1
|
Küçükkatırcı Baykan H, Öner N, Lekesizcan A. Effects of Krill Oil and Coconut Oil on Behavioral Changes and Inflammatory Markers in Rats with Chronic Unpredictable Mild Stress Induced Depression Model. J Med Food 2024; 27:1243-1252. [PMID: 39446626 DOI: 10.1089/jmf.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
This study was conducted to determine the effects of two different types of fat (krill oil [KO] and coconut oil [CO]) on obesity, behavioral tests, and some inflammatory markers when consumed with a high-fat or control diet in rats with depression. The study was conducted mainly in two phases: the induction of depression (37 days) and the dietary intervention (60 days). After the induction of depression by chronic unpredictable mild stress, dietary intervention started. Sixty male Sprague-Dawley rats were divided into 6 groups with 10 rats in each group: (1) standard diet (SD), (2) SD + 5% KO, (3) SD + 5% medium-chain triglyceride (MCT)* (*CO to contain 5% MCT), (4) high-fat diet (HFD), (5) HFD + 5% KO, and (6) HFD + 5% MCT*. The open field test (OFT), forced swimming test (FST), and sucrose preference test were performed at baseline, end of the depression induction, and dietary intervention to observe behavioral changes in rats. After the final behavioral test, animals were sacrificed, and blood samples were collected for biochemical analyses C-reactive protein (milligram per liter), cortisol (microgram per deciliter), and insulin (micro-international units per milliliter) to assess inflammatory changes in the blood. All data were analyzed under two headings: baseline, end of depression induction, end of dietary intervention, and dietary intervention groups. Body weight gain was highest in the SD+KO and lowest in the SD+MCT group (P < .05). When behavioral tests were evaluated according to dietary intervention, it was found that the SD+MCT group spent the most time in the center, the least time in the periphery, and the lowest immobilization time (P < .05). In FST, the SD+KO with the highest weight gain was the most immobile group (P < .05). The study indicates that the weight-reducing effects of MCTs resulted in positive behavioral responses, particularly in OFT and FST. Through these properties, MCTs can be used medicinally in the prevention and treatment of behavioral changes due to depression.
Collapse
Affiliation(s)
| | - Neslihan Öner
- Nutrition and Dietetics, Erciyes University Faculty of Health Sciences, Talas, Türkiye
| | - Ayça Lekesizcan
- Genome and Stem Cell, Erciyes University Genkök, Talas, Türkiye
| |
Collapse
|
2
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
3
|
Huang H, Liao D, He B, Zhou G, Cui Y. Clinical effectiveness of krill oil supplementation on cardiovascular health in humans: An updated systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102909. [PMID: 38039646 DOI: 10.1016/j.dsx.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The potential role of krill oil (KO) supplementation on cardiovascular health are inconsistent in several clinical trials. Therefore, our present meta-analysis aimed to systematically evaluate the impacts of supplementation of KO on cardiovascular disease risk factors (CVDRFs). METHODS Intervention trials assessing KO supplementation on cardiovascular disease (CVD) outcomes were systematically retrieved for pooling. The primary outcome was lipid profile. Secondary outcomes were consisted by blood pressure, glycemic indices, body composition together with inflammatory markers. We synthesized the effect sizes with 95% confidence intervals and weighted mean difference. To explore the heterogeneity source, we employed meta-regression and subgroup analysis. Quality assessment, publication bias, sensitivity-analysis and the certainty of evidence were also carried out. RESULTS We included 14 trials (18 treatment arms) with 1458 participants. KO supplementation had beneficial effects on total cholesterol (P = 0.01), low-density lipoprotein cholesterol (P = 0.006), and triglycerides (P = 0.0005). However, no effects were found for other CVDRFs, such as blood pressure, glycemic control, body composition as well as inflammatory markers. Subgroup analyses indicated that these notably favorable effects were observed in trials with a parallel design, treatment duration <8 weeks and subjects with baseline body mass index <28 kg/m2. The above findings remained consistent in the sensitivity analysis, without obvious publication bias detected. CONCLUSIONS The current evidence demonstrated that daily KO supplementation may as a candidate for lipid management strategies. In future, studies should pay attention to the relationships of KO intake with the incidence of CVD events or all-cause mortality.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Dan Liao
- Department of Gynaecology, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation Medicine, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
4
|
