1
|
Choi H, Hwang M, Cornelius L, Navarathna DH, Chatterjee P, Jinadatha C. Evolution of a Distinct SARS-CoV-2 Lineage Identified during an Investigation of a Hospital Outbreak. Viruses 2024; 16:337. [PMID: 38543703 PMCID: PMC10974601 DOI: 10.3390/v16030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 05/23/2024] Open
Abstract
The SARS-CoV-2 virus steadily evolves, and numerous antigenically distinct variants have emerged over the past three years. Tracking the evolution of the virus would help us understand the process that generates the diverse variants and predict the future evolutionary trajectory of SARS-CoV-2. Here, we report the evolutionary trajectory of a unique Omicron lineage identified during an outbreak investigation that occurred in a residence unit in the healthcare system. The new lineage had four distinct non-synonymous and two distinct synonymous mutations apart from its parental lineage. Since this lineage of virus was exclusively found during the outbreak, we were able to track the detailed evolutionary history of the entire lineage along the transmission path. Furthermore, we estimated the evolutionary rate of the SARS-CoV-2 Omicron variant from the analysis of the evolution of the lineage. This new Omicron sub-lineage acquired 3 mutations in a 12-day period, and the evolutionary rate was estimated as 3.05 × 10-3 subs/site/year. This study provides more insight into an ever-evolving virus.
Collapse
Affiliation(s)
- Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Lisa Cornelius
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (L.C.); (C.J.)
| | - Dhammika H. Navarathna
- Department of Pathology and Laboratory Medicine Services, Central Texas Veterans Health Care System, Temple, TX 76504, USA;
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (L.C.); (C.J.)
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| |
Collapse
|
2
|
Denker L, Dixon AM. The cell edit: Looking at and beyond non-structural proteins to understand membrane rearrangement in coronaviruses. Arch Biochem Biophys 2024; 752:109856. [PMID: 38104958 DOI: 10.1016/j.abb.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.
Collapse
Affiliation(s)
- Lea Denker
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK.
| |
Collapse
|
3
|
Grootemaat AE, van der Niet S, Scholl ER, Roos E, Schurink B, Bugiani M, Miller SE, Larsen P, Pankras J, Reits EA, van der Wel NN. Lipid and Nucleocapsid N-Protein Accumulation in COVID-19 Patient Lung and Infected Cells. Microbiol Spectr 2022; 10:e0127121. [PMID: 35171025 PMCID: PMC8849100 DOI: 10.1128/spectrum.01271-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.
Collapse
Affiliation(s)
- Anita E. Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Edwin R. Scholl
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Eva Roos
- Department of Pathology, Amsterdam University Medical Centers (UMC), VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernadette Schurink
- Department of Pathology, Amsterdam University Medical Centers (UMC), VU University Amsterdam, Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers (UMC), VU University Amsterdam, Amsterdam, the Netherlands
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Per Larsen
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers (UMC), VU University Amsterdam, Amsterdam, the Netherlands
| | - Jeannette Pankras
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers (UMC), VU University Amsterdam, Amsterdam, the Netherlands
| | - Eric A. Reits
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| |
Collapse
|
4
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
5
|
Movaqar A, Yaghoubi A, Rezaee SAR, Jamehdar SA, Soleimanpour S. Coronaviruses construct an interconnection way with ERAD and autophagy. Future Microbiol 2021; 16:1135-1151. [PMID: 34468179 PMCID: PMC8412035 DOI: 10.2217/fmb-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses quickly became a pandemic or epidemic, affecting large numbers of humans, due to their structural features and also because of their impacts on intracellular communications. The knowledge of the intracellular mechanism of virus distribution could help understand the coronavirus's proper effects on different pathways that lead to the infections. They protect themselves from recognition and damage the infected cell by using an enclosed membrane through hijacking the autophagy and endoplasmic reticulum-associated protein degradation pathways. The present study is a comprehensive review of the coronavirus strategy in upregulating the communication network of autophagy and endoplasmic reticulum-associated protein degradation.
