1
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
2
|
Aschman T, Schaffer S, Biniaris Georgallis SI, Triantafyllopoulou A, Staeheli P, Voll RE. Interferon Lambda Regulates Cellular and Humoral Immunity in Pristane-Induced Lupus. Int J Mol Sci 2021; 22:ijms222111747. [PMID: 34769174 PMCID: PMC8584021 DOI: 10.3390/ijms222111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1−/−) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1−/− mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1−/− mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Correspondence: (T.A.); (R.E.V.)
| | - Sandra Schaffer
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
| | - Stylianos Iason Biniaris Georgallis
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antigoni Triantafyllopoulou
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence: (T.A.); (R.E.V.)
| |
Collapse
|
3
|
Muñoz-Moreno R, Martínez-Romero C, García-Sastre A. Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harb Perspect Med 2021; 11:a038414. [PMID: 32661015 PMCID: PMC8485741 DOI: 10.1101/cshperspect.a038414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A viruses (IAVs) are contagious pathogens and one of the leading causes of respiratory tract infections in both humans and animals worldwide. Upon infection, the innate immune system provides the first line of defense to neutralize or limit the replication of invading pathogens, creating a fast and broad response that brings the cells into an alerted state through the secretion of cytokines and the induction of the interferon (IFN) pathway. At the same time, IAVs have developed a plethora of immune evasion mechanisms in order to avoid or circumvent the host antiviral response, promoting viral replication. Herein, we will review and summarize already known and recently described innate immune mechanisms that host cells use to fight IAV viral infections as well as the main strategies developed by IAVs to overcome such powerful defenses during this fascinating virus-host interplay.
Collapse
Affiliation(s)
- Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
4
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
5
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
6
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
8
|
Human MxB Inhibits the Replication of Hepatitis C Virus. J Virol 2018; 93:JVI.01285-18. [PMID: 30333168 DOI: 10.1128/jvi.01285-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of the Flaviviridae family, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCE Viruses of the Flaviviridae family cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of the Flaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.
Collapse
|
9
|
Haller O, Arnheiter H, Pavlovic J, Staeheli P. The Discovery of the Antiviral Resistance Gene Mx: A Story of Great Ideas, Great Failures, and Some Success. Annu Rev Virol 2018; 5:33-51. [PMID: 29958082 DOI: 10.1146/annurev-virology-092917-043525] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the Mx gene-dependent, innate resistance of mice against influenza virus was a matter of pure chance. Although the subsequent analysis of this antiviral resistance was guided by straightforward logic, it nevertheless led us into many blind alleys and was full of surprising turns and twists. Unexpectedly, this research resulted in the identification of one of the first interferon-stimulated genes and provided a new view of interferon action. It also showed that in many species, MX proteins have activities against a broad range of viruses. To this day, Mx research continues to flourish and to provide insights into the never-ending battle between viruses and their hosts.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center University of Freiburg, D-79104 Freiburg, Germany; .,Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jovan Pavlovic
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, D-79104 Freiburg, Germany; .,Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
10
|
Salivary Blockade Protects the Lower Respiratory Tract of Mice from Lethal Influenza Virus Infection. J Virol 2017; 91:JVI.00624-17. [PMID: 28446669 DOI: 10.1128/jvi.00624-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/26/2022] Open
Abstract
It is possible to model the progression of influenza virus from the upper respiratory tract to the lower respiratory tract in the mouse using viral inoculum delivered in a restricted manner to the nose. In this model, infection with the A/Udorn/307/72 (Udorn) strain of virus results ultimately in high viral titers in both the trachea and lungs. In contrast, the A/Puerto Rico/8/34 (PR8) strain causes an infection that is almost entirely limited to the nasal passages. The factors that govern the progression of virus down the respiratory tract are not well understood. Here, we show that, while PR8 virus grows to high titers in the nose, an inhibitor present in the saliva blocks further progression of infection to the trachea and lungs and renders an otherwise lethal dose of virus completely asymptomatic. In vitro, the salivary inhibitor was capable of potent neutralization of PR8 virus and an additional 20 strains of type A virus and two type B strains that were tested. The exceptions were Udorn virus and the closely related H3N2 strains A/Port Chalmers/1/73 and A/Victoria/3/75. Characterization of the salivary inhibitor showed it to be independent of sialic acid and other carbohydrates for its function. This and other biochemical properties, together with its virus strain specificity and in vivo function, indicate that the mouse salivary inhibitor is a previously undescribed innate inhibitory molecule that may have evolved to provide pulmonary protection of the species from fatal influenza virus infection.IMPORTANCE Influenza A virus occasionally jumps from aquatic birds, its natural host, into mammals to cause outbreaks of varying severity, including pandemics in humans. Despite the laboratory mouse being used as a model to study influenza virus pathogenesis, natural outbreaks of influenza have not been reported in the species. Here, we shed light on one mechanism that might allow mice to be protected from influenza in the wild. We show that virus deposited in the mouse upper respiratory tract will not progress to the lower respiratory tract due to the presence of a potent inhibitor of the virus in saliva. Containing inhibitor-sensitive virus to the upper respiratory tract renders an otherwise lethal infection subclinical. This knowledge sheds light on how natural inhibitors may have evolved to improve survival in this species.
Collapse
|
11
|
Influenza Virus Susceptibility of Wild-Derived CAST/EiJ Mice Results from Two Amino Acid Changes in the MX1 Restriction Factor. J Virol 2016; 90:10682-10692. [PMID: 27654285 DOI: 10.1128/jvi.01213-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/11/2016] [Indexed: 12/27/2022] Open
Abstract
The interferon-regulated Mx1 gene of the A2G mouse strain confers a high degree of resistance against influenza A and Thogoto viruses. Most other laboratory inbred mouse strains carry truncated nonfunctional Mx1 alleles and, consequently, exhibit high virus susceptibility. Interestingly, CAST/EiJ mice, derived from wild Mus musculus castaneus, possess a seemingly intact Mx1 gene but are highly susceptible to influenza A virus challenge. To determine whether the enhanced influenza virus susceptibility is due to intrinsically reduced antiviral activity of the CAST-derived Mx1 allele, we generated a congenic C57BL/6J mouse line that carries the Mx locus of CAST/EiJ mice. Adult animals of this line were almost as susceptible to influenza virus challenge as standard C57BL/6J mice lacking functional Mx1 alleles but exhibited far more pronounced resistance to Thogoto virus. Sequencing revealed that CAST-derived MX1 differs from A2G-derived MX1 by two amino acids (G83R and A222V) in the GTPase domain. Especially the A222V mutation reduced GTPase activity of purified MX1 and diminished the inhibitory effect of MX1 in influenza A virus polymerase activity assays. Further, MX1 protein was substantially less abundant in organs of interferon-treated mice carrying the CAST Mx1 allele than in those of mice carrying the A2G Mx1 allele. We found that the CAST-specific mutations reduced the metabolic stability of the MX1 protein although Mx1 mRNA levels were unchanged. Thus, the enhanced influenza virus susceptibility of CAST/EiJ mice can be explained by minor alterations in the MX1 restriction factor that negatively affect its enzymatic activity and reduce its half-life. IMPORTANCE Although the crystal structure of the prototypic human MXA protein is known, the importance of specific protein domains for antiviral activity is still incompletely understood. Novel insights might come from studying naturally occurring MX protein variants with altered antiviral activity. Here we identified two seemingly minor amino acid changes in the GTPase domain that negatively affect the enzymatic activity and metabolic stability of murine MX1 and thus dramatically reduce the influenza virus resistance of the respective mouse inbred strain. These observations highlight our current inability to predict the biological consequences of previously uncharacterized MX mutations in mice. Since this is probably also true for naturally occurring mutations in Mx genes of humans, careful experimental analysis of any natural MXA variants for altered activity is necessary in order to assess possible consequences of such mutations on innate antiviral immunity.
