1
|
Izco M, Schleef M, Schmeer M, Carlos E, Verona G, Alvarez-Erviti L. Targeted Extracellular Vesicle Gene Therapy for Modulating Alpha-Synuclein Expression in Gut and Spinal Cord. Pharmaceutics 2023; 15:pharmaceutics15041230. [PMID: 37111717 PMCID: PMC10145068 DOI: 10.3390/pharmaceutics15041230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective disease-modifying therapies to halt Parkinson's disease (PD) progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain downregulation for long-term treatments. Our results support the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.
Collapse
Affiliation(s)
- Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| | | | - Marco Schmeer
- PlasmidFactory GmbH & Co. KG, 33607 Bielefeld, Germany
| | - Estefania Carlos
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| | - Guglielmo Verona
- Centre for Amyloidosis, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| |
Collapse
|
2
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Buckinx R, Timmermans JP. Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochem Cell Biol 2016; 146:709-720. [PMID: 27665281 DOI: 10.1007/s00418-016-1496-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
While there is a large body of preclinical data on the use of viral vectors in gene transfer, relatively little is known about viral gene transfer in the gastrointestinal tract. Viral vector technology is especially underused in the field of neurogastroenterology when compared to brain research. This review provides an overview of the studies employing viral vectors-in particular retroviruses, adenoviruses and adeno-associated viruses-to transduce different cell types in the intestine. Early work mainly focused on mucosal transduction, but had limited success due to the harsh luminal conditions in the gastrointestinal tract and the high turnover rate of enterocytes. More recently, several studies have successfully employed viral gene transfer to target the enteric nervous system and its progenitors. Although several hurdles still need to be overcome, in particular on how to augment transduction efficiency and specific cell targeting, viral vector technology holds strong potential not only as a valid research tool in fundamental gastroenterological research but also as a therapeutic agent in translational (bio)medical research.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Dendrimers for siRNA Delivery. Pharmaceuticals (Basel) 2013; 6:161-83. [PMID: 24275946 PMCID: PMC3816686 DOI: 10.3390/ph6020161] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 01/18/2023] Open
Abstract
Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.
Collapse
|
5
|
Marel SVD, Majowicz A, Deventer SV, Petry H, Hommes DW, Ferreira V. Gene and cell therapy based treatment strategies for inflammatory bowel diseases. World J Gastrointest Pathophysiol 2011; 2:114-22. [PMID: 22180846 PMCID: PMC3240904 DOI: 10.4291/wjgp.v2.i6.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials.
Collapse
|
6
|
Matsumoto H, Kimura T, Haga K, Kasahara N, Anton P, McGowan I. Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors. BMC Gastroenterol 2010; 10:44. [PMID: 20459837 PMCID: PMC2881878 DOI: 10.1186/1471-230x-10-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 05/11/2010] [Indexed: 12/31/2022] Open
Abstract
Background Gene transfer to the gastrointestinal (GI) mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD), GI infections, and cancer. Methods We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G)-pseudotyped lentiviral vectors (LV) for efficacy of gene transfer to both murine rectosigmoid colon in vivo and human colon explants ex vivo. LV encoding beta-galactosidase (LV-β-Gal) or firefly-luciferase (LV-fLuc) reporter genes were administered by intrarectal instillation in mice, or applied topically for ex vivo transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by ex vivo bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining. Results Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP. Conclusions We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Magee-Womens Research Institute, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Guillaume C, Gobin E, Floch V, Loisel Ś, Delépine P, Mercier B, Leroy JP, Férec C. Caecum: A Potential Site for Studying Gene Transfer in vivo. J Liposome Res 2008. [DOI: 10.3109/08982100009031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Zhang Y, Yao L, Shen K, Xu M, Zhou P, Yang W, Liu X, Qin X. Genetically engineered K cells provide sufficient insulin to correct hyperglycemia in a nude murine model. Acta Biochim Biophys Sin (Shanghai) 2008; 40:149-57. [PMID: 18235977 DOI: 10.1111/j.1745-7270.2008.00387.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A gene therapy-based treatment of type 1 diabetes mellitus requires the development of a surrogate beta cell that can synthesize and secrete functionally active insulin in response to physiologically relevant changes in ambient glucose levels. In this study, the murine enteroendocrine cell line STC-1 was genetically modified by stable transfection. Two clone cells were selected (STC-1-2 and STC-1-14) that secreted the highest levels of insulin among the 22 clones expressing insulin from 0 to 157.2 microIU/ml/10(6) cells/d. After glucose concentration in the culture medium was increased from 1 mM to 10 mM, secreted insulin rose from 40.3+/-0.8 to 56.3+/-3.2 microIU/ml (STC-1-2), and from 10.8+/-0.8 to 23.6+/-2.3 microIU/ml (STC-1-14). After STC-1-14 cells were implanted into diabetic nude mice, their blood glucose levels were reduced to normal. Body weight loss was also ameliorated. Our data suggested that genetically engineered K cells secrete active insulin in a glucose-regulated manner, and in vivo study showed that hyperglycemia could be reversed by implantation of the cells, suggesting that the use of genetically engineered K cells to express human insulin might provide a glucose-regulated approach to treat diabetic hyperglycemia.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
He ZG, Li GY, Shen SR, Li XL. Studies on polyamidoamine dendrimers as efficient gene delivery vector. J Biomater Appl 2007; 22:527-44. [PMID: 17623709 DOI: 10.1177/0885328207080005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-viral methods of gene delivery are attractive alternatives compared to virus-based gene delivery. Polyamidoamine (PAMAM) dendrimers are a new class of highly branched spherical polymers and have a unique surface of positively charged primary amine groups. They can form complex with DNA by electrostatic interaction, and deliver gene into cells. The ability of G5 PAMAM dendrimers binding and transferring DNA to cells has been investigated, and the effect of this complex to cell viability has been evaluated. G5 PAMAM dendrimers can bind DNA and transfer it to cultured cells efficiently, and have low cytotoxicity. The complex of PAMAM dendrimer-DNA can remain intact in a broad pH range, and also can prevent DNA from being degraded by restriction enzyme. Using the EGFP-C2 gene as marker genes, PAMAM dendrimers can deliver it to many organs after intravenous injection and have high expression in liver, kidney, lung, and spleen. Polyamidoamine- DNA complex can bind selectively plasma proteins, which may be correlated with its transportation in vivo. Polyamidoamine dendrimers' high-efficiency, low-cytotoxicity gene vector, appear to have potential for fundamental research and genetic therapy in vitro and in vivo.
