1
|
Chaudhari P, Lewis SA, Ghate V. Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Cont Lens Anterior Eye 2025; 48:102367. [PMID: 39794261 DOI: 10.1016/j.clae.2025.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The eye is a highly sensitive and vital component that significantly affects human quality of life. Diseases that affect the eye are major contributors to visual impairment and blindness and can have a profound effect on an individual's well-being. Ocular drug delivery is challenging because of physiological and anatomical barriers. Invasive Intravitreal administration is primarily used for the treatment and management of posterior segmental disease. However, frequent intravitreal administration is associated with adverse effects. Furthermore, topical administration results in less than 5% ocular bioavailability, leading to a void in the safe and efficacious management of posterior segment diseases. Nanocarrier-based systems have been well explored as ocular therapeutics to overcome the sub-therapeutic management attributed to conventional eye drops and physiological and anatomical barriers. Since the first report of nanoparticles to date, the nanocarrier system has come a long way with the simplicity and versatility offered by the system. Significant progress has been made in the development of noninvasive nanocarrier systems and their interactions with the ocular surface. The nanocarrier system enhances precorneal retention, limits nontherapeutic absorption, and offers controlled drug release. This review aims to provide an overview of the recent advancements in noninvasive nanocarrier-based topical ocular drug delivery systems, including their interaction with the ocular surface, the barriers to their translation to clinical settings, and the associated scale-up challenges.
Collapse
Affiliation(s)
- Pinal Chaudhari
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, Karnataka, India
| |
Collapse
|
2
|
Bisen AC, Srivastava S, Mishra A, Sanap SN, Biswas A, Choudhury AD, Dubey A, Gupta NM, Yadav KS, Mugale MN, Bhatta RS. Pharmaceutical Emulsions: A Viable Approach for Ocular Drug Delivery. J Ocul Pharmacol Ther 2024; 40:261-280. [PMID: 38654153 DOI: 10.1089/jop.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Saurabh Srivastava
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | | | - Ayush Dubey
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Neeraj Mohan Gupta
- Department of Chemistry, Government P. G. College, Guna, Madhya Pradesh, India
| | - Karan Singh Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang R, Li Y, Gao S, Zhang Y, He Z, Ji J, Yang X, Ye L, Zhao L, Liu A, Zhai G. An active transport dual adaptive nanocarrier designed to overcome the corneal microenvironment for neovascularization therapy. Biomater Sci 2024; 12:361-374. [PMID: 37982147 DOI: 10.1039/d3bm01349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The eyes have a complicated microenvironment with many clearance mechanisms, making it challenging for effective drug delivery to the targeted areas of the eyes. Substrate transport mediated by active transporters is an important way to change drug metabolism in the ocular microenvironment. We designed multifunctional, dual-adaptive nanomicelles (GSCQ@NTB) which could overcome multiple physiological barriers by acting on both the efflux transporter and influx transporter to achieve deep delivery of the P-gp substrate in the cornea. Specifically, an effective "triple" antiangiogenic agent, nintedanib (NTB), was loaded into the biocompatible micelles. The expression of the efflux transporter was reversed by grafting quercetin. The peptide (glycylsarcosine, GS) was modified to target the influx transporter "Peptide Transporter-1" (PepT-1). Quercetin (QRT) and nintedanib (NTB) were transported to the cornea cooperatively, achieving long retention on the ocular surface and high compatibility. In a New Zealand rabbit model, within 8 hours after local administration, GSCQ@NTB was enriched in corneal stromal neovascularization and effectively inhibited the progress of neovascularization. Its effectiveness is slightly better than that in the first-line clinical application of steroids. In this study, we introduce the preparation of a dual adaptive nano-micelle system, which may provide an effective non-invasive treatment for corneal neovascularization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, P.R. China
| | - Guangxi Zhai
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
4
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
5
|
Santana-Garrido Á, Durán-Lobato M, Mate A, Martín-Banderas L, Vázquez CM. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int J Pharm 2024; 649:123602. [PMID: 37967686 DOI: 10.1016/j.ijpharm.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxidative stress plays a key role in several systemic and ocular diseases, including hypertensive eye diseases. In this context, we previously showed that oral administration of wild olive (acebuche, ACE) oil from Olea europaea var. sylvestris can counteract ocular damage secondary to arterial hypertension by modulating excess reactive oxygen species (ROS) produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Therefore, this work describes the development of an ACE oil-based formulation for ocular administration as a local therapy to counteract hypertension-related oxidative damage. Specifically, ACE oil nanoemulsions (NEs) were successfully produced and characterized, exhibiting appropriate features for ophthalmic administration, including a nanometer size (<200 nm), moderate negative ZP, adequate osmolality and pH, and colloidal stability in biorelevant fluids. Likewise, the NEs presented a shear thinning behavior, especially convenient for ocular instillation. In vivo evaluation was performed through either intravitreal injection or topical ophthalmic administration in mice with hypertension induced via administration of Nω-nitro-L-arginine-methyl-ester (L-NAME). Both routes of administration reduced hypertensive morphological alterations and demonstrated a noticeable antioxidant effect thanks to the reduction of the activity/expression of NADPH oxidase in cornea and retina. Thus, an ACE oil ophthalmic formulation represent a promising therapy for ocular pathologies associated with arterial hypertension.
