1
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
2
|
Elsayed N, How CW, Foo JB. Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation route. Eur J Pharm Biopharm 2025; 207:114599. [PMID: 39617356 DOI: 10.1016/j.ejpb.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
Zerumbone (ZER), a compound derived from the rhizome of Zingiber Zerumbet (L.) Smith, has demonstrated anti-inflammatory properties but suffers from poor water solubility, limiting its clinical application. While ZER's effects on lung inflammation are known, its role in lung fibrosis remains unexplored. Herein, ZER was encapsulated in pH-sensitive liposomes formulated with oleic acid, dipalmitoylphosphatidylcholine, and cholesterol to enhance ZER solubility and delivery to the acidic environment of lung fibrosis. The liposomes were optimized using Box-Behnken design, resulting in an average diameter of 87.8 ± 3.5 nm, a polydispersity index of 0.16 ± 0.2, and a zeta potential of -24 ± 0.32 mV. ZER release from the carrier followed zero-order kinetics and showed higher release in acidic settings. Cascade impactor and HPLC analyses confirmed that ZER liposome powder produced by freeze-drying reached stage 7, indicating effective delivery to deep lung regions. The uptake of ZER liposomes was concentration and pH-dependent, being higher in acidic conditions and greater in MRC-5 cells compared to A549 cells. Notably, ZER liposomes reduced cell migration and downregulated fibrotic markers such as fibronectin, MMP-2, and α-SMA in MRC-5 and A549 cells. This study suggests that ZER liposomes hold promise for treating lung fibrosis and merit further investigation.
Collapse
Affiliation(s)
- Nourhan Elsayed
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
3
|
Yasmin-Karim S, Richards G, Fam A, Ogurek AM, Sridhar S, Makrigiorgos GM. Aerosol delivery of immunotherapy and Hesperetin-loaded nanoparticles increases survival in a murine lung cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.609714. [PMID: 39253436 PMCID: PMC11383516 DOI: 10.1101/2024.08.30.609714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Purpose Studies have shown that flavonoids like Hesperetin, an ACE2 receptor agonist with antioxidant and pro-apoptotic activity, can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PLGA-coated nanoparticles (Hesperetin-nanoparticles, HNPs), and anti-CD40 antibody as an aerosol treatment for lung tumor-bearing mice. Methods In-vitro and in-vivo studies were performed in human A549 (ATCC) and murine LLC1 (ATCC) lung cancer cell lines. Hesperetin Nanoparticles (HNP) of about 60nm diameter were engineered using a nano-formulation microfluidic technique. A syngeneic orthotopic murine model of lung adenoma was generated in wild (+/+) C57/BL6 background mice with luciferase-positive cell line LLC1 cells. Lung tumor-bearing mice were treated via aerosol inhalation with HNP, anti-CD40 antibody, or both. Survival was used to analyze the efficacy of aerosol treatment. Cohorts were also analyzed for body condition score, weight, and liver and kidney function. Results Analysis of an orthotopic murine lung cancer model demonstrates a differential uptake of the HNP and anti-CD40 by cancer cells relative to normal cells. A higher survival rate, relative to untreated controls, was observed when aerosol treatment with HNP was added to treatment via anti-CD40 (p<0.001), as compared to CD40 alone (p<0.01). Moreover, 2 out of 9 tumor-bearing mice survived long term, and their tumors diminished. These 2 mice were shown to be refractory to subsequent development of subcutaneous tumors, indicating systemic resilience to tumor formation. Conclusion We successfully established increased therapeutic efficacy of anti-CD40 and HNP in an orthotopic murine lung cancer model using inhalation-based administration. Our findings open the possibility of improved lung cancer treatment using flavonoids and immuno-adjuvants.
Collapse
|
4
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
5
|
Noske S, Karimov M, Krüger M, Lilli B, Ewe A, Aigner A. Spray-drying of PEI-/PPI-based nanoparticles for DNA or siRNA delivery. Eur J Pharm Biopharm 2024; 199:114297. [PMID: 38641228 DOI: 10.1016/j.ejpb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a ∼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Martin Krüger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
6
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
8
|
Li L, Zhu Q, Gou D, Chan HK, Kourmatzis A, Zhao G, Yang R. DEM modelling of breakage behaviour of semi-brittle agglomerates subject to compaction and impaction. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Hickey AJ, Stewart IE. Inhaled antibodies: Quality and performance considerations. Hum Vaccin Immunother 2022; 18:1940650. [PMID: 34191682 PMCID: PMC9116391 DOI: 10.1080/21645515.2021.1940650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
The use of antibodies in the treatment of lung diseases is of increasing interest especially as the search for COVID-19 therapies has unfolded. Historically, the use of antibody therapy was based on multiple targets including receptors involved in local hyper-reactivity in asthma, viruses and micro-organisms involved in a variety of pulmonary infectious disease. Generally, protein therapeutics pose challenges with respect to formulation and delivery to retain activity and assure therapy. The specificity of antibodies amplifies the need for attention to molecular integrity not only in formulation but also during aerosol delivery for pulmonary administration. Drug product development can be viewed from considerations of route of administration, dosage form, quality, and performance measures. Nebulizers and dry powder inhalers have been used to deliver protein therapeutics and each has its advantages that should be matched to the needs of the drug and the disease. This review offers insight into quality and performance barriers and the opportunities that arise from meeting them effectively.
