1
|
Fernandez JE, Egli A, Overesch G, Perreten V. Time-calibrated phylogenetic and chromosomal mobilome analyses of Staphylococcus aureus CC398 reveal geographical and host-related evolution. Nat Commun 2024; 15:5526. [PMID: 38951499 PMCID: PMC11217367 DOI: 10.1038/s41467-024-49644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
An international collection of Staphylococcus aureus of clonal complex (CC) 398 from diverse hosts spanning all continents and a 30 year-period is studied based on whole-genome sequencing (WGS) data. The collection consists of publicly available genomic data from 2994 strains and 134 recently sequenced Swiss methicillin-resistant S. aureus (MRSA) CC398 strains. A time-calibrated phylogeny reveals the presence of distinct phylogroups present in Asia, North and South America and Europe. European MRSA diverged from methicillin-susceptible S. aureus (MSSA) at the beginning of the 1950s. Two major European phylogroups (EP4 and EP5), which diverged approximately 1974, are the main drivers of MRSA CC398 spread in Europe. Within EP5, an emergent MRSA lineage spreading among the European horse population (EP5-Leq) diverged approximately 1996 from the pig lineage (EP5-Lpg), and also contains human-related strains. EP5-Leq is characterized by staphylococcal cassette chromosome mec (SCCmec) IVa and spa type t011 (CC398-IVa-t011), and EP5-Lpg by CC398-SCCmecVc-t011. The lineage-specific antibiotic resistance and virulence gene patterns are mostly mediated by the acquisition of mobile genetic elements like SCCmec, S. aureus Genomic Islands (SaGIs), prophages and transposons. Different combinations of virulence factors are present on S. aureus pathogenicity islands (SaPIs), and novel antimicrobial resistance gene containing elements are associated with certain lineages expanding in Europe. This WGS-based analysis reveals the actual evolutionary trajectory and epidemiological trend of the international MRSA CC398 population considering host, temporal, geographical and molecular factors. It provides a baseline for global WGS-based One-Health studies of adaptive evolution of MRSA CC398 as well as for local outbreak investigations.
Collapse
Affiliation(s)
- Javier Eduardo Fernandez
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Gudrun Overesch
- Center for Zoonoses, Animal Bacterial Diseases and Antimicrobial Resistance, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
3
|
Kohnen AB, Wiedenheft AM, Traub-Dargatz JL, Short DM, Cook KL, Lantz K, Morningstar-Shaw B, Lawrence JP, House S, Marshall KL, Rao S. Antimicrobial susceptibility of Salmonella and Escherichia coli from equids sampled in the NAHMS 2015-16 equine study and association of management factors with resistance. Prev Vet Med 2023; 213:105857. [PMID: 36773374 DOI: 10.1016/j.prevetmed.2023.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Several studies have investigated antimicrobial resistance (AMR) in Salmonella spp. and Escherichia coli isolated from hospitalized horses, but studies conducted on community-based populations of equids are limited. The factors associated with AMR in these bacteria in the general horse population are not well understood. The primary objective of our study was to estimate the prevalence of Salmonella and describe antimicrobial susceptibility of Salmonella and E. coli from equids across the United States. The second objective was to identify associations between health management and biosecurity practices and AMR. Fecal samples submitted from 1357 equids on 199 operations were tested for Salmonella, identifying 27 positive samples with 29 isolates belonging to 18 serotypes. Fecal sample and operation-level prevalence of Salmonella was 2.0% (27/1357) and 7.0% (14/199), respectively. Most (25/29) isolates were pan-susceptible while four isolates exhibited resistance, three of which were multidrug resistant. Of the 721 samples cultured for E. coli, 85% (613/721) were positive. Eighty-six percent of the E. coli isolates recovered were pan-susceptible (529/612). Ten isolates were intermediate to one antimicrobial drug and susceptible to all others. Seventy-three E. coli isolates (11.9%, SE=1.3) were resistant to one or more antimicrobials, corresponding to a 33.0% (64/194) operation-level prevalence. Resistance to sulfonamide drugs was most common with 63 isolates (10.3%) resistant to sulfisoxazole, 57 of which (9.3%) were resistant to trimethoprim-sulfamethoxazole. MDR in E. coli was rare (1.8%, SE=0.5). Univariate and multivariable regression were used to evaluate associations between health management and biosecurity questionnaire items and AMR in E. coli. The outcome modeled was resistance to any of the 14 tested antimicrobials. Depending on the operation type, operations with greater than 20 resident equids were significantly associated with resistance. In addition, performance operations were significantly associated with resistance when compared to farm/ranch operations. Operations with feed containers that prevent fecal contamination and those that had treated any equids for illness or injury were associated with a lower AMR. The study results suggest that equids in the general population appear to pose low risk of shedding antimicrobial resistant strains of Salmonella and E. coli, and therefore low transmission potential to other equids, animals, humans, or the environment. However, it is prudent to practice good hand hygiene to prevent spread of Salmonella as well as AMR, and to protect both animal and human health. Despite study limitations, potential management factors that may influence prevalence and prevent spread of AMR shed by equids were identified.
Collapse
Affiliation(s)
- Allison B Kohnen
- National Animal Health Monitoring System, Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Alyson M Wiedenheft
- National Animal Health Monitoring System, Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA; Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Josie L Traub-Dargatz
- National Animal Health Monitoring System, Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA; Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Diana M Short
- National Animal Health Monitoring System, Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Kim L Cook
- United States Department of Agriculture, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Services, Athens, GA, USA
| | - Kristina Lantz
- United States Department of Agriculture, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, USA
| | - Brenda Morningstar-Shaw
- United States Department of Agriculture, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, USA
| | - Jodie Plumblee Lawrence
- United States Department of Agriculture, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Services, Athens, GA, USA
| | - Sandra House
- United States Department of Agriculture, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Services, Athens, GA, USA
| | - Katherine L Marshall
- National Animal Health Monitoring System, Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Agrawal S, Mangera Z, Murray RL, Howle F, Evison M. Successes and Challenges of Implementing Tobacco Dependency Treatment in Health Care Institutions in England. Curr Oncol 2022; 29:3738-3747. [PMID: 35621689 PMCID: PMC9139257 DOI: 10.3390/curroncol29050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
There is a significant body of evidence that delivering tobacco dependency treatment within acute care hospitals can deliver high rates of tobacco abstinence and substantial benefits for both patients and the healthcare system. This evidence has driven a renewed investment in the UK healthcare service to ensure all patients admitted to hospital are provided with evidence-based interventions during admission and after discharge. An early-implementer of this new wave of hospital-based tobacco dependency treatment services is "the CURE project" in Greater Manchester, a region in the North West of England. The CURE project strives to change the culture of a hospital system, to medicalise tobacco dependency and empower front-line hospital staff to deliver an admission bundle of care, including identification of patients that smoke, provision of very brief advice (VBA), protocolised prescription of pharmacotherapy, and opt-out referral to the specialist CURE practitioners. This specialist team provides expert treatment and behaviour change support during the hospital admission and can agree a support package after discharge, with either hospital-led or community-led follow-up. The programme has shown exceptional clinical effectiveness, with 22% of all smokers admitted to hospital abstinent from tobacco at 12 weeks, and exceptional cost-effectiveness with a public value return on investment ratio of GBP 30.49 per GBP 1 invested and a cost per QALY of GBP 487. There have been many challenges in implementing this service, underpinned by the system-wide culture change and ensuring the good communication and engagement of all stakeholders across the complex networks of the tobacco control and healthcare system. The delivery of hospital-based tobacco dependency services across all NHS acute care hospitals represents a substantial step forward in the fight against the tobacco epidemic.
