetically in yeast microsomal membranes. This flavo-cytochrome is active in 6-hydroxylation of zoxazolamine. Rotational diffusion of the fusion protein was examined by observing the flash-induced absorption anisotropy r(t) of the P450.CO complex. Theoretical analysis of r(t) was performed based on a "rotation-about-membrane normal" model. The absorption anisotropy decayed within 2 ms to a time-independent value r(3). Forty percent of the fusion protein rotated with a rotational relaxation time phi of 1.35 ms. Treatment with high salt increased the mobile population of the fusion protein to 62% with phi = 0.96 ms. The mobile population of the fusion protein is close to that of CYP1A1 coexpressed with the P450 reductase and greater than that of CYP1A1 alone [Iwase et al. (1991) Biochemistry 30, 8347-8351]. The large mobile population of the fusion protein provides evidence that CYP1A1 is mobilized by forming associations with P450 reductase in microsomal membranes.
Collapse
Affiliation(s)
- M Yamada
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wan J, Imaoka S, Chow T, Hiroi T, Yabusaki Y, Funae Y. Expression of four rat CYP2D isoforms in Saccharomyces cerevisiae and their catalytic specificity. Arch Biochem Biophys 1997; 348:383-90. [PMID: 9434752 DOI: 10.1006/abbi.1997.0402] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We cloned four cDNAs belonging to the CYP2D subfamily to express these enzymes in yeast cells and to compare their catalytic activities simultaneously. Three are believed to be alleles of CYP2D1, 2D2, and 2D3, respectively, based on high nucleotide sequence similarity, while CYP2D4 had both sequences of CYP2D4 and CYP2D18. Expression plasmids carrying CYP2D cDNAs were transformed into Saccharomyces cerevisiae. Typical P450 CO-difference spectra with absorbance maximum at 448 nm were recorded with microsomal preparations from the yeast cells expressing the four CYP2D forms. A catalytic study of these CYP2D forms was done with debrisoquine, bufuralol, and lidocaine. CYP2D2 had the highest debrisoquine 4-hydroxylation (2.2 nmol/min/nmol P450) activity, similar to that (2.2 nmol/min/nmol) of human CYP2D6 expressed in yeast cells. CYP2D3 had high lidocaine N-deethylation (43 nmol/min/nmol P450) activity, and both CYP2D3 and 2D2 exhibited high lidocaine 3-hydroxylation (2.4 and 1.6 nmol/min/nmol P450, respectively) activity. Bufuralol 1'-hydroxylation catalytic capabilities were comparable among the four isoforms. The activity of CYP2D1 was relatively low toward the three substrates (debrisoquine, 0.091; bufuralol, 1.5; lidocaine 3-hydroxylation, 0.019; lidocaine N-deethylation, 2.8 nmol/min/nmol P450). These findings indicate that debrisoquine, a typical substrate for CYP2D forms, was mainly metabolized by CYP2D2 but not CYP2D1 in rat liver and that the CYP2D forms have different substrate specificity.
Collapse
Affiliation(s)
- J Wan
- Laboratory of Chemistry, Osaka City University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Ohgiya S, Goda T, Hoshino T, Kamataki T, Ishizaki K. Establishment of a novel host, high-red yeast that stably expresses hamster NADPH-cytochrome P450 oxidoreductase: usefulness for examination of the function of mammalian cytochrome P450. Arch Biochem Biophys 1997; 343:215-24. [PMID: 9224733 DOI: 10.1006/abbi.1997.0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel strain of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal cytochrome P450s was established and named High-red yeast. Hamster NADPH-cytochrome P450 oxidoreductase (P450 reductase) cDNA to be introduced into yeast was isolated from a hamster liver cDNA library. The cDNA was 2421 bp long and contained an entire coding region for 667 amino acids. The NH2-terminal amino acid sequence deduced from the hamster P450 reductase cDNA was identical with that of the enzyme purified from hamster livers except for deletion of the initial methionine. A delta-sequence derived from yeast retrotransposon Ty was cloned and used as a sequence for homologous recombination in a yeast genome. S. cerevisiae YPH500 was transformed with a multi-integration cassette containing the expression unit of the hamster P450 reductase and the delta-sequence. The transformant showing the highest activity of the P450 reductase was named High-red yeast. High-red yeast carried more than six copies of the multi-integration cassettes in a single chromosome and retained the multi-integration cassettes over a period of 100 generations under nonselective culture conditions, indicating that this yeast was a mitotically stable transformant. The microsomes prepared from High-red yeast had 20 times the P450 reductase activity of the microsomes prepared from the parental yeast. Due to the high activity of the hamster P450 reductase, the 7-ethoxycoumarin deethylase activity of mouse CYP1A1 expressed in High-red yeast was 250 times higher than the activity of mouse CYP1A1 expressed in the parental yeast.