Collapse
|
10
|
McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 2022; 345:334-353. [DOI: 10.1016/j.jconrel.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
11
|
Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem Biol Interact 2021; 351:109706. [PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
Collapse
|
12
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
13
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
14
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
15
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
16
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
17
|
Joshi M, Nagarsenkar M, Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Abdelaal Ahmed Mahmoud A, Mahmoud HE, Mahran MA, Khaled M. Streptokinase Versus Unfractionated Heparin Nebulization in Patients With Severe Acute Respiratory Distress Syndrome (ARDS): A Randomized Controlled Trial With Observational Controls. J Cardiothorac Vasc Anesth 2020; 34:436-443. [DOI: 10.1053/j.jvca.2019.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
|
19
|
Raut A, Dhapare S, Venitz J, Sakagami M. Pharmacokinetic profile analyses for inhaled drugs in humans using the lung delivery and disposition model. Biopharm Drug Dispos 2019; 41:32-43. [PMID: 31691979 DOI: 10.1002/bdd.2210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 11/09/2022]
Abstract
The kinetic clarification of lung disposition for inhaled drugs in humans via pharmacokinetic (PK) modeling aids in their development and regulation for systemic and local delivery, but remains challenging due to its multiplex nature. This study exercised our lung delivery and disposition kinetic model to derive the kinetic descriptors for the lung disposition of four drugs [calcitonin, tobramycin, ciprofloxacin and fluticasone propionate (FP)] inhaled via different inhalers from the published PK profile data. With the drug dose delivered to the lung (DTL) estimated from the corresponding γ-scintigraphy or in vivo predictive cascade impactor data, the model-based curve-fitting and statistical moment analyses derived the rate constants of lung absorption (ka ) and non-absorptive disposition (knad ). The ka values differed substantially between the drugs (0.05-1.00 h-1 ), but conformed to the lung partition-based membrane diffusion except for FP, and were inhaler/delivery/deposition-independent. The knad values also varied widely (0.03-2.32 h-1 ), yet appeared to be explained by the presence or absence of non-absorptive disposition in the lung via mucociliary clearance, local tissue degradation, binding/sequestration and/or phagocytosis, and to be sensitive to differences in lung deposition. For FP, its ka value of 0.2 h-1 was unusually low, suggesting solubility/dissolution-limited slow lung absorption, but was comparable between two inhaler products. Thus, the difference in the PK profile was attributed to differences in the DTL and the knad value, the latter likely originating from different aerosol sizes and regional deposition in the lung. Overall, this empirical, rather simpler model-based analysis provided a quantitative kinetic understanding of lung absorption and non-absorptive disposition for four inhaled drugs from PK profiles in humans.
Collapse
Affiliation(s)
- Anuja Raut
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Sneha Dhapare
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Jürgen Venitz
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| |
Collapse
|
20
|
Molina C, Kaialy W, Chen Q, Commandeur D, Nokhodchi A. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations. Drug Deliv Transl Res 2019; 8:1769-1780. [PMID: 29260462 PMCID: PMC6280810 DOI: 10.1007/s13346-017-0462-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L-leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate’s aerosolization performance was, in part, due to the introduction of L-leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.