Collapse
|
12
|
Abstract
Mice and humans branched from a common ancestor approximately 80 million years ago. Despite this, mice are routinely utilized as animal models of human disease and in drug development because they are inexpensive, easy to handle, and relatively straightforward to genetically manipulate. While this has led to breakthroughs in the understanding of genotype-phenotype relationships and in the identification of therapeutic targets, translation of beneficial responses to therapeutics from mice to humans has not always been successful. In a large part, these differences may be attributed to variations in the alignment of protein expression and signaling in the immune systems between mice and humans. Well-established inbred strains of "The Laboratory Mouse" vary in their immune response patterns as a result of genetic mutations and polymorphisms arising from intentional selection for research relevant traits, and even closely related substrains vary in their immune response patterns as a result of genetic mutations and polymorphisms arising from genetic drift. This article reviews some of the differences between the mouse and human immune system and between inbred mouse strains and shares examples of how these differences can impact the usefulness of mouse models of disease.
Collapse
Affiliation(s)
- Rani S Sellers
- 1 Drug Safety Research and Development, Pfizer Inc., Pearl River, NY, USA
| |
Collapse
|
13
|
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. J Mol Biol 2016; 428:3495-513. [PMID: 27181197 PMCID: PMC5010443 DOI: 10.1016/j.jmb.2016.04.032] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 01/18/2023]
Abstract
Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.
Collapse
Affiliation(s)
- Danielle Pilla-Moffett
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew F Barber
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gregory A Taylor
- Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, and Immunology, Duke University, Durham, NC 27708, USA; Center for the Study of Aging, Duke University, Durham, NC 27708, USA; Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, NC 27710, USA.
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Functional Comparison of Mx1 from Two Different Mouse Species Reveals the Involvement of Loop L4 in the Antiviral Activity against Influenza A Viruses. J Virol 2015; 89:10879-90. [PMID: 26292322 DOI: 10.1128/jvi.01744-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The interferon-induced Mx1 gene is an important part of the mammalian defense against influenza viruses. Mus musculus Mx1 inhibits influenza A virus replication and transcription by suppressing the polymerase activity of viral ribonucleoproteins (vRNPs). Here, we compared the anti-influenza virus activity of Mx1 from Mus musculus A2G with that of its ortholog from Mus spretus. We found that the antiviral activity of M. spretus Mx1 was less potent than that of M. musculus Mx1. Comparison of the M. musculus Mx1 sequence with the M. spretus Mx1 sequence revealed 25 amino acid differences, over half of which were present in the GTPase domain and 2 of which were present in loop L4. However, the in vitro GTPase activity of Mx1 from the two mouse species was similar. Replacement of one of the residues in loop L4 in M. spretus Mx1 by the corresponding residue of A2G Mx1 increased its antiviral activity. We also show that deletion of loop L4 prevented the binding of Mx1 to influenza A virus nucleoprotein and, hence, abolished the antiviral activity of mouse Mx1. These results indicate that loop L4 of mouse Mx1 is a determinant of antiviral activity. Our findings suggest that Mx proteins from different mammals use a common mechanism to inhibit influenza A viruses. IMPORTANCE Mx proteins are evolutionarily conserved in vertebrates and inhibit a wide range of viruses. Still, the exact details of their antiviral mechanisms remain largely unknown. Functional comparison of the Mx genes from two species that diverged relatively recently in evolution can provide novel insights into these mechanisms. We show that both Mus musculus A2G Mx1 and Mus spretus Mx1 target the influenza virus nucleoprotein. We also found that loop L4 in mouse Mx1 is crucial for its antiviral activity, as was recently reported for primate MxA. This indicates that human and mouse Mx proteins, which have diverged by 75 million years of evolution, recognize and inhibit influenza A viruses by a common mechanism.
Collapse
|
15
|
Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 2015; 23:154-63. [PMID: 25572883 DOI: 10.1016/j.tim.2014.12.003] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023]
Abstract
The Mx dynamin-like GTPases are key antiviral effector proteins of the type I and type III interferon (IFN) systems. They inhibit several different viruses by blocking early steps of the viral replication cycle. We focus on new structural and functional insights and discuss recent data revealing that human MxA (MX1) provides a safeguard against introduction of avian influenza A viruses (FLUAV) into the human population. The related human MxB (MX2) serves as restriction factor for HIV-1 and other primate lentiviruses.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.
| | - Martin Schwemmle
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Sanders CJ, Johnson B, Frevert CW, Thomas PG. Intranasal influenza infection of mice and methods to evaluate progression and outcome. Methods Mol Biol 2014; 1031:177-88. [PMID: 23824900 DOI: 10.1007/978-1-62703-481-4_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vivo influenza infection models are critical for understanding viral dynamics and host responses during infection. Mouse models are extremely useful for infection studies requiring a high number of test animals. The vast array of gene knockout mice available is particularly helpful in investigating a particular gene's contributions to infection. Thus, more in vivo scientific experimentation of influenza has been done on mice than any other animal model. Here, we describe the technique of intranasal inoculation of mice and methods for assessing the severity of disease and humane endpoints, and discuss data acquired from infection of female C57BL/6J mice.
