1
|
Jahn N, Geisslitz S, Konradl U, Fleissner K, Scherf KA. Amylase/trypsin-inhibitor content and inhibitory activity of German common wheat landraces and modern varieties do not differ. NPJ Sci Food 2025; 9:24. [PMID: 39979280 PMCID: PMC11842761 DOI: 10.1038/s41538-025-00385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Amylase/trypsin-inhibitors (ATIs) are triggers for wheat-related disorders like baker's asthma and non-celiac wheat sensitivity. With the rise of wheat-related disorders among the population, the hypothesis that breeding may have resulted in changes in the protein composition of wheat was put forward. The ATI content of 14 German common wheat landraces and six modern varieties harvested in three consecutive years was analyzed by liquid chromatography-tandem mass spectrometry, and the inhibitory activity against α-amylase was measured with an enzymatic assay. The mean ATI content and proportion of crude protein of both groups did not differ. There were also only small differences in the content and proportion of single ATIs. The mean values for the inhibitory activity of both groups were also similar. These results indicate that breeding might not have led to changes in the protein composition and landraces are unlikely to be better tolerated than modern varieties.
Collapse
Affiliation(s)
- Nora Jahn
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131, Karlsruhe, Germany
| | - Sabrina Geisslitz
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Ulla Konradl
- Bavarian State Research Center for Agriculture (LfL), Kleeberg 14, 94099, Ruhstorf an der Rott, Germany
| | - Klaus Fleissner
- Bavarian State Research Center for Agriculture (LfL), Kleeberg 14, 94099, Ruhstorf an der Rott, Germany
| | - Katharina A Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131, Karlsruhe, Germany.
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
- TUM School of Life Sciences, Professorship for Food Biopolymer Systems, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
2
|
Shah A, Kang S, Talley NJ, Do A, Walker MM, Shanahan ER, Koloski NA, Jones MP, Keely S, Morrison M, Holtmann GJ. The duodenal mucosa associated microbiome, visceral sensory function, immune activation and psychological comorbidities in functional gastrointestinal disorders with and without self-reported non-celiac wheat sensitivity. Gut Microbes 2022; 14:2132078. [PMID: 36303431 PMCID: PMC9621048 DOI: 10.1080/19490976.2022.2132078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Frequently, patients with functional gastrointestinal disorders (FGIDs) report intolerance of wheat products. We compared gastrointestinal symptoms, sensory function, psychiatric comorbidities, gut-homing immune cells, and duodenal mucosa-associated microbiome (d-MAM) in FGID patients and controls with and without self-reported wheat sensitivity (SR-NCWS). We recruited 40 FGID patients and 20 controls referred by GPs for treatment. Gastrointestinal/extraintestinal symptoms, visceral sensory function, psychological comorbidities, and SR-NCWS were assessed in a standardized approach. Peripheral gut homing T-cells (CD4+α4+β7+CCR9+/CD8+α4+β7+CCR9+) were quantified, and the d-MAM was assessed by DNA sequencing for 46 subjects. Factors of bacterial genera were extracted utilizing factor analysis with varimax rotation and factors univariately associated with FGID or SR-NCWS included in a subsequent multivariate analysis of variance to identify statistically independent discriminators. Anxiety scores (p < .05) and increased symptom responses to a nutrient challenge (p < .05) were univariately associated with FGID. Gut homing T-cells were increased in FGID patients with SR-NCWS compared to other groups (p all <0.05). MANOVA revealed that anxiety (p = .03), visceral sensory function (p = 0.007), and a d-MAM factor comprise members of the Alloprevotella, Prevotella, Peptostreptococcus, Leptotrichia, and Veillonella lineages were significantly (p = .001) associated with FGID, while gut homing CD4+α4+ β7+CCR9+ T-cells were associated (p = .002) with SR-NCWS. Compared to controls, patients with and without SR-NCWS show that there are shifts in the amplicon sequence variants within specific bacterial genera between the FGID subgroups (particularly Prevotella and Streptococcus) as well as distinct bacterial taxa discriminatory for the two different FGID subtypes. Compared to controls, both FGID patients with and without SR-NCWS have an increased symptom response to a standardized nutrient challenge and increased anxiety scores. The FGID patients with SR-NCWS - as compared to FGID without SR-NCWS (and controls without SR-NCWS) - have increased gut homing T-cells. The d-MAM profiles suggest species and strain-based variations between the two FGID subtypes and in comparison to controls.