Collapse
Affiliation(s)
- Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - M Durán-Lobato
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain.
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
6
|
Sharma S, Tyagi K, Dang S. Use of nanotechnology in dry eye syndrome. NANOTECHNOLOGY IN OPHTHALMOLOGY 2023:227-246. [DOI: 10.1016/b978-0-443-15264-1.00010-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
8
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
9
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
10
|
Abstract
Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Burcin Yavuz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Uday B Kompella
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma. Int J Pharm 2018; 553:21-28. [DOI: 10.1016/j.ijpharm.2018.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
12
|
Vellonen KS, Hellinen L, Mannermaa E, Ruponen M, Urtti A, Kidron H. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev 2018; 126:3-22. [PMID: 29248478 DOI: 10.1016/j.addr.2017.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
The eye is protected by several tissues that limit the permeability and entry of potentially harmful substances, but also hamper the delivery of drugs in the treatment of ocular diseases. Active transport across the ocular barriers may affect drug distribution, but the impact of drug transporters on ocular drug delivery is not well known. We have collected and critically reviewed the literature for ocular expression and activity of known drug transporters. The review concentrates on drug transporters that have been functionally characterized in ocular tissues or primary cells and on transporters for which there is available expression data at the protein level. Species differences are highlighted, since these may explain observed inconsistencies in the influence of specific transporters on drug disposition. There is variable evidence about the pharmacokinetic role of transporters in ocular tissues. The strongest evidence for the role of active transport is available for the blood-retinal barrier. We explored the role of active transport in the cornea and blood retinal barrier with pharmacokinetic simulations. The simulations show that the active transport is important only in the case of specific parameter combinations.
Collapse
|
13
|
Zia KM, Tabasum S, Khan MF, Akram N, Akhter N, Noreen A, Zuber M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol 2017; 109:1068-1087. [PMID: 29157908 DOI: 10.1016/j.ijbiomac.2017.11.099] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
Abstract
Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan.
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Muhammad Faris Khan
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan; Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Nadia Akram
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Naheed Akhter
- Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| |
Collapse
|
14
|
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2017; 6:735-754. [PMID: 27798766 DOI: 10.1007/s13346-016-0339-2] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment models of ocular drug delivery have been developed for describing the absorption, distribution, and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems, and routes of administration is discussed including factors affecting intraocular bioavailability. Factors such as precorneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, and drug metabolism render ocular delivery challenging and are elaborated in this manuscript. Several compartment models are discussed; these are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and are summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations.
Collapse
Affiliation(s)
- Vibhuti Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Vivek Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.,Bayer HealthCare LLC, Shawnee, KS, 66216, USA
| | - Hoang M Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Animikh Ray
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Hicheme Hadji
- Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Ranjana Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
15
|
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7:281-291. [PMID: 28540165 PMCID: PMC5430571 DOI: 10.1016/j.apsb.2016.09.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
Ocular diseases include various anterior and posterior segment diseases. Due to the unique anatomy and physiology of the eye, efficient ocular drug delivery is a great challenge to researchers and pharmacologists. Although there are conventional noninvasive and invasive treatments, such as eye drops, injections and implants, the current treatments either suffer from low bioavailability or severe adverse ocular effects. Alternatively, the emerging nanoscience and nanotechnology are playing an important role in the development of novel strategies for ocular disease therapy. Various active molecules have been designed to associate with nanocarriers to overcome ocular barriers and intimately interact with specific ocular tissues. In this review, we highlight the recent attempts of nanotechnology-based systems for imaging and treating ocular diseases, such as corneal d iseases, glaucoma, retina diseases, and choroid diseases. Although additional work remains, the progress described herein may pave the way to new, highly effective and important ocular nanomedicines.
Collapse
|
16
|
Yin J, Xiang C, Lu G. Cationic lipid emulsions as potential bioadhesive carriers for ophthalmic delivery of palmatine. J Microencapsul 2016; 33:718-724. [PMID: 27733080 DOI: 10.1080/02652048.2016.1248512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Palmatine (PM) is a potent anti-infective agent used to treat eye diseases. However, PM is less effective for ocular application due to short residence time within the eyes. This study aimed to develop a cationic lipid emulsions (CLEs) for ophthalmic delivery of PM and evaluate its suitability in infection treatment. PM-loaded CLEs (PM-CLEs) were prepared through emulsifying/high-pressure homogenisation and characterised by particle size, ζ potential and morphology. The resulting PM-CLEs possessed a particle size of 192 nm and ζ potential of 45 mV around. In vitro release illustrated that PM was released less from CLEs. Corneal bioadhesion test showed that PM-CLEs exhibited an enhanced ocular residence time. Improved anti-infective activity was achieved in the model of fungus-induced keratitis. Furthermore, PM-CLEs demonstrated predominant cellular uptake and internalisation in the corneal epithelial cells. These results provide proof of concept that CLEs are promising bioadhesive carriers for ophthalmic delivery of PM.