Collapse
Affiliation(s)
- Carlos Molina
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Qiao Chen
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Daniel Commandeur
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK. .,Drug Applied Research Center and Faculty of Pharmacy, Tabriz Medical Sciences University, Tabriz, Iran.
| |
Collapse
|
21
|
Ahookhosh K, Yaqoubi S, Mohammadpourfard M, Hamishehkar H, Aminfar H. Experimental investigation of aerosol deposition through a realistic respiratory airway replica: An evaluation for MDI and DPI performance. Int J Pharm 2019; 566:157-172. [PMID: 31129343 DOI: 10.1016/j.ijpharm.2019.05.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE In the present work, a comparison between MDI and DPI for evaluating performance of the devices were carried out by experimentally investigating the deposition parameters through a realistic airway replica. METHODS Computed tomography (CT) images of the respiratory airway of a healthy subject were used to develop the realistic model. The airway replica was included extrathoracic, trachea, and tracheobronchial tree up to fourth generations which was fabricated by rapid prototyping. Afterward, in vitro experiments were performed to validate the airway model by comparing the total deposition (G0 to G3) of present replica with available data in the literature. Drug deposition (Salbutamol) in the model was measured by determining concentration of the segments sample by High Performance Liquid Chromatography (HPLC) assay. RESULTS Deposition parameters were used for investigating the deposition patterns of the inhaled particles. Results showed that inertial impaction is the dominant mechanism in the most regions of the replica. It was found that the MDI delivered more drug to the tracheobronchial tree compared to the DPI for three different flow rate. CONCLUSION The developed realistic respiratory airways model provided an opportunity to more accurately evaluate the performance of drug delivery devices and studying mechanisms of the drug deposition.
Collapse
Affiliation(s)
- Kaveh Ahookhosh
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Shadi Yaqoubi
- Biotechnology Research Center, Student Research Committee, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Habib Aminfar
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
22
|
Bodas DS, Ige PP. Central composite rotatable design for optimization of budesonide-loaded cross-linked chitosan–dextran sulfate nanodispersion: characterization, in vitro diffusion and aerodynamic study. Drug Dev Ind Pharm 2019; 45:1193-1204. [DOI: 10.1080/03639045.2019.1606823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Divyanka Shrikant Bodas
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
23
|
Kinetic stability of amorphous solid dispersions with high content of the drug: A fast scanning calorimetry investigation. Int J Pharm 2019; 562:113-123. [DOI: 10.1016/j.ijpharm.2019.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022]
|
24
|
Han JW, Kim KH, Kwun MJ, Choi JY, Kim SJ, Jeong SI, Lee BJ, Kim KI, Won R, Jung JH, Jung HJ, Joo M. Suppression of lung inflammation by the ethanol extract of Chung-Sang and the possible role of Nrf2. Altern Ther Health Med 2019; 19:15. [PMID: 30630473 PMCID: PMC6327592 DOI: 10.1186/s12906-018-2422-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Background Asian traditional herbal remedies are typically a concoction of a major and several complementary herbs. While balancing out any adverse effect of the major herb, the complementary herbs could dilute the efficacy of the major herb, resulting in a suboptimal therapeutic effect of an herbal remedy. Here, we formulated Chung-Sang (CS) by collating five major herbs, which are used against inflammatory diseases, and tested whether an experimental formula composed of only major herbs is effective in suppressing inflammation without significant side effects. Methods The 50% ethanol extract of CS (eCS) was fingerprinted by HPLC. Cytotoxicity to RAW 264.7 cells was determined by an MTT assay and a flow cytometer. Nuclear NF-κB and Nrf2 were analyzed by western blot. Ubiquitinated Nrf2 was similarly analyzed following immunoprecipitation of Nrf2. Acute lung inflammation and sepsis were induced in C57BL/6 mice. The effects of eCS on lung disease were measured by HE staining of lung sections, a differential cell counting of bronchoalveolar lavage fluid, a myeloperoxidase (MPO) assay, a real-time qPCR, and Kaplan-Meier survival of mice. Results eCS neither elicited cytotoxicity nor reactive oxygen species. While not suppressing NF-κB, eCS activated Nrf2, reduced the ubiquitination of Nrf2, and consequently induced the expression of Nrf2-dependent genes. In an acute lung inflammation mouse model, an intratracheal (i.t.) eCS suppressed neutrophil infiltration, the expression of inflammatory cytokine genes, and MPO activity. In a sepsis mouse model, a single i.t. eCS was sufficient to significantly decrease mouse mortality. Conclusions eCS could suppress severe lung inflammation in mice. This effect seemed to associate with eCS activating Nrf2. Our findings suggest that herbal remedies consisting of only major herbs are worth considering.