Collapse
Affiliation(s)
- Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Seungha Kang
- Faculty of Medicine, University of Queensland, Brisbane, Australia,University of Queensland Diamantina Institute, Woolloongabba, Australia
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Anh Do
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Marjorie M Walker
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Erin R Shanahan
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia
| | - Natasha A Koloski
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Michael P Jones
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Mark Morrison
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,University of Queensland Diamantina Institute, Woolloongabba, Australia,CONTACT Mark Morrison
| | - Gerald J Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,Gerald J Holtmann Princess Alexandra Hospital, Brisbane Department of Gastroenterology and Hepatology & University of Queensland 199 Ipswich Road, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Casini I, Fatighenti E, Giannantoni A, Massai L, Pieretti S, Ceccarelli I, Aloisi AM. Food-Specific IgG4 Antibody-Guided Exclusion Diet Improves Conditions of Patients with Chronic Pain. Pain Ther 2022; 11:873-906. [PMID: 35612757 PMCID: PMC9314524 DOI: 10.1007/s40122-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Chronic pain is related to gastrointestinal (GI) functions because food components affect inflammation and pain through their action on the GI immune and/or neural system and because many analgesics interact with the gut to alter its structure and function. Immunoglobulin G4 (IgG4) are food-specific antibodies resulting from exposure of the gut immune system to nutrients. High IgG4 levels have been found to be associated with inflammation. METHODS IgG4 were determined (both with the rapid test and enzyme-linked immunosorbent assay, ELISA) in men and women outpatients with chronic pain. All subjects were asked to exclude for 4 weeks all foods to which they had high blood levels of IgG4 antibodies. Pain and quality of life questionnaires were administered before (visit 1) and after (visit 2) the personalized exclusion diet period. Visual analogue scale (VAS), Italian Pain Questionnaire (QUID) and Margolis (MA) questionnaires were administered to determine pain intensity, pain features and pain extent, while Short Form Health Survey (SF-36) and Profile of Mood States (POMS) were used to test the quality of life and mood state. The nutritional status was evaluated in all subjects. Subject groups were women of reproductive age (pre-MW), women in menopause for at least 1 year (MW) and men. RESULTS Fifty-four subjects with chronic pain (n = 12 neuropathic, n = 14 diffuse pain, n = 11 headache, n = 17 low back pain) completed the two visits and the 1-month exclusion diet. At visit 1, 47 (87%) subjects showed medium/high levels of IgG4 to at least one food. The foods showing the highest IgG4 values were eggs, dairy products, cereals and dried fruit. At visit 2, IgG4 levels were decreased, increased or unchanged. In all groups, the 4-week exclusion diet resulted in a significant reduction in all pain measures and an improvement of quality of life parameters. In particular, at visit 2, the VAS score determined in the morning decreased by more than 50%. CONCLUSIONS A food elimination diet based on IgG4 antibody levels may be effective in reducing pain and improving quality of life in patients with chronic pain.
Collapse
Affiliation(s)
- Ilenia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Elena Fatighenti
- Pain Therapy Department, Santa Maria Alle Scotte Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Antonella Giannantoni
- Urology Clinic, San Camillo de Lellis Hospital, Via Matteucci 9, 02100, Rieti, Italy
| | - Lauretta Massai
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy.
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
4
|
Møller MS, Svensson B. Structure, Function and Protein Engineering of Cereal-Type Inhibitors Acting on Amylolytic Enzymes. Front Mol Biosci 2022; 9:868568. [PMID: 35402513 PMCID: PMC8990303 DOI: 10.3389/fmolb.2022.868568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous plants, including cereals, contain seed proteins able to inhibit amylolytic enzymes. Some of these inhibitors, the CM-proteins (soluble in chloroform:methanol mixtures)—also referred to as cereal-type inhibitors (CTIs)—are the topic of this review. CM-proteins were first reported 75 years ago. They are small sulfur-rich proteins of the prolamine superfamily embracing bifunctional α-amylase/trypsin inhibitors (ATIs), α-amylase inhibitors (AIs), limit dextrinase inhibitors (LDIs), and serine protease inhibitors. Phylogenetically CM-proteins are predicted across poaceae genomes and many isoforms are identified in seed proteomes. Their allergenicity and hence adverse effect on humans were recognized early on, as were their roles in plant defense. Generally, CTIs target exogenous digestive enzymes from insects and mammals. Notably, by contrast LDI regulates activity of the endogenous starch debranching enzyme, limit dextrinase, during cereal seed germination. CM-proteins are four-helix bundle proteins and form enzyme complexes adopting extraordinarily versatile binding modes involving the N-terminal and different loop regions. A number of these inhibitors have been characterized in detail and here focus will be on target enzyme specificity, molecular recognition, forces and mechanisms of binding as well as on three-dimensional structures of CM-protein–enzyme complexes. Lastly, prospects for CM-protein exploitation, rational engineering and biotechnological applications will be discussed.