Yang S, He Q, Shi L, Wu Y. Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise. Eur J Nutr 2023; 62:1345-1356. [PMID: 36566465 DOI: 10.1007/s00394-022-03077-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Antarctic krill oil (KO) is a natural source of n-3 polyunsaturated fatty acids (n-3 PUFAs), and is rich in phospholipids, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), astaxanthin, flavonoids, vitamins, trace elements, and other bioactive substances. KO has been confirmed to have anti-inflammatory and immunomodulatory effects. n-3 PUFAs also have been purported to improve the recovery of muscular performance. Moreover, the phospholipids present in KO can enhance n-3 PUFA bioavailability because of its higher absorption rate in plasma compared to fish oil. Astaxanthin, found in Antarctic KO, is a red carotenoid and powerful antioxidant that inhibits oxidative stress after intense exercise. Hence, we examined the effect of KO supplementation on the recovery of exercise by measuring muscular performance, oxidant/antioxidant and anti-inflammatory activity, and the markers of muscle damage following a rigorous bout of resistance exercise. METHODS 30 college-aged resistance-trained males (20.4 ± 0.92 years, 74.09 ± 7.23 kg, 180.13 ± 4.72 cm) were randomly supplemented with 3 g/d KO or placebo (PL) for 3 days and continued to consume after resistance exercise for 3 days until the experiment finished. Before supplementation, pre-exercise performance assessments of knee isokinetic strength, 20 m sprint, hexagon test, and blood serum creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were completed. Then after 3 days of supplementation, participants completed a bout of muscle-damaging exercise, and subsequently, they performed and repeated the exercise performance assessments and blood-related indicators tests immediately (0 h), as well as at 6, 24, 48, and 72 h post-muscle-damaging exercise. RESULTS Compared to the PL group, the serum CK of KO group was significantly lower at 24 h and 48 h post-exercise; the hexagon test time of the KO group was significantly lower than that of the PL group at 6 h and 24 h post-exercise; the KO group's isokinetic muscle strength showed different degrees of recovery than that of the PL group at 24 h and 48 h, and even over-recovery at 72 h post-exercise; the SOD level of the KO group was significantly higher than that of the PL group at 0, 6, and 24 h after exercise; the T-AOC level of the KO group was significantly higher than that of the PL group at 0, 6, and 72 h after exercise; the MDA level of the KO group was significantly lower than that of the PL group at 6 h; and there was no significant difference in serum IL-2, IL-6, and TNF-α between the two groups. CONCLUSION Our results demonstrated that 3 g/d KO supplementation and continued supplementation after exercise can alleviate exercise-induced muscle damage (EIMD) and promote post-exercise recovery.
Collapse
Affiliation(s)
- Simeng Yang
- Beijing Sport University, Beijing, 100084, China
| | - Qing He
- Aland Health Holding Ltd, Shanghai, 200120, China
| | - Lijun Shi
- Beijing Sport University, Beijing, 100084, China
| | - Ying Wu
- Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
5
|
Development and evaluation of novel krill oil-based clomiphene microemulsion as a therapeutic strategy for PCOS treatment. Drug Deliv Transl Res 2023:10.1007/s13346-023-01304-z. [PMID: 36821036 DOI: 10.1007/s13346-023-01304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Polycystic ovary syndrome (PCOS) is frequently diagnosed hormonal disorder with reproductive and metabolic complications. The most common symptoms include cyst in ovaries, anovulation, insulin resistance, and obesity. Clomiphene citrate, an ovulating agent, is the first-line drug used to treat PCOS. We hypothesized that clomiphene citrate, by stimulating ovarian function, with krill oil used as an oil phase to improve solubility, by addressing PCOS-associated symptoms might be effective in PCOS. Hence, our goal was to target hormonal imbalance along with PCOS-associated symptoms using a single formulation. The concentration of water (X1), oil (X2), and Smix (surfactant-cosurfactant mixture) (X3) were selected as independent variables, in a simplex lattice design, from microemulsion area derived from a pseuodoternary phase diagram while the globule size (Y1) was selected as a dependent parameter. The optimized microemulsion showed good sphericity having 41 nm globule size, 0.32 poly dispersibility index and + 31 mV zeta potential. The optimized microemulsion was further evaluated in-vivo using letrozole-induced PCOS rats. Formulation treated group reversed the effect of letrozole on body weight and estrus cycle in comparison to the disease control group (p < 0.001). The formulation was also effective in reducing insulin resistance, cholesterol and serum testosterone level (p < 0.001). The in vivo results were supported by histopathological studies where the formulation-treated group showed a marked decrease in the number of cystic follicles and a remarkable increase in the number of growing follicles at variable stages, similar to the normal control group. Thus, the results confirmed that novel krill oil-based clomiphene microemulsion may become a promising therapeutic choice for the treatment of PCOS.