Collapse
|
25
|
Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018; 15:46. [PMID: 30458822 PMCID: PMC6245551 DOI: 10.1186/s12989-018-0282-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nur A'tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Micheál Mac Aogáin
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Mustafa Hussain Kathawala
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sanjay Haresh Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
26
|
Orally inhaled migraine therapy: Where are we now? Adv Drug Deliv Rev 2018; 133:131-134. [PMID: 30189270 DOI: 10.1016/j.addr.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a debilitating disease that affects 9% of men and 19% of women worldwide with high socio-economic and personal impact. Surveys indicate that migraineurs are among the most dissatisfied with available therapeutic options, predominantly given via oral or injectable routes, citing side effects as the primary complaint. Orally inhaled therapies have the potential to offer faster onset of action with fewer side effects compared to existing therapies, yet development has stalled. Despite emerging therapies such as calcitonin gene-related peptide antagonists, there are still good opportunities for repositioning migraine drugs via the inhaled route.
Collapse
|
27
|
Beng H, Zhang H, Jayachandra R, Li J, Wu J, Tan W. Enantioselective resolution of Rac-terbutaline and evaluation of optically pure R-terbutaline hydrochloride as an efficient anti-asthmatic drug. Chirality 2018; 30:759-768. [PMID: 29569746 DOI: 10.1002/chir.22846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/07/2022]
Abstract
Terbutaline is a β2 -adrenoceptor agonist for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Among the two isomers of terbutaline (TBT 2), R-isomer was found to be the potent enantiomer in generating therapeutic effect, while S-isomer has been reported to show side effects. In this study, R-terbutaline hydrochloride (R-TBH 6) was synthesized through chiral resolution from the racemic terbutaline sulfate (rac-TBS 1) with 99.9% enantiomeric excess (ee) in good overall yield (53.6%). Further, R-TBH 6 nebulized solution was prepared in half dosage of Bricanyl®, which is a marketed product of racemic terbutaline and evaluated in vitro aerosol performance and in vivo anti-asthmatic effect on guinea pigs via. pulmonary delivery. From the investigation, it is evident that R-TBH 6 nebulized solution of half dosage performed similar fine aerosol characteristics and anti-asthmatic effect with Bricanyl®.
Collapse
Affiliation(s)
- Huimin Beng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Hao Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - R Jayachandra
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Junxiao Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jie Wu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
28
|
Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharm Sci 2018; 113:18-28. [DOI: 10.1016/j.ejps.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
|
29
|
Microspherical Particles of Solid Dispersion of Polyvinylpyrrolidone K29-32 for Inhalation Administration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2412156. [PMID: 29546051 PMCID: PMC5818905 DOI: 10.1155/2018/2412156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/11/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
Abstract
Inhalation administration is a promising alternative to the invasive drug delivery methods. The particle size required for ideal drug aerosol preparation is between 1 and 3 μm. The application of microspherical particles of solid dispersions enhances bioavailability of poorly soluble drugs due to the solubilization. In the present work, the spray drying process of the production of microspherical particles of solid dispersions of polyvinylpyrrolidone K29-32 with model hydrophobic drug, phenacetin, was optimized using the results of DSC, PXRD, and viscometry. The diameter of the obtained particles is within 1–3 μm range. The Gibbs energy of dissolution in water was shown to be negative for the mixture with polymer/phenacetin mass ratio 5 : 1. We have demonstrated that the optimal size distribution for the inhalation administration is obtained for microspherical particles produced using spray caps with 7.0 μm hole size. The dissolution rates of phenacetin from the produced microspherical particles were faster than that of drug powder. As evidenced by powder X-ray diffraction data, phenacetin stayed in amorphous state for 4 months in microspherical particles of solid dispersions. According to the obtained results, strategic application of the spray drying process could be beneficial for the improvement of the pharmaceutical properties of model drug, phenacetin.
Collapse
|
30
|
Arachidonic acid with taurine enhances pulmonary absorption of macromolecules without any serious histopathological damages. Eur J Pharm Biopharm 2017; 114:22-28. [DOI: 10.1016/j.ejpb.2016.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022]
|
31
|
Kim KH, Lee JY, Kwun MJ, Choi JY, Han CW, Ha KT, Jeong SI, Jeong HS, Joo M. Therapeutic effect of Mahaenggamseok-tang on neutrophilic lung inflammation is associated with NF-κB suppression and Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:486-495. [PMID: 27660010 DOI: 10.1016/j.jep.2016.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/06/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahaenggamseok-tang (MHGST), an herbal formula in traditional Asian medicine, has been used to treat patients with various pulmonary diseases including common cold and influenza. However, the potential therapeutic effect of MHGST on acute lung injury (ALI), a leading cause of death worldwide, and the anti-inflammatory mechanisms of MHGST remained less understood. MATERIALS AND METHODS The methanol extract of MHGST was prepared and fingerprinted by HPLC. For the induction of ALI, C57BL/6 mice (n=5/group) received a single intraperitoneal (i.p.) injection of LPS. Referring to the dose for patients, two different amounts of MHGST were delivered in an aerosol to mouse lungs via trachea 2h after the i.p. LPS administration. Lung histology, bronchoalveolar lavage fluid, myeloperoxidase (MPO) activity, and the expression of inflammatory and Nrf2-dependent genes were analyzed to determine the effect of MHGST on lung inflammation. For mechanistic studies, western blotting and semi-quantitative RT-PCR were conducted using RAW 264.7 cells. RESULTS When administered 2h after the onset of ALI, MHGST relieved lung pathology characteristic to ALI, with decreases of neutrophil infiltration and MPO activity. While suppressing the expression of inflammatory genes, MHGST increased the expression of Nrf2-dependent genes in ALI mouse lungs. Concordantly, MHGST activated Nrf2 activity while suppressing NF-κB in RAW 264.7 cells. CONCLUSION MHGST suppressed neutrophilic lung inflammation, a hallmark of ALI, which was associated with the activation of anti-inflammatory Nrf2 and the suppression of pro-inflammatory NF-κB. Our results suggest that MHGST has a therapeutic potential against ALI.