Collapse
Affiliation(s)
- S Ohgiya
- Hokkaido National Industrial Research Institute, Agency of Industrial Science and Technology, Toyohira-ku, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat. Biochem Pharmacol 1996; 51:1041-50. [PMID: 8866826 DOI: 10.1016/0006-2952(96)00052-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We systematically characterized the levels and substrate specificity of P450s from humans and rats to extrapolate drug metabolism data from experimental animals to humans. Human P450s (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2D6, 2E1, and 3A4) were expressed in Saccharomyces cerevisiae and purified. Rat P450s were purified from hepatic microsomes of rats. We investigated the catalytic activities of purified P450s in a reconstituted system. Human CYP2B6 and rat CYP2B1 had high lidocaine N-deethylation activity. Human and rat CYP2D forms had high debrisoquine 4-hydroxylation activity. Human CYP3A4 and rat CYP3A2 had high testosterone 2 beta- and 6 beta-hydroxylation activities in a modified reconstituted system with a lipid mixture. The hydroxylation site of testosterone by CYP2B6 (16 alpha- and 16 beta-positions) agreed with that by rat CYP2B1. Human CYP2E1 had the highest lauric acid (omega-1)-hydroxylation activity and also had catalytic properties similar to those of rat CYP2E1. Human CYP2A and 2C forms had catalytic properties in testosterone metabolism different from those of rats. Antibodies raised against purified P450s were used to measure the levels of hepatic P450s. The level of CYP3A4 was the highest in human hepatic microsomes, comprising 30-40% of the total P450. CYP2C9 comprised 10-20% of the total. The levels of CYP1A2, 2A6, 2C8, 2D6, and 2E1 were moderate (5-15% of total P450). CYP2B6 content was very low. The information of this study is useful for drug metabolism and toxicological studies.
Collapse
Affiliation(s)
- S Imaoka
- Laboratory of Chemistry, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Zimmer T, Kaminski K, Scheller U, Vogel F, Schunck WH. In vivo reconstitution of highly active Candida maltosa cytochrome P450 monooxygenase systems in inducible membranes of Saccharomyces cerevisiae. DNA Cell Biol 1995; 14:619-28. [PMID: 7626221 DOI: 10.1089/dna.1995.14.619] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To establish a system for functional characterization of individual Candida maltosa cytochrome P450 monooxygenases, the NADPH-cytochrome P450 reductase from this yeast species was co-expressed in Saccharomyces cerevisiae with each of the following cytochrome P450 forms; P450Cm1 (CYP52 A3), P450Cm2 (CYP52 A4), and P450AlK2A (CYP52 A5). For this purpose, a multicopy plasmid was constructed that contained two independent expression units controlled by the galactose-inducible GAL10 promoter. As shown by spectral and immunological methods, large amounts of the desired monooxygenase components could be simultaneously produced in the respective S. cerevisiae transformants. It was important, however, to adjust semi-anaerobic cultivation conditions during induction by galactose to minimize a mutual impairment of cytochrome P450 and NADPH-cytochrome P450 reductase formation. Compared to the specific cellular content of the host-own enzyme, a 75- to 100-fold overproduction of the reductase component was obtained resulting in P450/reductase molar ratios of about 1:3 in the microsomal fractions prepared from the co-expression strains. At the same time, the rates of cytochrome P450-dependent lauric acid hydroxylation increased more than 10-fold, showing a proper reconstitution of the C. maltosa monooxygenase systems in S. cerevisiae. Using intact cells, an efficient biotransformation of lauric acid to omega-hydroxylauric acid and dodecanedioic acid was found. S. cerevisiae cells coexpressing cytochrome P450 and NADPH-cytochrome P450 reductase were characterized by a marked proliferation of the endoplasmic reticulum. Immunoelectron microscopy revealed a colocalization of the monooxygenase components produced to these newly formed membrane structures.
Collapse
Affiliation(s)
- T Zimmer
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
25
|
Wittekindt NE, Würgler FE, Sengstag C. Functional expression of fused enzymes between human cytochrome P4501A1 and human NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. DNA Cell Biol 1995; 14:273-83. [PMID: 7710684 DOI: 10.1089/dna.1995.14.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activity of human cytochrome P450 enzymes heterologously expressed in Saccaromyces cerevisiae cells is limited by the yeast endogenous cytochrome P450 oxidoreductase (yOR). To overcome these limitations, we constructed hybrids between human P4501A1 (CYP1A1) and human P450 oxidoreductase (hOR) by combining the cDNA encoding hOR with the CYP1A1 cDNA. In addition, in one construct, the amino terminus of hOR was replaced by the membrane anchor domain of a yeast protein. Anchoring of the fusion constructs in internal membranes either by the amino terminus of hOR or by the yeast peptide resulted in functional hybrid proteins, which were present in similar amounts as the authentic CYP1A1 in microsomal fractions of recombinant cells. Saccharomyces cerevisiae cells transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-CYP1A immunoglobulin (Ig) and anti-oxidoreductase Ig. Saccharomyces cerevisiae yOR-mutant (cpr1-) and wild-type (CPR1+) cells containing the fused enzymes exhibited CYP1A1-specific 7-ethoxyresorufin-O-deethylase activities. Reduced CO-difference spectra of microsomal fractions containing the fused enzymes indicated a proper incorporation of protoheme into the CYP1A1 domains. These results show that the chimeric proteins represent catalytically self-sufficient monooxygenase systems. The hOR domains of the hybrid proteins were also functional as cytochrome c reductases and able to activate the yeast P450 enzyme lanosterol-14 alpha-demethylase, indicating correct insertion of the chimeric proteins in internal membranes.