Collapse
Affiliation(s)
- Sanjay Agrawal
- Institute for Lung Health, Department of Respiratory Medicine, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK;
| | - Zaheer Mangera
- Department of Respiratory Medicine, North Middlesex University Hospital, Sterling Way, London N18 1QX, UK;
| | - Rachael L. Murray
- Academic Unit of Lifespan and Population Health, School of Medicine, Nottingham University, Nottingham NG7 2RD, UK;
| | - Freya Howle
- Greater Manchester CURE Programme Team, Greater Manchester Cancer Alliance, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK;
| | - Matthew Evison
- Lung Cancer & Thoracic Surgery Directorate, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
5
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Staphylococcus aureus in cattle and horses. EFSA J 2022; 20:e07312. [PMID: 35582361 PMCID: PMC9087474 DOI: 10.2903/j.efsa.2022.7312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for cattle and horses in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR S. aureus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (60-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 4 (Categories A, B and D; 1-5%, 5-10% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 3 and 5 (Categories C and E, 33-90% and 60-90% probability of meeting the criteria, respectively). The animal species to be listed for AMR S. aureus according to Article 8 criteria include mainly mammals, birds, reptiles and fish.
Collapse
|
6
|
Kaiser-Thom S, Gerber V, Collaud A, Hurni J, Perreten V. Prevalence and WGS-based characteristics of Staphylococcus aureus in the nasal mucosa and pastern of horses with equine pastern dermatitis. BMC Vet Res 2022; 18:79. [PMID: 35209904 PMCID: PMC8867626 DOI: 10.1186/s12917-021-03053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Many contributing factors are involved in the development of equine pastern dermatitis (EPD). Among the most frequently suspected is Staphylococcus aureus, known for its pathogenic potential in skin and soft tissue infections. We therefore investigated the association between S. aureus carriage and EPD. RESULTS One hundred five EPD-affected horses and 95 unaffected controls were examined for the presence of methicillin-resistant and -susceptible Staphylococcus aureus (MRSA and MSSA) on the pastern skin and in the nostrils. S. aureus isolates were cultivated from swab samples on selective MSSA and MRSA chromogenic agar and identified using MALDI-TOF MS. Isolates were analysed by Illumina whole genome sequencing for genetic relatedness (cgMLST, spa typing), and for the presence of antimicrobial resistance and virulence determinants. A markedly higher proportion of samples from EPD-affected horses proved positive for S. aureus, both from the pastern (59.0 % vs. 6.3 % in unaffected horses; P<0.001), and from the nose (59.0 % vs. 8.4 %; P<0.001). Isolates belonged to 20 sequence types (ST) with lineages ST15-t084 (spa) (18 %), ST1-t127 (13 %), and ST1-t1508 (12 %) being predominant. Eight S. aureus were MRSA ST398-t011 and ST6239-t1456, and contained the staphylococcal cassette chromosome SCCmecIVa. Antimicrobial resistance genes were almost equally frequent in pastern and in nasal samples, whereas some virulence factors such as the beta-hemolysin, ESAT-6 secretion system, and some enterotoxins were more abundant in isolates from pastern samples, possibly enhancing their pathogenic potential. CONCLUSIONS The markedly higher prevalence of S. aureus containing specific virulence factors in affected skin suggests their contribution in the development and course of EPD.
Collapse
Affiliation(s)
- Sarah Kaiser-Thom
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland
| | - Alexandra Collaud
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joel Hurni
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland.,Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Sawhney SS, Ransom EM, Wallace MA, Reich PJ, Dantas G, Burnham CAD. Comparative Genomics of Borderline Oxacillin-Resistant Staphylococcus aureus Detected during a Pseudo-outbreak of Methicillin-Resistant S. aureus in a Neonatal Intensive Care Unit. mBio 2022; 13:e0319621. [PMID: 35038924 PMCID: PMC8764539 DOI: 10.1128/mbio.03196-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 01/26/2023] Open
Abstract
Active surveillance for methicillin-resistant Staphylococcus aureus (MRSA) is a component of our neonatal intensive care unit (NICU) infection prevention efforts. Recent atypical trends prompted review of 42 suspected MRSA isolates. Species identification was confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and methicillin resistance was reevaluated by PBP2a lateral flow assay, cefoxitin/oxacillin susceptibility testing, mecA and mecC PCR, and six commercially available MRSA detection agars. All isolates were confirmed S. aureus, but only eight were MRSA (cefoxitin resistant, PBP2a positive, mecA positive, growth on all MRSA screening agars). One MRSA isolate was cefoxitin susceptible but PBP2a and mecA positive, and the remaining 33 were cefoxitin susceptible, PBP2a negative, and mecA negative; interestingly, these isolates grew inconsistently across MRSA screening agars and had susceptibility profiles consistent with that of borderline oxacillin-resistant S. aureus (BORSA). Comparative genomic analyses found these BORSA isolates to be phylogenetically diverse and not representative of clonal expansion or shared gene content, though clones of two NICU strains were infrequently observed over 8 months. We identified 6 features-substitutions and truncations in PBP2, PBP4, and GdpP and beta-lactamase hyperproduction-that were used to generate a random forest classifier to distinguish BORSA from methicillin-susceptible S. aureus (MSSA) in our cohort. Our model demonstrated a robust ability to predict the BORSA phenotype among isolates collected across two continents (validation area under the curve [AUC], 0.902). Taking these findings together, we observed an unexpected prevalence of BORSA in our NICU, BORSA misclassification by existing MRSA screening methods, and markers that are together discriminatory for BORSA and MSSA within our cohort. This work has implications for epidemiological reporting of MRSA rates for centers using different screening methods. IMPORTANCE In this study, we found a high prevalence of Staphylococcus aureus isolates exhibiting a borderline oxacillin resistance phenotype (BORSA) in our neonatal intensive care unit (NICU) serendipitously due to the type of MRSA screening agar used by our laboratory for active surveillance cultures. Subsequent phenotypic and molecular characterization highlighted an unexpected prevalence and variability of BORSA isolates. Through whole-genome sequencing, we interrogated core and accessory genome content and generated a random forest classification model to identify mutations and truncations in the PBP2, PBP4, and GdpP proteins and beta-lactamase hyperproduction, which correlated with BORSA and MSSA phenotypes among S. aureus clinical isolates collected across two continents. In consideration of these findings, this work will help clinical microbiology laboratories and clinicians identify MRSA screening shortfalls and draw attention to the non-mecA-mediated BORSA phenotype.
Collapse
Affiliation(s)
- Sanjam S. Sawhney
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric M. Ransom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick J. Reich
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Santos SCL, Saraiva MMS, Moreira Filho ALB, Silva NMV, De Leon CMG, Pascoal LAF, Givisiez PEN, Gebreyes WA, Oliveira CJB. Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comp Immunol Microbiol Infect Dis 2021; 79:101697. [PMID: 34530296 DOI: 10.1016/j.cimid.2021.101697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Methicillin resistance mediated by the mecA gene in Staphylococcus aureus, also known as "true MRSA", is typically associated with high oxacillin MIC values (≥8 mg/L). Because non-mecA-mediated oxacillin resistant S. aureus phenotypes can also cause hard-to-treat diseases in humans, their misidentification as methicillin-susceptible S. aureus strains (MSSA) can compromise the efficiency of the antimicrobial therapy. These strains have been refereed as Borderline Oxacillin-Resistant S. aureus (BORSA) but their characterization and role in clinical microbiology have been neglected. Considering the increasing importance of livestock-associated methicillin-resistant S. aureus ST398 (LA-MRSA) as an emerging zoonotic pathogen worldwide, this study aimed to report the genomic context of oxacillin resistance in porcine S. aureus ST398 strains. S. aureus isolates were recovered from asymptomatic pigs from three herds. Oxacillin MIC values ranged from 4 to 32 mg/L. MALDI-TOF-confirmed isolates were screened for mecA and mecC by PCR and genotyped by means of PFGE and Rep-PCR. Seven isolates were whole genome sequenced. None of the isolates harbored the mecA gene or its variants. Although all seven sequenced isolates belonged to one sequence type (ST398), two different spa types (t571 and t1471) were identified. All isolates harbored conserved blaZ gene operon and no mutations on genes encoding for penicillin-binding-proteins were detected. Genes conferring resistance against other drugs such as aminoglycosides, chloramphenicol, macrolide, lincosamide and streptogramin (MLS), tetracycline and trimethoprim were also detected. Isolates also harbored virulence genes encoding for adhesins (icaA; icaB; icaC; icaD; icaR), toxins (hlgA; hlgB; hlgC; luk-PV) and protease (aur). Pigs can serve as reservoirs of non-mecA-mediated oxacillin-resistant ST398 strains potentially pathogenic to humans. Considering that mecA has been the main target to screen methicillin-resistant staphylococci, the occurrence of BORSA phenotypes is probably underestimated in livestock.