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Lundin KE, Brottveit M, Skodje G. Noncoeliac gluten sensitivity. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:177-195. [DOI: 10.1016/b978-0-12-821571-5.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Alkalay MJ. Nutrition in Patients with Lactose Malabsorption, Celiac Disease, and Related Disorders. Nutrients 2021; 14:nu14010002. [PMID: 35010876 PMCID: PMC8746545 DOI: 10.3390/nu14010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lactose malabsorption (LM), celiac disease (CD), non-celiac gluten sensitivity (NCGS), and irritable bowel syndrome (IBS) are conditions associated with food triggers, improvement after withdrawal, treatment with dietary restriction, and subsequent nutritional detriments. LM occurs when there is incomplete hydrolysis of lactose due to lactase deficiency and frequently produces abdominal symptoms; therefore, it can cause lactose intolerance (LI). A lactose-restricted diet is frequently recommended, although it can potentially lead to nutrient deficiencies. Furthermore, lactose is an essential component of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and is subsequently associated with intolerance to these compounds, especially in IBS. LM commonly presents in CD. Nutritional deficits are common in CD and can continue even on a gluten-free diet (GFD). Conditions triggered by gluten are known as gluten-related disorders (GRDs), including CD, wheat allergy, and NCGS. IBS can also be associated with a gluten sensitivity. A GFD is the treatment for CD, GRDs, and gluten sensitive IBS, although compliance with this restricted diet can be difficult. Strict dietary therapies can have a negative effect on quality of life. This review aims to provide an overview of the difficult nutritional elements of these disorders, which are critical for medical providers to recognize when managing these patients.
Collapse
Affiliation(s)
- Michele J Alkalay
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Texas Southwestern, Dallas, TX 75235, USA
| |
Collapse
|
7
|
El Hassouni K, Sielaff M, Curella V, Neerukonda M, Leiser W, Würschum T, Schuppan D, Tenzer S, Longin CFH. Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3427-3441. [PMID: 34245321 PMCID: PMC8440294 DOI: 10.1007/s00122-021-03906-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Wheat cultivars largely differ in the content and composition of ATI proteins, but heritability was quite low for six out of eight ATIs. The genetic architecture of ATI proteins is built up of few major and numerous small effect QTL. Amylase trypsin inhibitors (ATIs) are important allergens in baker's asthma and suspected triggers of non-celiac wheat sensitivity (NCWS) inducing intestinal and extra-intestinal inflammation. As studies on the expression and genetic architecture of ATI proteins in wheat are lacking, we evaluated 149 European old and modern bread wheat cultivars grown at three different field locations for their content of eight ATI proteins. Large differences in the content and composition of ATIs in the different cultivars were identified ranging from 3.76 pmol for ATI CM2 to 80.4 pmol for ATI 0.19, with up to 2.5-fold variation in CM-type and up to sixfold variation in mono/dimeric ATIs. Generally, heritability estimates were low except for ATI 0.28 and ATI CM2. ATI protein content showed a low correlation with quality traits commonly analyzed in wheat breeding. Similarly, no trends were found regarding ATI content in wheat cultivars originating from numerous countries and decades of breeding history. Genome-wide association mapping revealed a complex genetic architecture built of many small, few medium and two major quantitative trait loci (QTL). The major QTL were located on chromosomes 3B for ATI 0.19-like and 6B for ATI 0.28, explaining 70.6 and 68.7% of the genotypic variance, respectively. Within close physical proximity to the medium and major QTL, we identified eight potential candidate genes on the wheat reference genome encoding structurally related lipid transfer proteins. Consequently, selection and breeding of wheat cultivars with low ATI protein amounts appear difficult requiring other strategies to reduce ATI content in wheat products.
Collapse
Affiliation(s)
- Khaoula El Hassouni
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Valentina Curella
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Manjusha Neerukonda
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Willmar Leiser
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
8
|
Kårlund A, Paukkonen I, Gómez-Gallego C, Kolehmainen M. Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare (Basel) 2021; 9:1002. [PMID: 34442141 PMCID: PMC8394810 DOI: 10.3390/healthcare9081002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.