Collapse
Affiliation(s)
- N E Wittekindt
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| | | | | |
Collapse
|
26
|
Abstract
Cytochromes P450 constitute a superfamily of hemoproteins which have evolved from a common ancestor. Recent advances in molecular biology have offered a powerful approach to the research on the multiplicity of P450. Now, every mammalian P450 species can be characterized by heterologous expression of its cDNA. In addition, a heterogous expression system is also useful for analysis of structure-function relationships of P450 monooxygenases. Comparison of enzymatic activity and expression level in yeast of a series of artificial genetic fusion enzymes of P450 with P450 reductase has revealed the strategy of how to construct a most suitable fusion. The P450/reductase fused enzyme is a simplified monooxygenase as compared with the two enzyme systems in nature. The P450 domain of the fused enzyme is bound to the microsomes, while the reductase domain lies on the cytoplasmic side, moving flexibly. This structural feature seems to reflect the topology of both enzymes in mammalian microsomes, and will be used as a model to analyze in vivo protein-protein interactions of microsomal P450 monooxygenases. Combined with the discovery of some naturally occurring P450/reductase fusions from bacteria to mammals, comparison of these natural enzymes with artificial ones will be discussed.
Collapse
Affiliation(s)
- Y Yabusaki
- Biotechnology Laboratory, Sumitomo Chemical Co, Ltd, Hyogo, Japan
| |
Collapse
|
27
|
Akiyoshi-Shibata M, Sakaki T, Ohyama Y, Noshiro M, Okuda K, Yabusaki Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. A study with the mature enzyme expressed in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:335-43. [PMID: 7925346 DOI: 10.1111/j.1432-1033.1994.00335.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coding region of the cDNA for rat kidney calcidiol 24-hydroxylase (P450cc24), which is involved in calcium homeostasis in animals, was inserted into an expression vector pKK223-3. The recombinant plasmid was formed in a specific manner without deletion or substitution of any parts of the coding region of the cDNA. When the resulting plasmid was introduced into Escherichia coli JM109, the recombinant cells produced a protein which was immunoreactive to an antibody against P450cc24. When the cell-free extract of the transformed cells was incubated with calcidiol together with bovine adrenodoxin and NADPH-adrenodoxin reductase, not only hydroxycalcidiol but also other metabolites such as oxocalcidiol and oxohydroxycalcidiol were produced. Similarly, calcitriol was converted not only to calcitetrol but also to oxocalcitriol and oxohydroxycalcitriol. These results indicate that a single enzyme expressed in the bacteria is responsible for all these successive reactions.
Collapse
|
28
|
Ohgiya S, Shinriki N, Kamataki T, Ishizaki K. Mouse NADPH-cytochrome P-450 oxidoreductase: molecular cloning and functional expression in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:137-41. [PMID: 8011664 DOI: 10.1016/0005-2728(94)90146-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We published isolation of a mouse NADPH-cytochrome P-450 oxidoreductase cDNA and afterward ascribed the cDNA to the guinea-pig instead of the mouse (Ohgiya, S. et al. (1992) Biochim. Biophys. Acta 1171, 103-105 and Corrigendum (1993) Biochim. Biophys. Acta 1174, 313). We report here nucleotide and deduced amino acid sequences of an NADPH-cytochrome P-450 oxidoreductase cDNA isolated from the ddY mouse. The mouse cytochrome P-450 oxidoreductase shares 98.4% identity with its rat counterpart. In particular, clusters of acidic residues that presumably participate in interaction with cytochrome P-450 are highly conserved in primary structures of mammalian cytochrome P-450 oxidoreductases. The mouse cytochrome P-450 oxidoreductase was functionally expressed in yeast using a modified cDNA clone lacking whole noncoding regions.
Collapse
Affiliation(s)
- S Ohgiya
- Hokkaido National Industrial Research Institute, Agency of Industrial Science and Technology, Sapporo, Japan
| | | | | | | |
Collapse
|
29
|
Drutsa VL, Kovaleva IE, Luzikov VN. Effects of amino-terminus truncation in human cytochrome P450IID6 on its insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae. FEBS Lett 1993; 336:87-9. [PMID: 8262224 DOI: 10.1016/0014-5793(93)81615-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A truncated form of cytochrome P450IID6 deprived of 22 NH2-terminal amino acids residues (P450IID6 delta 1-22) was found in both the cytosol and the microsomal fraction of the yeast, Saccharomyces cerevisiae. A reduced CO difference spectrum of this form was characterized by the absence of absorption at 448 nm and weak absorption at 420 nm. Another peculiarity of P450IID6 delta 1-22 expression was its reduced content in the yeast cells compared to that of P450IID6, with the intracellular levels of the corresponding mRNAs being the same. We suggest that the deleted form of P450IID6, i.e. lacking 22 NH2-terminal amino acid residues, is not inserted properly in the endoplasmic reticulum membrane: it does not take up the proper conformation to enable normal heme binding and is degraded in the yeast cells.