Collapse
Affiliation(s)
- S C L Santos
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - M M S Saraiva
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil; Department of Veterinary Pathology, Sao Paulo State University (UNESP), Via de acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, SP, Brazil
| | - A L B Moreira Filho
- Department of Animal Science, College for Agricultural, Social and Human Sciences, Federal University of Paraiba (UFPB), Rua João Pessoa s/n, 58220-000, Bananeiras, PB, Brazil
| | - N M V Silva
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - C M G De Leon
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - L A F Pascoal
- Department of Animal Science, College for Agricultural, Social and Human Sciences, Federal University of Paraiba (UFPB), Rua João Pessoa s/n, 58220-000, Bananeiras, PB, Brazil
| | - P E N Givisiez
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - W A Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University (OSU), 43210, Columbus, OH, USA; Global One Health Initiative (GOHi), The Ohio State University, 43210, Columbus, OH, USA
| | - C J B Oliveira
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil; Global One Health Initiative (GOHi), The Ohio State University, 43210, Columbus, OH, USA.
| |
Collapse
|
9
|
Schmidt JS, Kuster SP, Nigg A, Dazio V, Brilhante M, Rohrbach H, Bernasconi OJ, Büdel T, Campos-Madueno EI, Gobeli Brawand S, Schuller S, Endimiani A, Perreten V, Willi B. Poor infection prevention and control standards are associated with environmental contamination with carbapenemase-producing Enterobacterales and other multidrug-resistant bacteria in Swiss companion animal clinics. Antimicrob Resist Infect Control 2020; 9:93. [PMID: 32576281 PMCID: PMC7310346 DOI: 10.1186/s13756-020-00742-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background Intensive medical care in companion animal clinics could pose a risk for the selection and dissemination of multidrug-resistant organisms (MDROs). Infection prevention and control (IPC) concepts are key measures to reduce the spread of MDROs, but data on IPC standards in companion animal clinics is sparse. The study assessed IPC standards in seven companion animal clinics and practices in Switzerland by structured IPC audits and combined results with environmental MDRO contamination and MDRO carriage of the personnel. Methods IPC audits were held between August 2018 and January 2019. The observations in 34 IPC areas were scored based on predefined criteria (not fulfilled/partially fulfilled/fulfilled = score 0/1/2). Environmental swabs and nasal and stool samples from veterinary personnel were tested for methicillin-resistant (MR) staphylococci and macrococci and for colistin-resistant, extended-spectrum β-lactamase- and carbapenemase-producing (CP) Enterobacterales (CPE). Species was identified by MALDI-TOF MS, antimicrobial resistance determined by microdilution and β-lactam resistance gene detection, and genetic relatedness assessed by REP−/ERIC-PCR and multilocus sequence typing. Results Of a maximum total IPC score of 68, the institutions reached a median (range) score of 33 (19–55). MDROs were detected in median (range) 8.2% (0–33.3%) of the sampling sites. Clinics with low IPC standards showed extensive environmental contamination, i.e. of intensive care units, consultation rooms and utensils. CPE were detected in two clinics; one of them showed extensive contamination with CP Klebsiella pneumoniae (ST11, blaOXA-48) and MR Staphylococcus pseudintermedius (ST551, mecA). Despite low IPC scores, environmental contamination with MDROs was low in primary opinion practices. Three employees were colonized with Escherichia coli ST131 (blaCTX-M-15, blaCTX-M-27, blaCTX-M-14). Two employees carried CP E. coli closely related to environmental (ST410, blaOXA-181) and patient-derived isolates (ST167, blaNDM-5). MR Staphylococcus aureus (ST225, mecA) and MR S. pseudintermedius (ST551, mecA) of the same sequence types and with similar resistance profiles were found in employees and the environment in two clinics. Conclusions The study indicates that IPC standards in companion animal clinics are variable and that insufficient IPC standards could contribute to the evolution of MDROs which can be transferred between the environment and working personnel. The implementation of IPC concepts in companion animal clinics should urgently be promoted.
Collapse
Affiliation(s)
- Janne S Schmidt
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefan P Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Zurich, Zurich, Switzerland
| | - Aurélien Nigg
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Valentina Dazio
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Brilhante
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Helene Rohrbach
- Small Animal Clinic, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Odette J Bernasconi
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Thomas Büdel
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Edgar I Campos-Madueno
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Stefanie Gobeli Brawand
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Simone Schuller
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Schnepf A, Bienert-Zeit A, Ertugrul H, Wagels R, Werner N, Hartmann M, Feige K, Kreienbrock L. Antimicrobial Usage in Horses: The Use of Electronic Data, Data Curation, and First Results. Front Vet Sci 2020; 7:216. [PMID: 32411737 PMCID: PMC7200993 DOI: 10.3389/fvets.2020.00216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
The usage of antimicrobial drugs (AMs) leads to an increase in antimicrobial resistance (AMR). Although different antimicrobial usage (AMU) monitoring programs exist for livestock animals in Germany, there is no such system for horses. However, with the increasing usage of electronic practice management software (EPMS), it is possible to analyze electronic field data generated for routine purposes. The aim of this study was to generate AMU data for German horses with data from the Clinic for Horses (CfH), University of Veterinary Medicine Hannover (TiHo), and in addition to show that different processes of data curation are necessary to provide results, especially considering quantitative indices. In this investigation, the number of antimicrobial doses used and the amount and percentage of active ingredients applied were calculated. Data contained all drugs administered between the 1st of January and the 31st of December 2017. A total of 2,168 horses were presented for veterinary care to the CfH and 34,432 drug applications were documented for 1,773 horses. Of these, 6,489 (18.85%) AM applications were documented for 837 (47.21%) horses. In 2017, 162.33 kg of active ingredients were documented. The most commonly used antibiotic classes were sulfonamides (84.32 kg; 51.95 %), penicillins (30.11 kg; 18.55%) and nitroimidazoles (24.84 kg; 15.30%). In 2017, the proportion of Critically Important Antibiotics (CIA)-Highest Priority used was 0.15% (0.24 kg) and the proportion of CIA-High Priority used was 20.85% (33.85 kg). Of the total 9,402 entries of antimicrobial active ingredients, the three with the largest number used were sulfonamides [n = 2,798 (29.76%)], trimethoprim [n = 2,757 (29.76%)] and aminoglycosides [n = 1,381 (14.69%)]. Comparison between Administered Daily Dose (ADA) and Recommended Daily Dose of CfH (RDDCfH), showed that 3.26% of ADA were below RDDCfH, 3.18% exceeded RDDCfH and 93.55% were within the range around RDDCfH. This study shows that data generated by an EPMS can be evaluated once the method is set up and validated. The method can be transferred to evaluate data from the EPMS of other clinics or animal species, but the transferability depends on the quality of AMU documentation and close cooperation with respective veterinarians is essential.