Collapse
Affiliation(s)
- Juntao Yin
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , P.R. China
| | - Cuiyu Xiang
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , P.R. China
| | - Guangxiu Lu
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , P.R. China
| |
Collapse
|
17
|
Taskar P, Tatke A, Majumdar S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin Drug Deliv 2016; 14:49-63. [PMID: 27441817 DOI: 10.1080/17425247.2016.1208649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ocular drug delivery is presented with many challenges, taking into account the distinctive structure of the eye. The prodrug approach has been, and is being, employed to overcome such barriers for some drug molecules, utilizing a chemical modification approach rather than a formulation-based approach. A prodrug strategy involves modification of the active moiety into various derivatives in a fashion that imparts some advantage, such as membrane permeability, site specificity, transporter targeting and improved aqueous solubility, over the parent compound. Areas covered: The following review is a comprehensive summary of various novel methodologies and strategies reported over the past few years in the area of ocular drug delivery. Some of the strategies discussed involve polymer and lipid conjugation with the drug moiety to impart hydrophilicity or lipophilicity, or to target nutrient transporters by conjugation with transporter-specific moieties and retrometabolic drug design. Expert opinion: The application of prodrug strategies provides an option for enhancing drug penetration into the ocular tissues, and overall ocular bioavailability, with minimum disruption of the ocular diffusion barriers. Although success of the prodrug strategy is contingent on various factors, such as the chemical structure of the parent molecule, aqueous solubility and solution stability, capacity of targeted transporters and bioreversion characteristics, this approach has been successfully utilized, commercially and therapeutically, in several cases.
Collapse
Affiliation(s)
- Pranjal Taskar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Akshaya Tatke
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery , University of Mississippi , University , MS , USA.,b Research Institute of Pharmaceutical Sciences , University of Mississippi , University , MS , USA
| |
Collapse
|
18
|
Sheng Y, Yang X, Wang Z, Mitra AK. Stereoisomeric Prodrugs to Improve Corneal Absorption of Prednisolone: Synthesis and In Vitro Evaluation. AAPS PharmSciTech 2016; 17:718-26. [PMID: 26335418 DOI: 10.1208/s12249-015-0400-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023] Open
Abstract
A series of stereoisomeric prodrugs have been designed to examine efficacy in generating higher corneal absorption relative to prednisolone. Prodrugs have been studied and identified with LC/MS/MS and NMR analyses. Prodrugs have been characterized for aqueous solubility, buffer stability, and cytotoxicity. Cellular uptake and permeability studies have been conducted across MDCK-MDR1 cells to determine prodrug affinity towards P-glycoprotein (P-gp) and peptide transporters. Enzyme-mediated degradation of prodrugs has been determined using Statens Seruminstitut rabbit cornea (SIRC) cell homogenates. Prodrugs exhibited higher aqueous solubility relative to prednisolone. Prodrugs circumvented P-gp-mediated cellular efflux and were recognized by peptide transporters. Prodrugs (DP, DDP) produced with D-isomers (D-valine) were significantly stable against both chemical and enzymatic hydrolyses. The order of degradation rate constants observed in chemical and enzymatic hydrolyses were in the same order, i.e., L-valine-L-valine-prednisolone (LLP) > L-valine-D-valine-prednisolone (LDP) > D-valine-L-valine-prednisolone (DLP) > D-valine-D-valine-prednisolone (DDP). Results obtained from this study clearly suggest that stereoisomeric prodrug approach is an effective strategy to overcome P-gp-mediated efflux and improve transcorneal permeability of prednisolone following topical administration.
Collapse
|
19
|
Sheng Y, Yang X, Pal D, Mitra AK. Prodrug approach to improve absorption of prednisolone. Int J Pharm 2015; 487:242-9. [PMID: 25888804 DOI: 10.1016/j.ijpharm.2015.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/11/2023]
Abstract
Amino acid and dipeptide prodrugs have been developed to examine their potential in enhancing aqueous solubility and permeability as well as to bypass P-glycoprotein (P-gp) mediated cellular efflux of prednisolone. Prodrugs have been synthesized and identified with LC/MS/MS and NMR. Prodrugs displayed significantly higher aqueous solubility relative to prednisolone. These compounds also exhibited higher stability under acidic conditions relative to basic medium. [14]-Erythromycin uptake remained unaltered in the presence of valine-valine-prednisolone (VVP) indicating lower affinity toward P-gp. Moreover, VVP generated significantly higher transepithelial permeability across MDCK-MDR1 cells compared to prednisolone. Importantly, [3H]-GlySar uptake diminished significantly in the presence of VVP indicating high affinity toward peptide transporters. Moreover, prednisolone was regenerated from VVP due to enzymatic hydrolysis in SIRC cell homogenate. Results obtained from these studies clearly suggest that peptide transporter targeted prodrugs is a viable strategy to improve aqueous solubility and overcome P-gp mediated cellular efflux of prednisolone.