Collapse
|
6
|
Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9865-9876. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-β1 signaling as revealed by RNA-sequencing. In TGF-β1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xuechun Sun
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Yu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan, Shandong 250033, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Hwang SM, Kim YU, Kim JK, Chun YS, Kwon YS, Ku SK, Song CH. Preventive and Therapeutic Effects of Krill Oil on Obesity and Obesity-Induced Metabolic Syndromes in High-Fat Diet-Fed Mice. Mar Drugs 2022; 20:md20080483. [PMID: 36005486 PMCID: PMC9410137 DOI: 10.3390/md20080483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity increases the risks of metabolic syndromes including nonalcoholic fatty liver disease (NAFLD), diabetic dyslipidemia, and chronic kidney disease. Dietary krill oil (KO) has shown antioxidant and anti-inflammatory properties, thereby being a therapeutic potential for obesity-induced metabolic syndromes. Thus, the effects of KO on lipid metabolic alteration were examined in a high-fat diet (HFD)-fed mice model. The HFD model (n = 10 per group) received an oral gavage with distilled water as a control, metformin at 250 mg/kg, and KO at 400, 200, and 100 mg/kg for 12 weeks. The HFD-induced weight gain and fat deposition were significantly reduced in the KO treatments compared with the control. Blood levels were lower in parameters for NAFLD (e.g., alanine aminotransferase, and triglyceride), type 2 diabetes (e.g., glucose and insulin), and renal dysfunction (e.g., blood urea nitrogen and creatinine) by the KO treatments. The KO inhibited lipid synthesis through the modification of gene expressions in the liver and adipose tissues and adipokine-mediated pathways. Furthermore, KO showed hepatic antioxidant activities and glucose lowering effects. Histopathological analyses revealed that the KO ameliorated the hepatic steatosis, pancreatic endocrine/exocrine alteration, adipose tissue hypertrophy, and renal steatosis. These analyses suggest that KO may be promising for inhibiting obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Seung-Min Hwang
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (S.-M.H.); (Y.-S.K.)
| | - Yeong Uk Kim
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jong-Kyu Kim
- AriBnC Co., Ltd., Yongin 16914, Korea; (J.-K.K.); (Y.-S.C.)
| | - Yoon-Seok Chun
- AriBnC Co., Ltd., Yongin 16914, Korea; (J.-K.K.); (Y.-S.C.)
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (S.-M.H.); (Y.-S.K.)