Collapse
Affiliation(s)
- Anne Schnepf
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Astrid Bienert-Zeit
- Clinic for Horses, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Hatice Ertugrul
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Rolf Wagels
- Information and Data Service (TiHo-IDS), University for Veterinary Medicine Hannover, Hanover, Germany
| | - Nicole Werner
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Maria Hartmann
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Karsten Feige
- Clinic for Horses, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
11
|
Kittl S, Brodard I, Heim D, Andina-Pfister P, Overesch G. Methicillin-Resistant Staphylococcus aureus Strains in Swiss Pigs and Their Relation to Isolates from Farmers and Veterinarians. Appl Environ Microbiol 2020; 86:e01865-19. [PMID: 31836575 PMCID: PMC7028968 DOI: 10.1128/aem.01865-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged over the last few decades as a One Health problem with an increasing prevalence in various animal species. The most notable animals are pigs, as asymptomatic carriers, and horses, where there is often an association with infections. The current study looked at the course of MRSA prevalence in Swiss livestock since 2009, with a special focus on pigs, followed by screening of veterinarians and farmers. Livestock isolates were obtained from the Swiss monitoring program and then characterized by spa typing. Concentrating on the year 2017, we analyzed the prevalence of MRSA in Swiss veterinarians and farmers, followed by whole-genome sequencing of selected human and animal strains. The phylogeny was assessed by applying core-genome multilocus sequence typing (MLST) and single-nucleotide polymorphism (SNP) analyses, followed by screening for resistance genes and virulence factors. The prevalence of MRSA in Swiss pigs showed a dramatic increase from 2% in 2009 to 44% in 2017. Isolates typically belonged to clonal complex 398 (CC398), split between spa t011 and t034. The higher prevalence was mainly due to an increase in t011. spa t034 strains from farmers were found to be closely associated with porcine t034 strains. The same could be shown for spa t011 strains from horses and veterinarians. spa t034 strains had a high number of additional resistance genes, and two strains had acquired the immune evasion cluster. However, all but one of the pig spa t011 strains clustered in a separate group. Thus, the increase in pig spa t011 strains does not directly translate to humans.IMPORTANCE MRSA is an important human pathogen; thus, its increasing prevalence in livestock over the last decade has a potentially large impact on public health. Farmers and veterinarians are especially at risk due to their close contact with animals. Our work demonstrates a dramatic increase in MRSA prevalence in Swiss pigs, from 2% in 2009 to 44% in 2017. Whole-genome sequencing allowed us to show a close association between farmer and pig strains as well as veterinarian and horse strains, indicating that the respective animals are a likely source of human colonization. Furthermore, we could demonstrate that pig spa t011 strains cluster separately and are probably less likely to colonize humans than are pig spa t034 strains. This research may provide a basis for a more substantiated risk assessment and preventive measures.
Collapse
Affiliation(s)
- Sonja Kittl
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Isabelle Brodard
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Dagmar Heim
- Federal Food Safety and Veterinary Office, Bern, Switzerland
| | | | - Gudrun Overesch
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Potier JFN, Durham AE. Antimicrobial susceptibility of bacterial isolates from ambulatory practice and from a referral hospital. J Vet Intern Med 2020; 34:300-306. [PMID: 31849110 PMCID: PMC6979268 DOI: 10.1111/jvim.15685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Responsible use of antimicrobials in equine practice relies on knowledge of common bacterial isolates and their antimicrobial sensitivities. OBJECTIVES To assess the frequency of bacterial resistance to a combination of parenteral penicillin and gentamicin and to trimethoprim and sulfamethoxazole for PO use in a selection of clinical isolates, and subsequently to determine the prevalence of resistance to antimicrobials that might then be used as alternatives to first-line antimicrobials for the same isolates. METHODS Retrospective analysis of minimal inhibitory concentrations (MICs) of antimicrobials for 6354 bacterial isolates from 365 ambulatory practices and 519 isolates from a referral hospital. The MICs were used to indicate sensitivity or resistance to commonly used antimicrobials and the prevalences of resistance were compared between origin of the isolates, and among antimicrobial drugs. RESULTS Isolates from the referral hospital were significantly (P < .05) more likely to be resistant to the antimicrobials tested than those derived from ambulatory practice. Overall, 91% of the ambulatory isolates and 64% of the hospital isolates were sensitive to penicillin-gentamicin. For trimethoprim-sulfamethoxazole combination, 82% of the ambulatory practice isolates and 56% of the referral hospital isolates were sensitive. CONCLUSIONS AND CLINICAL IMPORTANCE Most isolates were sensitive to penicillin and gentamicin as well as trimethoprim-sulfamethoxazole. No predictable efficacious second choice antimicrobial was identified for those isolates resistant to the first-line antimicrobials. The likelihood of isolates being sensitive to second choice antimicrobials was variable but generally higher for ambulatory isolates compared to referral isolates. Bacterial identification and measurement of MIC are essential to make the appropriate antimicrobial choice.
Collapse
|
13
|
Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins (Basel) 2019; 11:toxins11090535. [PMID: 31540335 PMCID: PMC6783909 DOI: 10.3390/toxins11090535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
The detection of borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a challenge to both, veterinary and human laboratories. Between 2015 and 2017, 19 equine S. aureus with elevated minimal inhibitory concentrations for oxacillin were detected in routine diagnostics. The aim of this study was to characterize these isolates to identify factors possibly associated with the BORSA phenotype. All S. aureus were subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). A quantifiable β-lactamase activity assay was performed for a representative subset of 13 isolates. The WGS data analysis of the 19 BORSA isolates identified two different genomic lineages, sequence type (ST) 1 and ST1660. The core genome multilocus sequence typing (cgMLST) revealed a close relatedness of all isolates belonging to either ST1 or ST1660. The WGS analysis identified the resistance genes aadD, dfrG, tet(L), and/or blaZ and aacA-aphD. Phenotypic resistance to penicillins, aminoglycosides, tetracyclines, fluoroquinolones and sulfamethoxazole/trimethoprim was observed in the respective isolates. For the penicillin-binding proteins 1-4, amino acid substitutions were predicted using WGS data. Since neither transglycosylase nor transpeptidase domains were affected, these alterations might not explain the BORSA phenotype. Moreover, β-lactamase activity was found to be associated with an inducible blaZ gene. The lineage-specific differences regarding the expression profiles were noted.
Collapse
|
14
|
Wang J, Wang J, Wang Y, Sun P, Zou X, Ren L, Zhang C, Liu E. Protein expression profiles in methicillin-resistant Staphylococcus aureus (MRSA) under effects of subminimal inhibitory concentrations of imipenem. FEMS Microbiol Lett 2019; 366:5570583. [PMID: 31529016 DOI: 10.1093/femsle/fnz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.,Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Junrui Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Yanyan Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Peng Sun
- Pathogen and Immunity Research Center, College of Basic Medicine, Inner Mongolia Medical University, Jinshan Avenue, Hohhot, Inner Mongolia 010110, China
| | - Xiaohui Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention; China CDC, Key Laboratory for Medical Virology, Ministry of Health, Beijing 102206, China
| | - Luo Ren
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Chunxia Zhang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Enmei Liu
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
15
|
Raidal SL. Antimicrobial stewardship in equine practice. Aust Vet J 2019; 97:238-242. [DOI: 10.1111/avj.12833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- SL Raidal
- School of Animal and Veterinary SciencesCharles Sturt University Wagga Wagga New South Wales 2650 Australia
| |
Collapse
|
16
|
Albert E, Biksi I, Német Z, Csuka E, Kelemen B, Morvay F, Bakos Z, Bodó G, Tóth B, Collaud A, Rossano A, Perreten V. Outbreaks of a Methicillin-Resistant Staphylococcus aureus Clone ST398-t011 in a Hungarian Equine Clinic: Emergence of Rifampicin and Chloramphenicol Resistance After Treatment with These Antibiotics. Microb Drug Resist 2019; 25:1219-1226. [PMID: 31066624 DOI: 10.1089/mdr.2018.0384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Between July 2011 and May 2016, a total of 40 Staphylococcus aureus strains originating from 36 horses were confirmed as methicillin resistant (methicillin-resistant Staphylococcus aureus [MRSA]) in a university equine clinic. An additional 10 MRSA strains from 36 samples of clinic workers were obtained in October 2017. The first equine isolate represented the sequence type ST398, spa-type t011, and SCCmec IV. This isolate was resistant to a wide spectrum of antimicrobial agents. MRSA strains with the same genotype and with very similar resistance profiles were isolated on 21 more occasions from September 2013 to September 2014. A second outbreak occurred from May 2015 until May 2016. The first isolate in this second outbreak shared the same genotype, but was additionally resistant to chloramphenicol. The second isolate from August 2015 also showed resistance to rifampicin. The clone was isolated 18 times. Most of the human isolates shared the same genotype as the isolates from horses and their resistance patterns showed only slight differences. We can conclude that the MRSA-related cases at the Department and Clinic of Equine Medicine were all nosocomial infections caused by the same clonal lineage belonging to the clonal complex 398. The clonal complex 398 of equine origin is reported for the first time in Hungary. In addition, our observation of the emergence of new resistance to antimicrobial agents within the clonal lineage after treatment with antibiotics is of concern. Strict hygiene regulations have been introduced to lower the incidence of MRSA isolation and the related clinical disease.