Collapse
|
10
|
POTTER M, LI A, CIRONE P, SHEN F, CHANG P. Artificial cells as a novel approach to gene therapy. ARTIFICIAL CELLS, CELL ENGINEERING AND THERAPY 2007:236-291. [DOI: 10.1533/9781845693077.3.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
David AL, Peebles DM, Gregory L, Waddington SN, Themis M, Weisz B, Ruthe A, Lawrence L, Cook T, Rodeck CH, Coutelle C. Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: toward prenatal prevention of early-onset intestinal diseases. Hum Gene Ther 2006; 17:767-79. [PMID: 16839275 DOI: 10.1089/hum.2006.17.767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Targeting gene therapy vectors to the fetal intestinal tract could provide a novel means toward prevention of the early postnatal intestinal pathology of cystic fibrosis and other conditions, such as congenital enteropathy, that cause intestinal failure. Among these conditions, cystic fibrosis is by far the most common lethal genetic disease. It is caused by a functional absence or deficiency of the cystic fibrosis transmembrane conductance regulator and manifests in the gut as meconium ileus. Prenatal treatment of genetic disease may avoid early-onset tissue damage and immune sensitization, and may target cells that are less accessible in the adult. We investigated gene transfer to the fetal gut, using a minimally invasive injection technique. First-generation replication-deficient adenoviral vectors encoding the beta-galactosidase gene and transduction-enhancing agents were injected into the stomach of early-gestation fetal sheep (n = 8, 60 days of gestation; term, 145 days) under ultrasound guidance. Reporter gene expression was observed 2 days after injection in the villi of the gastrointestinal epithelia after 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining and beta-galactosidase immunohistochemistry of fetal tissues. Expression of beta-galactosidase, as measured by enzyme-linked immunosorbent assay, was enhanced after pretreatment of the fetal gut with sodium caprate, which opens tight junctions, and after adenovirus complexation with DEAE-dextran, which confers a positive charge to the virus. Instillation of the fluorocarbon perflubron after virus delivery resulted in tissue transduction from the fetal stomach to the colon. Using a clinically relevant technique, we have demonstrated widespread gene transfer to the fetal gastrointestinal epithelia.
Collapse
Affiliation(s)
- A L David
- Department of Obstetrics and Gynaecology, Royal Free and University College Medical School, University College London, London, WC1E 6HX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
David A, Peebles D, Gregory L, Waddington S, Themis M, Weisz B, Ruthe A, Lawrence L, Cook T, Rodeck C, Coutelle C. Clinically Applicable Procedure for Gene Delivery to Fetal Gut by Ultrasound-Guided Gastric Injection: Toward Prenatal Prevention of Early-Onset Intestinal Diseases. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Sferra TJ, Backstrom K, Wang C, Rennard R, Miller M, Hu Y. Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse. Mol Ther 2005; 10:478-91. [PMID: 15336648 DOI: 10.1016/j.ymthe.2004.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 05/18/2004] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis type VII is a lysosomal storage disease caused by deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans within multiple organs, including the brain. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) type 2 vector is capable of reversing the progression of storage in adult mice. We engineered an rAAV2 vector to carry the murine beta-glucuronidase cDNA under the transcriptional direction of the human elongation factor-1alpha promoter. Intrahepatic administration of this vector in adult MPS VII mice resulted in stable hepatic beta-glucuronidase expression (473 +/- 254% of that found in wild-type mouse liver) for at least 1 year postinjection. There was widespread distribution of vector genomes and beta-glucuronidase within extrahepatic organs. The level of enzyme activity was sufficient to reduce lysosomal storage within the liver, spleen, kidney, heart, lung, and brain. Within selected regions of the brain, neuronal, glial, and perivascular cells had histopathologic evidence of reduced storage. Also, brain alpha-galactosidase and beta-hexosaminidase enzyme levels, secondarily elevated by the storage abnormality, were normalized. These data demonstrate that peripheral administration of an rAAV2 vector in adult MPS VII mice can lead to transgene expression levels sufficient for improvements in both the peripheral and the central manifestations of this disease.
Collapse
Affiliation(s)
- Thomas J Sferra
- Center for Gene Therapy, Columbus Children's Research Institute, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Tang SC, Sambanis A, Sibley E. Proteasome modulating agents induce rAAV2-mediated transgene expression in human intestinal epithelial cells. Biochem Biophys Res Commun 2005; 331:1392-400. [PMID: 15883029 DOI: 10.1016/j.bbrc.2005.03.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Indexed: 11/20/2022]
Abstract
Intestinal gene transfer offers promise as a therapeutic option for treatment of both intestinal and non-intestinal diseases. Recombinant adeno-associated virus serotype 2, rAAV2, based vectors have been utilized to transduce lung epithelial cells in culture and in human subjects. rAAV2 transduction of intestinal epithelial cells, however, is limited both in culture and in vivo. Proteasome-inhibiting agents have recently been shown to enhance rAAV2-mediated transgene expression in airway epithelial cells. We hypothesized that similar inhibition of proteasome-related cellular processes can function to induce rAAV2 transduction of intestinal epithelial cells. Our results demonstrate that combined treatment with proteasome-modulating agents MG101 (N-acetyl-L-leucyl-L-leucyl-L-norleucine) and Doxorubicin synergistically induces rAAV2-mediated luciferase transgene expression by >400-fold in undifferentiated Caco-2 cells. In differentiated Caco-2 monolayers, treatment with MG101 and Doxorubicin induces transduction preferentially from the basolateral cell surface. In addition to Caco-2 cells, treatment with MG101 and Doxorubicin also results in enhanced rAAV2 transduction of HT-29, T84, and HCT-116 human intestinal epithelial cell lines. We conclude that MG101 and Doxorubicin mediate generic effects on intestinal epithelial cells that result in enhanced rAAV2 transduction. Use of proteasome-modulating agents to enhance viral transduction may facilitate the development of more efficient intestinal gene transfer protocols.