Collapse
Affiliation(s)
- Kyun Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji Yeon Lee
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Min Jung Kwun
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jun-Young Choi
- Department of Internal Medicine, Korean Medicine Hospital, Pusan National University, Yangsan 50612, Republic of Korea
| | - Chang Woo Han
- Department of Internal Medicine, Korean Medicine Hospital, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seung-Il Jeong
- Jeonju Biomaterials Institute, Jeonju 561-360, Republic of Korea
| | - Han-Sol Jeong
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
32
|
Dhanani J, Fraser JF, Chan HK, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:269. [PMID: 27716346 PMCID: PMC5054555 DOI: 10.1186/s13054-016-1448-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug dosing in critically ill patients is challenging due to the altered drug pharmacokinetics–pharmacodynamics associated with systemic therapies. For many drug therapies, there is potential to use the respiratory system as an alternative route for drug delivery. Aerosol drug delivery can provide many advantages over conventional therapy. Given that respiratory diseases are the commonest causes of critical illness, use of aerosol therapy to provide high local drug concentrations with minimal systemic side effects makes this route an attractive option. To date, limited evidence has restricted its wider application. The efficacy of aerosol drug therapy depends on drug-related factors (particle size, molecular weight), device factors, patient-related factors (airway anatomy, inhalation patterns) and mechanical ventilation-related factors (humidification, airway). This review identifies the relevant factors which require attention for optimization of aerosol drug delivery that can achieve better drug concentrations at the target sites and potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.
| | - John F Fraser
- Department of Intensive Care Medicine, The Prince Charles Hospital, Brisbane, Australia.,Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jordi Rello
- Critical Care Department, Hospital Vall d'Hebron, Barcelona, Spain.,CIBERES, Vall d'Hebron Institut of Research, Barcelona, Spain.,Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jeremy Cohen
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.,Pharmacy Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv 2016; 14:499-512. [PMID: 27534768 DOI: 10.1080/17425247.2016.1224846] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Early dry powder inhalers (DPIs) were designed for low drug doses in asthma and COPD therapy. Nearly all concepts contained carrier-based formulations and lacked efficient dispersion principles. Therefore, particle engineering and powder processing are increasingly applied to achieve acceptable lung deposition with these poorly designed inhalers. Areas covered: The consequences of the choices made for early DPI development with respect of efficacy, production costs and safety and the tremendous amount of energy put into understanding and controlling the dispersion performance of adhesive mixtures are discussed. Also newly developed particle manufacturing and powder formulation processes are presented as well as the challenges, objectives, and new tools available for future DPI design. Expert opinion: Improved inhaler design is desired to make DPIs for future applications cost-effective and safe. With an increasing interest in high dose drug delivery, vaccination and systemic delivery via the lungs, innovative formulation technologies alone may not be sufficient. Safety is served by increasing patient adherence to the therapy, minimizing the use of unnecessary excipients and designing simple and self-intuitive inhalers, which give good feedback to the patient about the inhalation maneuver. For some applications, like vaccination and delivery of hygroscopic formulations, disposable inhalers may be preferred.