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| |
Collapse
|
8
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Ca2+/Calmodulin-Dependent Protein Kinase II Inhibits Hepatitis B Virus Replication from cccDNA via AMPK Activation and AKT/mTOR Suppression. Microorganisms 2022; 10:microorganisms10030498. [PMID: 35336076 PMCID: PMC8950817 DOI: 10.3390/microorganisms10030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII), which is involved in the calcium signaling pathway, is an important regulator of cancer cell proliferation, motility, growth, and metastasis. The effects of CaMKII on hepatitis B virus (HBV) replication have never been evaluated. Here, we found that phosphorylated, active CaMKII is reduced during HBV replication. Similar to other members of the AMPK/AKT/mTOR signaling pathway associated with HBV replication, CaMKII, which is associated with this pathway, was found to be a novel regulator of HBV replication. Overexpression of CaMKII reduced the expression of covalently closed circular DNA (cccDNA), HBV RNAs, and replicative intermediate (RI) DNAs while activating AMPK and inhibiting the AKT/mTOR signaling pathway. Findings in HBx-deficient mutant-transfected HepG2 cells showed that the CaMKII-mediated AMPK/AKT/mTOR signaling pathway was independent of HBx. Moreover, AMPK overexpression reduced HBV cccDNA, RNAs, and RI DNAs through CaMKII activation. Although AMPK acts downstream of CaMKII, AMPK overexpression altered CaMKII phosphorylation, suggesting that CaMKII and AMPK form a positive feedback loop. These results demonstrate that HBV replication suppresses CaMKII activity, and that CaMKII upregulation suppresses HBV replication from cccDNA via AMPK and the AKT/mTOR signaling pathway. Thus, activation or overexpression of CaMKII may be a new therapeutic target against HBV infection.
Collapse
|
10
|
Son HK, Kim BH, Lee J, Park S, Oh CB, Jung S, Lee JK, Ha JH. Partial Replacement of Dietary Fat with Krill Oil or Coconut Oil Alleviates Dyslipidemia by Partly Modulating Lipid Metabolism in Lipopolysaccharide-Injected Rats on a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:843. [PMID: 35055664 PMCID: PMC8775371 DOI: 10.3390/ijerph19020843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
This study investigated the effects of partial replacement of dietary fat with krill oil (KO) or coconut oil (CO) on dyslipidemia and lipid metabolism in rats fed with a high-fat diet (HFD). Sprague Dawley rats were divided into three groups as follows: HFD, HFD + KO, and HFD + CO. The rats were fed each diet for 10 weeks and then intraperitoneally injected with phosphate-buffered saline (PBS) or lipopolysaccharide (LPS) (1 mg/kg). The KO- and CO-fed rats exhibited lower levels of serum lipids and aspartate aminotransferases than those of the HFD-fed rats. Rats fed with HFD + KO displayed significantly lower hepatic histological scores and hepatic triglyceride (TG) content than rats fed with HFD. The KO supplementation also downregulated the adipogenic gene expression in the liver. When treated with LPS, the HFD + KO and HFD + CO groups reduced the adipocyte size in the epididymal white adipose tissues (EAT) relative to the HFD group. These results suggest that KO and CO could improve lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Hee-Kyoung Son
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
| | - Bok-Hee Kim
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea;
| | - Jisu Lee
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Seohyun Park
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Chung-Bae Oh
- Office of Technical Liaison, Industry Support Team, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - Sunyoon Jung
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Jung-Heun Ha
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Aydin Cil M, Ghosi Ghareaghaji A, Bayir Y, Buyuktuncer Z, Besler HT. Efficacy of krill oil versus fish oil on obesity-related parameters and lipid gene expression in rats: randomized controlled study. PeerJ 2021; 9:e12009. [PMID: 34692241 PMCID: PMC8483003 DOI: 10.7717/peerj.12009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Backround This study aimed to determine the effects of LC n-3 PUFA supplementation on the prevention and treatment of obesity and obesity-related diseases, and to compare the efficiency of different LC n-3 PUFA sources via biochemical and genetic mechanisms in rats. Methods Male Wistar rats were randomized into four study groups, and fed with a standard diet, High Fat Diet (HFD), HFD+%2.5 Fish Oil (FO-HFD) or HFD+%2.5 Krill Oil (KO-HFD) for eight weeks. Food consumption, weight gain, serum glucose, insulin, ghrelin and leptin concentrations, lipid profile, liver fatty acid composition, and FADS1 and FADS2 mRNA gene expression levels were measured. Results Weight gain in each HFD group was significantly higher than control group (p < 0.001), without any differences among them (p < 0.05). LC n-3 PUFAs modified lipid profile, but not glucose tolerance. Serum leptin levels were significantly higher in HFD groups than in the control group, however, no difference in serum ghrelin levels was observed among the groups. Liver n-3 fatty acid desaturation activity was higher (p = 0.74), and liver total lipid content was lower (p = 0.86) in KO-HFD compared to FO-HFD. FADS1 gene expression was highest in the HFD group (p < 0.001) while FADS2 gene expression was highest in the FO-HFD group (p < 0.001). Conclusion LC n-3 PUFAs, especially krill oil, had moderate effects on lipid profile, but limited effects on obesity related parameters, suggesting different effects of different sources on gene expression levels. Further randomized controlled trials are needed to determine the efficacy of different LC n-3 PUFA sources in the prevention and treatment of obesity in humans.