Collapse
Affiliation(s)
- Shiue-Cheng Tang
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
15
|
Abstract
The gut contains one of the largest stem cell populations in the body, yet has been largely overlooked as a source of potentially therapeutic cells. The stem cells reside in the crypts located at the base of the protruding villi, reproduce themselves, and repopulate the gut lining as differentiated cells are sloughed off into the lumen. Some studies have demonstrated that gut stem cells can be isolated and maintained in culture, but the field is currently hampered by the lack of clear markers for these cells. Nevertheless, the relative accessibility of the cells and the similar pathways of differentiation of both intestinal and pancreatic endocrine cells make the gut an attractive potential source of cells to treat diabetes. In particular, it may be possible to recapitulate islet development by the introduction of specific factors to gut stem cells. Alternatively, gut endocrine cells might be coaxed to produce insulin and secrete it into the blood in a meal-responsive manner. Several investigations support the feasibility of both approaches as novel potential therapies for diabetes. Utilizing a patient's own gut cells to re-establish endogenous meal-regulated insulin secretion could represent an attractive approach to ultimately cure diabetes.
Collapse
Affiliation(s)
- Yukihiro Fujita
- The Laboratory of Molecular and Cellular Medicine, Department of Physiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
16
|
Chang SF, Chang HY, Tong YC, Chen SH, Hsaio FC, Lu SC, Liaw J. Nonionic Polymeric Micelles for Oral Gene Delivery In Vivo. Hum Gene Ther 2004; 15:481-93. [PMID: 15144578 DOI: 10.1089/10430340460745801] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main aim of this study was to investigate the feasibility of using nonionic polymeric micelles of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) as a carrier for oral DNA delivery in vivo. The size and appearance of DNA/PEO-PPO-PEO polymeric micelles were examined, respectively, by dynamic light scattering and atomic force microscopy, and their zeta potential was measured. Expression of the delivered lacZ gene in various tissues of nude mice was assessed qualitatively by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of sections and quantitatively by measuring enzyme activity in tissue extracts, using the substrate of beta-galactosidase, chlorophenol red-beta-D-galactopyranoside. In addition, the types of cells expressing the lacZ gene in the duodenum were identified by histological analysis. DNA/PEO-PPO-PEO polymeric micelles are a single population of rounded micelles with a mean diameter of 170 nm and a zeta potential of -4.3 mV. Duodenal penetration of DNA/PEO-PPO-PEO polymeric micelles was evaluated in vitro by calculating the apparent permeability coefficient. The results showed a dose-independent penetration rate of (5.75 +/- 0.37) x 10(-5) cm/sec at low DNA concentrations (0.026-0.26 microg/microl), but a decrease to (2.89 +/- 0.37) x 10(-5) cm/sec at a concentration of 1.3 microg/microl. Furthermore, when 10 mM RGD peptide or 10 mM EDTA was administered before and concurrent with the administration of DNA/PEO-PPO-PEO polymeric micelles, transport was inhibited ([0.95 +/- 0.57] x 10(-5) cm/sec) by blocking endocytosis or enhanced ([29.8 +/- 5.7] x 10(-5) cm/sec) by opening tight junctions, respectively. After oral administration of six doses at 8-hr intervals, the highest expression of transferred gene lacZ was seen 48 hr after administration of the first dose, with gene expression detected in the villi, crypts, and goblet cells of the duodenum and in the crypt cells of the stomach. Reporter gene activity was seen in the duodenum, stomach, and liver. Activity was also seen in the brain and testis when mice were administered 10 mM EDTA before and concurrent with DNA/PEO-PPO-PEO polymeric micelle administration. lacZ mRNA was detected in these five organs and in the blood by reverse transcription-polymerase chain reaction. Taken together, these results show efficient, stable gene transfer can be achieved in mice by oral delivery of PEO-PPO-PEO polymeric micelles.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Cell and Molecular Biology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M, Li GY. IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med 2003; 5:803-17. [PMID: 12950071 DOI: 10.1002/jgm.419] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Non-viral methods of gene delivery have been an attractive alternative to virus-based gene therapy. However, the vectors that are currently available have drawbacks limiting their therapeutic application. METHODS We have developed a self-assembled non-viral gene carrier, poly-L-lysine modified iron oxide nanoparticles (IONP-PLL), which is formed by modifying poly-L-lysine to the surface of iron oxide nanoparticles. The ability of IONP-PLL to bind DNA was determined by ratio-dependent retardation of DNA in the agarose gel and co-sedimentation assay. In vitro cytotoxic effects were quantified by MTT assay. The transfection efficiency in vitro was evaluated by delivering exogenous DNA to different cell lines using IONP-PLL. Intravenous injection of IONP-PLL/DNA complexes into mice was evaluated as a gene delivery system for gene therapy. The PGL2-control gene encoding firefly luciferase and the EGFP-C2 gene encoding green fluorescent protein were used as marker genes. RESULTS IONP-PLL could bind and protect DNA. In contrast to PLL and cationic liposomes, IONP-PLL described here was less cytotoxic in a broad range of concentrations. In the current study, we have demonstrated that IONP-PLL can deliver exogenous gene to cells in vitro and in vivo. After intravenous injection, IONP-PLL transferred reporter gene EGFP-C2 to lung, brain, spleen and kidney. Furthermore, we have demonstrated that IONP-PLL transferred exogenous DNA across the blood-brain barrier to the glial cells and neuron of brain. CONCLUSIONS IONP-PLL, a low-toxicity vector, appears to have potential for fundamental research and genetic therapy in vitro and in vivo, especially for gene therapy of CNS disease.
Collapse
Affiliation(s)
- Juan-Juan Xiang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang SC, Sambanis A. Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer. Biochem Biophys Res Commun 2003; 303:645-52. [PMID: 12659868 DOI: 10.1016/s0006-291x(03)00399-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than daily insulin injections. Promising cells include intestinal enteroendocrine cells genetically engineered to secrete insulin in response to physiologic stimuli; responsiveness occurs at the exocytosis level to regulate the acute release of recombinant insulin. In this work, we established a human cellular model to demonstrate that meat hydrolysate can simultaneously stimulate glucagon-like peptide-1 (GLP-1, an enteroendocrine cell-derived incretin hormone) and recombinant insulin secretion from the engineered human NCI-H716 intestinal cell line. Cells were genetically modified using the recombinant adeno-associated virus (rAAV)-mediated insulin gene transfer. Recombinant cells were then differentiated to display endocrine features, in particular the formation of granule-like compartments. A fusion protein of insulin and enhanced green fluorescence protein (EGFP) was designed to reveal the compartments of localization of the fusion protein and assess its co-localization with endogenous GLP-1. Our work provides a unique human cellular model for regulated insulin release through genetic engineering of GLP-1-secreting intestinal cells, which is expected to be useful for cell-based therapies of IDD.