Collapse
Affiliation(s)
- A H de Boer
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - P Hagedoorn
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - M Hoppentocht
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - F Buttini
- b Department of Pharmacy , University of Parma , Parma , Italy
| | - F Grasmeijer
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - H W Frijlink
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
34
|
Abstract
The most promising alternative route of insulin administration seems to be pulmonary delivery by inhalation. For a maximal rate of absorption insulin must be applied deep into the lung, i.e., into the alveoli. A number of inhalers designed to generate an aerosol with an appropriate particle size for pulmonary delivery are currently in clinical development. The pharmacodynamic effects of insulin formulations administered via the lung are comparable to, or are even faster than, those of subcutaneously injected regular insulin or rapid-acting insulin analogues. The relative biopotency of inhaled insulin is approximately 10%, i.e., the dose of inhaled insulin must be 10 times higher than the dose applied subcutaneously in order to induce a comparable metabolic effect. Clinical trials indicate that metabolic control with this pain free route of insulin administration is at least comparable to that of subcutaneous (sc) insulin therapy. Side effects. observed in human trials, gave rise to safety concerns that have delayed development for several years. Nevertheless, recent long-term safety studies indicate that the increased stimulation of insulin antibody formation stopped after some time and that the observed changes in lung function were minor or reversible. Consequently the first application for an approval of pulmonary insulin has been submitted to the authorities. In summary, it seems as if, after several decades of research, for the first time a feasible alternative route for insulin administration is within Reach.
Collapse
Affiliation(s)
- Lutz Heinemann
- Profil Institute for Metabolic Research GmbH, Hellersbergstr 9, 41460 Neuss, Germany,
| | | |
Collapse
|
35
|
Edwards CD, Luscombe C, Eddershaw P, Hessel EM. Development of a Novel Quantitative Structure-Activity Relationship Model to Accurately Predict Pulmonary Absorption and Replace Routine Use of the Isolated Perfused Respiring Rat Lung Model. Pharm Res 2016; 33:2604-16. [PMID: 27401409 PMCID: PMC5040732 DOI: 10.1007/s11095-016-1983-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022]
Abstract
Purpose We developed and tested a novel Quantitative Structure-Activity Relationship (QSAR) model to better understand the physicochemical drivers of pulmonary absorption, and to facilitate compound design through improved prediction of absorption. The model was tested using a large array of both existing and newly designed compounds. Methods Pulmonary absorption data was generated using the isolated perfused respiring rat lung (IPRLu) model for 82 drug discovery compounds and 17 marketed drugs. This dataset was used to build a novel QSAR model based on calculated physicochemical properties. A further 9 compounds were used to test the model’s predictive capability. Results The QSAR model performed well on the 9 compounds in the “Test set” with a predicted versus observed correlation of R2 = 0.85, and >65% of compounds correctly categorised. Calculated descriptors associated with permeability and hydrophobicity positively correlated with pulmonary absorption, whereas those associated with charge, ionisation and size negatively correlated. Conclusions The novel QSAR model described here can replace routine generation of IPRLu model data for ranking and classifying compounds prior to synthesis. It will also provide scientists working in the field of inhaled drug discovery with a deeper understanding of the physicochemical drivers of pulmonary absorption based on a relevant respiratory compound dataset.
Collapse
Affiliation(s)
- Chris D Edwards
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | | | - Peter Eddershaw
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
36
|
Parasaram V, Nosoudi N, LeClair RJ, Binks A, Vyavahare N. Targeted drug delivery to emphysematous lungs: Inhibition of MMPs by doxycycline loaded nanoparticles. Pulm Pharmacol Ther 2016; 39:64-73. [PMID: 27354173 DOI: 10.1016/j.pupt.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, SC, USA
| | - Renee J LeClair
- University of South Carolina School of Medicine, Greenville, SC, USA
| | - Andrew Binks
- University of South Carolina School of Medicine, Greenville, SC, USA
| | | |
Collapse
|
37
|
Mashat M, Clark B, Assi K, Chrystyn H. In vitro aerodynamic characterization of the dose emitted during nebulization of tobramycin high strength solution by novel and jet nebulizer delivery systems. Pulm Pharmacol Ther 2016; 37:37-42. [DOI: 10.1016/j.pupt.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
38
|
|
39
|
Patil-Gadhe A, Pokharkar V. Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: Optimization by factorial design. Int J Pharm 2016; 501:199-210. [PMID: 26844785 DOI: 10.1016/j.ijpharm.2016.01.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/30/2016] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Rosuvastatin (RSVS), an anti-lipidemic agent suggested for the treatment of airway remodeling in chronic obstructive pulmonary disease (COPD). It shows a pleiotropic effect on airway smooth muscles and inhibits proliferative activities of physiological mitogens. The aim of the present study was to develop and investigate the targeting potential of rosuvastatin (RSVS) to lung as loaded in nanostructured lipid carrier dry powder for inhalation (RNLC-DPI). RNLC dispersion was converted into respirable particle by lyophilization using 5% mannitol as cryoprotectant-carrier. Targeting efficiency of RNLC-DPI was evaluated in vitro for aerosol performance using 8-stage cascade impactor as well in vivo in Wistar rats for pulmokinetics. In vitro aerosol performance demonstrated mass median aerodynamic diameter of <3 μm with fine particle fraction of >90% at 60 L/min. Improved aerosol performance was observed for RNLC-DPI prepared using l-leucin as anti-static agent. Modified in vivo performance with higher Cmax (1.14-fold), improvement in t1/2 (5-fold) and 35-fold improvement in AUC0-∞ indicated significant improvement in bioavailability of RNLC-DPI. Lipidic nature and smaller size of particles helped in bypassing macrophage clearance leading to higher targeting factor. Thus, study demonstrated potential of RNLC-DPI for lung targeting and further for COPD treatment.