Collapse
Affiliation(s)
- Catherine J Sanders
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
17
|
Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C. The Interferon-Inducible MxB Protein Inhibits HIV-1 Infection. Cell Host Microbe 2013; 14:398-410. [DOI: 10.1016/j.chom.2013.08.015] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/14/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
|
18
|
Myxovirus resistance gene A (MxA) expression suppresses influenza A virus replication in alpha interferon-treated primate cells. J Virol 2012; 87:1150-8. [PMID: 23152507 DOI: 10.1128/jvi.02271-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alpha interferon (IFN-α) production is triggered when influenza virus RNA is detected by appropriate pattern recognition receptors in the host cell. IFN-α induces the expression of more than 300 interferon-stimulated genes (ISGs), and this blunts influenza virus replication. The human ISG MxA can inhibit influenza A virus replication in mouse cells by interfering with a step in the virus replication cycle after primary transcription of the negative-strand RNA genome to mRNA (J. Pavlovic, O. Haller, and P. Staeheli, J. Virol. 66:2564-2569, 1992). To determine the role of MxA in blocking human influenza A virus replication in primate cells, we manipulated MxA expression in rhesus kidney epithelial cells (LLC-MK(2)) and human lung carcinoma cells (A549). We found that IFN-α treatment prior to influenza virus infection suppressed virus replication and induced the expression of many ISGs, including MxA. However, IFN-α-mediated suppression of virus replication was abolished by small interfering RNA (siRNA) knockdown of MxA expression in IFN-treated cells. In addition, influenza virus replication was suppressed in Vero cells stably transfected with MxA. A strand-specific reverse transcription-PCR (RT-PCR) assay showed that positive-strand influenza virus mRNA and negative-strand genomic RNA (gRNA) accumulated to high levels at 8 h after infection in control Vero cells containing the empty vector. However, in Vero cells stably transfected with MxA positive-strand influenza virus mRNA, complementary positive-strand influenza virus genome RNA (cRNA) and influenza virus gRNA were drastically suppressed. Thus, in primate cells, MxA inhibits human seasonal influenza virus replication at a step prior to primary transcription of gRNA into mRNA. Taken together, these results demonstrate that MxA mediates control of influenza virus replication in primate cells treated with IFN-α.
Collapse
|
19
|
Abstract
Host restriction factors are potent, widely expressed intracellular blocks to viral replication that are an important component of the innate immune response to viral infection. However, viruses have evolved mechanisms that antagonize restriction factors. Through evolutionary pressure for both host survival and virus replication, an evolutionary 'arms race' has developed that drives continuous rounds of selection for beneficial mutations in the genes encoding restriction factors and their viral antagonists. Because viruses can evolve faster than their hosts, the innate immune system of modern-day vertebrates is for the most part optimized to defend against ancient viruses, rather than newer viral threats. Thus, the evolutionary history of restriction factors might, in part, explain why humans are susceptible or resistant to the viruses present in the modern world.
Collapse
|
20
|
Shriner SA, VanDalen KK, Mooers NL, Ellis JW, Sullivan HJ, Root JJ, Pelzel AM, Franklin AB. Low-pathogenic avian influenza viruses in wild house mice. PLoS One 2012; 7:e39206. [PMID: 22720076 PMCID: PMC3376105 DOI: 10.1371/journal.pone.0039206] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/21/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. METHODOLOGY/PRINCIPAL FINDINGS We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. CONCLUSIONS/SIGNIFICANCE Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.
Collapse
Affiliation(s)
- Susan A Shriner
- National Wildlife Research Center, United States Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Haller O, Kochs G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2010; 31:79-87. [PMID: 21166595 DOI: 10.1089/jir.2010.0076] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human myxovirus resistance protein 1 (MxA) is a key mediator of the interferon-induced antiviral response against a wide range of viruses. MxA expression is tightly regulated by type I and type III interferons, requires signal transducer and activator of transcription 1 signaling, and is not inducible directly by viruses or other stimuli. MxA shares many properties with the dynamin superfamily of large GTPases. It consists of 3 domains, namely, an N-terminal GTPase domain that binds and hydrolyses GTP, a middle domain mediating self-assembly, and a carboxy-terminal GTPase effector domain. Like dynamin, MxA has the ability to self-assemble into highly ordered oligomers and to form ring-like structures around liposomes, inducing liposome tubulation. The structural details of MxA oligomerization have recently been elucidated, providing new insights into the antiviral mechanism of this mechanochemical enzyme. The structural and functional data suggest that MxA targets the nucleoprotein of MxA-sensitive viruses. Thus, MxA may form oligomeric rings around tubular nucleocapsid structures, thereby inhibiting their transcriptional and replicative function. Here we briefly review the most salient features of MxA expression and antiviral function.
Collapse
Affiliation(s)
- Otto Haller
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
22
|
Pulverer JE, Rand U, Lienenklaus S, Kugel D, Ziętara N, Kochs G, Naumann R, Weiss S, Staeheli P, Hauser H, Köster M. Temporal and spatial resolution of type I and III interferon responses in vivo. J Virol 2010; 84:8626-38. [PMID: 20573823 PMCID: PMC2919002 DOI: 10.1128/jvi.00303-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/08/2010] [Indexed: 01/08/2023] Open
Abstract
Although the action of interferons (IFNs) has been extensively studied in vitro, limited information is available on the spatial and temporal activation pattern of IFN-induced genes in vivo. We created BAC transgenic mice expressing firefly luciferase under transcriptional control of the Mx2 gene promoter. Expression of the reporter with regard to onset and kinetics of induction parallels that of Mx2 and is thus a hallmark for the host response. Substantial constitutive expression of the reporter gene was observed in the liver and most other tissues of transgenic mice, whereas this expression was strongly reduced in animals lacking functional type I IFN receptors. As expected, the reporter gene was induced not only in response to type I (alpha and beta) and type III (lambda) IFNs but also in response to a variety of IFN inducers such as double-stranded RNA, lipopolysaccharide (LPS), and viruses. In vivo IFN subtypes show clear differences with respect to their kinetics of action and to their spatial activation pattern: while the type I IFN response was strong in liver, spleen, and kidney, type III IFN reactivity was most prominent in organs with mucosal surfaces. Infection of reporter mice with virus strains that differ in their pathogenicity shows that the IFN response is significantly altered in the strength of IFN action at sites which are not primarily infected as well as by the onset and duration of gene induction.
Collapse
Affiliation(s)
- Julia Elisabeth Pulverer
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ulfert Rand
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Lienenklaus
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniela Kugel
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Natalia Ziętara
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Georg Kochs
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siegfried Weiss
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter Staeheli
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany, Department of Virology, University of Freiburg, Freiburg, Germany, Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
23
|
Human IRGM gene "to be or not to be". Semin Immunopathol 2010; 32:437-44. [PMID: 20737271 DOI: 10.1007/s00281-010-0224-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
Abstract
The immunity-related GTPases (IRG proteins) are one of the strongest early resistance systems against intracellular pathogens. The IRG gene family contains 21 copies arranged as tandem gene clusters on two chromosomes in the C57BL/6 mouse genome but has been reduced to only two copies in humans: IRGC and IRGM. IRGC is not involved in immunity, but the human IRGM gene plays a role in autophagy-targeted destruction of Mycobacterium tuberculosis (BCG) and Salmonella typhimurium. Variant IRGM haplotypes have been associated with increased risk for Crohn's disease and correlated with differential expression of IRGM transcripts. This article reviews in detail the studies performed on human samples, in vitro, and in sequence analyses that provide evidence for the unusual evolutionary history of the IRGM locus and the important role of the IRGM gene in autophagy and Crohn's disease in response to pathogenesis.