Collapse
Affiliation(s)
- Shiue-Cheng Tang
- School of Chemical Engineering, Georgia Tech-Emory Center for the Engineering of Living Tissues, and P.H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
19
|
Cryan SA, O'Driscoll CM. Mechanistic studies on nonviral gene delivery to the intestine using in vitro differentiated cell culture models and an in vivo rat intestinal loop. Pharm Res 2003; 20:569-75. [PMID: 12739763 DOI: 10.1023/a:1023286413666] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To identify factors influencing nonviral vector transfection in differentiated CaCo-2 and mucus-secreting coculture, CaCo-2: Ht29GlucH, cell culture models and to compare these in vitro results with in vivo transfection efficiency in rat intestine. METHODS A range of nonviral vectors including DOTAP, Lipofectin, Superfect, PEI, and polylysine were investigated. CaCo-2 and a mucus-secreting coculture were used at 21 days. Transfection efficiency was assessed using pCMVluc (firefly luciferase) plasmid, and radio-labeled plasmid was used to determine the binding and internalization of plasmid DNA. The in vivo model used was a ligated rat intestinal loop. RESULTS Transfection levels decreased by over 1000-fold in differentiated models relative to nondifferentiated COS-7 cells and were related to reductions in luciferase production by individual cells. Active internalization of DNA by the differentiated cells decreased. Removal of mucus by the mucolytic agent N-acetylcysteine, from the coculture system significantly reduced (p < 0.05) transfection efficiency. In vivo the transfection efficiency of PEI proved superior to DOTAP. CONCLUSIONS Nonviral gene delivery to the hostile environment of the intestine is possible. Mechanistic studies using differentiated intestinal cell models aid identification of the rate-limiting steps to transfection and represent a more physiologically relevant approach to predict gene delivery to the intestine.
Collapse
Affiliation(s)
- Sally-Ann Cryan
- Department of Pharmaceutics and Pharmaceutical Technology, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
20
|
Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, Gotow T, Miyatsuka T, Umayahara Y, Yamasaki Y, Hori M. PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes 2002; 51:2505-13. [PMID: 12145164 DOI: 10.2337/diabetes.51.8.2505] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A homeodomain containing transcription factor PDX-1 can induce beta-cell-specific gene expressions in some non-beta-cells and may therefore be useful for future diabetes gene/cell therapy. Among the potential target organs or tissues for transcription factor-mediated induction of beta-cell-like differentiation are the intestinal epithelial cells. They have certain merits over other tissues and organs in terms of accessibility for gene delivery and of similarity in developmental background to the pancreatic primordium. In this study, we used an intestinal epithelium-derived cell line, IEC-6 cells, and investigated the possible effects of PDX-1 expression in those cells. By exogenous expression of the PDX-1 gene, IEC-6 cells started expressing multiple beta-cell-specific genes such as amylin, glucokinase, and Nkx6.1, which were not found in the original IEC-6 cells. Insulin gene expression, which was missing initially even in the PDX-1-transfected IEC-6 cells, became detectable when the cells were transplanted under the renal capsule of a rat. When the PDX-1(+) IEC-6 cells were kept in vitro, treatment with betacellulin could also confer insulin gene expression to them. Although insulin secretory granules became visible by electron microscopy, they were secreted regardless of glucose concentration. The in vivo or in vitro inductions of the insulin gene expression were not observed in the PDX-1(-) IEC-6 cells. Thus, our present observations demonstrate the potency of intestinal epithelial cells as a tool for diabetes gene/cell therapy and provide further support for the potency of PDX-1 in driving beta-cell-like differentiation in non-beta-cells.
Collapse
Affiliation(s)
- Shigeru Yoshida
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita City, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakanishi K, Watanabe Y, Maruyama M, Yamashita F, Takakura Y, Hashida M. Secretion polarity of interferon-beta in epithelial cell lines. Arch Biochem Biophys 2002; 402:201-7. [PMID: 12051664 DOI: 10.1016/s0003-9861(02)00093-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epithelial cells are an attractive target for local gene delivery in gene therapy for which cytokine genes such as interferon (IFN) genes are promising. However, how the secretion of the gene products is regulated in epithelial cells has been insufficiently investigated. Here, we have studied the secretion polarity of IFN-beta expressed via gene transfection in mouse epithelial Pam-T cells on a bicameral culture system. In transient expression, IFN-beta was predominantly secreted from the cell membrane side on which the transfection was carried out. Meanwhile, the secretion of constitutive IFN-beta from stable transformants was apparently unpolarized. Interestingly, the transformants displayed a polarized secretion of transiently expressed IFN-beta in a transfection-side-dependent manner, their stable IFN-beta secretion remaining unpolarized. These results suggest that epithelial cells have at least dual protein sorting-secretion pathways, transient and stable, for the same secretory proteins, such as IFNs.
Collapse
Affiliation(s)
- Kiyo Nakanishi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The oral delivery of peptide, protein, vaccine and nucleic acid-based biotechnology products is the greatest challenge facing the drug delivery industry. Oral delivery is attractive due to factors such as ease of administration, leading to improved patient convenience and compliance, thereby reducing overall healthcare costs. The realization that gene therapy will provide a tangible and potentially huge new therapeutic opportunity has stimulated interest in oral gene delivery. Here we summarize the oral gene delivery vehicles currently in use and highlight potential areas of application, along with the challenges that need to be overcome before this new technology enters the clinic.