Collapse
Affiliation(s)
- Ervin Albert
- Diagnostic Laboratory, Department and Clinic of Production Animal Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Imre Biksi
- Diagnostic Laboratory, Department and Clinic of Production Animal Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Zoltán Német
- Diagnostic Laboratory, Department and Clinic of Production Animal Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Edit Csuka
- Diagnostic Laboratory, Department and Clinic of Production Animal Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Bernadett Kelemen
- Diagnostic Laboratory, Department and Clinic of Production Animal Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Flóra Morvay
- Department and Clinic of Equine Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Zoltán Bakos
- Department and Clinic of Equine Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Gábor Bodó
- Department and Clinic of Equine Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Balázs Tóth
- Department and Clinic of Equine Medicine, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Alexandra Collaud
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Alexandra Rossano
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Abstract
ABSTRACT
Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin.
Collapse
|
18
|
de Jong NWM, Vrieling M, Garcia BL, Koop G, Brettmann M, Aerts PC, Ruyken M, van Strijp JAG, Holmes M, Harrison EM, Geisbrecht BV, Rooijakkers SHM. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J Biol Chem 2018; 293:4468-4477. [PMID: 29414776 PMCID: PMC5868266 DOI: 10.1074/jbc.ra117.000599] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/25/2018] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen capable of causing a broad range of diseases in many different hosts. S. aureus can adapt to its host through modification of its genome (e.g. by acquisition and exchange of mobile genetic elements that encode host-specific virulence factors). Recently, the prophage φSaeq1 was discovered in S. aureus strains from six different clonal lineages almost exclusively isolated from equids. Within this phage, we discovered a novel variant of staphylococcal complement inhibitor (SCIN), a secreted protein that interferes with activation of the human complement system, an important line of host defense. We here show that this equine variant of SCIN, eqSCIN, is a potent blocker of equine complement system activation and subsequent phagocytosis of bacteria by phagocytes. Mechanistic studies indicate that eqSCIN blocks equine complement activation by specific inhibition of the C3 convertase enzyme (C3bBb). Whereas SCIN-A from human S. aureus isolates exclusively inhibits human complement, eqSCIN represents the first animal-adapted SCIN variant that functions in a broader range of hosts (horses, humans, and pigs). Binding analyses suggest that the human-specific activity of SCIN-A is related to amino acid differences on both sides of the SCIN-C3b interface. These data suggest that modification of this phage-encoded complement inhibitor plays a role in the host adaptation of S. aureus and are important to understand how this pathogen transfers between different hosts.
Collapse
Affiliation(s)
- Nienke W M de Jong
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Manouk Vrieling
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands.,the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Brandon L Garcia
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Gerrit Koop
- the Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Matt Brettmann
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Piet C Aerts
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mark Holmes
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom, and
| | - Ewan M Harrison
- the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Brian V Geisbrecht
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Suzan H M Rooijakkers
- From the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands,
| |
Collapse
|
19
|
Adams R, Smith J, Locke S, Phillips E, Erol E, Carter C, Odoi A. An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory. BMC Vet Res 2018; 14:42. [PMID: 29402294 PMCID: PMC5800099 DOI: 10.1186/s12917-018-1367-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
Background Antimicrobial resistance limits traditional treatment options and increases costs. It is therefore important to estimate the magnitude of the problem so as to provide empirical data to guide control efforts. The aim of this study was to investigate the burden and patterns of antimicrobial resistance (AMR) among equine Staphylococcus samples submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) from 1993 to 2009. Retrospective data of 1711 equine Staphylococcus samples submitted to the UKVDL during the time period 1993 to 2009 were included in the study. Antimicrobial susceptibility testing, that included 16 drugs, were performed using cultures followed by the Kirby-Bauer disk diffusion susceptibility test. The proportion of resistant isolates by animal breed, species of organism, sample source, and time period were computed. Chi-square and Cochran-Armitage trend tests were used to identify significant associations and temporal trends, respectively. Logistic regression models were used to investigate predictors of AMR and multidrug resistance (MDR). Results A total of 66.3% of the isolates were resistant to at least one antimicrobial, most of which were Staphylococcus aureus (77.1%), while 25.0% were MDR. The highest level of resistance was to penicillins (52.9%). Among drug classes, isolates had the highest rate of AMR to at least one type of β-lactams (49.2%), followed by aminoglycosides (30.2%). Significant (p < 0.05) associations were observed between odds of AMR and horse breed, species of organism and year. Similarly, significant (p < 0.05) associations were identified between odds of MDR and breed and age. While some isolates had resistance to up to 12 antimicrobials, AMR profiles featuring single antimicrobials such as penicillin were more common than those with multiple antimicrobials. Conclusion Demographic factors were significant predictors of AMR and MDR. The fact that some isolates had resistance to up to 12 of the 16 antimicrobials assessed is quite concerning. To address the high levels of AMR and MDR observed in this study, future studies will need to focus on antimicrobial prescription practices and education of both practitioners and animal owners on judicious use of antimicrobials to slow down the development of resistance.
Collapse
Affiliation(s)
- Ronita Adams
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, 2407 River Dr., Knoxville, TN, 37996, USA
| | - Jackie Smith
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Rd., Lexington, KY, 40511, USA
| | - Stephen Locke
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Rd., Lexington, KY, 40511, USA
| | - Erica Phillips
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Rd., Lexington, KY, 40511, USA
| | - Erdal Erol
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Rd., Lexington, KY, 40511, USA
| | - Craig Carter
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Rd., Lexington, KY, 40511, USA
| | - Agricola Odoi
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, 2407 River Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
20
|
Hryniewicz MM, Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) – a more common problem than expected? J Med Microbiol 2017; 66:1367-1373. [DOI: 10.1099/jmm.0.000585] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria M. Hryniewicz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| |
Collapse
|
21
|
Bortolami A, Williams NJ, McGowan CM, Kelly PG, Archer DC, Corrò M, Pinchbeck G, Saunders CJ, Timofte D. Environmental surveillance identifies multiple introductions of MRSA CC398 in an Equine Veterinary Hospital in the UK, 2011-2016. Sci Rep 2017; 7:5499. [PMID: 28710350 PMCID: PMC5511188 DOI: 10.1038/s41598-017-05559-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial environmental and surgical site infection (SSI) surveillance was implemented from 2011–2016 in a UK Equine Referral Veterinary Hospital and identified 81 methicillin-resistant Staphylococcus aureus (MRSA) isolates. A cluster of MRSA SSIs occurred in early 2016 with the isolates confirmed as ST398 by multilocus sequence typing (MLST), which prompted retrospective analysis of all MRSA isolates obtained from the environment (n = 62), SSIs (n = 13) and hand plates (n = 6) in the past five years. Sixty five of these isolates were typed to CC398 and a selection of these (n = 38) were further characterised for resistance and virulence genes, SCCmec and spa typing. Overall, MRSA was identified in 62/540 (11.5%) of environmental samples, 6/81 of the hand-plates (7.4%) and 13/208 of the SSIs (6.3%). spa t011 was the most frequent (24/38) and Based Upon Repeat Pattern (BURP) analysis identified spa t011 as one of the two group founders of the main spa CC identified across the five years (spa CC011/3423). However, 3 singletons (t073, t786, t064) were also identified suggesting separate introductions into the hospital environment. This long-term MRSA surveillance study revealed multiple introductions of MRSA CC398 in a UK Equine Hospital, identifying an emerging zoonotic pathogen so far only sporadically recorded in the UK.