Collapse
Affiliation(s)
- Mevra Aydin Cil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Atena Ghosi Ghareaghaji
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Halit Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Istinye University, Istanbul, Turkey
| |
Collapse
|
12
|
Ding Y, Zhang L, Yao X, Zhang H, He X, Fan Z, Song Z. Honokiol Alleviates High-Fat Diet-Induced Obesity of Mice by Inhibiting Adipogenesis and Promoting White Adipose Tissue Browning. Animals (Basel) 2021; 11:1493. [PMID: 34064117 PMCID: PMC8224378 DOI: 10.3390/ani11061493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Honokiol (HON) is one of the main biological active components of the traditional Chinese medicine Magnolia officinalis and has many health benefits. The aim of this study was to investigate whether HON could alleviate obesity in mice by inhibiting adipogenesis and promoting the browning of white adipose tissue (WAT). C57BL/6 mice were divided into five groups and fed with a normal diet (ND), high-fat diet (HFD), or HFD supplemented with 200 (H200), 400 (H400), or 800 (H800) mg/kg BW HON for 8 weeks. The results showed that the mice fed HFD plus HON had lower body fat ratios (BFRs) and smaller adipocyte diameters in the epididymal WAT compared with those of the HFD group. With a proteomics analysis, the HON group upregulated 30 proteins and downregulated 98 proteins in the epididymal WAT of mice, and the steroid O-acyltransferase 1 (SOAT1) was screened as a key protein. The HON supplement prevented HFD-induced adipogenesis by reduced the mRNA and protein expression of SOAT1 and CCAAT/enhancer-binding protein-α (C/EBPα), suggesting that SOAT1 might play an important role in regulating adipogenesis. Moreover, HON treatment increased the expression of proteins related to the classical pathways of energy and lipid metabolism, such as AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC), and promoted the browning of epididymal WAT by upregulation of the protein expression of uncoupling protein 1 (UCP1) in the HFD mice. In conclusion, these results suggest that HON supplements could prevent increases in body fat for HFD mice by suppressing adipogenesis and promoting WAT browning.