Collapse
Affiliation(s)
- D T. Page
- Elan Biotechnology Research Biotechnology Building Trinity College 2, Dublin, Ireland
| | | |
Collapse
|
23
|
Kuhel DG, Zheng S, Tso P, Hui DY. Adenovirus-mediated human pancreatic lipase gene transfer to rat bile: gene therapy of fat malabsorption. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1031-6. [PMID: 11053001 DOI: 10.1152/ajpgi.2000.279.5.g1031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study explored the potential of using the gene therapy approach, based on adenovirus-mediated expression of pancreatic lipase in the hepatobiliary tract, to increase lipid digestion in the intestinal lumen and promote lipid absorption through the gastrointestinal tract. Recombinant adenovirus containing the human pancreatic lipase cDNA (AdPL) was shown to transduce and mediate pancreatic lipase biosynthesis in rat IEC-6 epithelial cells in vitro. Retrograde infusion of recombinant adenovirus (3 x 10(8) plaque-forming units) containing the bacterial LacZ gene (AdLacZ) into the bile duct of rats resulted in positive X-gal reaction products in the periportal liver cells 7 days after AdLacZ infusion. A high level of human pancreatic lipase was detected in bile after retrograde bile duct infusion of rats with AdPL but not in the bile of animals infused with AdLacZ. Triglyceride hydrolytic activity in the bile of AdPL-infused rats was equivalent to that present in pancreatic juice. In contrast, serum obtained from these animals did not contain any detectable pancreatic lipase activity. These results suggest that ectopic expression of pancreatic enzymes in the hepatobiliary tract may be an alternative therapeutic strategy for treating fat malabsorption due to pancreatic insufficiency.
Collapse
Affiliation(s)
- D G Kuhel
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | |
Collapse
|
24
|
Ross CJ, Bastedo L, Maier SA, Sands MS, Chang PL. Treatment of a lysosomal storage disease, mucopolysaccharidosis VII, with microencapsulated recombinant cells. Hum Gene Ther 2000; 11:2117-27. [PMID: 11044913 DOI: 10.1089/104303400750001426] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most lysosomal enzyme deficiencies are catastrophic illnesses with no generally available treatments. We have used the beta-glucuronidase-deficient mouse model of mucopolysaccharidosis type VII (MPS VII) to develop an alternative approach to therapy. A "universal" cell line engineered to secrete the missing enzyme is implanted in all recipients requiring the same enzyme replacement. The cells, although nonautologous, are rendered immunologically tolerant by encapsulation in microcapsules that provide protection from immune mediators. Using this strategy, we injected beta-glucuronidase-secreting fibroblasts enclosed in alginate microcapsules into mutant MPS VII mice. After 24 hr, beta-glucuronidase activity was detected in the plasma, reaching 66% of physiological levels by 2 weeks postimplantation. Significant beta-glucuronidase activity was detected in liver and spleen for the duration of the 8-week experiment. Concomitantly, the intralysosomal accumulation of undegraded glycosaminoglycans was dramatically reduced in liver and spleen tissue sections and urinary glycosaminoglycan content was reduced to normal levels. Elevated secondary lysosomal enzymes beta-hexosaminidase and alpha-galactosidase were also reduced. However, implanted mutant MPS VII mice developed antibodies against the murine beta-glucuronidase, demonstrating a potential obstacle in patients with a null mutation who react against the replaced enzyme as a foreign antigen. The antibody response was transiently circumvented with a single treatment of purified anti-CD4 antibody coadministered with the microcapsules. This resulted in increased levels and duration of beta-glucuronidase delivery. Similarly, treated heterozygous mice maintained elevated levels of beta-glucuronidase and did not develop antibodies. This novel cell-based therapy demonstrates a potentially cost-effective and nonviral treatment applicable to all lysosomal storage diseases.
Collapse
Affiliation(s)
- C J Ross
- Department of Biology, McMaster University, Hamilton, Ontario, L8N 3Z5 Canada
| | | | | | | | | |
Collapse
|
25
|
Abstract
The advantages and disadvantages of viral and non-viral vectors for gene delivery are reviewed. Advances in systems for introduction of new gene expression are described, including self-deleting retroviral transfer vectors, chimeric viruses and chimeric oligonucleotides. Systems for inhibition of gene expression are also discussed including antisense oligonucleotides, ribozymes and dominant-negative genes. Examples of the use of these systems in animal models and clinical trials for gastrointestinal disorders are discussed.
Collapse
Affiliation(s)
- Edwin C Ouyang
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Ghazizadeh S, Harrington R, Garfield J, Taichman LB. Retrovirus-mediated transduction of porcine keratinocytes in organ culture. J Invest Dermatol 1998; 111:492-6. [PMID: 9740246 DOI: 10.1046/j.1523-1747.1998.00298.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Direct transfer of new genetic information to keratinocytes in epidermis may prove effective in treating certain genodermatoses; however, current methods for in vivo gene transfer to skin do not lead to persistence of the transgene. The goal of this study was to explore direct gene transfer using retrovirus-mediated transduction. Retroviral vectors integrate a DNA copy of their genome into the host chromosome and therefore have the potential to effect a permanent gene therapy. To facilitate development of methods for in vivo transduction with retroviral vectors, a porcine skin organ culture model was constructed in which the denuded surface was repopulated with replicating keratinocytes from hair follicles and epidermal remnants. In situ transduction was carried out by topical application of two retrovirus vectors, MFGlacZ (10(7) blue forming units per ml) and LZRN pseudotyped with the G protein of vesicular stomatitis virus (VSV) (10(9) colony forming units per ml), each encoding the beta-galactosidase reporter gene and the latter encoding the neomycin phosphotransferase selectable gene. Beta-galactosidase expressing cells were observed more frequently with LZRN than with MFGlacZ; however, transduction efficiency remained low in both instances. At equivalent titers, the VSV-G pseudotyped retroviral vector was shown to transduce porcine keratinocytes more efficiently than a similar vector with the amphotropic envelope. The number of beta-gal+ cells in organ culture could be increased by selection of LZRN-transduced cells in situ with G418. To achieve transduction of epidermis in vivo, these studies point out the importance of high titer retroviral vectors, pseudotyping with VSV-G protein, and in situ selection.