Collapse
Affiliation(s)
- Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SA Rahim Rezaee
- Inflammation & Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid A Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Hisham Y, Ashhab Y, Hwang SH, Kim DE. Identification of Highly Conserved SARS-CoV-2 Antigenic Epitopes with Wide Coverage Using Reverse Vaccinology Approach. Viruses 2021; 13:787. [PMID: 33925069 PMCID: PMC8145845 DOI: 10.3390/v13050787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most effective strategies for eliminating new and emerging infectious diseases is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope density, and mutation density and (2) analysis of the various aspects of the epitopes, including antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density. After performing a mutation analysis based on the contemporary mutational amino acid substitutions observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates. Despite mutational amino acid substitutions, most epitope sequences were predicted to retain immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline may potentially reduce the time required for effective vaccine development and can be applicable for vaccine development for other pathogenic diseases as well.
Collapse
Affiliation(s)
- Yasmin Hisham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron 90100, Palestine
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Han Q, Wang J, Luo H, Li L, Lu X, Liu A, Deng Y, Jiang Y. TMBIM6, a potential virus target protein identified by integrated multiomics data analysis in SARS-CoV-2-infected host cells. Aging (Albany NY) 2021; 13:9160-9185. [PMID: 33744846 PMCID: PMC8064151 DOI: 10.18632/aging.202718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we collected open access data to analyze the mechanisms associated with SARS-CoV-2 infection. Gene set enrichment analysis (GSEA) revealed that apoptosis-related pathways were enriched in the cells after SARS-CoV-2 infection, and the results of differential expression analysis showed that biological functions related to endoplasmic reticulum stress (ERS) and lipid metabolism were disordered. TMBIM6 was identified as a potential target for SARS-CoV-2 in host cells through weighted gene coexpression network analysis (WGCNA) of the time course of expression of host and viral proteins. The expression and related functions of TMBIM6 were subsequently analyzed to illuminate how viral proteins interfere with the physiological function of host cells. The potential function of viral proteins was further analyzed by GEne Network Inference with Ensemble of trees (GENIE3). This study identified TMBIM6 as a target protein associated with the pathogenesis of SARS-CoV-2, which might provide a novel therapeutic approach for COVID-19 in the future.
Collapse
Affiliation(s)
- Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinya Lu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aihua Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Kalhori MR, Saadatpour F, Arefian E, Soleimani M, Farzaei MH, Aneva IY, Echeverría J. The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Front Pharmacol 2021; 12:616993. [PMID: 33716745 PMCID: PMC7953353 DOI: 10.3389/fphar.2021.616993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease's main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus's genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus's structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hosien Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
9
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
10
|
Coronavirus infection induces progressive restructuring of the endoplasmic reticulum involving the formation and degradation of double membrane vesicles. Virology 2020; 556:9-22. [PMID: 33524849 PMCID: PMC7836250 DOI: 10.1016/j.virol.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 01/02/2023]
Abstract
Coronaviruses rearrange endoplasmic reticulum (ER) membranes to form a reticulovesicular network (RVN) comprised predominantly of double membrane vesicles (DMVs) involved in viral replication. While portions of the RVN have been analyzed by electron tomography (ET), the full extent of the RVN is not known, nor how RVN formation affects ER morphology. Additionally the precise mechanism of DMV formation has not been observed. In this work, we examined large volumes of coronavirus-infected cells at multiple timepoints during infection using serial-section ET. We provide a comprehensive 3D analysis of the ER and RVN which gives insight into the formation mechanism of DMVs as well as the first evidence for their lysosomal degradation. We also show that the RVN breaks down late in infection, concurrent with the ER becoming the main budding compartment for new virions. This work provides a broad view of the multifaceted involvement of ER membranes in coronavirus infection.
Collapse
|
11
|
Martins SDT, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol 2020; 10:593170. [PMID: 33335862 PMCID: PMC7736630 DOI: 10.3389/fcimb.2020.593170] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are small membrane structures containing proteins and nucleic acids that are gaining a lot of attention lately. They are produced by most cells and can be detected in several body fluids, having a huge potential in therapeutic and diagnostic approaches. EVs produced by infected cells usually have a molecular signature that is very distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even more complex function, since the viral biogenesis pathway can overlap with EV pathways in several ways, generating a continuum of particles, like naked virions, EVs containing infective viral genomes and quasi-enveloped viruses, besides the classical complete viral particles that are secreted to the extracellular space. Those particles can act in recipient cells in different ways. Besides being directly infective, they also can prime neighbor cells rendering them more susceptible to infection, block antiviral responses and deliver isolated viral molecules. On the other hand, they can trigger antiviral responses and cytokine secretion even in uninfected cells near the infection site, helping to fight the infection and protect other cells from the virus. This protective response can also backfire, when a massive inflammation facilitated by those EVs can be responsible for bad clinical outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms are observed in infections by the same virus. Since those pathways are intrinsically interlinked, understand the role of EVs during viral infections is crucial to comprehend viral mechanisms and respond better to emerging viral diseases.