Collapse
|
30
|
Simula AP, Crichton MB, Black SM, Pemble S, Bligh HF, Beggs JD, Wolf CR. Heterologous expression of drug-metabolizing enzymes in cellular and whole animal models. Toxicology 1993; 82:3-20. [PMID: 8236279 DOI: 10.1016/0300-483x(93)90056-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this report we describe the heterologous expression of glutathione S-transferase (GST) and cytochrome P450 reductase (Red) in E. coli and Salmonella typhimurium. The same expression vectors could be applied to both systems and high levels of catalytically active GST and Red were obtained. Interestingly the level of expression was invariably higher in S. typhimurium. The level of the alpha class GST being up to 20% of the total bacterial protein. A further advantage of the salmonella system is that strains were used which can be applied to mutagenicity tests. This system was validated by demonstrating increasing mutation frequency of halogenated hydrocarbons in strains expressing the GST and increased cytotoxicity of mitomycin C in cells expressing P450 reductase.
Collapse
Affiliation(s)
- A P Simula
- Imperial Cancer Research Fund, Ninewells Hospital, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Truan G, Cullin C, Reisdorf P, Urban P, Pompon D. Enhanced in vivo monooxygenase activities of mammalian P450s in engineered yeast cells producing high levels of NADPH-P450 reductase and human cytochrome b5. Gene 1993; 125:49-55. [PMID: 8449412 DOI: 10.1016/0378-1119(93)90744-n] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have engineered yeast genomic DNA to construct a set of strains producing various relative amounts of yeast NADPH-P450 reductase (Yred) and human cytochrome b5 (Hb5). Expression of cDNAs encoding human P450 1A1, 1A2, 3A4, 19A and mouse P450 1A1 in the different oxido-reduction backgrounds thus constituted were achieved after strain transformation by plasmid-based P450-encoding expression cassettes. The results indicate that the level of Yred strongly affects all activities tested. In contrast, the amount of Hb5 affects activities in a manner that is dependent both on the P450 isoform considered and the Yred level. In a strain containing optimized amounts of Hb5 and Yred, human P450 3A4-specific testosterone-6 beta-hydroxylase activity can be enhanced as much as 73-fold in comparison with the activity observed in a wild-type strain. Bioconversion of sterols or xenobiotics was easily achieved in vivo using this new co-expression system.
Collapse
Affiliation(s)
- G Truan
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
33
|
Ohgiya S, Goda T, Ishizaki K, Kamataki T, Shinriki N. Molecular cloning and sequence analysis of guinea-pig NADPH-cytochrome P-450 oxidoreductase [corrected]. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1171:103-5. [PMID: 1420354 DOI: 10.1016/0167-4781(92)90147-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cDNA clone coding for cytochrome P-450 oxidoreductase was isolated from a guinea-pig liver cDNA library. The cDNA, MSr2, contained a complete coding region of 678 amino acids. The amino acid sequence of the guinea-pig cytochrome P-450 oxidoreductase showed approx. 90% identities with those of rat, human, rabbit, pig enzymes indicating conservation of primary structure of the enzyme during evolutionary divergence of species. The high conservation of acidic residues of the enzyme sustained the importance of them to maintain its function [corrected].
Collapse
Affiliation(s)
- S Ohgiya
- Government Industrial Development Laboratory-Hokkaido, Agency of Industrial Science and Technology, Sapporo, Japan
| | | | | | | | | |
Collapse
|
34
|
Shirabe K, Yubisui T, Borgese N, Tang C, Hultquist D, Takeshita M. Enzymatic instability of NADH-cytochrome b5 reductase as a cause of hereditary methemoglobinemia type I (red cell type). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88718-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
35
|
Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A 1992; 89:6711-5. [PMID: 1379716 PMCID: PMC49573 DOI: 10.1073/pnas.89.15.6711] [Citation(s) in RCA: 448] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) is a messenger molecule of macrophages, endothelial cells in blood vessels, and neurons. A neuronal form of NO synthase (NOS) has been previously cloned. We now report the molecular cloning of macrophage NOS. The macrophage enzyme displays 50% sequence identity to the neuronal enzyme. Like neuronal NOS, macrophage NOS has recognition sites for FAD, FMN, and NADPH and also has a consensus calmodulin binding site. Macrophage NOS mRNA is strikingly inducible; it is absent in quiescent macrophages or spleen but is prominent 2-6 hr after endotoxin treatment.