Collapse
Affiliation(s)
- Ye Sheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Xiaoyan Yang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
20
|
Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 2015; 128:322-330. [PMID: 25707750 DOI: 10.1016/j.colsurfb.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/25/2015] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Curcumin, a natural polyphenol compound, has been widely reported for diverse pharmacological effects and already been investigated for eye diseases. However, the water-insolubility of curcumin and the inherent penetration barriers in cornea make it difficult for curcumin to enter eye. This work aimed to develop ion-sensitive curcumin-loaded Pluronic P123 (P123)/D-a-tocopheryl polyethylene glycolsuccinate (TPGS) mixed micelle in situ gels (CUR-MM-ISGs) to prolong ocular retention time and improve cornea permeability. Central composite design-response surface methodology was applied for the optimization of curcumin-loaded P123/TPGS mixed micelles (CUR-MMs). Characterization tests showed that CUR-MMs were in spherical shape with small size and low critical micelle concentration. After dispersing the micelles in gellan gum solution (0.2%, w/w) at the ratio of 3:1 and 1:1 (v/v), respectively, CUR-MM-ISGs were formed and presented transparent appearance. Sustained release profile was obtained in vitro for both CUR-MM-ISGs (3:1 or 1:1, v/v). The irritation test proved that CUR-MM-ISGs as ophthalmic formulations were gentle and biocompatible towards ocular tissues. In addition, the ex vivo corneal penetration study indicated that the cumulative drug permeation amount of CUR-MM-ISGs (3:1, v/v) was respectively 1.16-fold and 1.32-fold higher than CUR-MM-ISGs (1:1, v/v) and curcumin solution. It can be concluded from these results that the developed ion-sensitive mixed micelle in situ gel system is a potential ophthalmic delivery carrier for curcumin as a poorly soluble drug.
Collapse
Affiliation(s)
- Yuwei Duan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Hongliang Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|
21
|
Patel M, Mandava N, Gokulgandhi M, Pal D, Mitra AK. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir. Pharmaceuticals (Basel) 2014; 7:433-52. [PMID: 24727459 PMCID: PMC4014701 DOI: 10.3390/ph7040433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022] Open
Abstract
Poor systemic concentrations of lopinavir (LPV) following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs) and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.
Collapse
Affiliation(s)
- Mitesh Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nanda Mandava
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mitan Gokulgandhi
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
22
|
Hegde RR, Bhattacharya SS, Verma A, Ghosh A. Physicochemical and Pharmacological Investigation of Water/Oil Microemulsion of Non-Selective Beta Blocker for Treatment of Glaucoma. Curr Eye Res 2013; 39:155-63. [DOI: 10.3109/02713683.2013.833630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Molecular expression and functional activity of efflux and influx transporters in hypoxia induced retinal pigment epithelial cells. Int J Pharm 2013; 454:444-52. [PMID: 23827654 DOI: 10.1016/j.ijpharm.2013.06.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 01/23/2023]
Abstract
A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs.
Collapse
|
24
|
Verstraelen J, Reichl S. Expression analysis of MDR1, BCRP and MRP3 transporter proteins in different in vitro and ex vivo cornea models for drug absorption studies. Int J Pharm 2013; 441:765-75. [DOI: 10.1016/j.ijpharm.2012.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
25
|
Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug strategies in ocular drug delivery. Med Chem 2012; 8:753-68. [PMID: 22530907 DOI: 10.2174/157340612801216283] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
Abstract
Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal of interest to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery.
Collapse
Affiliation(s)
- Megha Barot
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
26
|
Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther 2012; 29:106-23. [PMID: 23215539 DOI: 10.1089/jop.2012.0200] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Research advancements in pharmaceutical sciences have led to the development of new strategies in drug delivery to anterior segment. Designing a new delivery system that can efficiently target the diseased anterior ocular tissue, generate high drug levels, and maintain prolonged and effective concentrations with no or minimal side effects is the major focus of current research. Drug delivery by traditional method of administration via topical dosing is impeded by ocular static and dynamic barriers. Various products have been introduced into the market that prolong drug retention in the precorneal pocket and to improve bioavailability. However, there is a need of a delivery system that can provide controlled release to treat chronic ocular diseases with a reduced dosing frequency without causing any visual disturbances. This review provides an overview of anterior ocular barriers along with strategies to overcome these ocular barriers and deliver therapeutic agents to the affected anterior ocular tissue with a special emphasis on nanotechnology-based drug delivery approaches.