Collapse
Affiliation(s)
- Arpana Patil-Gadhe
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, 411038 Maharashtra, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, 411038 Maharashtra, India.
| |
Collapse
|
40
|
Poursina N, Vatanara A, Rouini MR, Gilani K, Rouholamini Najafabadi A. Systemic delivery of parathyroid hormone (1–34) using spray freeze-dried inhalable particles. Pharm Dev Technol 2015; 22:733-739. [DOI: 10.3109/10837450.2015.1125924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Narges Poursina
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
41
|
Hwang JH, Lee BJ, Jung HJ, Kim KI, Choi JY, Joo M, Jung SK. Effects of Chung-Pae Inhalation Therapy on a Mouse Model of Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:461295. [PMID: 26539225 PMCID: PMC4619917 DOI: 10.1155/2015/461295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/13/2015] [Indexed: 12/29/2022]
Abstract
Chung-pae (CP) inhalation therapy is a method frequently used in Korea to treat lung disease, especially chronic obstructive pulmonary disease (COPD). This study investigated the effects of CP inhalation on a COPD animal model. C57BL/6 mice received porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) alternately three times for 3 weeks to induce COPD. Then, CP (5 or 20 mg/kg) was administered every 2 h after the final LPS administration. The effect of CP was evaluated by bronchoalveolar lavage (BAL) fluid analysis, histological analysis of lung tissue, and reverse transcription polymerase chain reaction analysis of mRNA of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, and tumor growth factor- (TGF-) β. Intratracheal CP administration reduced the number of leukocytes and neutrophils in BAL fluid, inhibited the histological appearance of lung damage, and decreased the mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, IL-6, and TGF-β. Intratracheal CP administration effectively decreased the chronic inflammation and pathological changes in a PPE- and LPS-induced COPD mouse model. Therefore, we suggest that CP is a promising strategy for COPD.
Collapse
Affiliation(s)
- Joon-Ho Hwang
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Beom-Joon Lee
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hee Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jun-Yong Choi
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Sung-Ki Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
42
|
Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur J Pharm Sci 2015; 68:1-10. [DOI: 10.1016/j.ejps.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
|
43
|
Markovetz MR, Corcoran TE, Locke LW, Myerburg MM, Pilewski JM, Parker RS. A physiologically-motivated compartment-based model of the effect of inhaled hypertonic saline on mucociliary clearance and liquid transport in cystic fibrosis. PLoS One 2014; 9:e111972. [PMID: 25383714 PMCID: PMC4226497 DOI: 10.1371/journal.pone.0111972] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022] Open
Abstract
Background Cystic Fibrosis (CF) lung disease is characterized by liquid hyperabsorption, airway surface dehydration, and impaired mucociliary clearance (MCC). Herein, we present a compartment-based mathematical model of the airway that extends the resolution of functional imaging data. Methods Using functional imaging data to inform our model, we developed a system of mechanism-motivated ordinary differential equations to describe the mucociliary clearance and absorption of aerosolized radiolabeled particle and small molecules probes from human subjects with and without CF. We also utilized a novel imaging metric in vitro to gauge the fraction of airway epithelial cells that have functional ciliary activity. Results This model, and its incorporated kinetic rate parameters, captures the MCC and liquid dynamics of the hyperabsorptive state in CF airways and the mitigation of that state by hypertonic saline treatment. Conclusions We postulate, based on the model structure and its ability to capture clinical patient data, that patients with CF have regions of airway with diminished MCC function that can be recruited with hypertonic saline treatment. In so doing, this model structure not only makes a case for durable osmotic agents used in lung-region specific treatments, but also may provide a possible clinical endpoint, the fraction of functional ciliated airway.