Collapse
Affiliation(s)
- S Ghazizadeh
- Department of Oral Biology and Pathology, SUNY at Stony Brook, New York 11794-8702, USA
| | | | | | | |
Collapse
|
27
|
Foreman PK, Wainwright MJ, Alicke B, Kovesdi I, Wickham TJ, Smith JG, Meier-Davis S, Fix JA, Daddona P, Gardner P, Huang MT. Adenovirus-mediated transduction of intestinal cells in vivo. Hum Gene Ther 1998; 9:1313-21. [PMID: 9650616 DOI: 10.1089/hum.1998.9.9-1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The intestinal tract has many features that make it an attractive target for therapeutic gene transfer. In this study, replication-defective adenoviral vectors were used to explore parameters that may be important in administering gene therapy vectors to the intestine. After surgically accessing the intestine, an E1-, E3-deleted adenoviral vector encoding beta-galactosidase (beta-Gal) was directly injected into various regions of the small and large intestine of rats and rabbits. Significant transduction of the tissue was observed and histochemical staining was used to identify enterocytes as the primary targets of gene transfer. Expression of beta-Gal did not differ substantially when the virus was administered to the duodenum, ileum, or colon. When the vector was directly administered to segments of the distal ileum containing a Peyer's patch, transgene expression was approximately 10-fold higher than in segments lacking a Peyer's patch. In the Peyer's patches, a high level of expression was localized to epithelial cells, potentially M cells, overlying the lymphoid follicle domes. Transduction of these cells could have application in DNA-mediated oral vaccination. Administration of an adenoviral vector encoding a secreted alkaline phosphatase to the lumen resulted in expression and secretion of this gene product into the circulation. This finding demonstrates the potential of enterocytes to serve as heterotopic sites for the synthesis of heterologous gene products that would be secreted into the lumen of the intestinal tract or into the bloodstream.
Collapse
|
28
|
Hamilton TE, McClane SJ, Baldwin S, Burke C, Patel H, Rombeau JL, Raper SE. Efficient adenoviral-mediated murine neonatal small intestinal gene transfer is dependent on alpha(v) integrin expression. J Pediatr Surg 1997; 32:1695-703. [PMID: 9434001 DOI: 10.1016/s0022-3468(97)90508-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/PURPOSE Clinical application of gene therapy for patients who have inflammatory bowel disease or short bowel syndrome will require the development of new strategies to improve the efficiency of small intestinal gene transfer. Previously, the authors developed a method for adenoviral-mediated small intestinal gene transfer in vivo in neonatal and adult mice. The present study evaluates the hypothesis that the integrins alpha(v)beta3 and alpha(v)beta5, the secondary receptors for adenoviral internalization, play a facilitative role in neonatal murine adenoviral-mediated small intestinal gene transfer. METHODS Immunohistochemical techniques identified the integrin alpha(v)beta3 and the integrin subcomponents alpha(v), beta3, and beta5 in neonatal and adult small intestine. The effects of integrin receptor antagonists on transgene expression was also studied in our neonatal model of adenoviral-mediated small intestinal gene transfer in vivo. RESULTS Gene transfer was significantly decreased by the addition of integrin receptor antagonists versus control peptide. Integrin alpha(v)beta3 and integrin subcomponent alpha(v), beta3, and beta5 are expressed in neonatal and adult small intestine. Integrin antagonists administered simultaneously blocked efficient adenoviral-mediated neonatal small intestinal gene transfer in vivo compared with control peptide. CONCLUSION Strategies to upregulate integrin expression may improve adenoviral-mediated small intestinal gene transfer.
Collapse
Affiliation(s)
- T E Hamilton
- Harrison Department of Surgical Research and Institute for Human Gene Therapy, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lozier JN, Yankaskas JR, Ramsey WJ, Chen L, Berschneider H, Morgan RA. Gut epithelial cells as targets for gene therapy of hemophilia. Hum Gene Ther 1997; 8:1481-90. [PMID: 9287148 DOI: 10.1089/hum.1997.8.12-1481] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gut epithelium is an attractive target for gene therapy of hemophilia due to the large number of rapidly dividing cells that should be readily accessible to a wide range of vectors by a noninvasive route of administration. We have performed in vitro tests to determine the suitability of gut epithelial cells for gene transfer, protein synthesis, and secretion of coagulation factors VIII and IX. The results with retroviral vectors indicate that transduced epithelial cells from human, rat, or porcine small or large intestine can synthesize significant amounts of factor VIII or factor IX and that two-thirds or more of the recombinant protein is secreted in a basolateral direction (i.e., away from the lumen and toward underlying capillaries and lymphatics). Furthermore, we have demonstrated that intestinal epithelial cells are susceptible to efficient gene transfer by lipofection and adenovirus vectors. In the case of factor IX, we have produced a high-titer adenovirus vector capable of transducing gut epithelial cells resulting in synthesis of factor IX. The results of our in vitro studies indicate that gene transfer targeting gut epithelium as a new approach to hemophilia gene therapy is rational and merits in vivo studies in hemophilia animal models.
Collapse
Affiliation(s)
- J N Lozier
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1851, USA
| | | | | | | | | | | |
Collapse
|
30
|
Jacomino M, Shukla P, Henning SJ. Use of amphotropic retroviral vectors for gene transfer in human colon carcinoma cells. Hum Gene Ther 1997; 8:835-41. [PMID: 9143909 DOI: 10.1089/hum.1997.8.7-835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies in rodent models have demonstrated the feasibility of gene transfer to the stem cells of the intestinal epithelium using ecotropic retroviral vectors delivered luminally. This report represents a next step toward targeting the human intestine as a site for somatic gene therapy. The first experiment assessed the viability of amphotropic retroviral vectors in the luminal environment. It was found that after 4 hr at 37 degrees C in luminal effluent, the loss of titer was no greater than when incubated in control media. Likewise, neither the vector nor the target cells were adversely affected by N-acetylcysteine, which is likely to be used as a preparatory agent for mucus removal. To determine whether human intestinal cells are transducible by these vectors, three colon carcinoma cell lines were studied: HT-29, T84, and Caco-2. All were transduced; however, the expression of the reporter gene was highest in the HT-29 cells. Subsequent studies using these cells showed that with regular stocks of vector, gene transfer peaked at a stock dilution of 1/10 and declined at full strength. This problem could be partially overcome by centrifugal concentration of the retroviral stocks. With this approach, gene transfer increased with increasing particles up to 10x regular stock titers but was inefficient at 100x. Overall, these findings provide encouraging evidence that amphotropic retroviral vectors may eventually be used for in vivo gene transfer into human intestinal epithelium. However, they also point to the need for improved methods of concentrating retroviral vectors.