Collapse
Affiliation(s)
- Kishore Cholkar
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA
| | | | | | | |
Collapse
|
27
|
Barot M, Gokulgandhi MR, Pal D, Mitra AK. Mitochondrial localization of P-glycoprotein and peptide transporters in corneal epithelial cells--novel strategies for intracellular drug targeting. Exp Eye Res 2012; 106:47-54. [PMID: 23116562 DOI: 10.1016/j.exer.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 10/10/2012] [Indexed: 01/03/2023]
Abstract
This study was designed to investigate functional localization of both efflux (P-glycoprotein, P-gp) and influx (peptide) transporters in the mitochondrial membrane of cultured rabbit primary corneal epithelial cells (rPCECs). Isolation and purification of mitochondria was performed by optimized cell fractionation method. Mitochondrial integrity was measured by JC-1 uptake experiment. The efflux activity of P-gp was assessed by performing in vitro uptake studies on isolated mitochondria with Rhodamine 123 (Rho-123) alone and in the presence of P-gp inhibitors (quinidine and cyclosporine A) using fluorimetry and flow cytometry analysis. Functional activity of peptide transporter was assessed by performing in vitro uptake studies of [3H] Gly-sar on isolated mitochondria in the presence or absence of peptide transporter substrate (Val-Val). Molecular characterization of P-gp and peptide transporter was assessed by western blot and confocal analysis. Enhanced JC-1 accumulation in the isolated fraction confirmed mitochondrial membrane integrity. Significantly higher uptake of Rho-123 on isolated mitochondria was observed in the presence of quinidine (75 and 100 μM) and cyclosporine A (10 μM). Significantly lower uptake of [3H] Gly-sar was observed in the presence of val-val due to competitive inhibition of peptide transporter on isolated mitochondria. Western blot and confocal analysis further confirmed the presence of P-gp and peptide transporter on the mitochondrial membrane of rPCECs. The present study demonstrates the functional and molecular characterization of P-gp and peptide transporters in the mitochondrial membranes of rPCECs. This knowledge of mitochondrial existence of P-gp and peptide transporter will aid in the development of subcellular ocular drug delivery strategies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Benzimidazoles/metabolism
- Blotting, Western
- Carbocyanines/metabolism
- Cells, Cultured
- Cyclosporine/pharmacology
- Dipeptides/metabolism
- Drug Delivery Systems
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/ultrastructure
- Flow Cytometry
- Fluorescent Dyes/metabolism
- Membrane Potential, Mitochondrial/physiology
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Peptide Transporter 1
- Quinidine/pharmacology
- Rabbits
- Rhodamine 123/metabolism
- Symporters/antagonists & inhibitors
- Symporters/metabolism
Collapse
Affiliation(s)
- Megha Barot
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
28
|
Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today 2012; 18:290-7. [PMID: 23092895 DOI: 10.1016/j.drudis.2012.10.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/03/2012] [Accepted: 10/15/2012] [Indexed: 12/18/2022]
Abstract
Ocular barriers and the poor water solubility of drug candidates present a number of problems for the development of ocular drug delivery systems. Recently, the emergence of lipid-based nanocarriers has provided a viable means of enhancing the bioavailability of ophthalmic formulations. A number of these formulations have been found to be clinically active and several others are currently undergoing clinical trials. In this review, the advantages of lipid-based nanocarriers as non-invasive topical ocular drug delivery systems are presented. Many systems, including emulsions, liposomes, cubosomes, niosomes and other lipid-based nanocarriers, are reviewed.
Collapse
Affiliation(s)
- Li Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ostacolo C, Caruso C, Tronino D, Troisi S, Laneri S, Pacente L, Del Prete A, Sacchi A. Enhancement of corneal permeation of riboflavin-5'-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment. Int J Pharm 2012; 440:148-53. [PMID: 23046664 DOI: 10.1016/j.ijpharm.2012.09.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Corneal accumulation of riboflavin-5'-phosphate (riboflavin) is an essential step in the so called corneal cross-linking (CXL), an elective therapy for the treatment of progressive keratoconus, corneal ectasia and irregular astigmatism. CXL is usually performed after surgical debridement of corneal epithelium, since it impedes the stromal penetration of riboflavin in a relatively short time. d-Alpha-tocopheryl poly(ethylene glycol) 1000 succinate (VE-TPGS) is an effective permeation enhancer used to increase adsorption of drugs trough different biological barriers. Moreover, belonging to the group of tocopherol pro-drugs, VE-TPGS exerts a protective effect on biological membrane against free-radical damage. The aim of this work is the evaluation of VE-TPGS effects on riboflavin corneal permeability, and the assessment of its protective effect against free-radicals generated during CXL procedures. Different solutions containing riboflavin (0.125% w/w), dextran (20.0% w/w) and increasing concentration of VE-TPGS were tested. Corneal permeation was evaluated in vitro by the use of modified Franz-cell type diffusion cells and freshly excised porcine corneas as barrier. The effect of VE-TPGS on riboflavin corneal penetration was compared with a standard commercial solution of riboflavin in dextran at different times. Accumulation experiments were conducted both on epithelized and non-epithelized corneas. Moreover, epithelized porcine corneas, treated with the tested solutions, were subjected to an in vitro CXL procedure versus non-epithelized corneas, treated with a commercial solution of riboflavin. Differences were measured by means of corneal rigidity using Young's modulus. The photo-protective effect of tested solutions on corneal epithelium was, finally, evaluated. CXL treatment was applied, in vitro, on human explanted corneas and resulting morphology of corneal epithelium was investigated by scanning electron microscopy.