Collapse
Affiliation(s)
- Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Isa Paukkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| |
Collapse
|
9
|
Cárdenas-Torres FI, Cabrera-Chávez F, Figueroa-Salcido OG, Ontiveros N. Non-Celiac Gluten Sensitivity: An Update. ACTA ACUST UNITED AC 2021; 57:medicina57060526. [PMID: 34073654 PMCID: PMC8224613 DOI: 10.3390/medicina57060526] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Non-celiac gluten sensitivity (NCGS) is a clinical entity characterized by the absence of celiac disease and wheat allergy in patients that trigger reproducible symptomatic responses to gluten-containing foods consumption. Due to the lack of sensitive and reproducible biomarkers for NCGS diagnosis, placebo-controlled gluten challenges must be carried out for its diagnosis. The gluten challenges can be either double- or single-blind, for research or clinical practice purposes, respectively. For improving our understanding about the magnitude and relevance of NCGS in different populations, epidemiological studies based on self-report have been carried out. However, the gluten challenge-based prevalence of NCGS remains to be estimated. Since NCGS was recently recognized as a clinical entity, more studies are needed to delve into NCGS pathogenesis, for instance, the molecular interactions between the suspected cereal grain components that trigger NCGS, such as fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) and amylase and trypsin inhibitors, and the immune system remains to be elucidated. Although still under debate, NCGS patients can be susceptible to only one or more than one of the NCGS triggers. The treatment of NCGS involves the dietary restriction of the suspected triggers of the disease, but there is controversial data about the effectiveness of different dietary interventions such as the gluten-free diet and low-FODMAP diet. Certainly, our understanding of NCGS is improving quickly due to the constant availability of new scientific information on this topic. Thus, the aim of the present narrative review is to present an up-to-date overview on NCGS from epidemiology to current therapy.
Collapse
Affiliation(s)
- Feliznando Isidro Cárdenas-Torres
- Doctorate Program in Nutrition Science, Faculty of Nutrition Sciences, University of Sinaloa, Culiacán 80019, Mexico; (F.I.C.-T.); (F.C.-C.)
| | - Francisco Cabrera-Chávez
- Doctorate Program in Nutrition Science, Faculty of Nutrition Sciences, University of Sinaloa, Culiacán 80019, Mexico; (F.I.C.-T.); (F.C.-C.)
| | - Oscar Gerardo Figueroa-Salcido
- Postgraduate in Health Sciences, Division of Biological and Health Sciences, University of Sonora, Hermosillo 83000, Mexico
- Correspondence: (O.G.F.-S.); (N.O.)
| | - Noé Ontiveros
- Clinical and Research Laboratory (LACIUS, URS), Department of Chemical, Biological, and Agricultural Sciences (DC-QB), Division of Sciences and Engineering, University of Sonora, Navojoa 85880, Mexico
- Correspondence: (O.G.F.-S.); (N.O.)
| |
Collapse
|
10
|
Iacomino G, Rotondi Aufiero V, Di Stasio L, Picascia S, Iannaccone N, Giardullo N, Troncone R, Gianfrani C, Mamone G, Mazzarella G. Triticum monococcum amylase trypsin inhibitors possess a reduced potential to elicit innate immune response in celiac patients compared to Triticum aestivum. Food Res Int 2021; 145:110386. [PMID: 34112389 DOI: 10.1016/j.foodres.2021.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
SCOPE Several studies reported a role of amylase/trypsin-inhibitors (ATIs) of common wheat species in promoting immune reactions. Here, we investigated in celiac disease (CD), the immunogenic properties of ATIs from diploid compared to common hexaploid wheats after an in vitro proteolytic hydrolysis. METHODS AND RESULTS ATIs purified from two lines of diploid Triticum monococcum (TM), Monlis and Norberto-ID331, and from Triticum aestivum (TA), Sagittario, were digested with pepsin-chymotrypsin (PC) enzymes and analyzed using a proteomic approach, and subsequently their immune stimulatory properties were investigated on jejunal biopsies and T-cell lines from CD patients. No significant expression of IL-8 and TNF-α were detected on biopsies cultured with ATIs from TM in comparison with ATIs from TA. No significant IFN-γ production was observed in intestinal gliadin- raised T-cells in response to ATIs from both TM and TA wheats. Proteomic results revealed that both TM ATIs showed reduced stability to proteolytic enzymes compared to TA ones. CONCLUSION TM ATIs are substantially different from those of TA, showing a reduced ability to trigger the innate immunity in CD and a higher susceptibility to enzymatic hydrolysis.