Collapse
Affiliation(s)
- Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil.,Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil
| |
Collapse
|
12
|
Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol 2020; 60:50. [PMID: 32962761 PMCID: PMC7506814 DOI: 10.1186/s42358-020-00151-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global major concern. In this review, we addressed a theoretical model on immunopathogenesis associated with severe COVID-19, based on the current literature of SARS-CoV-2 and other epidemic pathogenic coronaviruses, such as SARS and MERS. Several studies have suggested that immune dysregulation and hyperinflammatory response induced by SARS-CoV-2 are more involved in disease severity than the virus itself.Immune dysregulation due to COVID-19 is characterized by delayed and impaired interferon response, lymphocyte exhaustion and cytokine storm that ultimately lead to diffuse lung tissue damage and posterior thrombotic phenomena.Considering there is a lack of clinical evidence provided by randomized clinical trials, the knowledge about SARS-CoV-2 disease pathogenesis and immune response is a cornerstone to develop rationale-based clinical therapeutic strategies. In this narrative review, the authors aimed to describe the immunopathogenesis of severe forms of COVID-19.
Collapse
Affiliation(s)
- Bruno Bordallo
- Departament of Internal Medicine / Emergence, Hospital Universitário Antônio Pedro / Univesidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Mozart Bellas
- Departament of Internal Medicine / Emergence, Hospital Universitário Antônio Pedro / Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur Fernandes Cortez
- Hospital Universitário Gaffré e Guinle / Universidade Federal do Estado do Rio de Janeiro, Internal Medicine Departament, Rio de Janeiro, RJ, Brazil
| | - Matheus Vieira
- Departament of Internal Medicine, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, RJ, Brazil
| | - Marcelo Pinheiro
- Departament of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
13
|
Müller C, Hardt M, Schwudke D, Neuman BW, Pleschka S, Ziebuhr J. Inhibition of Cytosolic Phospholipase A 2α Impairs an Early Step of Coronavirus Replication in Cell Culture. J Virol 2018; 92:e01463-17. [PMID: 29167338 PMCID: PMC5790932 DOI: 10.1128/jvi.01463-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Coronavirus replication is associated with intracellular membrane rearrangements in infected cells, resulting in the formation of double-membrane vesicles (DMVs) and other membranous structures that are referred to as replicative organelles (ROs). The latter provide a structural scaffold for viral replication/transcription complexes (RTCs) and help to sequester RTC components from recognition by cellular factors involved in antiviral host responses. There is increasing evidence that plus-strand RNA (+RNA) virus replication, including RO formation and virion morphogenesis, affects cellular lipid metabolism and critically depends on enzymes involved in lipid synthesis and processing. Here, we investigated the role of cytosolic phospholipase A2α (cPLA2α) in coronavirus replication using a low-molecular-weight nonpeptidic inhibitor, pyrrolidine-2 (Py-2). The inhibition of cPLA2α activity, which produces lysophospholipids (LPLs) by cleaving at the sn-2 position of phospholipids, had profound effects on viral RNA and protein accumulation in human coronavirus 229E-infected Huh-7 cells. Transmission electron microscopy revealed that DMV formation in infected cells was significantly reduced in the presence of the inhibitor. Furthermore, we found that (i) viral RTCs colocalized with LPL-containing membranes, (ii) cellular LPL concentrations were increased in coronavirus-infected cells, and (iii) this increase was diminished in the presence of the cPLA2α inhibitor Py-2. Py-2 also displayed antiviral activities against other viruses representing the Coronaviridae and Togaviridae families, while members of the Picornaviridae were not affected. Taken together, the study provides evidence that cPLA2α activity is critically involved in the replication of various +RNA virus families and may thus represent a candidate target for broad-spectrum antiviral drug development.IMPORTANCE Examples of highly conserved RNA virus proteins that qualify as drug targets for broad-spectrum antivirals remain scarce, resulting in increased efforts to identify and specifically inhibit cellular functions that are essential for the replication of RNA viruses belonging to different genera and families. The present study supports and extends previous conclusions that enzymes involved in cellular lipid metabolism may be tractable targets for broad-spectrum antivirals. We obtained evidence to show that a cellular phospholipase, cPLA2α, which releases fatty acid from the sn-2 position of membrane-associated glycerophospholipids, is critically involved in coronavirus replication, most likely by producing lysophospholipids that are required to form the specialized membrane compartments in which viral RNA synthesis takes place. The importance of this enzyme in coronavirus replication and DMV formation is supported by several lines of evidence, including confocal and electron microscopy, viral replication, and lipidomics studies of coronavirus-infected cells treated with a highly specific cPLA2α inhibitor.