Collapse
|
24
|
Haller O, Gao S, von der Malsburg A, Daumke O, Kochs G. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity. J Biol Chem 2010; 285:28419-24. [PMID: 20538602 DOI: 10.1074/jbc.r110.145839] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible MxA GTPase is a key mediator of cell-autonomous innate immunity against a broad range of viruses such as influenza and bunyaviruses. MxA shares a similar domain structure with the dynamin superfamily of mechanochemical enzymes, including an N-terminal GTPase domain, a central middle domain, and a C-terminal GTPase effector domain. Recently, crystal structures of a GTPase domain dimer of dynamin 1 and of the oligomerized stalk of MxA (built by the middle and GTPase effector domains) were determined. These data provide exciting insights into the architecture and antiviral function of the MxA oligomer. Moreover, the structural knowledge paves the way for the development of novel antiviral drugs against influenza and other highly pathogenic viruses.
Collapse
Affiliation(s)
- Otto Haller
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Su J, Yang C, Zhu Z, Wang Y, Jang S, Liao L. Enhanced grass carp reovirus resistance of Mx-transgenic rare minnow (Gobiocypris rarus). FISH & SHELLFISH IMMUNOLOGY 2009; 26:828-835. [PMID: 19138747 DOI: 10.1016/j.fsi.2008.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/08/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P<0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases.
Collapse
Affiliation(s)
- Jianguo Su
- Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
26
|
Dissing-Olesen L, Thaysen-Andersen M, Meldgaard M, Højrup P, Finsen B. The function of the human interferon-beta 1a glycan determined in vivo. J Pharmacol Exp Ther 2008; 326:338-47. [PMID: 18445781 DOI: 10.1124/jpet.108.138263] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recombinant human interferon-beta (rhIFN-beta) is the leading therapeutic intervention shown to change the cause of relapsing-remitting multiple sclerosis, and both a nonglycosylated and a significantly more active glycosylated variant of rhIFN-beta are used in treatment. This study investigates the function of the rhIFN-beta1a glycan moiety and its individual carbohydrate residues, using the myxovirus resistance (Mx) mRNA as a biomarker in Mx-congenic mice. We showed that the Mx mRNA level in blood leukocytes peaked 3 h after s.c. administration of rhIFN-beta1a. In addition, a clear dose-response relationship was confirmed, and the Mx response was shown to be receptor-mediated. Using specific glycosidases, different glycosylation analogs of rhIFN-beta1a were obtained, and their activities were determined. The glycosylated rhIFN-beta1a showed significantly higher activity than its deglycosylated counterpart, due to a protein stabilization/solubilization effect of the glycan. It is interesting to note that the terminating sialic acids were essential for these effects. Conclusively, the structure/bioactivity relationship of rhIFN-beta1a was determined in vivo, and it provided a novel insight into the role of the rhIFN-beta1a glycan and its carbohydrate residues. The possibilities of improving the pharmacological properties of rhIFN-beta1a using glycoengineering are discussed.
Collapse
Affiliation(s)
- Lasse Dissing-Olesen
- Medical Biotechnology Center, University of Southern Denmark, Winsløwparken 25, 2, DK-5000 Odense C, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Vanlaere I, Vanderrijst A, Guénet JL, De Filette M, Libert C. Mx1 causes resistance against influenza A viruses in the Mus spretus-derived inbred mouse strain SPRET/Ei. Cytokine 2008; 42:62-70. [PMID: 18334301 DOI: 10.1016/j.cyto.2008.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/11/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.
Collapse
Affiliation(s)
- Ineke Vanlaere
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | |
Collapse
|
28
|
Stertz S, Dittmann J, Blanco JC, Pletneva LM, Haller O, Kochs G. The Antiviral Potential of Interferon-Induced Cotton Rat Mx Proteins Against Orthomyxovirus (Influenza), Rhabdovirus, and Bunyavirus. J Interferon Cytokine Res 2007; 27:847-55. [DOI: 10.1089/jir.2006.0176] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Silke Stertz
- Abteilung Virologie, Institut Für Medizinische Mikrobiologie Und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | - Jan Dittmann
- Abteilung Virologie, Institut Für Medizinische Mikrobiologie Und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | - Otto Haller
- Abteilung Virologie, Institut Für Medizinische Mikrobiologie Und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | - Georg Kochs
- Abteilung Virologie, Institut Für Medizinische Mikrobiologie Und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
29
|
Abstract
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. Knockout mice defective in IFN signaling quickly succumb to all kinds of viral infections. Likewise, humans with genetic defects in interferon signaling die of viral disease at an early age. Among the known interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins belong to the dynamin superfamily of large GTPases and have direct antiviral activity. They inhibit a wide range of viruses by blocking an early stage of the viral replication cycle. Likewise, the protein kinase R (PKR), and the 2–5 OAS/RNaseL system represent major antiviral pathways and have been extensively studied. Viruses, in turn, have evolved multiple strategies to escape the IFN system. They try to go undetected, suppress IFN synthesis, bind and neutralize secreted IFN molecules, block IFN signaling, or inhibit the action of IFN-induced antiviral proteins. Here, we summarize recent findings about the astonishing interplay of viruses with the IFN response pathway.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
30
|
Haller O, Staeheli P, Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie 2007; 89:812-8. [PMID: 17570575 DOI: 10.1016/j.biochi.2007.04.015] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/27/2007] [Indexed: 12/13/2022]
Abstract
Mx proteins are key components of the antiviral state induced by interferons in many species. They belong to the class of dynamin-like large guanosine triphosphatases (GTPases) known to be involved in intracellular vesicle trafficking and organelle homeostasis. Mx GTPases share structural and functional properties with dynamin, such as self-assembly and association with intracellular membranes. A unique property of some Mx GTPases is their antiviral activity against a wide range of RNA viruses, including influenza viruses and members of the bunyavirus family. These viruses are inhibited at an early stage in their life cycle, soon after host cell entry and before genome amplification. The mouse Mx1 GTPase accumulates in the cell nucleus where it associates with components of the PML nuclear bodies and inhibits influenza and Thogoto viruses known to replicate in the nucleus. The human MxA GTPase accumulates in the cytoplasm and is partly associated with a COP-I-positive subcompartment of the endoplasmic reticulum. This membrane compartment seems to provide an interaction platform that facilitates viral target recognition. In the case of bunyaviruses, MxA recognizes the viral nucleocapsid protein and interferes with its role in viral genome replication. In the case of Thogoto virus, MxA recognizes the viral nucleoprotein and prevents the incoming viral nucleocapsids from being transported into the nucleus, the site of viral transcription and replication. In both cases, GTP-binding and carboxy-terminal effector functions of MxA are required for target recognition. In general, Mx GTPases appear to detect viral infection by sensing nucleocapsid-like structures. As a consequence, these viral components are trapped and sorted to locations where they become unavailable for the generation of new virus particles.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