Collapse
Affiliation(s)
| | | | | | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, CNR, Napoli, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy
| | | | - Nicola Giardullo
- Gastroenterology Department, S. G. Moscati Hospital, Avellino, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, Napoli, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy
| | | | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy.
| |
Collapse
|
11
|
Suter DAI, Békés F. Who is to blame for the increasing prevalence of dietary sensitivity to wheat? CEREAL RESEARCH COMMUNICATIONS 2021; 49:1-19. [DOI: 10.1007/s42976-020-00114-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 01/05/2025]
|
12
|
Call L, Haider E, D'Amico S, Reiter E, Grausgruber H. Synthesis and accumulation of amylase-trypsin inhibitors and changes in carbohydrate profile during grain development of bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:113. [PMID: 33627080 PMCID: PMC7905651 DOI: 10.1186/s12870-021-02886-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent studies indicate that amylase-trypsin inhibitors (ATIs) and certain carbohydrates referred to as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols) play an important role in promoting wheat sensitivity. Hitherto, no study has investigated the accumulation of ATIs during the development of the wheat caryopsis. We collected caryopses of common wheat cv. 'Arnold' at eight different grain developmental stages to study compositional changes in ATI and FODMAP content. RESULTS The harvested caryopses were analysed for their size, protein and carbohydrate concentrations. ATIs were further characterized by MALDI-TOF MS, and their trypsin inhibition was evaluated by an enzymatic assay. The results showed that ATI accumulation started about 1 week after anthesis and subsequently increased steadily until physiological maturity. However, the biological activity of ATIs in terms of enzyme inhibition was not detectable before about 4 weeks after anthesis. Carbohydrate analysis revealed the abundance of short-chain fructans in early stages of grain development, whereas non-water-soluble carbohydrates increased during later developmental stages. CONCLUSIONS The results provide new insights into the complex metabolisms during grain filling and maturation, with particular emphasis on the ATI content as well as the inhibitory potential towards trypsin. The time lag between ATI accumulation and development of their biological activity is possibly attributed to the assembling of ATIs to dimers and tetramers, which seems to be crucial for their inhibitory potential.
Collapse
Affiliation(s)
- Lisa Call
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
- Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Elisabeth Haider
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Stefano D'Amico
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Elisabeth Reiter
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Str. 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
13
|
Nylund L, Hakkola S, Lahti L, Salminen S, Kalliomäki M, Yang B, Linderborg KM. Diet, Perceived Intestinal Well-Being and Compositions of Fecal Microbiota and Short Chain Fatty Acids in Oat-Using Subjects with Celiac Disease or Gluten Sensitivity. Nutrients 2020; 12:nu12092570. [PMID: 32854216 PMCID: PMC7551214 DOI: 10.3390/nu12092570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
A gluten-free diet may result in high fat and low fiber intake and thus lead to unbalanced microbiota. This study characterized fecal microbiota profiles by 16S MiSeq sequencing among oat-using healthy adult subjects (n = 14) or adult subjects with celiac disease (CeD) (n = 19) or non-celiac gluten sensitivity (NCGS) (n = 10). Selected microbial metabolites, self-reported 4d food diaries and perceived gut symptoms were compared. Subjects with NCGS experienced the highest amount of gut symptoms and received more energy from fat and less from carbohydrates than healthy and CeD subjects. Oat consumption resulted in reaching the lower limit of the recommended fiber intake. Frequent consumption of gluten-free pure oats did not result in microbiota dysbiosis in subjects with CeD or NCGS. Thus, the high number of gut symptoms in NCGS subjects was not linked to the microbiota. The proportion of fecal acetate was higher in healthy when compared to NCGS subjects, which may be linked to a higher abundance of Bifidobacterium in the control group compared to NCGS and CeD subjects. Propionate, butyrate and ammonia production and β-glucuronidase activity were comparable among the study groups. The results suggest that pure oats have great potential as the basis of a gluten-free diet and warrant further studies in minor microbiota disorders.