Collapse
Affiliation(s)
- Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infection, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany
| | | | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Rappe JCF, de Wilde A, Di H, Müller C, Stalder H, V'kovski P, Snijder E, Brinton MA, Ziebuhr J, Ruggli N, Thiel V. Antiviral activity of K22 against members of the order Nidovirales. Virus Res 2018; 246:28-34. [PMID: 29337162 PMCID: PMC7114538 DOI: 10.1016/j.virusres.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/31/2023]
Abstract
Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 μM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.
Collapse
Affiliation(s)
- Julie Christiane Françoise Rappe
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Adriaan de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Han Di
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Philip V'kovski
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Eric Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margo A Brinton
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Nicolas Ruggli
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Volker Thiel
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| |
Collapse
|
15
|
Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. mBio 2017; 8:mBio.01658-17. [PMID: 29162711 PMCID: PMC5698553 DOI: 10.1128/mbio.01658-17] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp’s) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation. The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp’s) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.
Collapse
|
16
|
A Naturally Occurring Recombinant Enterovirus Expresses a Torovirus Deubiquitinase. J Virol 2017; 91:JVI.00450-17. [PMID: 28490584 DOI: 10.1128/jvi.00450-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Enteroviruses (EVs) are implicated in a wide range of diseases in humans and animals. In this study, a novel enterovirus (enterovirus species G [EVG]) (EVG 08/NC_USA/2015) was isolated from a diagnostic sample from a neonatal pig diarrhea case and identified by using metagenomics and complete genome sequencing. The viral genome shares 75.4% nucleotide identity with a prototypic EVG strain (PEV9 UKG/410/73). Remarkably, a 582-nucleotide insertion, flanked by 3Cpro cleavage sites at the 5' and 3' ends, was found in the 2C/3A junction region of the viral genome. This insertion encodes a predicted protease with 54 to 68% amino acid identity to torovirus (ToV) papain-like protease (PLP) (ToV-PLP). Structural homology modeling predicts that this protease adopts a fold and a catalytic site characteristic of minimal PLP catalytic domains. This structure is similar to those of core catalytic domains of the foot-and-mouth disease virus leader protease and coronavirus PLPs, which act as deubiquitinating and deISGylating (interferon [IFN]-stimulated gene 15 [ISG15]-removing) enzymes on host cell substrates. Importantly, the recombinant ToV-PLP protein derived from this novel enterovirus also showed strong deubiquitination and deISGylation activities and demonstrated the ability to suppress IFN-β expression. Using reverse genetics, we generated a ToV-PLP knockout recombinant virus. Compared to the wild-type virus, the ToV-PLP knockout mutant virus showed impaired growth and induced higher expression levels of innate immune genes in infected cells. These results suggest that ToV-PLP functions as an innate immune antagonist; enterovirus G may therefore gain fitness through the acquisition of ToV-PLP from a recombination event.IMPORTANCE Enteroviruses comprise a highly diversified group of viruses. Genetic recombination has been considered a driving force for viral evolution; however, recombination between viruses from two different orders is a rare event. In this study, we identified a special case of cross-order recombination between enterovirus G (order Picornavirales) and torovirus (order Nidovirales). This naturally occurring recombination event may have broad implications for other picornaviral and/or nidoviral species. Importantly, we demonstrated that the exogenous ToV-PLP gene that was inserted into the EVG genome encodes a deubiquitinase/deISGylase and potentially suppresses host cellular innate immune responses. Our results provide insights into how a gain of function through genetic recombination, in particular cross-order recombination, may improve the ability of a virus to evade host immunity.