31
|
Pletneva LM, Haller O, Porter DD, Prince GA, Blanco JCG. Interferon-inducible Mx gene expression in cotton rats: cloning, characterization, and expression during influenza viral infection. J Interferon Cytokine Res 2007; 26:914-21. [PMID: 17238834 DOI: 10.1089/jir.2006.26.914] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mx proteins belong to the superfamily of large GTPases with antiviral activity against a wide range of RNA viruses. In vivo, the expression of Mx genes is tightly regulated by the presence of type I interferons (IFNs), and their induction has been described during several viral infections. However, because of the absence of functional Mx genes in most common laboratory strains of mice, in vivo studies of the expression of these genes during viral infection have been hampered. We have cloned the cDNAs for the cotton rat homologs of Mx1 and Mx2 genes that encode full-length proteins. Mx1 localized in the nucleus, whereas Mx2, as its human homolog MxA, localized in the cytoplasm. The expression of Mx genes in cotton rat cells was induced by type I IFNs (IFN-alpha and IFN-beta) but induced only marginally with type II IFN (IFN-gamma). In vivo, the expression of Mx genes was dramatically augmented in lungs of cotton rats infected with influenza virus. The expression of Mx genes and protein(s) was dependent on the dose of virus and the time postinfection for the analysis. Our data present for the first time a complete analysis of the kinetics of expression of these influenza resistant genes in vivo and underscore the fidelity and sensitivity of the cotton rat model for the study of influenza viral infection.
Collapse
|
32
|
Palm M, Leroy M, Thomas A, Linden A, Desmecht D. Differential Anti-Influenza Activity among Allelic Variants at TheSus Scrofa Mx1Locus. J Interferon Cytokine Res 2007; 27:147-55. [PMID: 17316142 DOI: 10.1089/jir.2006.0119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A promising way to oppose infectious challenges would be to improve the resistance of the target species through genetic selection. Theoretically, a candidate gene is available against influenza viruses since a resistance trait was fortuitously discovered in the A2G mouse strain. This trait was demonstrated to be correlated with the expression of a specific isoform of the type I interferon (IFN)-dependent protein MX, an isoform coded by a specific allele at the mouse Mx1 locus. Two allelic polymorphisms were described recently in the Sus scrofa homologous gene. In this study, the frequencies and distribution of both alleles were evaluated among European domestic pig and wild boar populations by PCR-RFLP, and the anti-influenza activity conferred by both MX1 isoforms was evaluated in vitro using transfection of Vero cells followed by flow cytometric determination of the fraction of influenza virus-infected cells among MX-producing and MX-nonproducing cell populations. A significant difference in the anti-influenza activity brought by the two MX1 isoforms was demonstrated, which suggests that a significant improvement of innate resistance of pigs by genetic selection might be feasible provided the differences found here in vitro are epidemiologically relevant in vivo.
Collapse
Affiliation(s)
- M Palm
- Department of Pathology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
33
|
Seyama T, Ko JH, Ohe M, Sasaoka N, Okada A, Gomi H, Yoneda A, Ueda J, Nishibori M, Okamoto S, Maeda Y, Watanabe T. Population Research of Genetic Polymorphism at Amino Acid Position 631 in Chicken Mx Protein with Differential Antiviral Activity. Biochem Genet 2006; 44:437-48. [PMID: 16955367 DOI: 10.1007/s10528-006-9040-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 01/17/2006] [Indexed: 11/28/2022]
Abstract
A single amino acid substitution between Asn and Ser at position 631 in the chicken Mx protein has been reported to determine resistant and sensitive antiviral activity. In this study, we investigate whether various kinds of chicken breeds and jungle fowls carry the resistant or sensitive Mx allelic gene by using the mismatched PCR-restriction fragment length polymorphism (RFLP) technique. In total, 271 samples from 36 strains of 17 chicken breeds and from 3 kinds of jungle fowls were examined. The rates of the resistant Mx gene and sensitive gene were 59.2% and 40.8%, respectively. Only a Red jungle fowl captured in Laos carried the resistant Mx gene, and the other three Red jungle fowls from Indonesia and Gray and Green jungle fowls all had the sensitive Mx gene. These results were confirmed by the determination of amino acid sequences in the GTPase effector domain of jungle fowls.
Collapse
Affiliation(s)
- T Seyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 2005; 6:R92. [PMID: 16277747 PMCID: PMC1297648 DOI: 10.1186/gb-2005-6-11-r92] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 09/07/2005] [Accepted: 10/07/2005] [Indexed: 12/05/2022] Open
Abstract
A survey of p47 GTPases in several vertebrate organisms shows that humans lack a p47 GTPase-based resistance system, suggesting that mice and humans deploy their immune resources against vacuolar pathogens in radically different ways. Background Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans. Results Here we show that the p47 GTPases are represented by 23 genes in the mouse, whereas humans have only a single full-length p47 GTPase and an expressed, truncated presumed pseudo-gene. The human full-length gene is orthologous to an isolated mouse p47 GTPase that carries no interferon-inducible elements in the promoter of either species and is expressed constitutively in the mature testis of both species. Thus, there is no evidence for a p47 GTPase-based resistance system in humans. Dogs have several interferon-inducible p47s, and so the primate lineage that led to humans appears to have lost an ancient function. Multiple p47 GTPases are also present in the zebrafish, but there is only a tandem p47 gene pair in pufferfish. Conclusion Mice and humans must deploy their immune resources against vacuolar pathogens in radically different ways. This carries significant implications for the use of the mouse as a model of human infectious disease. The absence of the p47 resistance system in humans suggests that possession of this resistance system carries significant costs that, in the primate lineage that led to humans, are not outweighed by the benefits. The origin of the vertebrate p47 system is obscure.