Collapse
Affiliation(s)
- Lotta Nylund
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Salla Hakkola
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Leo Lahti
- Department of Future Technologies, University of Turku, 20520 Turku, Finland;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20520 Turku, Finland;
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, 20500 Turku, Finland;
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Kaisa M. Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
- Correspondence:
| |
Collapse
|
14
|
Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S. CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020; 9:foods9070943. [PMID: 32708800 PMCID: PMC7404469 DOI: 10.3390/foods9070943] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The ingestion of gluten-containing foods can cause wheat-related disorders in up to 15% of wheat consuming populations. Besides the role of gluten, α-amylase/trypsin inhibitors (ATI) have recently been identified as inducers of an innate immune response via toll-like receptor 4 in celiac disease and non-celiac wheat sensitivity. ATI are involved in plant self-defense against insects and possibly in grain development. Notably, they are largely resistant to gastrointestinal proteases and heat, and their inflammatory activity affects not only the intestine, but also peripheral organs. The aim of this study was to understand the changes of ATI throughout the sourdough and yeast-fermented bread-making processes. ATI tetramers were isolated, fluorescein-labelled, and added to a mini-dough bread-making system. When the pH decreased below 4.0 in sourdough fermentation, the ATI tetramers were degraded due to the activation of aspartic proteases, whilst in yeast fermentation, ATI tetramers remained intact. The amylase inhibitory activity after sourdough fermentation decreased significantly, while the concentration of free thiol groups increased. The glutathione reductase activity of Fructilactobacillus sanfranciscensis did not contribute to the reduction of ATI tetramers. Compared to the unfermented wheat, sourdough fermentation was able to decrease the release of pro-inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor alpha (TNF-α) in quantitative ATI extracts added to the human monocytic cell line THP-1. The current data suggest that sourdough fermentation can degrade ATI structure and bioactivity, and point to strategies to improve product development for wheat sensitivity patients.
Collapse
|
16
|
Lakhneko O, Danchenko M, Morgun B, Kováč A, Majerová P, Škultéty Ľ. Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars. Int J Mol Sci 2020; 21:E3445. [PMID: 32414116 PMCID: PMC7279209 DOI: 10.3390/ijms21103445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, 95007 Nitra, Slovak Republic
| | - Bogdan Morgun
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
17
|
Bose U, Juhász A, Broadbent JA, Byrne K, Howitt CA, Colgrave ML. Identification and Quantitation of Amylase Trypsin Inhibitors Across Cultivars Representing the Diversity of Bread Wheat. J Proteome Res 2020; 19:2136-2148. [PMID: 32267703 DOI: 10.1021/acs.jproteome.0c00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Amylase/trypsin inhibitors (ATIs) may have a role in nonceliac wheat sensitivity (NCWS) and celiac disease (CD), but the ATI content and diversity across a range of wheat cultivars are not well characterized. Discovery proteomics was used to detect ATIs across two wheat cultivars: Chara and Magenta. Comprehensive mapping of detected ATIs with the ATIs from the recently published wheat genome RefSeq v1.0 shows the presence of three major subclasses: monomeric (9%), dimeric (61%), and chloroform-methanol (CM) type (30%). Subsequently, the level of 18 ATI isoforms (63 peptides) grouped into four subtypes was monitored across 15 commercial wheat cultivars and the eight parental lines from a multiparent advanced-generation intercross (MAGIC) population using liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS). The ATI content of wheat cultivars Janz, Sunvale, Diamond Bird, and Longreach Scout was significantly lower than that of other wheat cultivars. The MAGIC parental cultivars Baxter and Xiaoyan 54 contain higher levels (∼115% relative to the average wheat ATI content), whereas cultivar Pastor contained the lowest levels (∼87%). Comprehensive sequence analysis, annotation, chromosomal locations, and epitope mapping enabled us to build an LC-MRM-MS method to monitor and quantify the immunostimulatory ATI proteins potentially related to NCWS, autoimmune diseases, and metabolic disorders. This provides an opportunity to select wheat cultivars with significantly lower levels of ATIs.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA6027, Australia
| | - James A Broadbent
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food, G.P.O. Box 1700, Canberra, ACT 2601, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia.,School of Science, Edith Cowan University, Joondalup, WA6027, Australia
| |
Collapse
|
18
|
Singh RS, Singh A, Batra G, Kaur H, Medhi B. Novel targets for drug discovery in celiac disease. Indian J Pharmacol 2019; 51:359-365. [PMID: 31831931 PMCID: PMC6892008 DOI: 10.4103/ijp.ijp_679_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
Celiac disease is a lifelong, immunological disorder induced by dietary protein-gluten, in a genetically susceptible populations, resulting in different clinical manifestations, the release of antibodies, and damage to the intestinal mucosa. The only recommended therapy for the disease is to strictly follow a gluten-free diet (GFD), which is difficult to comply with. A GFD is found to be ineffective in some active Celiac disease cases. Therefore, there is an unmet need for an alternative nondietary therapeutic approach. The review focuses on the novel drug targets for Celiac disease.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019; 11:nu11122879. [PMID: 31779167 PMCID: PMC6950659 DOI: 10.3390/nu11122879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Although ancient, heritage, and modern wheat varieties appear rather similar from a nutritional point of view, having a similar gluten content and a comparable toxicity linked to their undigested gluten peptide, whenever the role of ancient end heritage wheat grains has been investigated in animal studies or in clinical trials, more anti-inflammatory effects have been associated with the older wheat varieties. This review provides a critical overview of existing data on the differential physiological responses that could be elicited in the human body by ancient and heritage grains compared to modern ones. The methodology used was that of analyzing the results of relevant studies conducted from 2010 through PubMed search, by using as keywords “ancient or heritage wheat”, “immune wheat” (protein or peptides), and immune gluten (protein or peptides). Our conclusion is that, even if we do not know exactly which molecular mechanisms are involved, ancient and heritage wheat varieties have different anti-inflammatory and antioxidant proprieties with respect to modern cultivars. It is, therefore, reasonable to assume that the health proprieties attributed to older cultivars could be related to wheat components which have positive roles in the modulation of intestinal inflammation and/or permeability.