Collapse
Affiliation(s)
- Carmine Ostacolo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University Federico II, Via D Montesano 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Z, Pal D, Mitra AK. Stereoselective Evasion of P-glycoprotein, Cytochrome P450 3A, and Hydrolases by Peptide Prodrug Modification of Saquinavir. J Pharm Sci 2012; 101:3199-213. [DOI: 10.1002/jps.23193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 01/20/2023]
|
31
|
Youshia J, Kamel AO, El Shamy A, Mansour S. Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int J Nanomedicine 2012; 7:2483-96. [PMID: 22679362 PMCID: PMC3367493 DOI: 10.2147/ijn.s28307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) formulated from one type of lipid (homolipid) suffer from low drug encapsulation and drug bursting due to crystallization of the lipid into the more ordered β modification, which leads to decreased drug entrapment and faster drug release. This study assessed the feasibility of using nanostructured lipid matrices (NLMs) for ocular delivery of methazolamide-(MZA) adopting heterolipids composed of novel mixtures of Compritol (®) and cetostearyl alcohol (CSA), and stabilized by Tween 80(®). The systems were prepared using the modified high shear homogenization followed by ultrasonication method, which avoids the use of organic solvents. A 3(2) full factorial design was constructed to study the influence of two independent variables, namely the ratio of CSA:Compritol and the concentration of Tween 80, each in three levels. The dependent variables were the entrapment efficiency percentages (EE%), mean particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In vivo intraocular pressure (IOP) lowering activity for the selected formulae was compared to that of MZA solution. The results showed that increasing the ratio of CSA to Compritol increased the EE% and PS, while increasing the concentration of Tween 80, decreased PS with no significant effect on EE%. The ZP values of all formulae were positive, and greater than 30 mV. The best formula, composed of 4% CSA, 2% Compritol, 0.15% stearylamine, and 2% Tween 80, with EE% of 25.62%, PS of 207.1 nm, PDI of 0.243, and ZP of 41.50 mV, showed in vitro sustained release properties for 8 hours and lowered the intraocular pressure by 8.3 mmHg within 3 hours, with this drop in pressure lasting for 12 hours.
Collapse
Affiliation(s)
- John Youshia
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
32
|
Jwala J, Boddu SHS, Shah S, Sirimulla S, Pal D, Mitra AK. Ocular sustained release nanoparticles containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther 2011; 27:163-72. [PMID: 21500985 DOI: 10.1089/jop.2010.0188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The objective of this study was to develop and characterize polymeric nanoparticles of appropriate stereoisomeric dipeptide prodrugs of acyclovir (L-valine-L-valine-ACV, L-valine-D-valine-ACV, D-valine-L-valine-ACV, and D-valine-D-valine-ACV) for the treatment of ocular herpes keratitis. METHODS Stereoisomeric dipeptide prodrugs of acyclovir (ACV) were screened for bioreversion in various ocular tissues, cell proliferation, and uptake across the rabbit primary corneal epithelial cell line. Docking studies were carried out to examine the affinity of prodrugs to the peptide transporter protein. Prodrugs with optimum characteristics were selected for the preparation of nanoparticles using various grades of poly (lactic-co-glycolic acid) (PLGA). Nanoparticles were characterized for the entrapment efficiency, surface morphology, size distribution, and in vitro release. Further, the effect of thermosensitive gels on the release of prodrugs from nanoparticles was also studied. RESULTS L-valine-L-valine-ACV and L-valine-D-valine-ACV were considered to be optimum in terms of enzymatic stability, uptake, and cytotoxicity. Docking results indicated that L-valine in the terminal position increases the affinity of the prodrugs to the peptide transporter protein. Entrapment efficiency values of L-valine-L-valine-ACV and L-valine-D-valine-ACV were found to be optimal with PLGA 75:25 and PLGA 65:35 polymers, respectively. In vitro release of prodrugs from nanoparticles exhibited a biphasic release behavior with initial burst phase followed by sustained release. Dispersion of nanoparticles in thermosensitive gels completely eliminated the burst release phase. CONCLUSION Novel nanoparticulate systems of dipeptide prodrugs of ACV suspended in thermosensitive gels may provide sustained delivery after topical administration.
Collapse
Affiliation(s)
- Jwala Jwala
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | | | | | | | | | | |
Collapse
|
33
|
Reichl S, Kölln C, Hahne M, Verstraelen J. In vitro cell culture models to study the corneal drug absorption. Expert Opin Drug Metab Toxicol 2011; 7:559-78. [PMID: 21381983 DOI: 10.1517/17425255.2011.562195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. AREAS COVERED This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. EXPERT OPINION Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
Collapse
Affiliation(s)
- Stephan Reichl
- Technische Universita¨t Braunschweig, Institut fu¨r Pharmazeutische Technologie, Braunschweig, Germany.
| | | | | | | |
Collapse
|
34
|
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS JOURNAL 2010; 12:348-60. [PMID: 20437123 DOI: 10.1208/s12248-010-9183-3] [Citation(s) in RCA: 797] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022]
Abstract
Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.