Collapse
Affiliation(s)
- C J Lowenstein
- Department of Neuroscience, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | | | | | | |
Collapse
|
36
|
Sakaki T, Akiyoshi-Shibata M, Yabusaki Y, Ohkawa H. Organella-targeted expression of rat liver cytochrome P450c27 in yeast. Genetically engineered alteration of mitochondrial P450 into a microsomal form creates a novel functional electron transport chain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42030-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Eugster HP, Bärtsch S, Würgler FE, Sengstag C. Functional co-expression of human oxidoreductase and cytochrome P450 1A1 in Saccharomyces cerevisiae results in increased EROD activity. Biochem Biophys Res Commun 1992; 185:641-7. [PMID: 1610357 DOI: 10.1016/0006-291x(92)91673-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cDNA coding for human oxidoreductase (NADPH-cytochrome P450 reductase) was expressed in S. cerevisiae on a high copy plasmid under control of a constitutive promoter. Microsomes from a transformed strain lacking endogenous oxidoreductase exhibited cytochrome c reductase activity. An apparent Km of 7.3 microM for the substrate NADPH was determined. Expression of human oxidoreductase complemented a mutation in the yeast oxidoreductase gene CPR1 and fully reversed the ketoconazole sensitive phenotype of the respective strain. The 7-ethoxyresorufin-O-deethylase activity of yeast cells expressing human cytochrome P450 1A1 was increased by more than sixteen-fold upon coexpression of human oxidoreductase. These results strongly suggest that a more efficient coupling between the human enzymes might be responsible for the increase in enzyme activity.
Collapse
Affiliation(s)
- H P Eugster
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| | | | | | | |
Collapse
|
38
|
Tamura S, Korzekwa KR, Kimura S, Gelboin HV, Gonzalez FJ. Baculovirus-mediated expression and functional characterization of human NADPH-P450 oxidoreductase. Arch Biochem Biophys 1992; 293:219-23. [PMID: 1536559 DOI: 10.1016/0003-9861(92)90388-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human NADPH-P450 oxidoreductase (OR) is an intrinsically membrane-bound flavoprotein that serves to transfer electrons from NADPH to cytochrome P450. OR is also involved in the metabolic activation of chemotherapeutic alkylating agents. The human OR cDNA was engineered into baculovirus and the recombinant virus was used to infect Spodoptera frugiperda (Sf9) cells. Approximately 3.3% of total protein of infected cells was human OR. The enzyme was purified by ion exchange and affinity chromatography to a specific activity of 20 units/mg protein. Baculovirus-expressed OR displayed an absolute spectrum typical of the protein purified from tissue sources. The purified enzyme was able to support P450 activity in a reconstituted lipid vesicle system where maximal P450 activity was achieved at an OR/P450 ratio of 2. When recombinant OR and P450 DNA-containing baculoviruses were used to coinfect Sf9 cells, the OR/P450 ratio needed to achieve half maximal P450 catalytic activity was less than 0.5. These studies demonstrate the utility of baculovirus to analyze the functional and structural relationship of OR and P450.
Collapse
Affiliation(s)
- S Tamura
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
39
|
Bligh HF, Wolf CR, Smith G, Beggs JD. Production of cytochrome P450 reductase yeast-rat hybrid proteins in Saccharomyces cerevisiae. Gene 1992; 110:33-9. [PMID: 1544575 DOI: 10.1016/0378-1119(92)90441-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a novel strategy for increasing the level of functional mammalian cytochrome P450 (Cyt.P450) and NADPH:cytochrome P450 reductase enzymes produced in yeast. A cDNA encoding the rat P450 reductase was modified by the addition of a sequence coding for the N-terminal region of P450 reductase from Saccharomyces cerevisiae. The addition of this hydrophobic tail greatly increased the apparent stability of the reductase protein produced in S. cerevisiae, as compared to the unmodified rat P450 reductase. When the rat hybrid reductase was produced simultaneously with one of two mammalian Cyt.P450s, the rat CYP2B1 or the human CYP2A6, there was a significant increase in the specific activity of each of the Cyt.P450s. The optimization of this approach and its extrapolation to other organisms should lead to a marked improvement in our ability to study and exploit the P450 system.
Collapse
Affiliation(s)
- H F Bligh
- Institute of Cell and Molecular Biology, Edinburgh University, U.K
| | | | | | | |
Collapse
|
40
|
Akiyoshi-Shibata M, Sakaki T, Yabusaki Y, Murakami H, Ohkawa H. Expression of bovine adrenodoxin and NADPH-adrenodoxin reductase cDNAs in Saccharomyces cerevisiae. DNA Cell Biol 1991; 10:613-21. [PMID: 1930696 DOI: 10.1089/dna.1991.10.613] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of both bovine adrenodoxin (ADX) and NADPH-adrenodoxin reductase (ADR) were examined in Saccharomyces cerevisiae. Three ADX and two ADR expression plasmids were constructed by inserting each of the corresponding cDNA fragments between the yeast alcohol dehydrogenase I promoter and terminator of the expression vector pAAH5N. Plasmids pAX and pMX contained the coding region for the precursor and mature ADX, respectively, while pCMX carried the mature ADX preceded by the mitochondrial signal of yeast cytochrome c oxidase subunit IV (COX IV). Similarly, pMR and pCMR coded for mature ADR without and with the mitochondrial signal of yeast COX IV, respectively. Transformed S. cerevisiae AH22[rho 0]/pAX cells produced the ADX precursor, while AH22[rho 0]/pMX and AH22[rho 0]/pCMX cells produced mature ADX (mat-ADX) and modified ADX (mat-COX/ADX), respectively. Mat-ADX and mat-COX/ADX were found mainly in the cytosolic and mitochondrial fractions, respectively, and showed cytochrome c reductase activity. AH22[rho+]/pMR and AH22[rho+]/pCMR cells produced mature ADR (mat-ADR) and modified ADR (mat-COX/ADR), respectively. Mat-ADR lacking the mitochondrial signal was found in the cytosolic fraction and exhibited cytochrome c reductase activity, while mat-COX/ADR was localized in the mitochondrial fraction, but showed no reductase activity. In an in vitro reconstituted system consisting of both mat-COX/ADX- and mat-ADR-containing fractions, bovine P450scc converted cholesterol into pregnenolone. Thus mat-COX/ADX and mat-ADR produced in the yeast can transfer electrons from NADPH to P450scc.