Collapse
Affiliation(s)
- Alessio Bortolami
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Nicola J Williams
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Catherine M McGowan
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK.,Institute of Ageing and Chronic Disease, Health and Life Sciences, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Padraig G Kelly
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Debra C Archer
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK.,Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020, Italy
| | - Gina Pinchbeck
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Christine J Saunders
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Dorina Timofte
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, CH64 7TE, UK. .,Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, CH64 7TE, UK.
| |
Collapse
|
22
|
Boyle AG, Rankin SC, Duffee LA, Morris D. Prevalence of Methicillin-Resistant Staphylococcus aureus from Equine Nasopharyngeal and Guttural Pouch Wash Samples. J Vet Intern Med 2017; 31:1551-1555. [PMID: 28661019 PMCID: PMC5598885 DOI: 10.1111/jvim.14783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is recognized as a cause of nosocomial infections in both human and veterinary medicine. Studies that examine the nasopharynx and guttural pouches of the horse as carriage sites for MRSA have not been reported. HYPOTHESIS/OBJECTIVE MRSA colonizes the nasopharynx and guttural pouch of horses. To determine the prevalence of MRSA in equine nasopharyngeal wash (NPW) and guttural pouch lavage (GPL) samples in a field population of horses. SAMPLES One hundred seventy-eight samples (123 NPW and 55 GPL) from 108 horses. METHODS Prospective study. Samples were collected from a convenience population of clinically ill horses with suspected Streptococcus equi subsp. equi (S. equi) infection, horses convalescing from a known S. equi infection, and asymptomatic horses undergoing S. equi screening. Samples were submitted for S. aureus aerobic bacterial culture with mannitol salt broth and two selective agars (cefoxitin CHROMagar as the PBP2a inducer and mannitol salt agar with oxacillin). Biochemical identification of Staphylococcus species and pulsed-field gel electrophoresis (PFGE), to determine clonal relationships between isolates, were performed. RESULTS Methicillin-resistant Staphylococcus (MRS) was isolated from the nasopharynx of 7/108 (4%) horses. Three horses had MRSA (2.7%), and 4 had MR-Staphylococcus pseudintermedius (MRSP). MRSA was isolated from horses on the same farm. PFGE revealed the 3 MRSA as USA 500 strains. CONCLUSIONS AND CLINICAL IMPORTANCE Sampling the nasopharynx and guttural pouch of community-based horses revealed a similarly low prevalence rate of MRSA as other studies sampling the nares of community-based horses. More study is required to determine the need for sampling multiple anatomic sites when screening horses for MRSA.
Collapse
Affiliation(s)
- A G Boyle
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, PA
| | - S C Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, PA
| | - L A Duffee
- Department of Clinical Studies Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, PA
| | - D Morris
- Department of Clinical Studies Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, PA
| |
Collapse
|
23
|
Guérin F, Fines-Guyon M, Meignen P, Delente G, Fondrinier C, Bourdon N, Cattoir V, Léon A. Nationwide molecular epidemiology of methicillin-resistant Staphylococcus aureus responsible for horse infections in France. BMC Microbiol 2017; 17:104. [PMID: 28468636 PMCID: PMC5415774 DOI: 10.1186/s12866-016-0924-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
Background The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) isolated in horse infections is not well documented, especially in France. The aim of the study was to evaluate the prevalence of MRSA isolates in horse infections from 2007 to 2013 in France and to characterize phenotypically and genotypically this collection. Results Out of 1393 S. aureus horse isolates, 85 (6.1%) were confirmed to be MRSA. Interestingly, the prevalence of MRSA significantly increased from 2007–2009 to 2010–2013 (0.7 vs. 9.5%, P <0.0001). Resistance to methicillin was due to the presence of the mecA gene in 84 strains (98.8%) while one strain (1.2%) possessed the mecC gene. The vast majority of the strains (83/85, 97.6%) was resistant to at least three different classes of antibiotics. Multi-locus sequence typing (MLST) showed that MRSA strains belonged mainly since not all belong to two sequence types (STs): ST398 (53/85, 62.4%) and ST8 (28/85, 32.9%). It is worth to note that all ST398 MRSA isolates were detected in the period 2010–2013. Other molecular typing methods were also used, such SCCmec analysis, spa typing and rep-PCR (Diversilab, bioMérieux). All these four techniques were in good agreement, with spa typing and rep-PCR being more discriminative than MLST and SCCmec typing. Conclusions This study is the first epidemiological study in France with extensive characterization of MRSA isolates associated with horse infections in stud farms. It shows that there is a significant increase of MRSA prevalence between 2007 and 2013, which mainly results from the spread of ST398 clones. It also highlights the importance of horses as a potential reservoir of important antimicrobial resistance genes.
Collapse
Affiliation(s)
- François Guérin
- Université de Caen Normandie, EA 4655 (équipe "Antibio-résistance"), F-14032, Caen, France.,CHU de Caen, Service de Microbiologie & CNR de la Résistance aux Antibiotiques (laboratoire associé "entérocoques et résistances particulières des bactéries à Gram positif"), Av. Côte de Nacre, 14033, Caen, Cedex 9, France
| | - Marguerite Fines-Guyon
- CHU de Caen, Service de Microbiologie & CNR de la Résistance aux Antibiotiques (laboratoire associé "entérocoques et résistances particulières des bactéries à Gram positif"), Av. Côte de Nacre, 14033, Caen, Cedex 9, France
| | - Pierrick Meignen
- Université de Caen Normandie, IUT département STID, F-14033, Caen, France
| | - Géraldine Delente
- CHU de Caen, Service de Microbiologie & CNR de la Résistance aux Antibiotiques (laboratoire associé "entérocoques et résistances particulières des bactéries à Gram positif"), Av. Côte de Nacre, 14033, Caen, Cedex 9, France
| | - Caroline Fondrinier
- Université de Caen Normandie, EA 4655 (équipe "Antibio-résistance"), F-14032, Caen, France
| | - Nancy Bourdon
- CHU de Caen, Service de Microbiologie & CNR de la Résistance aux Antibiotiques (laboratoire associé "entérocoques et résistances particulières des bactéries à Gram positif"), Av. Côte de Nacre, 14033, Caen, Cedex 9, France
| | - Vincent Cattoir
- Université de Caen Normandie, EA 4655 (équipe "Antibio-résistance"), F-14032, Caen, France. .,CHU de Caen, Service de Microbiologie & CNR de la Résistance aux Antibiotiques (laboratoire associé "entérocoques et résistances particulières des bactéries à Gram positif"), Av. Côte de Nacre, 14033, Caen, Cedex 9, France. .,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Caen, Cedex 9, France.