Collapse
Affiliation(s)
- Matthew R. Markovetz
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Timothy E. Corcoran
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Landon W. Locke
- Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael M. Myerburg
- Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Joseph M. Pilewski
- Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S. Parker
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratories, University of Pittsburgh, Pittsburgh, PA, United States of America
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
44
|
de Boer AH, Hagedoorn P. The role of disposable inhalers in pulmonary drug delivery. Expert Opin Drug Deliv 2014; 12:143-57. [DOI: 10.1517/17425247.2014.952626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Kim KH, Kwun MJ, Han CW, Ha KT, Choi JY, Joo M. Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:402. [PMID: 25318387 PMCID: PMC4203922 DOI: 10.1186/1472-6882-14-402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/07/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND The fruit hull of Gleditsia sinensis (FGS) used in traditional Asian medicine was reported to have a preventive effect on lung inflammation in an acute lung injury (ALI) mouse model. Here, we explored FGS as a possible therapeutics against inflammatory lung diseases including ALI, and examined an underlying mechanism for the effect of FGS. METHODS The decoction of FGS in water was prepared and fingerprinted. Mice received an intra-tracheal (i.t.) FGS 2 h after an intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). The effect of FGS on lung inflammation was determined by chest imaging of NF-κB reporter mice, counting inflammatory cells in bronchoalveolar lavage fluid, analyzing lung histology, and performing semi-quantitative RT-PCR analysis of lung tissue. Impact of Nrf2 on FGS effect was assessed by comparing Nrf2 knockout (KO) and wild type (WT) mice that were treated similarly. RESULTS Bioluminescence from the chest of the reporter mice was progressively increased to a peak at 16 h after an i.p. LPS treatment. FGS treatment 2 h after LPS reduced the bioluminescence and the expression of pro-inflammatory cytokine genes in the lung. While suppressing the infiltration of inflammatory cells to the lungs of WT mice, FGS post-treatment failed to reduce lung inflammation in Nrf2 KO mice. FGS activated Nrf2 and induced Nrf2-dependent gene expression in mouse lung. CONCLUSIONS FGS post-treatment suppressed lung inflammation in an LPS-induced ALI mouse model, which was mediated at least in part by Nrf2. Our results suggest a therapeutic potential of FGS on inflammatory lung diseases.
Collapse
|
46
|
Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur J Pharm Biopharm 2014; 88:169-77. [DOI: 10.1016/j.ejpb.2014.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/31/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023]
|
47
|
Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 2014; 15:4795-822. [PMID: 24646916 PMCID: PMC3975425 DOI: 10.3390/ijms15034795] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 02/04/2023] Open
Abstract
The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cellular studies can be used for toxicological testing. Advanced in vitro studies use combinations of cells cultured in the air-liquid interface. These cultures are useful for particle uptake and mechanistic studies. Whole-body, nose-only, and lung-only exposures of animals could help to determine retention of NPs in the body. Both approaches also have their limitations; cellular studies cannot mimic the entire organism and data obtained by inhalation exposure of rodents have limitations due to differences in the respiratory system from that of humans. Simulation programs for lung deposition in humans could help to determine the relevance of the biological findings. Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs.
Collapse
|
48
|
Wang YB, Watts AB, Peters JI, Williams RO. The impact of pulmonary diseases on the fate of inhaled medicines—A review. Int J Pharm 2014; 461:112-28. [DOI: 10.1016/j.ijpharm.2013.11.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
49
|
Abstract
Pulmonary disease has been the primary target of inhaled therapeutics for over 50 years. During that period, increasing interest has arisen in the use of this route of administration to gain access to the systemic circulation for the treatment of a number of diseases beyond the airways. In order to effectively employ this route, the barriers to transport from the lungs following deposition of aerosols must be considered, including the nature of the disease (whether proximal, as in pulmonary hypertension, or distal, as in diabetes). Delivery to the systemic circulation begins with the efficiency of aerosol generation and subsequent deposition in the airways and proceeds to the influence of mechanisms of clearance, including absorption, metabolism, and mucociliary and cell-mediated transport, on the residence time of the drugs in the lungs. The nature of the drug (small or large molecules/low or high molecular weight), susceptibility to degradation and general physicochemical properties play a role in the chemistry of its formulation, physics of aerosol delivery and biology of disposition.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- Systems & Translational Sciences, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| | - Anthony J. Hickey
- Technology for Industry and the Environment, Discovery – Sciences – Technologies Group, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| |
Collapse
|
50
|
Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 2013; 86:7-22. [PMID: 24007657 DOI: 10.1016/j.ejpb.2013.08.013] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/04/2023]
Abstract
Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity.
Collapse
|