Collapse
Affiliation(s)
- M Akiyoshi-Shibata
- Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, Japan
| | | | | | | | | |
Collapse
|
41
|
Guengerich FP, Brian WR, Sari MA, Ross JT. Expression of mammalian cytochrome P450 enzymes using yeast-based vectors. Methods Enzymol 1991; 206:130-45. [PMID: 1784205 DOI: 10.1016/0076-6879(91)06085-h] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Ohkawa H, Yabusaki Y, Sakaki T, Murakami H, Shibata M. Hydroxylation reactions by recombinant yeast cells expressing P450 monooxygenases. Ann N Y Acad Sci 1990; 613:37-43. [PMID: 2075981 DOI: 10.1111/j.1749-6632.1990.tb18146.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- H Ohkawa
- Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Company, Limited, Hyogo, Japan
| | | | | | | | | |
Collapse
|
43
|
Sakaki T, Shibata M, Yabusaki Y, Murakami H, Ohkawa H. Expression of bovine cytochrome P450c21 and its fused enzymes with yeast NADPH-cytochrome P450 reductase in Saccharomyces cerevisiae. DNA Cell Biol 1990; 9:603-14. [PMID: 2125425 DOI: 10.1089/dna.1990.9.603] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant plasmids for expression of bovine cytochrome P450c21 (pA gamma 2), both P450c21 and yeast NADPH-cytochrome P450 reductase (pAR gamma 1), P450c21/yeast reductase fused enzymes (pAF gamma R1, pAF gamma R2, and pAF gamma R20), and yeast reductase/P450c21 fused enzymes (pAFR gamma 1 and pAFR gamma 2) were constructed by using expression vector pAAH5. The plasmids were each introduced into the yeast Saccharomyces cerevisiae AH22 cells. The recombinant yeast strains AH22/pA gamma 2 (Y21) and AH22/pAR gamma 1 (Y21R) produced 2-3 X 10(3) molecules of P450c21 per cell. The cultures of both strains converted progesterone and 17 alpha-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively. The 21-hydroxylase activity per cell of the strain Y21R was about three times higher than that of the strain Y21, probably due to overproduction of yeast reductase. The recombinant yeast strains AH22/pAF gamma R1 (Y21RF1), AH22/pAF gamma R2 (Y21RF2), and AH22/pAF gamma R20 (Y21RF20) produced about 1.1-2.0 X 10(4) molecules per cell of the corresponding P450c21/yeast reductase fused enzymes. The specific 21-hydroxylase activity toward 17 alpha-hydroxyprogesterone per cell of the strains Y21RF1, Y21RF2, and Y21RF20 was about 21, 28, and 49 times higher than that of the strain Y21, respectively. Thus, the fused enzymes were superior to P450c21 in the specific activity and in the expression level in the yeast. The Km values for 17 alpha-hydroxyprogesterone of P450c21 in the strains Y21 and Y21R, and of the fused enzymes in the strains Y21RF1 and Y21RF2 were 0.29, 0.30, 0.67, and 0.65 microM, respectively. The Vmax values of P450c21 in the strains Y21 and Y21R, and of the fused enzymes in the strains Y21RF1 and Y21RF2 were 28, 124, 151, and 222 moles/min.mole P450c21 or fused enzyme, respectively. These results indicated that the fused enzymes showed lower affinity for the substrate, probably due to structural modification and higher reaction rates through efficient intramolecular electron transfer as compared with those of P450c21. While the strain AH22/pAFR gamma 2 (YR21F2) produced about 3 X 10(4) molecules per cell of the reductase/P450c21 fused enzyme, the specific 21-hydroxylase activity of the fused enzyme toward 17 alpha-hydroxyprogesterone was extremely low, suggesting that the structure of the fused enzyme might not be suited for electron transfer in yeast microsomes.