Collapse
|
20
|
Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA. Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Compr Rev Food Sci Food Saf 2019; 18:1751-1769. [PMID: 33336954 DOI: 10.1111/1541-4337.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Wheat is the primary source of nutrition for many, especially those living in developing countries, and wheat proteins are among the most widely consumed dietary proteins in the world. However, concerns about disorders related to the consumption of wheat and/or wheat gluten proteins have increased sharply in the last 20 years. This review focuses on wheat gluten proteins and amylase trypsin inhibitors, which are considered to be responsible for eliciting most of the intestinal and extraintestinal symptoms experienced by susceptible individuals. Although several approaches have been proposed to reduce the exposure to gluten or immunogenic peptides resulting from its digestion, none have proven sufficiently effective for general use in coeliac-safe diets. Potential approaches to manipulate the content, composition, and technological properties of wheat proteins are therefore discussed, as well as the effects of using gluten isolates in various food systems. Finally, some aspects of the use of gluten-free commodities are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ. Pee Dee Research and Education Centre, Florence, SC, U.S.A.,Dept. of Crop and Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Fred Brouns
- Dept. of Human Biology, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 50, 6200, MD, Maastricht, the Netherlands
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
21
|
Development of an enzymatic assay for the quantitative determination of trypsin inhibitory activity in wheat. Food Chem 2019; 299:125038. [PMID: 31284248 DOI: 10.1016/j.foodchem.2019.125038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
Wheat is one of the world's most widely consumed staple food. However, the number of people suffering from wheat-related disorders has increased drastically. Amylase-trypsin inhibitors (ATIs) have recently been identified as one of the main triggers of non-celiac wheat sensitivity (NCWS). In this study, an enzymatic assay for the determination of trypsin inhibition activity in hexaploid wheat was developed. This method was optimized with respect to several parameters, such as extraction and incubation procedures, and was validated according to international standards, concerning accuracy, precision and robustness of the method. Results revealed that linear inhibition and thus accuracy occurred only in a narrow concentration range. However, after optimization of settings the novel method was found to be satisfactory for accurate determination of trypsin inhibition in wheat. Purification of the wheat extract with immobilized trypsin beads led to the identification of CM inhibitors (chloroform/methanol soluble proteins) as main contributors of trypsin inhibition.
Collapse
|
22
|
Valitutti F, Fasano A. Breaking Down Barriers: How Understanding Celiac Disease Pathogenesis Informed the Development of Novel Treatments. Dig Dis Sci 2019; 64:1748-1758. [PMID: 31076989 PMCID: PMC6586517 DOI: 10.1007/s10620-019-05646-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For decades, the pathogenesis of a variety of human diseases has been attributed to increased intestinal paracellular permeability even though scientific evidence supporting this hypothesis has been tenuous. Nevertheless, during the past decade, there have been a growing number of publications focused on human genetics, the gut microbiome, and proteomics, suggesting that loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately causing chronic inflammation, including autoimmunity, in genetically predisposed individuals. The gut mucosa works as a semipermeable barrier in that it permits nutrient absorption and also regulates immune surveillance while retaining potentially harmful microbes and environmental antigens within the intestinal lumen. Celiac disease (CD), a systemic, immune-mediated disorder triggered by gluten in genetically susceptible individuals, is associated with altered gut permeability. Pre-clinical and clinical studies have shown that gliadin, a prolamine component of gluten that is implicated in CD pathogenesis, is capable to disassembling intercellular junctional proteins by upregulating the zonulin pathway, which can be inhibited by the zonulin antagonist larazotide acetate. In this review, we will focus on CD as a paradigm of chronic inflammatory diseases in order to outline the contribution of gut paracellular permeability toward disease pathogenesis; moreover, we will summarize current evidence derived from available clinical trials of larazotide acetate in CD.