| | - Albertine Léon
- Université de Caen Normandie, EA 4655 (équipe "Antibio-résistance"), F-14032, Caen, France.,LABÉO Frank Duncombe, F-14053, Caen, France
| |
Collapse
|
24
|
Islam MZ, Espinosa-Gongora C, Damborg P, Sieber RN, Munk R, Husted L, Moodley A, Skov R, Larsen J, Guardabassi L. Horses in Denmark Are a Reservoir of Diverse Clones of Methicillin-Resistant and -Susceptible Staphylococcus aureus. Front Microbiol 2017; 8:543. [PMID: 28421046 PMCID: PMC5376617 DOI: 10.3389/fmicb.2017.00543] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
Denmark is a country with high prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 in pigs. Even though pig farming is regarded as the main source of human infection or colonization with MRSA CC398, 10-15% of the human cases appear not to be linked to pigs. Following the recent reports of MRSA CC398 in horses in other European countries and the lack of knowledge on S. aureus carriage in this animal species, we carried out a study to investigate whether horses constitute a reservoir of MRSA CC398 in Denmark, and to gain knowledge on the frequency and genetic diversity of S. aureus in horses, including both methicillin-resistant and -susceptible S. aureus (MSSA). Nasal swabs were collected from 401 horses originating from 74 farms, either at their farms or prior to admission to veterinary clinics. Following culture on selective media, species identification by MALDI-TOF MS and MRSA confirmation by standard PCR-based methods, S. aureus and MRSA were detected in 54 (13%) and 17 (4%) horses originating from 30 (40%) and 7 (9%) farms, respectively. Based on spa typing, MSSA differed genetically from MRSA isolates. The spa type prevalent among MSSA isolates was t127 (CC1), which was detected in 12 horses from 11 farms and represents the most common S. aureus clone isolated from human bacteremia cases in Denmark. Among the 17 MRSA carriers, 10 horses from three farms carried CC398 t011 harboring the immune evasion cluster (IEC), four horses from two farms carried IEC-negative CC398 t034, and three horses from two farms carried a mecC-positive MRSA lineage previously associated with wildlife and domestic ruminants (CC130 t528). Based on whole-genome phylogenetic analysis of the 14 MRSA CC398, t011 isolates belonged to the recently identified horse-adapted clone in Europe and were closely related to human t011 isolates from three Danish equine veterinarians, whereas t034 isolates belonged to pig-adapted clones. Our study confirms that horses carry an equine-specific clone of MRSA CC398 that can be transmitted to veterinary personnel, and reveals that these animals are exposed to MRSA and MSSA clones that are likely to originate from livestock and humans, respectively.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg C, Denmark.,Microbiology and Infection Control, Statens Serum InsititutCopenhagen, Denmark
| | - Carmen Espinosa-Gongora
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg C, Denmark.,Section for Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of DenmarkFrederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg C, Denmark
| | - Raphael N Sieber
- Microbiology and Infection Control, Statens Serum InsititutCopenhagen, Denmark
| | | | | | - Arshnee Moodley
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg C, Denmark
| | - Robert Skov
- Microbiology and Infection Control, Statens Serum InsititutCopenhagen, Denmark
| | - Jesper Larsen
- Microbiology and Infection Control, Statens Serum InsititutCopenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg C, Denmark.,Department of Biomedical Sciences, Ross University School of Veterinary MedicineBasseterre, West Indies
| |
Collapse
|
25
|
Walther B, Tedin K, Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol 2017; 200:71-78. [DOI: 10.1016/j.vetmic.2016.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
|
26
|
Koop G, Vrieling M, Storisteanu DML, Lok LSC, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JAG, Harrison EM, Holmes MA. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 2017; 7:40660. [PMID: 28106142 PMCID: PMC5247767 DOI: 10.1038/srep40660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component.
Collapse
Affiliation(s)
- Gerrit Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Manouk Vrieling
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Laurence S. C. Lok
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Tom Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Glenn van Wigcheren
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Claire Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nicholas Gleadall
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nazreen Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, 8200 AB Lelystad, The Netherlands
| | - Heleen M. Klunder
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom
| | - Ruth Zadoks
- Moredun Research Institute, Bush Loan, Penicuik EH26 0PZ, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, Logroño 26006, Spain
| | - Andrew S. Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, North Mymms, Hertfordshire AL9 7TA, United Kingdom
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Armando E. Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
- Veterinary Public Health Program, College of Public Health, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Karin Bergström
- Department of Animal Health and Antimicrobial Strategies, SVA, SE-751 89 Uppsala, Sweden
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, Infectious Diseases Section, University of Naples “Federico II”, 80137 Naples, Italy
| | - Constança Pomba
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 LISBOA, Portugal
| | - Hermínia de Lencastre
- Laboratório de Genética Molecular, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY10065, USA
| | - Karim Ben Slama
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
| | - Haythem Gharsa
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
| | - Emily J. Richardson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
27
|
Carfora V, Caprioli A, Grossi I, Pepe M, Alba P, Lorenzetti S, Amoruso R, Sorbara L, Franco A, Battisti A. A methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type 8, spa type t11469 causing infection and colonizing horses in Italy. Pathog Dis 2016; 74:ftw025. [PMID: 27052029 DOI: 10.1093/femspd/ftw025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Abstract
A Methicillin-resistantStaphylococcus aureus(MRSA) was isolated in Italy from a pathological sample of a mare presenting chronic purulent sinusitis and that had undergone frontal-sinus surgery three months before. Humans, horses, dogs and environmental samples were subsequently collected at the mare's stable and at the Veterinary Hospital, where the mare was operated/hospitalized, and screened for the presence of MRSA that was detected from other horses and from the environment at both sites. All the MRSA isolates belonged to clonal complex (CC)8, ST8-t11469-SCCmec-IVa, and showed similar phenotypic and genetic multidrug resistance patterns and macrorestriction-pulsed-field gel electrophoresis profiles. The only MRSA detected from humans was a CC1, ST1-t127-SCCmec-IVa. This paper represents the first report of a clinical MRSA infection in a horse in Italy. This study also supports the opinion that improper use of antibiotics and hospitalization/surgery can represent risk factors for MRSA colonization/infection in horses, and that the environment is among important sources for exposure.
Collapse
Affiliation(s)
- Virginia Carfora
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Andrea Caprioli
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Ilaria Grossi
- Veterinary practitioner, Via Leonardo Bufalini 84, 00176, Italy
| | - Marco Pepe
- Department of Veterinary Pathology, Diagnostic and Clinic, University of Perugia, Via S. Costanzo, 4, 00126, Italy
| | - Patricia Alba
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Serena Lorenzetti
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Roberta Amoruso
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Luigi Sorbara
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Alessia Franco
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| | - Antonio Battisti
- Direzione Operativa Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Lazio e della, Toscana 'M. Aleandri', Via Appia Nuova 1411, 00178, Italy
| |
Collapse
|
28
|
Caruso M, Latorre L, Santagada G, Fraccalvieri R, Miccolupo A, Sottili R, Palazzo L, Parisi A. Methicillin-resistant Staphylococcus aureus (MRSA) in sheep and goat bulk tank milk from Southern Italy. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2015.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Cuny C, Witte W. MRSA in equine hospitals and its significance for infections in humans. Vet Microbiol 2016; 200:59-64. [PMID: 26869097 DOI: 10.1016/j.vetmic.2016.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 11/18/2022]
Abstract
MRSA infections in equine clinics were reported from Northern America, Europe, Australia, and Japan. The majority of nosocomial infections in horses is obviously associated with particular MRSA clonal lineages. As already observed for epidemic MRSA in human hospitals more than 10 years ago, a dynamics of MRSA clonal lineages is also observed in European equine clinics: clonal lineages belonging to clonal complex (CC) 8 are on the retreat whereas MRSA attributed to CC398 become increasingly prevalent. The majority of CC398 isolates belong to a subpopulation which is particularly associated with equine hospitals as indicated by molecular typing. When emerging in equine clinics, MRSA from horses were also found as nasal colonizers of veterinary personnel. MRSA exhibiting the typing characteristics of MRSA known from equine clinics are obviously rare among MRSA from infections in humans. Although rare so far epidemic MRSA from human hospitals (HA-MRSA, e.g., ST22, ST225) have been isolated from nosocomial infections in horses and need particular attention in further surveillance.