Collapse
Affiliation(s)
- T Sakaki
- Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Co, Ltd., Hyogo, Japan
| | | | | | | | | |
Collapse
|
44
|
Urban P, Cullin C, Pompon D. Maximizing the expression of mammalian cytochrome P-450 monooxygenase activities in yeast cells. Biochimie 1990; 72:463-72. [PMID: 2124149 DOI: 10.1016/0300-9084(90)90070-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P-450s constitute a superfamily of mono-oxygenases which require the association with specific redox enzymes bound to the endoplasmic reticulum membrane for their activity. Conditions for the functional expression of these mammalian enzymes in yeast cells and the respective merits and limitations of currently used P-450 expression systems, are considered. The dependence of the mouse P-450 IA1 specific activity on the cytochrome expression level in yeast microsomes is studied and results demonstrate that the low amounts of endogenous NADPH-cytochrome P-450 reductase and cytochrome b5 which are naturally present, are limiting for the heterologous monooxygenase activities. The sequences encoding human liver cytochrome b5, the native and a modified form of the yeast NADPH-cytochrome P-450 reductase were cloned by making use of PCR techniques, over-expressed in yeast as functional forms, and characterized. New vectors allowing a high level of mammalian P-450 expression upon induction were also constructed and tested. A strategy for the construction of a co-expression system allowing maximal activity of mammalian cytochrome P-450s is discussed.
Collapse
Affiliation(s)
- P Urban
- Centre de Génétique Moléculaire du CNRS, Laboratoire Propre associé à l'Université Pierre-et-Marie-Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
45
|
Toghrol F, Kimura T, Owens IS. Expression of UDP-glucuronosyltransferase cDNA in Saccharomyces cerevisiae as a membrane-bound and as a cytosolic form. Biochemistry 1990; 29:2349-56. [PMID: 2110831 DOI: 10.1021/bi00461a020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mouse clone UDPGTm-1 encodes a UDP-glucuronosyltransferase enzyme which was isolated from a lambda gt11 cDNA library constructed with phenobarbital-induced liver mRNA [Kimura, T., & Owens, I. S. (1987) Eur. J. Biochem. 168, 515-521]. In order to establish substrate specificity, UDPGTm-1 was inserted into the yeast vector pEVP11 and expressed in Saccharomyces cerevisiae strain AH22. Cells transformed with the expression unit pUDPGTm-1c (insert in correct orientation with respect to promoter) stably transcribe the transferase cDNA. Consistent with the presence of mRNA, pUDPGTm-1c-transformed AH22 cells synthesize a transferase protein with Mr congruent to 51,000 by Western immunoblot analysis. The membrane-bound transferase expressed in yeast in glycosylated as indicated by its enhanced electrophoretic mobility in a SDS-polyacrylamide gel following endoglycosidase H treatment and detection by Western immunoblot analysis. A survey, using 12 aglycons in an assay with microsomes from cells which express the protein, shows preferential glucuronidation of naphthol and estrone followed by p-nitrophenol. Testosterone, phenolphthalein, dihydrotestosterone, androsterone, and 4-methylumbelliferone are conjugated at an intermediate level. There is barely detectable glucuronidation of 3-hydroxy- and 9-hydroxybenzo[a]pyrene and no detectable conversion of morphine or lithocholic acid. The truncated cDNA (lacking the putative membrane-insertion signal-peptide coding sequence, but with a newly adapted translation-start codon) is ligated into pAAH5 and is expressed as a cytosolic transferase form in the protease-deficient ZA521 strain of S. cerevisiae. The Mr congruent to 51,000-52,000 is similar to that seen in microsomes from AH22 cells where the protein is presumably processed as it is inserted into the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Toghrol
- Section on Drug Biotransformation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
46
|
Shibata M, Sakaki T, Yabusaki Y, Murakami H, Ohkawa H. Genetically engineered P450 monooxygenases: construction of bovine P450c17/yeast reductase fused enzymes. DNA Cell Biol 1990; 9:27-36. [PMID: 2180429 DOI: 10.1089/dna.1990.9.27] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seven P450/reductase fused enzymes were produced in Saccharomyces cerevisiae by expressing fused cDNAs consisting of bovine cytochrome P450c17 (P450c17) and yeast NADPH-cytochrome P450 reductase (reductase). These fused enzymes differed in the length and amino acid sequence of the hinge region between the P450 and reductase moieties. Expression of the fused constructs under the control of the yeast alcohol dehydrogenase I promoter and terminator of expression vector pAAH5 in S. cerevisiae AH22 cells resulted in the production of about 2-8 X 10(4) molecules per cell of the seven corresponding fused enzymes. Six of the fused enzymes incorporated a protoheme, as confirmed by reduced CO-difference spectra. Recombinant yeast strains producing each of the fused hemoproteins showed P450c17-dependent 17 alpha-hydroxylase activity toward progesterone. The most active fused enzyme, delta N23FE, which lacked the amino-terminal 23 amino acids of the reductase, showed about 10 times higher 17 alpha-hydroxylase activity than bovine P450c17, although the fused enzyme (delta N23FE)' with an amino acid sequence in the hinge region different from delta N23FE was less active than delta N23FE. The fused enzyme delta N0FE, consisting of P450c17 and whole reductase, showed about 1.8 times higher activity than bovine P450c17. No activity was found with delta N84FE lacking the amino-terminal 84 amino acids of the reductase moiety. P450c17-dependent C17,(20)-lyase activity toward 17 alpha-hydroxyprogesterone was detected to lesser extents in the recombinant yeast. Fused bovine P450c17/yeast reductase enzymes show enhanced 17 alpha-hydroxylase activity, and the length and amino acid sequence in the hinge region between the P450c17 and yeast reductase moieties can be important for efficient intramolecular electron transfer in the fused enzymes.