Collapse
Affiliation(s)
- Ripal Gaudana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, USA
| | | | | | | |
Collapse
|
35
|
Hariharan S, Minocha M, Mishra GP, Pal D, Krishna R, Mitra AK. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther 2010; 25:487-98. [PMID: 20028257 DOI: 10.1089/jop.2009.0049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The objectives of this work were (i) to screen ocular hypotensive prostaglandin (PGF2 alpha) analogs--bimatoprost, latanoprost, and travoprost as well as their free acid forms--for interaction with efflux pumps on the cornea and (ii) to assess the modulation of efflux upon co-administration of these prostaglandin analogs. METHODS Cultured rabbit primary corneal epithelial cells (rPCEC) were employed as an in vitro model for rabbit cornea. Transporter-specific interaction studies were carried out using Madin-Darby canine kidney (MDCK) cells overexpressing MDR1, MRP1, MRP2, MRP5, and BCRP. Freshly excised rabbit cornea was used as an ex vivo model to determine transcorneal permeability. RESULTS Cellular accumulation studies clearly showed that all prostaglandin analogs and their free acid forms are substrates of MRP1, MRP2, and MRP5. Bimatoprost was the only prostaglandin analog in this study to interact with P-gp. In addition, none of these molecules showed any affinity for BCRP. K (i) values of these prostaglandin analogs obtained from dose-dependent inhibition of erythromycin efflux in rPCEC showed bimatoprost (82.54 microM) and travoprost (94.77 microM) to have similar but higher affinity to efflux pumps than latanoprost (163.20 microM). Ex vivo studies showed that the permeation of these molecules across cornea was significantly elevated in the presence of specific efflux modulators. Finally, both in vitro and ex vivo experiments demonstrated that the efflux of these prostaglandin analogs could be modulated by co-administering them together. CONCLUSION Bimatoprost, latanoprost, travoprost, and their free acid forms are substrates of multiple drug efflux pumps on the cornea. Co-administration of these molecules together is a viable strategy to overcome efflux, which could simultaneously elicit a synergistic pharmacological effect, since these molecules have been shown to activate different receptor population for the reduction of intraocular pressure (IOP).
Collapse
Affiliation(s)
- Sudharshan Hariharan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
36
|
Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 2008; 60:1663-73. [PMID: 18845195 DOI: 10.1016/j.addr.2008.09.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
Abstract
Topical dosing of ophthalmic drugs to the eye is a widely accepted route of administration because of convenience, ease of use, and non-invasiveness. However, it has been well recognized that topical ocular delivery endures a low bioavailability due to the anatomical and physiological constraints of the eye which limit drug absorption from the pre-corneal surface. Nonionic surfactants as versatile functional agents in topical ocular drug delivery systems are uniquely suited to meet the challenges through their potential ability to increase bioavailability by increasing drug solubility, prolonging pre-corneal retention, and enhancing permeability. This review attempts to place in perspective the importance of polyoxyethylated nonionic surfactants in the design and development of topical ocular drug delivery systems by assessing their compatibility with common ophthalmic inactive ingredients, their impact on product stability, and their roles in facilitating ocular drugs to reach the target sites.
Collapse
Affiliation(s)
- Jim Jiao
- Pfizer Global Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
37
|
Abstract
Over the past two decades, many oral drugs have been designed in consideration of physicochemical properties to attain optimal pharmacokinetic properties. This strategy significantly reduced attrition in drug development owing to inadequate pharmacokinetics during the last decade. On the other hand, most ophthalmic drugs are generated from reformulation of other therapeutic dosage forms. Therefore, the modification of formulations has been used mainly as the approach to improve ocular pharmacokinetics. However, to maximize ocular pharmacokinetic properties, a specific molecular design for ocular drug is preferable. Passive diffusion of drugs across the cornea membranes requires appropriate lipophilicity and aqueous solubility. Improvement of such physicochemical properties has been achieved by structure optimization or prodrug approaches. This review discusses the current knowledge about ophthalmic drugs adapted from systemic drugs and molecular design for ocular drugs. I propose the approaches for molecular design to obtain the optimal ocular penetration into anterior segment based on published studies to date.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Senju Pharmaceutical Co, Ltd, 1-5-4 Murotani, Nishi-ku, Kobe, Hyogo 651-2241, Japan.
| |
Collapse
|
38
|
Abstract
Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders.