Collapse
Affiliation(s)
- Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (L.Z.); (X.Y.); (H.Z.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Godea Lupei S, Ciubotariu D, Danciu M, Lupușoru RV, Ghiciuc CM, Cernescu I, Gheţu N, Lupei M, Lupușoru CE. Improvement in serum lipids and liver morphology after supplementation of the diet with fish oil is more evident under regular feeding conditions than under high-fat or mixed diets in rats. Lipids Health Dis 2020; 19:162. [PMID: 32631338 PMCID: PMC7339424 DOI: 10.1186/s12944-020-01339-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary n- 3 polyunsaturated fatty acids (PUFAs) have a role in preventing cardiovascular and hepatic diseases. However, their effects might differ significantly depending on individual dietary patterns. The aim of the present study was to evaluate the effects of dietary supplementation with ω-3 fatty acids (FA), administered in different schedules, on hepatic and aortic histological structure, lipid profile, and body weight (BW) in male Wistar rats under standard (SD), high-fat diet (HFD) and mixed feeding conditions. METHODS PUFA treatment consisted of the administration of 50 mg/kg fish oil (FO) daily by oral gavage. HFD was obtained by adding a suspension of 4% cholesterol, thiouracil and cholic acid to the animals' drinking water. The rats were maintained on the diets for 6 weeks, and different schedules of PUFA administration were used. At 14, 28, and 42 days, the morphology of liver and aortic samples and the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and triglycerides (TG) were assessed. RESULTS The HFD groups exhibited significant hyperlipidemia and aortic inflammation, with progression to atherogenesis after 6 weeks. Administration of PUFAs slightly attenuated the aortic changes in these groups and reduced the liver's tendency to steatosis. FO-induced metabolic improvement was more evident in SD than in HFD rats. For instance, after the first 2 weeks, SD animals that received PUFAs had significantly increased HDL levels vs. controls (62.375 ± 4.10 vs. 52.625 ± 8.38 mg/dL, P < 0.05), but HFD rats did not, and decreased TG levels were observed exclusively in the SD rats (57.6 ± 4.09 vs. 66 ± 4.69 mg/dL, P < 0.05). After 6 weeks of n- 3 PUFA administration, LDL was significantly lower in the SD rats than in controls (13.67 ± 4.13 vs. 30.83 ± 2.86 mg/dL, P < 0.001), but the decrease in the HFD rats, although significant (49.17 ± 5.85 mg/dL vs. 57.17 ± 4.96 g/dL, P < 0.05), was not as marked. In the mixed-diet groups, administration of 50 mg/kg/day FO for 14 days under SD conditions following 4 weeks of HFD slightly decreased TG (86.625 ± 11.67 vs. 73 ± 4.52 mg/dL, P < 0.05) and increased HDL (45.875 ± 5.28 vs. 56 ± 3.16 mg/dL). However, in these animals, n-3 PUFA administration had no effect on LDL or TC. Administration of half of the above dose failed to improve any biochemical parameters. FO protected against excessive weight gain mainly under SD conditions. CONCLUSIONS The results show that FO confers more protection against cardiovascular risk factors (increased LDL and TG, decreased HDL) and liver lipid accumulation when given to rats consuming regular diets than when given to rats consuming a high-fat diet. This argues that priority should be given to consumption of a healthy diet rather than to the use of supplements. The effectiveness of n-3 PUFAs might be reduced in the case of hyperlipidic intake or after consumption of a high-fat diet.
Collapse
Affiliation(s)
- Silvia Godea Lupei
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Diana Ciubotariu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Mihai Danciu
- Department of Pathology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Raoul Vasile Lupușoru
- Department of Pathophysiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Irina Cernescu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Nicolae Gheţu
- Department of Plastic Surgery, Regional Oncology Institute, Iaşi, Romania
| | - Mihai Lupei
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environment Protection, Gheorghe Asachi Technical University, Iaşi, Romania
| | - Cătălina Elena Lupușoru
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
14
|
Han K, Li X, Zhang Y, He Y, Hu R, Lu X, Li Q, Hui J. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kai Han
- School of Life Science Liaoning University Shenyang 110036 China
| | - Xin‐Yang Li
- Qinhuangdao Marine Environmental Monitoring Central Station SOA Qinhuangdao 066002 China
| | - Ye‐Qi Zhang
- School of Life Science Liaoning University Shenyang 110036 China
| | - Yong‐Lin He
- College of Food Science Southwest University Chongqing 400715 China
| | - Rui Hu
- Analytical Center Shenyang Agricultural University Shenyang 110866 China
| | - Xiu‐Li Lu
- School of Life Science Liaoning University Shenyang 110036 China
| | - Qi‐Jiu Li
- School of Life Science Liaoning University Shenyang 110036 China
| | - Jing Hui
- School of Life Science Liaoning University Shenyang 110036 China
| |
Collapse
|
15
|
Xie D, Gong M, Wei W, Jin J, Wang X, Wang X, Jin Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr Rev Food Sci Food Saf 2019; 18:514-534. [PMID: 33336946 DOI: 10.1111/1541-4337.12427] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Antarctic krill (Euphausia superba) oil has been receiving increasing attention due to its nutritional and functional potentials. However, its application as a novel food ingredient has not yet been fully explored. This review summarizes the chemical composition, extraction technologies, potential health benefits, and current applications of krill oil, with the aim of providing suggestions for its exploitation. Krill oil is a unique lipid consisting of diverse lipid classes and is characterized by a high concentration (39.29% to 80.69%) of phospholipids (PLs) associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It also contains considerable amounts of bioactive minor components such as astaxanthin, sterols, tocopherols, vitamin A, flavonoids, and minerals. The current technologies used in krill oil production are solvent extraction, nonsolvent extraction, super/subcritical fluid extraction, and enzyme-assisted pretreatment extraction, which all greatly influence the yield and quality of the end-product. In addition, krill oil has been documented to have various health benefits, including anti-inflammatory effects, cardiovascular disease (CVD) prevention, women's health, neuroprotection, and anticancer activities. Although krill oil products used for dietary supplements have been commercially available, few studies have attempted to explore the underlying molecular mechanisms to elucidate how exactly the krill oil exerts different biological activities. Further studies should focus on this to improve the development of krill oil products for human consumption.