Collapse
|
17
|
O'Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S, van den Hurk AF, Johansen CA, Watterson D, Bielefeldt-Ohmann H, Newton ND, Schulz BL, Hall RA, Hobson-Peters J. Discovery and Characterisation of Castlerea Virus, a New Species of Negevirus Isolated in Australia. Evol Bioinform Online 2017; 13:1176934317691269. [PMID: 28469377 PMCID: PMC5395271 DOI: 10.1177/1176934317691269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
With advances in sequencing technologies, there has been an increase in the discovery of viruses that do not group with any currently described virus families. The newly described taxon Negevirus encompasses a group of viruses displaying an insect-specific phenotype which have been isolated from multiple host species on numerous continents. Using a broad-spectrum virus screening assay based on the detection of double-stranded RNA and next-generation sequencing, we have detected a novel species of negevirus, from Anopheles, Culex, and Aedes mosquitoes collected in 4 geographically separate regions of Australia. Bioinformatic analysis of the virus, tentatively named Castlerea virus, revealed that it is genetically distinct from previously described negeviruses but clusters in the newly proposed Nelorpivirus clade within this taxon. Analysis of virions confirmed the presence of 2 proteins of 24 and 40 kDa which support previous bioinformatic predictions of negevirus structural proteins.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA, Australia.,Department of Health - Pathwest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
18
|
O’Brien CA, Hobson-Peters J, Yam AWY, Colmant AMG, McLean BJ, Prow NA, Watterson D, Hall-Mendelin S, Warrilow D, Ng ML, Khromykh AA, Hall RA. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl Trop Dis 2015; 9:e0003629. [PMID: 25799391 PMCID: PMC4370754 DOI: 10.1371/journal.pntd.0003629] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022] Open
Abstract
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice Wei Yee Yam
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M. G. Colmant
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Breeanna J. McLean
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalie A. Prow
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - Mah-Lee Ng
- Department of Microbiology, National University Health System, National University of Singapore, Singapore
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
19
|
V'kovski P, Al-Mulla H, Thiel V, Neuman BW. New insights on the role of paired membrane structures in coronavirus replication. Virus Res 2014; 202:33-40. [PMID: 25550072 PMCID: PMC7114427 DOI: 10.1016/j.virusres.2014.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Coronavirus replication is tied to formation of double-membrane organelles (DMOs). DMO-making genes are conserved across the Nidovirales. Here, we interpret recent experiments on the role and importance of coronavirus DMOs.
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Collapse
Affiliation(s)
- Philip V'kovski
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Graduate School for Biomedical Sciences, University of Bern, Switzerland
| | - Hawaa Al-Mulla
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom; University of Baghdad, College of Science, Baghdad, Iraq
| | - Volker Thiel
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| |
Collapse
|
20
|
Abstract
An essential step during the intracellular life cycle of many positive-strand RNA viruses is the rearrangement of host cell membranes to generate membrane-bound replication platforms. For example, Nidovirales and Flaviviridae subvert the membrane of the endoplasmic reticulum (ER) for their replication. However, the absence of conventional ER and secretory pathway markers in virus-induced ER-derived membranes has for a long time hampered a thorough understanding of their biogenesis. Recent reports highlight the analogies between mouse hepatitis virus-, equine arteritis virus-, and Japanese encephalitis virus-induced replication platforms and ER-associated degradation (ERAD) tuning vesicles (or EDEMosomes) that display nonlipidated LC3 at their cytosolic face and segregate the ERAD factors EDEM1, OS-9, and SEL1L from the ER lumen. In this Gem, we briefly summarize the current knowledge on ERAD tuning pathways and how they might be hijacked for viral genome replication. As ERAD tuning components, such as SEL1L and nonlipidated LC3, appear to contribute to viral infection, these cellular pathways represent novel candidate drug targets to combat positive-strand RNA viruses.
Collapse
|