Collapse
Affiliation(s)
- Cemalettin Bekpen
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Julia P Hunn
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Christoph Rohde
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Iana Parvanova
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Libby Guethlein
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
- Department of Structural Biology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Diane M Dunn
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Eva Glowalla
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
- Institute for Microbiology and Immunology, University of Cologne Medical School, 50935 Cologne, Germany
| | - Maria Leptin
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
- Informatics & Systems Groups, Sanger Centre, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Jonathan C Howard
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| |
Collapse
|
35
|
Abstract
The skin site at which ticks attach to their hosts to feed is the critical interface between the tick and its host, and tick-borne pathogens. This site is highly modified by the pharmacologically active molecules secreted in tick saliva. For pathogens, it is an ecologically privileged niche that many exploit. Such exploitation is referred to as saliva-activated transmission (SAT) – the indirect promotion of tick-borne pathogen transmission via the actions of bioactive tick saliva molecules on the vertebrate host. Here we review evidence for SAT and consider what are the most likely candidates for SAT factors among the tick pharmacopoeia of anti-haemostatic, anti-inflammatory and immunomodulatory molecules identified to date. SAT factors appear to differ for different pathogens and tick vector species, and possibly even depend on the vertebrate host species. Most likely we are searching for a suite of molecules that act together to overcome the redundancy in host response mechanisms. Whatever they turn out to be, the quest to identify the tick molecules that mediate SAT is an exciting one, and offers new insights to controlling ticks and tick-borne diseases.
Collapse
Affiliation(s)
- P A Nuttall
- Centre for Ecology & Hydrology, Mansfield Rd., Oxford, OX1 3SR, UK.
| | | |
Collapse
|
36
|
Baise E, Pire G, Leroy M, Gérardin J, Goris N, De Clercq K, Kerkhofs P, Desmecht D. Conditional Expression of Type I Interferon-Induced Bovine Mx1 GTPase in a Stable Transgenic Vero Cell Line Interferes with Replication of Vesicular Stomatitis Virus. J Interferon Cytokine Res 2004; 24:513-21. [PMID: 15450127 DOI: 10.1089/jir.2004.24.513] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In some vertebrate species, type I interferon(IFN)-induced Mx gene expression has been shown to confer resistance to some single-stranded RNA (ssRNA) viruses in vitro. Because the bovine species is subject to an exceptionally wide array of infections caused by such viruses, it is anticipated that an antiviral allele should have been retained by evolution at the bovine Mx locus. The identification of such allele may help in evaluating the real significance of the Mx genotype for disease resistance in vivo, in deciphering host-virus molecular interactions involved, or in improving innate disease resistance of livestock through marker-assisted selection. We validated a double transgenic Vero cell clone in which the bovine Mx1 reference allele is placed under control of the human cytomegalovirus (CMV) enhancer-promoter sequence containing elements from the bacterial tetracycline resistance operon to regulate transcription. In the selected clone, transgene repression was very tight, and derepression by doxycycline led to homogeneous 48-h duration expression of physiologic levels of bovine Mx1. Expression of the transgene caused a dramatic decrease in cytopathic efficiency and a 500-5000-fold yield reduction of the Indiana and New Jersey serotypes of vesicular stomatitis virus (VSV). To our knowledge, the transgenic clone developed here is the first ever reported that allows conditional expression of an Mx protein, thus providing a valuable tool for studying functions of Mx proteins in general and that of bovine Mx1 in particular. This latter may henceforward be included in the group of Mx proteins with authenticated anti-VSV activity, which offers new research avenues into the field of host-virus interactions.
Collapse
Affiliation(s)
- Etienne Baise
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cinatl Jr J, Michaelis M, Scholz M, Doerr HW. Role of interferons in the treatment of severe acute respiratory syndrome. Expert Opin Biol Ther 2004; 4:827-36. [PMID: 15174965 PMCID: PMC7103669 DOI: 10.1517/14712598.4.6.827] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome (SARS) is caused by the SARS coronavirus (SCV). The disease appeared in the Guandong province of southern China in 2002. The epidemic affected > 8422 patients and caused 908 deaths in 29 countries on 5 continents. Several treatment modalities were tried with limited success to treat SARS and a variety of experimental drugs are under development. Type I interferons (IFNs-alpha/beta) were suggested as potential candidates to treat SARS. Several animal and human coronaviruses, including SCV, were shown to be sensitive to IFNs both in vitro and in vivo. A pilot clinical report showed effectiveness of IFN-alpha for the treatment of SARS patients. This review summarises antiviral activities of IFNs with special regard to SARS, and reviews the published clinical and experimental data describing the use of IFNs for SARS.
Collapse
Affiliation(s)
- Jindrich Cinatl Jr
- Klinikum der Johann Wolfgang Goethe-Universitat, Institut fur Medizinische Virologie, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany.
| | - Martin Michaelis
- Klinikum der Johann Wolfgang Goethe-Universitat, Institut fur Medizinische Virologie, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany.
| | - Martin Scholz
- Klinikum der Johann Wolfgang Goethe-Universitat, Institut fur Medizinische Virologie, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany.
| | - Hans Wilhelm Doerr
- Klinikum der Johann Wolfgang Goethe-Universitat, Institut fur Medizinische Virologie, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Abstract
Interferon type I comprises a group of major virus-inducible host antiviral factors that control infection with a great number of human and animal viruses. They are ubiquitously expressed cytokines that interfere with virus replication within different cell types by activating a number of host genes and several parallel antiviral pathways. Two major intracellular actors of IFN-I-induced antiviral states are ribonucleic acid-dependent protein kinase and 2'-5'-oligoadenylate synthetases/RNase L, both being induced by IFN-I and activated by viral double stranded ribonucleic acid. In addition, Mx proteins and ribonucleic acid-specific adenosine deaminase have also been implicated in IFN-I-induced antiviral responses to some RNA viruses. Viruses, in turn, have evolved different strategies to escape a control imposed by IFN-I and by IFN-I-induced antiviral factors. The fatal outcome of virus infection as well as the efficiency of IFN-I-based antiviral therapies in its prevention, are determined by complex interactions between viral virulence factors and cellular antiviral IFN-I inducible factors. In the light of these facts and current knowledge on IFN-I involvement in flavivirus infection, I discuss a possible role of IFN-I signalling in resistance to flavivirus infection in a model of congenic mouse strains that express different levels of susceptibility/resistance to common flaviviruses. Specifically, this review emphasizes importance of fully operative 2'-5'-oligoadenylate synthetases/RNase L pathway for the IFN-I-induced stimulation of flavivirus resistance conferred by Flv.