Collapse
Affiliation(s)
- Francesco Valitutti
- Pediatric Gastroenterology and Liver Unit, Department of "Maternal-and-Child Health" and Urology, Sapienza University of Rome, Rome, Italy
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment and Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA, 02114, USA.
- European Biomedical Research Institute of Salerno, Salerno, Italy.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW There has been significant interest in gluten over the last decade, with an increase in interest of gluten-related disorders outside coeliac disease. Particularly, there has been a focus on the role of gluten in noncoeliac gluten sensitivity (NCGS) and irritable bowel syndrome (IBS). There is significant overlap between both of these conditions, with the aim of this review to explore their complex relationship. RECENT FINDINGS Gluten has been demonstrated to generate symptoms in individuals with NCGS. However, there appears to be an increasing role for gluten in symptom generation in patients with IBS also. Other components of wheat, other than gluten, are now also thought to be contributing factors in symptom generation. SUMMARY There appears to be significant overlap between IBS and NCGS. It is likely that a subset of patients presenting with IBS actually have NCGS. In addition, it is likely that individuals with IBS may also have symptoms triggered by gluten. With the pathophysiology of both conditions not fully understood, as well as increasing knowledge of wheat components in symptom generation, further research is required to help distinguish between both.
Collapse
|
24
|
Figueroa-Salcido OG, Ontiveros N, Cabrera-Chavez F. Gluten Vehicle and Placebo for Non-Celiac Gluten Sensitivity Assessment. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E117. [PMID: 31035487 PMCID: PMC6572297 DOI: 10.3390/medicina55050117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Non-celiac gluten sensitivity (NCGS) is a syndrome characterized by gastrointestinal and extraintestinal manifestations triggered after gluten ingestion in the absence of celiac disease and wheat allergy. Because of the lack of biomarkers for NCGS diagnosis, the cornerstone for its assessment is a single- or double-blind placebo-controlled (DBPC) gluten challenge. However, there are some non-standardized points in the diagnostic approach proposed by the experts. This complicate comparisons among the results published by different research groups. The gluten vehicle and placebo must be indistinguishable from each other, which entails sensory and technological evaluations of the designed gluten vehicle and placebo products. At the moment, there is no standardized method for the preparation of the gluten vehicle and placebo for carrying out DBPC gluten challenges for NCGS assessment. This review focuses on the challenges that researchers have to face, either for the development of an accepted gluten vehicle and placebo or for identifying NCGS cases on the basis of DBPC gluten challenges.
Collapse
Affiliation(s)
- Oscar Gerardo Figueroa-Salcido
- Nutrition Sciences Academic Unit, Autonomous University of Sinaloa, Cedros y Calle Sauces S/N, Fraccionamiento Los Fresnos, Culiacán 80019, Sinaloa, Mexico.
| | - Noé Ontiveros
- Division of Sciences and Engineering, Department of Chemical, Biological, and Agricultural Sciences (DC-QB), University of Sonora, Navojoa 85880, Sonora, Mexico.
| | - Francisco Cabrera-Chavez
- Nutrition Sciences Academic Unit, Autonomous University of Sinaloa, Cedros y Calle Sauces S/N, Fraccionamiento Los Fresnos, Culiacán 80019, Sinaloa, Mexico.
| |
Collapse
|
25
|
OPTIMIZATION OF PRODUCTION PROCESS OF PEELED GRAINS OF WHEAT OF DIFFERENT SOLIDITY. EUREKA: LIFE SCIENCES 2018. [DOI: 10.21303/2504-5695.2018.00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wheat is a leading agricultural plant with one of most gross grain harvest in the world. It is a valuable raw material for producing the wide assortment of food products. That is why little studied peculiarities of it need specification, and processing technologies – improvement.
The aim of the conducted studies was in specifying of processing regimes of solid and soft wheat grains into peeled ones that allowed to choose rational regimes of water-thermal processing for attaining their maximal output, boiling coefficient and decrease of a preparation duration.
It was proved, that the effect of heat and moisture mostly influences the output of grains and duration of their boiling, despite the solidity. The boiling coefficient depends on the solidity type more.
The optimal mode as to thermal processing at production of peeled grains of soft wheat is is steaming during 10 min with hydration during 10–12 min.
It is rational to steam solid wheat during 10 min with further hydration during 12–13 min at processing.
Collapse
|