Collapse
Affiliation(s)
- M Jacomino
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Walter E, Croyle MA, Davidson BL, Roessler BJ, Hilfinger JM, Amidon GL. Adenovirus mediated gene transfer to intestinal epithelial cells as a potential approach for oral delivery of peptides and proteins. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01584-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Cheng DY, Kolls JK, Lei D, Noel RA. In vivo and in vitro gene transfer and expression in rat intestinal epithelial cells by E1-deleted adenoviral vector. Hum Gene Ther 1997; 8:755-64. [PMID: 9113515 DOI: 10.1089/hum.1997.8.6-755] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intestine is proposed to be an attractive target site for somatic gene therapy due to a large mass of proliferating tissue and stem cells in the crypts. Previous studies using a retroviral vector have shown that a reporter gene, bacterial beta-galactosidase (beta-Gal), can be transferred and expressed in the small intestinal epithelial cell. However, transduction efficiency is relatively low in rat and mice intestines. In the present study, we employed an E1-deleted adenoviral vector (which encodes the beta-Gal gene) to investigate the feasibility of gene transfer into rat small intestinal epithelial cell lines and small intestines in male Sprague-Dawley rats. In in vitro studies, expression of AdCMV beta gal was quantitatively measured in IEC-6 and IEC-18 cell cultures using X-Gal histochemistry and chemiluminescent reporter gene assays. The results indicate that AdCMV beta gal can be efficiently transferred into intestinal epithelial cell lines and transgene expression is virus concentration dependent. In in vivo studies, a 5F intestinal feeding tube was used to deliver the vector to the duodenal segment of the rat. Expression of AdCMV beta gal was primarily localized to the epithelium of the intestinal tract. Transduction efficiency of the transgene was seen in the duodenum, jejunum, ileum, and, to a lesser extent, the colon. Moreover, following a single or secondary administration of recombinant adenovirus, efficient expression of AdCMV beta gal in the intestinal tract peaked at 3 days and decreased by 7 and 14 days. No antiadenoviral antibody response was detected in the serum after a single or secondary challenge with this virus. These findings demonstrate that an E1-deleted adenoviral vector, when administered through an oral-duodenal tube, transfers genetic material more successfully in the intestinal epithelium in the small intestine when compared to the large intestine. A single or secondary challenge with adenoviral vector does not cause enhanced host immune responses to this virus. It suggests that successful gene transduction by the repeat administration of the adenoviral vector makes it an alternative candidate for gene therapy applications in intestinal diseases and metabolic deficiencies.
Collapse
Affiliation(s)
- D Y Cheng
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
33
|
Sferra TJ, McNeely D, Johnson PR. Gene transfer to the intestinal tract: a new approach using selective injection of the superior mesenteric artery. Hum Gene Ther 1997; 8:681-7. [PMID: 9113508 DOI: 10.1089/hum.1997.8.6-681] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gene transfer to the intestinal tract has many potential applications, including complementation of single gene disorders, genetic immunization, and ectopic production of therapeutic molecules. Because the intralumenal approach to vector administration has not been highly successful, we tested whether the circulation can be used as a route to transfer genes to intestinal cells. The superior mesenteric artery (SMA) and vein (SMV) of adult Lewis rats were isolated and an adenoviral vector expressing the Escherichia coli LacZ gene was injected into the SMA. In one set of experiments, both vessels remained patent throughout the entire procedure. In a second group of animals, both vessels were occluded by clamping the SMA 1 cm distal to the injection site and the SMV proximal to the portal vein. In the absence of vascular clamps, gene transfer was evident throughout the small bowel, localized near the serosal surface within the muscularis propria. Occlusion of the SMA and SMV limited gene delivery to a short segment of bowel and shifted beta-galactosidase activity toward the mucosal surface. At the level of microscopy, most of the transduction events were in the lamina propria; transduced mucosal epithelial cells were occasionally observed. These data demonstrate that intestinal gene transfer can be accomplished through the circulation, and that targeting specific regions is feasible.
Collapse
|
34
|
Kawabata K, Kondo M, Watanabe Y, Takakura Y, Hashida M. Non-polarized secretion of mouse interferon-beta from gene-transferred human intestinal Caco-2 cells. Pharm Res 1997; 14:483-5. [PMID: 9144735 DOI: 10.1023/a:1012151616910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The intestinal epithelium is considered to be a feasible target for somatic gene therapy. To this end, Caco-2 cells derived from human colon carcinoma were transfected with a mouse interferon-beta (IFN-beta) expression vector and several stable sublines were established; this hetero-specific cytokine allows unexpected cellular effects to be avoided. Using the highest mouse IFN-beta-producing sublines, the mode of IFN secretion was examined. METHODS The secretion polarity of mouse IFN-beta in its gene-transduced Caco-2 sublines was studied in a bicameral culture system in which the chambers were separated by microporous filters. RESULTS Mouse IFN-beta was secreted to the same extent from both apical and basolateral surfaces of the transduced cells regardless of cell aging. CONCLUSIONS These results suggest that in the intestinal epithelium exogenous gene products such as IFNs can be delivered to both the luminal and blood sides in vivo. Thus, the intestinal epithelium may be suitable for systemic and local delivery of therapeutic proteins by gene transfer.
Collapse
Affiliation(s)
- K Kawabata
- Department of Drug Delivery Research, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
35
|
Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997; 386:410-4. [PMID: 9121559 DOI: 10.1038/386410a0] [Citation(s) in RCA: 682] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biologically adhesive delivery systems offer important advantages over conventional drug delivery systems. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.