Collapse
Affiliation(s)
- Nadezda Urosevic
- Microbiology, School of Biomedical and Chemical Science, University of Western Australia, Nedlands, Australia.
| |
Collapse
|
39
|
Lee SH, Vidal SM. Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Res 2002; 12:527-30. [PMID: 11932237 DOI: 10.1101/gr.20102] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
40
|
Jin HK, Takada A, Kon Y, Haller O, Watanabe T. Identification of the murine Mx2 gene: interferon-induced expression of the Mx2 protein from the feral mouse gene confers resistance to vesicular stomatitis virus. J Virol 1999; 73:4925-30. [PMID: 10233954 PMCID: PMC112536 DOI: 10.1128/jvi.73.6.4925-4930.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse genome contains two related interferon-regulated genes, Mx1 and Mx2. Whereas Mx1 codes for the nuclear 72-kDa protein that interferes with influenza virus replication after interferon treatment, the Mx2 gene is nonfunctional in all laboratory mouse strains examined, since its open reading frame (ORF) is interrupted by an insertional mutation and a subsequent frameshift mutation. In the present study, we demonstrate that Mx2 mRNA of cells from feral mouse strains NJL (Mus musculus musculus) and SPR (Mus spretus) differs from that of the laboratory mouse strains tested. The Mx2 mRNA of the feral strains contains a single long ORF consisting of 656 amino acids. We further show that Mx2 protein in the feral strains is expressed upon interferon treatment and localizes to the cytoplasm much like the rat Mx2 protein, which inhibits vesicular stomatitis virus replication. Furthermore, transfected 3T3 cell lines of laboratory mouse origin expressing Mx2 from feral strains acquire slight resistance to vesicular stomatitis virus.
Collapse
Affiliation(s)
- H K Jin
- Laboratory of Experimental Animal Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
41
|
Dessens JT, Nuttall PA. Mx1-based resistance to thogoto virus in A2G mice is bypassed in tick-mediated virus delivery. J Virol 1998; 72:8362-4. [PMID: 9733885 PMCID: PMC110214 DOI: 10.1128/jvi.72.10.8362-8364.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interferon-induced mouse Mx1 protein has intrinsic antiviral activity against orthomyxoviruses, including Thogoto virus. Thus, Mx1(+) A2G mice are apparently resistant to infection following needle- or tick-borne virus challenge. However, tick-borne challenge and, to a lesser degree, injection of virus mixed with tick salivary gland extract resulted in virus transmission to uninfected ticks feeding on the A2G mice. The data indicate that immunomodulatory components in tick saliva can overcome a natural antiviral mechanism.
Collapse
Affiliation(s)
- J T Dessens
- Institute of Virology and Environmental Microbiology, Oxford OX1 3SR, United Kingdom
| | | |
Collapse
|
42
|
Ellinwood NM, McCue JM, Gordy PW, Bowen RA. Cloning and characterization of cDNAs for a bovine (Bos taurus) Mx protein. J Interferon Cytokine Res 1998; 18:745-55. [PMID: 9781814 DOI: 10.1089/jir.1998.18.745] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mx proteins are GTPases that are stringently induced in cells from many vertebrates on exposure to type I interferons (IFNs), and expression of some Mx proteins potently inhibits replication of specific viruses. Two cDNAs encoding bovine Mx proteins were isolated from an endometrial phage library. The open reading frames (ORFs) of these two clones predict proteins of 654 (Mxl) and 648 (Mxl-a) residues. Both possess the tripartite GTPase domains, dynamin signature, and leucine zipper motifs conserved in all other Mx proteins identified. The bovine protein sequences show highest identity to ovine Mx (93%) and are substantially similar to human MxA (73%) and mouse Mx1 (63%). Based on differences between the two bovine clones in the coding and 3'-untranslated regions, it was concluded that they represent two alleles of one gene, and heterozygous and homozygous cattle were identified. Expression of Mx mRNA was rapidly induced in cultured bovine cells by treatment with IFN.
Collapse
Affiliation(s)
- N M Ellinwood
- Department of Physiology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The experimental infection of mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. These investigations have identified critical roles for the haemagglutinin (HA) and matrix (M) genes of the virus in determining virulence for mouse lung. For the HA gene, the loss of glycosylation sites from the encoded polypeptide or changes which may affect the pH of HA-mediated endosome fusion have been observed following adaptation. These alterations also have the potential to impact on receptor specificity, beta inhibitor sensitivity and activation cleavage which may act in concert to account for the increased virulence of adapted strains. For the M gene, two specific changes in the M1 protein have been identified in strains adapted to, or virulent for, mouse lung. These changes are likely to affect pH-dependent association/dissociation of M1 with the viral ribonucleoprotein, and control virulence as well as growth. The role of other genes in mouse lung virulence remains unknown.
Collapse
Affiliation(s)
- A C Ward
- Erasmus University Rotterdam, Institute of Hematology, The Netherlands
| |
Collapse
|
44
|
Laney JD, Biggin MD. Redundant control of Ultrabithorax by zeste involves functional levels of zeste protein binding at the Ultrabithorax promoter. Development 1996; 122:2303-11. [PMID: 8681810 DOI: 10.1242/dev.122.7.2303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many biological processes appear to be controlled by functionally redundant genes or pathways, but it has proven difficult to understand the nature of this redundancy. Here, we have analyzed a redundant regulatory interaction between the Drosophila transcription factor zeste and the homeotic gene Ultrabithorax. Mutations in zeste do not affect the cis-regulation of the endogenous Ultrabithorax gene; however, the expression of small Ultrabithorax promoter constructs is strongly dependent upon zeste. We show that this difference is due to redundant cis-regulatory elements in the Ultrabithorax gene, which presumably contain binding sites for factors that share the function of zeste. We also provide evidence suggesting that zeste and the gene encoding the GAGA factor have an overlapping function in regulating Ultrabithorax. Furthermore, we show that the zeste protein is bound at equal levels in vivo to a Ultrabithorax promoter construct, which zeste strongly activates, and to the identical promoter region in the endogenous Ultrabithorax gene, which zeste redundantly regulates. These results suggest that zeste is significantly active in the wild-type animal and not simply a factor that is induced as a back-up when other activators fail.
Collapse
Affiliation(s)
- J D Laney
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
45
|
Arnheiter H, Frese M, Kambadur R, Meier E, Haller O. Mx transgenic mice--animal models of health. Curr Top Microbiol Immunol 1996; 206:119-47. [PMID: 8608714 DOI: 10.1007/978-3-642-85208-4_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- H Arnheiter
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4160, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
A full-length cDNA clone of a rainbow trout (Oncorhynchus mykiss) Mx gene was obtained using RACE (rapid amplification of cDNA ends) polymerase chain reaction (PCR) amplification of RNA extracted from poly (I).(C)-induced rainbow trout gonad cells (RTG-2). Mx was previously identified in rainbow trout by Staeheli et al. by hybridization with a partial perch genomic Mx probe to induced rainbow trout mRNA. The 2.5 kb rainbow trout cDNA clone contains an open reading frame of 1863 nt (nucleotides) encoding a 621 amino acid protein. The deduced rainbow trout Mx protein is 70.6 kD and contains the characteristic tripartite GTP binding motif common to all Mx protein. Southern blot analysis with the rainbow trout Mx probe demonstrated the presence of Mx homologous genes in four other salmonid fish species, including chinook, coho, and kokanee salmon and brook trout. Poly (I).(C) treatment of both RTG-2 and chinook salmon cells (CHSE-214) induced two transcripts whose appearance was observed first at 24 h and as long as 72 h after treatment. Infection of rainbow trout with the salmonid rhabdovirus, IHNV (infectious hematopoietic necrosis virus), also induced the synthesis of Mx mRNA. A comparison of the rainbow trout Mx protein with other reported Mx proteins indicates that the piscine Mx is highly homologous to the mammalian Mx proteins.