Collapse
|
39
|
Peptide prodrugs: improved oral absorption of lopinavir, a HIV protease inhibitor. Int J Pharm 2008; 359:7-14. [PMID: 18455890 DOI: 10.1016/j.ijpharm.2008.03.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 11/24/2022]
Abstract
Lopinavir (LVR) is extensively metabolized by CYP3A4 and is prevented from entering the cells by membrane efflux pumps such as P-gp and MRP2. In an approach to evade the first-pass metabolism and efflux of LVR, peptide prodrugs of LVR [valine-valine-lopinavir (VVL) and glycine-valine-lopinavir (GVL)] were synthesized. Prodrugs were identified with 1H and 13C NMR spectra and LC/MS/MS was employed to evaluate their mass and purity. Solubility studies indicated that the prodrugs have enhanced aqueous solubilities relative to parent LVR. Accumulation and transport data of VVL and GVL across MDCKII-MDR1 and MDCKII-MRP2 cells indicated evasion of prodrugs' efflux by P-gp and MRP2 significantly. Permeability studies across Caco-2 cells indicated that the prodrugs are transported by peptide transporters and have increased permeability as compared with LVR. VVL and GVL exhibited significantly better degradation rate constants as compared with LVR in rat liver microsomes. Enzymatic stability studies in Caco-2 cell homogenate indicated that the peptide prodrugs are first converted to the ester intermediate (amino acid prodrug VL) and then finally to the parent drug. Overall, the advantages of utilizing peptide prodrugs include chemical modification of the compound to achieve targeted delivery via peptide transporters present across the intestinal epithelium, significant evasion of efflux and CYP3A4 mediated metabolism and significantly better solubility profiles. Therefore, in vitro studies demonstrated that peptide prodrug derivatization of LVR may be an effective strategy for evading its efflux and enhancing its systemic concentrations.
Collapse
|
40
|
Becker U, Ehrhardt C, Daum N, Baldes C, Schaefer UF, Ruprecht KW, Kim KJ, Lehr CM. Expression of ABC-transporters in human corneal tissue and the transformed cell line, HCE-T. J Ocul Pharmacol Ther 2007; 23:172-81. [PMID: 17444805 DOI: 10.1089/jop.2006.0095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The aim of this study was to elucidate the expression pattern of transport proteins relevant to drug absorption in human cornea and to assess the human corneal epithelial cell line, HCE-T, regarding its use as an in vitro model for drug-absorption studies. METHODS Human corneal tissue and HCE-T cells were examined for the expression of P-glycoprotein (P-gp/MDR1), multidrug resistance-associated protein 1 (MRP1), multidrug resistance-associated protein 2 (MRP2), lung resistance-related protein (LRP), and breast cancer-resistance protein (BCRP), using reverse transcriptase-polymerase chain reaction and immunofluorescence microscopy. Moreover, transporter activity was measured by bi-directional flux studies across excised human cornea and HCE-T cell layers using a P-gp/MDR1 substrate, rhodamine 123 (Rh123). RESULTS Transport studies of Rh123 revealed no significant differences in fluxes in the apical-to-basolateral and basolateral-to-apical directions across excised human corneas or HCE-T cell layers, suggesting the absence or insignificant, if any, participation of P-gp/MDR1 to Rh123 fluxes. Of all the transporter proteins under investigation, only LRP was found in human cornea. By contrast, a signal for LRP was not found in HCE-T, but the expression of MRP1, MRP2, and BCRP could be confirmed. Of note is the lack of P-gp/MDR1 expression in any of the specimens we examined. CONCLUSIONS Only a limited array of ABC-transporters is functionally expressed in human cornea. The expression pattern of HCE-T cells appears to be widely different from that of the native corneal tissue. Hence, the in vitro model of human cornea, HCE-T, should be used with much caution when predicting transport rates across the human corneal epithelial barrier in vivo.
Collapse
Affiliation(s)
- Ulrich Becker
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules 2007; 12:373-88. [PMID: 17851396 PMCID: PMC6149453 DOI: 10.3390/12030373] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/16/2022] Open
Abstract
While the mammalian eye is seldom considered an organ of drug metabolism, the capacity for biotransformation is present. Compared to the liver, the metabolic capabilities of the eye are minuscule; however, phase I and phase II metabolic activities have been detected in various ocular structures. The careful consideration of ocular tissue metabolic processes within the eye has important implications for controlling the detoxification of therapeutic agents and for providing the potential for site-specific bio-activation of certain drug molecules, thus enabling significant improvements in drug efficacy and the minimization of side-effect from either local or systemic drug delivery to the eye. Knowledge of these processes is important to prodrug and codrug development and to researchers involved in the design, delivery and metabolism of ophthalmic drugs. This present article reviews the progress in ocular prodrug and codrug design and delivery in light of ocular metabolic activities.
Collapse
Affiliation(s)
- Abeer M. Al-Ghananeem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA; e-mail:
| | | |
Collapse
|
42
|
Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm 2006; 336:12-21. [PMID: 17156953 PMCID: PMC1995119 DOI: 10.1016/j.ijpharm.2006.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 01/12/2023]
Abstract
Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium, thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the P-glycoprotein (P-gp) in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multidrug resistance associated proteins (MRPs) contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40-HCEC and rPCEC were selected for in vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [(3)H]-cyclosporine-A and [(14)C]-erythromycin, which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at approximately 272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC, and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band approximately 181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at approximately 190 kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [(3)H]-cyclosporine-A and [(14)C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40-HCEC and rPCEC. Similarly a significant elevation in (A-->B) permeability of [(3)H]-cyclosporine-A and [(14)C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A-->B transport of [(3)H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding.
Collapse
Affiliation(s)
- Pradeep K. Karla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| | - Tim Quinn
- University of Missouri at Kansas City, Medical School, MEDLAB-Pulmonary & Infectious Disease Research, Kansas City, Missouri, 64108
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64110
| |
Collapse
|