Collapse
Affiliation(s)
- E Mathiowitz
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hamilton T, DeMatteo R, McClane S, Burke C, Rombeau J, Raper S. Adenoviral-mediated gene transfer to murine small intestine is more efficient in neonates than adults. J Pediatr Surg 1997; 32:373-7. [PMID: 9044157 DOI: 10.1016/s0022-3468(97)90214-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The authors sought to assess the feasibility of in vivo gene transfer to the small intestine using recombinant adenovirus in neonatal and adult mice. METHODS H5.010CMVlacZ is a replication-defective, E1-deleted human type 5 adenovirus, which contains the lacZ gene under the control of a cytomegalovirus promoter and enhancer. The lacZ gene was used as a marker because its gene product, beta-galactosidase, is readily detected by X-gal histochemistry. Sixty neonatal (3 to 5 days old) and 45 adult (6 to 8 weeks old) C57BL/6 mice were investigated. Intestinal gene transfer was attempted with H5.010CMVlacZ by intraperitoneal (i.p.), intraluminal (IL), and intramural (i.m.) injection. Based on prior studies, the optimal dose of H5.010CMVlacZ was 1 x 10(8) plaque forming units (pfu/mL). Control animals received saline injections. Gene transfer on repeat administration of adenovirus has been shown to be prevented by neutralizing antibody. To determine if neonatal inoculation induced a humoral immune response, neonates (n = 5) that received i.p. injections were rechallenged with intravenous H5.010CMV alkphos, a similar adenoviral construct containing the alkaline phosphatase marker gene. Serum samples were analyzed by Western blot to detect the presence of adenoviral-specific antibody. RESULTS Gene transfer to neonatal small intestine was successful by IL gastric (n = 8/10), IL jejunal (n = 9/10) and i.p. (n = 10/10) routes 2 days after injection. Macroscopic staining was present in 90% of standardized 2-cm small bowel segments. Transgene expression was identified in intestinal smooth muscle, serosa, and epithelium. Gene transfer to the adult small intestine was successful by IL jejunal (n = 4/5), i.m. (n = 5/5), and i.p. (n = 1/5) injection of adenoviruslacZ with focal staining (< 5% of 2-cm segments) in epithelium including crypts, muscle, and serosa. Three weeks after i.p. H5.010CMVlacZ in neonates, intravenous injection with H5.010CMValkphos resulted in hepatic transgene expression (n = 4/5) that was indistinguishable from a primary intravenous inoculation; persistent, lacZ expression was not detectable in the liver or intestine (n = 0/5). Western blot analysis detected adenoviral-specific antibodies after adult IM but not after neonatal i.p. injection. Furthermore, 3 weeks after neonatal i.p. injection repeat administration by the i.m. route was successful (n = 4/ 4). CONCLUSION Gene transfer to neonatal and adult small intestine is feasible using recombinant adenovirus and is more efficient in neonates as indicated by increased surface area of marker gene expression, effectiveness of intraperitoneal delivery, and the ability to readminister recombinant adenovirus.
Collapse
Affiliation(s)
- T Hamilton
- Harrison Department of Surgical Research, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
37
|
Brandt ML, Moise KJ, Eckert JW, Johnson L, Waltrip T, Saade G, Wu Y, Finegold MJ. Transuterine puncture of the fetal stomach provides access to the small bowel in the rabbit. J INVEST SURG 1997; 10:41-6. [PMID: 9100174 DOI: 10.3109/08941939709032124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The prevention of perinatal complications of congenital gastrointestinal (GI) diseases such as cystic fibrosis may require prenatal treatment. New Zealand White rabbits were evaluated as a potential animal model to study gastrointestinal anatomy and transit in the fetus. The lengths of the GI tract of fetuses at 21/31 and 28/31 days gestation were established, and gastric volume was measured. Gastric volume at 28 days gestation averaged 2.6 mL, adequate to permit instillation of a solution into the fetal stomach. A study was then carried out to establish gastric emptying and delivery of the solution into the small bowel. Using ultrasound guidance, the stomachs of 26 fetuses from 7 litters were punctured and 0.5 mL of dilute barium was injected. A cesarean section was performed 4 h later and the progression of barium though the GI tract was measured. In 18/26 (69.2%) of the fetuses barium was successfully delivered to the lumen of the stomach. In these 18 fetuses, barium progressed to the duodenum in 15 (58%), the jejunum in 13 (50%), and the ileum in 8 (31%). The stomach of the 3.5- to 4-week-old fetus is large enough to allow transuterine delivery of a solution of dilute barium. Gastric and intestinal motility in the 25-day-old rabbit fetus is coordinated and results in delivery of barium to the small bowel in 50% of animals successfully injected. The results suggest that the rabbit is an acceptable model for the study of gastrointestinal delivery of therapeutic drugs or genes to the fetus.
Collapse
Affiliation(s)
- M L Brandt
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Parmiani G, Colombo MP, Melani C, Arienti F. Cytokine gene transduction in the immunotherapy of cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:259-307. [PMID: 9217928 DOI: 10.1016/s1054-3589(08)60142-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G Parmiani
- Gene Therapy Program, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
To assess the fetal intestine as a site for gene therapy, we have explored a xenograft model in which fetal rat intestine is grafted subcutaneously into nu/nu mice. Prior to grafting, the tissue was exposed to a replication-deficient retroviral vector bearing the neo gene. Transduction efficiency was assessed by quantitative polymerase chain reaction (PCR) of neo in DNA recovered from the grafts. Three methods of infection were employed: (i) simple flushing of the fetal intestine with the vector; (ii) incubation with the vector for 2 hr; and (iii) a combination of both. The first method gave the highest transduction efficiencies in terms of both the proportion of samples that were neo-positive and the number of neo-positive cells per sample. Using this approach, the time course of persistence of neo-positive cells was analyzed by collecting grafts at 1 versus 3 weeks post-infection. The results showed approximately five-fold more positive cells at the earlier time point than at the later, suggesting loss of transduced cells due to cell turnover. Nevertheless, the persistence of a portion of the positive cells for at least 3 weeks is encouraging for future studies with fetal intestine.
Collapse
Affiliation(s)
- M Jacomino
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | | | | | | | |
Collapse
|
40
|
Kiwaki K, Matsuda I. Gene therapy for ornithine transcarbamylase deficiency. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1996; 38:189-92. [PMID: 8677801 DOI: 10.1111/j.1442-200x.1996.tb03467.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency in humans is the most common and severe inborn error of the urea cycle. Despite therapeutic advances, OTC deficiency remains without adequate treatment, hence mortality rates are high. In the two available strains of OTC-deficient murine models, spf and spfash, researchers have tried to make genetic corrections by introducing the OTC gene. Transient but complete recovery of OTC was obtained in adult spfash mice and in OTC-deficient human primary hepatocytes, using a recombinant adenoviral vector. These experiments represent a first step in the development of human gene therapy for OTC deficiency and other hepatic enzyme deficiencies.
Collapse
Affiliation(s)
- K Kiwaki
- Department of Pediatrics, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
41
|
|