Collapse
Affiliation(s)
- G D Trobridge
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | |
Collapse
|
47
|
Haller O, Frese M, Rost D, Nuttall PA, Kochs G. Tick-borne thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1. J Virol 1995; 69:2596-601. [PMID: 7884909 PMCID: PMC188937 DOI: 10.1128/jvi.69.4.2596-2601.1995] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We show that tick-transmitted Thogoto virus is sensitive to interferon-induced nuclear Mx1 protein, which is known for its specific antiviral action against orthomyxoviruses. Influenza virus-susceptible BALB/c mice (lacking a functional Mx1 gene) developed severe disease symptoms and died within days after intracerebral or intraperitoneal infection with a lethal challenge dose of Thogoto virus. In contrast, Mx1-positive congenic, influenza virus-resistant BALB.A2G-Mx1 mice remained healthy and survived. Likewise, A2G, congenic B6.A2G-Mx1 and CBA.T9-Mx1 mice (derived from influenza virus-resistant wild mice) as well as Mx1-transgenic 979 mice proved to be resistant. Peritoneal macrophages and interferon-treated embryo cells from resistant mice exhibited the same resistance phenotype in vitro. Moreover, stable lines of transfected mouse 3T3 cells that constitutively express Mx1 protein showed increased resistance to Thogoto virus infection. We conclude that an Mx1-sensitive step has been conserved during evolution of orthomyxoviruses and suggest that the Mx1 gene in rodents may serve to combat infections by influenza virus-like arboviruses.
Collapse
Affiliation(s)
- O Haller
- Abteilung Virologie, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Human resistance to infectious diseases is often regulated by multiple genes that control different aspects of host-parasite interaction. Genetically distinct inbred strains of mice that differ in their susceptibility to specific pathogens are invaluable for dissecting such complex patterns and have allowed the identification of several host-resistance loci that regulate natural and acquired immunity in response to infection. Cloning these genes is the first step in elucidating their roles in host defense.
Collapse
Affiliation(s)
- D Malo
- McGill Centre, Montreal General Hospital, Canada
| | | |
Collapse
|
49
|
Heinz H, Marquardt J, Schuberth HJ, Adolf GR, Leibold W. Proteins induced by recombinant equine interferon-beta 1 within equine peripheral blood mononuclear cells and polymorphonuclear neutrophilic granulocytes. Vet Immunol Immunopathol 1994; 42:221-35. [PMID: 7810057 DOI: 10.1016/0165-2427(94)90069-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophilic granulocytes (PMN) as well as embryonic equine dermal fibroblasts and the equine fibroblast line E. Derm which were used as controls, were treated with recombinant equine interferon-beta 1 (rEqIFN-beta 1) in vitro which induced the expression of different proteins in these cells. A 74 kDa protein was induced in PBMC and an 82 kDa protein was additionally found in the equine fibroblast E. Derm cell line following treatment with rEqFN-beta 1. Both proteins reacted with anti-mouse and anti-human Mx protein antisera in immunoblot tests. The 74 kDa and perhaps the 82 kDa components may thus represent equine 'Mxanalogous proteins'. The 74 kDa protein was only detected in PBMC of ten out of 20 horses examined. The induction of Mx protein in the horse by Type 1 interferon may therefore resemble that in the mouse, where Mx protein is involved in selective resistance to influenza virus. The influence of rEqIFN-beta 1 on protein expression in equine PBMC and PMN was monitored by metabolic labeling and 2-D gel electrophoresis. Proteins of 82, 74, 58 and 40 kDa were induced in PBMC following exposure to rEqIFN-beta 1. A constitutively expressed 35 kDa protein, however, was no longer demonstrable upon treatment with interferon. None of the proteins induced within PBMC was found in highly purified PMN treated with interferon. PMN exposed to rEqIFN-beta 1 synthesized four proteins in the range of 25 to 27 kDa. These proteins have not been described in interferon-treated PMN of any other species.
Collapse
Affiliation(s)
- H Heinz
- Immunology Unit, Veterinary School, Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
Kolb E, Laine E, Strehler D, Staeheli P. Resistance to influenza virus infection of Mx transgenic mice expressing Mx protein under the control of two constitutive promoters. J Virol 1992; 66:1709-16. [PMID: 1371172 PMCID: PMC240917 DOI: 10.1128/jvi.66.3.1709-1716.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transgenic mice constitutively expressing in the brain the influenza virus resistance protein Mx1 controlled by the HMG (3-hydroxy-3-methylglutaryl coenzyme A reductase) promoter showed specific resistance against the neurotropic influenza A virus strain NWS. Control mice of the A2G strain express Mx1 protein in all organs, but only after induction by interferon type I upon or without viral infection. The extent of specific resistance in transgenic mice of the best-expressing line reached about two-thirds that of controls, most likely because of considerably less total-body Mx protein activity in the transgenic mice. Thus, the theoretical advantage in these mice of the continuous presence of Mx protein with early inhibitory potential to viral replication was apparently offset by restricted organ expression. Strong evidence that the Mx1 protein on its own is a specific anti-influenza A virus agent and that its efficiency in the experimental setting is independent of interferon actions could be derived from the treatment of experimental and control mice with anti-interferon antibodies at the time of virus tests. Whereas in A2G mice, Mx1 mRNA and Mx1 protein synthesis were abolished and viral resistance was markedly reduced or abolished, resistance in the transgenic mice persisted to almost the same degree. Transgenic mice generated with a mouse albumin/Mx1 cDNA construct showed liver-specific expression. However, in two expressing transgenic lines, Mx1 protein synthesis was suppressed after a few months. The mechanism of suppression could not be elucidated, but increasing methylation of the transgene's coding region was not the cause. It is possible that continuous Mx1 protein expression in the liver is less well tolerated than that in the brain. Whether this partial suppression and, with the HMG promoter, restricted organ expression are the organism's responses to interference of Mx1 with normal cellular activities such as nucleocytoplasmic transport of RNA and proteins cannot be determined until the molecular mechanisms of antiviral activity of Mx1 protein are understood.
Collapse
Affiliation(s)
- E Kolb
- Institute for Immunology and Virology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|