Collapse
Affiliation(s)
- Dan Xie
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.,the Zhonghai Ocean (Wuxi) Marine Equipment Engineering Co. Ltd., Jiangnan Univ. Natl. Univ. Science Park, 100 Jinxi Road, Wuxi, Jiangsu, 214125, P. R. China
| | - Mengyue Gong
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Wei
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Jun Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaosan Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xingguo Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Qingzhe Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
16
|
Sun D, Zhang L, Chen H, Feng R, Cao P, Liu Y. Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids Health Dis 2017; 16:218. [PMID: 29157255 PMCID: PMC5697064 DOI: 10.1186/s12944-017-0601-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022] Open
Abstract
Background Obesity and other metabolic diseases have become epidemic which greatly affect human health. Diets with healthy nutrition are efficient means to prevent this epidemic occurrence. Novel food resources and process technology were needed for these purpose. In this study, Antarctic krill oil (KO) extracted from a dry krill by a procedure of hot pump dehydration in combined with freezing-drying was used to investigate health effect in animals including the growth, lipid and glucose metabolism. Methods C57BL/6J mice were fed with a lard based high fat (HF) diet and substituted with KO for a period of 12 weeks in comparison with low fat normal control (NC) diet. Mice body weight and food consumption were recorded. Serum lipid metabolism - of C57BL/6J mice serum was measured. A glucose tolerance tests (GTTs) and pathology analysis of mice were performed at the end of the experiment. Results The KO fed mice had less body weight gain, less fat accumulation in tissue such as adipose and liver. Dyslipidemia induced by high fat diet was partially improved by KO feeding with significant reduction of serum low density lipoprotein-cholesterol (LDL-C) content. Furthermore, KO feeding also improved glucose metabolism in C57BL/6J mice including a glucose tolerance of about 22% vs. 32% of AUC (area under the curve) for KO vs HF diet and the fast blood glucose level of 8.5 mmol/L, 9.8 mmol/L and 9.3 mmol/L for NC, HF and KO diet groups, respectively. In addition, KO feeding also reduced oxidative damage in liver with a decrease of malondialdehyde (MDA) content and increase of superoxide dismutase (SOD) content. Conclusion This study provided evidence of the beneficial effects of KO on animal health from the processed technology, particularly on lipid and glucose metabolism. This study confirmed that as the Antarctic krill was extracted with a procedure of efficient energy, it might make it possible for Krill oil to be available for food industry.
Collapse
Affiliation(s)
- Dewei Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hongjian Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Rong Feng
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches.
Collapse
Affiliation(s)
- M Carmen Martínez
- From the INSERM UMR 1063 Stress oxydant et pathologies métaboliques, UNIV Angers, Université Bretagne Loire, France
| | - Ramaroson Andriantsitohaina
- From the INSERM UMR 1063 Stress oxydant et pathologies métaboliques, UNIV Angers, Université Bretagne Loire, France.
| |
Collapse
|