Collapse
Affiliation(s)
- M Shibata
- Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Hyogo, Japan
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Haniu M, McManus ME, Birkett DJ, Lee TD, Shively JE. Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry 1989; 28:8639-45. [PMID: 2513880 DOI: 10.1021/bi00447a054] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complete amino acid sequence of human liver NADPH-cytochrome P-450 reductase has been determined by microsequence analysis and mass spectrometry. The total sequence consists of 676 amino acids initiated by an amino-terminal acetyl group. There is no evidence for posttranslational modifications, including Asn-linked glycosylation. The human enzyme exhibits sequence homology in the range of 92-95% with other mammalian enzymes. Sequence differences were mainly confined to several hydrophilic regions in the NH2-terminal and COOH-terminal domains. Since the human enzyme is immunochemically distinct from the rabbit enzyme despite similar enzymatic properties, it is likely that these variable hydrophilic regions are potential antigenic determinants. The NADPH-depleted enzyme is inactivated by either fluorescein isothiocyanate, a lysine-specific reagent, or 5-(iodoacetamido)fluorescein, a cysteine-specific reagent. In both cases, protection by NADP(H) prevents enzyme inactivation by the reagents. Isolation of fluorescent peptide from 5-(iodoacetamido)fluorescein-inactivated enzyme identified Cys 565 as the specifically NADPH-protected residue.
Collapse
Affiliation(s)
- M Haniu
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | | | | | |
Collapse
|
49
|
Shephard EA, Phillips IR, Santisteban I, West LF, Palmer CN, Ashworth A, Povey S. Isolation of a human cytochrome P-450 reductase cDNA clone and localization of the corresponding gene to chromosome 7q11.2. Ann Hum Genet 1989; 53:291-301. [PMID: 2516426 DOI: 10.1111/j.1469-1809.1989.tb01798.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have isolated and sequenced cDNA clones that code for rat and human NADPH-dependent cytochrome P-450 reductase. The cDNA coding for the human protein was used to analyse, by Southern blot hybridization, DNA isolated from a panel of 8 independent human-rodent somatic cell hybrids. The results indicate that cytochrome P-450 reductase is encoded by a single gene (POR) located on human chromosome 7(pter-q22). Analysis of human metaphase chromosomes by hybridization in situ confirmed the results and refined the localization to 7q11.2. Northern blot hybridization revealed that in human liver the expression of the gene varies by less than 3-fold between different individuals.
Collapse
Affiliation(s)
- E A Shephard
- Department of Biochemistry, University College London
| | | | | | | | | | | | | |
Collapse
|
50
|
Sakaki T, Shibata M, Yabusaki Y, Murakami H, Ohkawa H. Expression of bovine cytochrome P450c17 cDNA in Saccharomyces cerevisiae. DNA (MARY ANN LIEBERT, INC.) 1989; 8:409-18. [PMID: 2673705 DOI: 10.1089/dna.1.1989.8.409] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We constructed expression plasmids for bovine adrenal cytochrome P450c17 (P450c17) by inserting the corresponding cDNA between the yeast alcohol dehydrogenase I promoter and terminator of the expression vector pAAH5. Plasmids pA alpha 1 and pA alpha 2 contained the entire coding region for bovine P450c17, whereas pAC alpha 1 included the cDNA coding for chimeric P450c alpha consisting of the amino-terminal 45 amino acid residues of rat P450c and the carboxy-terminal 482 amino acid residues of bovine P450c17. The transformed Saccharomyces cerevisiae AH22/pA alpha 1, AH22/pA alpha 2, and AH22/pAC alpha 1 cells produced about 1 x 10(5), 1 x 10(5), and 2 x 10(4) molecules per cell of the corresponding P450 hemoproteins, respectively. On incubation with the cultures of each of the three strains, progesterone was specifically converted into 17 alpha-hydroxyprogesterone, which was not further converted into androstenedione, indicating that the three strains showed 17 alpha-hydroxylase activity, but almost no C17,20-lyase activity. The microsomal fraction prepared from the AH22/pA alpha 1 cells showed 17 alpha-hydroxylase activity toward progesterone and pregnenolone to higher extents, and exhibited C17,20-lyase activity toward 17 alpha-hydroxypregnenolone to a lesser extent and almost no C17,20-lyase activity toward 17 alpha-hydroxyprogesterone. These results indicated that bovine P450c17 synthesized in S. cerevisiae cells manifests the 17 alpha-hydroxylase activity, but not the C17,20-lyase activity.
Collapse
Affiliation(s)
- T Sakaki
- Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Hyogo, Japan
| | | | | | | | | |
Collapse
|