Collapse
Affiliation(s)
- Christiane Cuny
- Robert Koch Institute, Wernigerode Branch Burgstrasse, 3738855 Wernigerode, Germany.
| | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch Burgstrasse, 3738855 Wernigerode, Germany
| |
Collapse
|
30
|
Cuny C, Abdelbary MMH, Köck R, Layer F, Scheidemann W, Werner G, Witte W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health 2015; 2:11-17. [PMID: 28616471 PMCID: PMC5441336 DOI: 10.1016/j.onehlt.2015.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/13/2015] [Accepted: 11/20/2015] [Indexed: 11/27/2022] Open
Abstract
A total of 272 methicillin-resistant Staphylococcus aureus (MRSA) from equine infections originating from 17 equine hospitals and 39 veterinary practices in Germany as well as 67 isolates from personnel working at equine clinics were subjected to molecular typing. The majority of isolates from horses was attributed to clonal complex (CC) 398 (82.7%). Within CC398, 66% of isolates belonged to a subpopulation (clade) of CC398, which is associated with equine clinics. MRSA attributed to CC8 (ST254, t009, t036, SCCmecIV; ST8, t064, SCCmecIV) were less frequent (16.5%). Single isolates were attributed to ST1, CC22, ST130, and ST1660. The emergence of MRSA CC22 and ST130 in horses was not reported so far. Nasal MRSA colonization was found in 19.5% of veterinary personnel with occupational exposure to horses. The typing characteristics of these isolates corresponded to isolates from equine infections. Comparing typing characteristics of equine isolates with those of a substantial number of isolates from human infections typed at the German Reference Center for Staphylococci and Enterococci (2006–2014; n = 10864) yielded that the proportion of isolates exhibiting characteristics of MRSA from equine medicine is very low (< 0.5%). As this low proportion was also found among MRSA originating from nasal screenings of human carriers not suffering from a staphylococcal infection (n = 5546) transmission of MRSA from equine clinics to the community seems to be rare so far.
Collapse
Affiliation(s)
- Christiane Cuny
- Robert Koch-Institute, German Reference Center for Staphylococci and Enterococci, Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany
| | - Mohamed M H Abdelbary
- Robert Koch-Institute, German Reference Center for Staphylococci and Enterococci, Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany
| | - Robin Köck
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149 Münster, Germany
| | - Franziska Layer
- Robert Koch-Institute, German Reference Center for Staphylococci and Enterococci, Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wolfgang Scheidemann
- Tierärztliche Klinik für Pferde, Domäne Karthaus, Weddern 16c, 48249 Dülmen Dülmen, Germany
| | - Guido Werner
- Robert Koch-Institute, German Reference Center for Staphylococci and Enterococci, Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wolfgang Witte
- Robert Koch-Institute, German Reference Center for Staphylococci and Enterococci, Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany
| |
Collapse
|
31
|
Cuny C, Wieler LH, Witte W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics (Basel) 2015; 4:521-43. [PMID: 27025639 PMCID: PMC4790311 DOI: 10.3390/antibiotics4040521] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
During the past 25 years an increase in the prevalence of methicillin-resistant Staphylococcus aureus (HA-MRSA) was recorded worldwide. Additionally, MRSA infections may occur outside and independent of hospitals, caused by community associated MRSA (CA-MRSA). In Germany, we found that at least 10% of these sporadic infections are due to livestock-associated MRSA (LA-MRSA), which is initially associated with livestock. The majority of these MRSA cases are attributed to clonal complex CC398. LA-MRSA CC398 colonizes the animals asymptomatically in about half of conventional pig farms. For about 77%-86% of humans with occupational exposure to pigs, nasal carriage has been reported; it can be lost when exposure is interrupted. Among family members living at the same farms, only 4%-5% are colonized. Spread beyond this group of people is less frequent. The prevalence of LA-MRSA in livestock seems to be influenced by farm size, farming systems, usage of disinfectants, and in-feed zinc. LA-MRSA CC398 is able to cause the same kind of infections in humans as S. aureus and MRSA in general. It can be introduced to hospitals and cause nosocomial infections such as postoperative surgical site infections, ventilator associated pneumonia, septicemia, and infections after joint replacement. For this reason, screening for MRSA colonization at hospital admittance is recommended for farmers and veterinarians with livestock contacts. Intrahospital dissemination, typical for HA-MRSA in the absence of sufficient hygiene, has only rarely been observed for LA-MRSA to date. The proportion of LA-MRSA among all MRSA from nosocomial infections is about 3% across Germany. In geographical areas with a comparatively high density of conventional farms, LA-MRSA accounts for up to 10% of MRSA from septicemia and 15% of MRSA from wound infections. As known from comparative genome analysis, LA-MRSA has evolved from human-adapted methicillin-susceptible S. aureus, and the jump to livestock was obviously associated with several genetic changes. Reversion of the genetic changes and readaptation to humans bears a potential health risk and requires tight surveillance. Although most LA-MRSA (>80%) is resistant to several antibiotics, there are still sufficient treatment options.
Collapse
Affiliation(s)
- Christiane Cuny
- Robert Koch Institute,Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Lothar H Wieler
- Robert Koch Institute, Main Institute, 13353 Berlin, Germany.
| | - Wolfgang Witte
- Robert Koch Institute,Wernigerode Branch, 38855 Wernigerode, Germany.
| |
Collapse
|
32
|
Maddox TW, Clegg PD, Williams NJ, Pinchbeck GL. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet J 2015; 47:756-65. [DOI: 10.1111/evj.12471] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/14/2015] [Indexed: 11/30/2022]
Affiliation(s)
- T. W. Maddox
- Department of Musculoskeletal Biology; Institute of Ageing and Chronic Disease; Neston UK
| | - P. D. Clegg
- Department of Musculoskeletal Biology; Institute of Ageing and Chronic Disease; Neston UK
| | - N. J. Williams
- National Consortium for Zoonosis Research; School of Veterinary Sciences; Neston UK
| | - G. L. Pinchbeck
- Department of Epidemiology and Population Health; Institute of Infection and Global Health; School of Veterinary Sciences; Leahurst Campus; University of Liverpool Neston UK
| |
Collapse
|
33
|
Methicillin-Resistant Staphylococcus aureus spa Type t002 Outbreak in Horses and Staff at a Veterinary Teaching Hospital after Its Presumed Introduction by a Veterinarian. J Clin Microbiol 2015; 53:2827-31. [PMID: 26085620 DOI: 10.1128/jcm.00090-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection and colonization, involving MRSA strains which differ from common human health care-associated clones, have become serious emerging conditions in equine veterinary hospitals. In 2010, MRSA spa type t535 caused an outbreak involving both horses and personnel in a veterinary teaching hospital in Israel. Since then, surveillance continued, and occasional MRSA isolation occurred. Two years later, MRSA of another spa type, t002, was isolated from a veterinarian and, 3 weeks later, from a horse. The appearance of spa type t002, a common clone in human medicine in Israel, among both personnel and horses, prompted a point-prevalence survey of hospital personnel and hospitalized horses. Fifty-nine staff members (n = 16 equine; n = 43, other) and 14 horses were screened. Ten of 59 staff members (16.9%) and 7 of 14 horses (50%) were MRSA carriers. Among the staff, 44% of large animal department (LAD) personnel, compared with only 7% of non-LAD personnel, were carriers. Isolates from all horses and from 9 of 10 personnel were found to be of MRSA spa type t002. This clone was later isolated from an infected postoperative wound in a hospitalized horse. Measures were taken to contain transmission between horses and personnel, as was done in the previous outbreak, resulting in reduction of transmission and, finally, cessation of cross-transmission between horses and personnel.
Collapse
|
34
|
Mallardo K, Nizza S, Fiorito F, Pagnini U, De Martino L. A comparative evaluation of methicillin-resistant staphylococci isolated from harness racing-horses, breeding mares and riding-horses in Italy. Asian Pac J Trop Biomed 2015; 3:169-73. [PMID: 23620832 DOI: 10.1016/s2221-1691(13)60044-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/10/2013] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the prevalence of methicillin-resistant staphylococci (MRS) which is a potencial risk factor of transmission between animals and humans in different types of horses (harness racing-horses, breeding mares and riding-horses) and to compare the antimicrobial resistance of the isolates. METHODS A total of 191 healthy horses, housed at different locations of the Campania Region (Italy), were included in the study. Nasal swab samples were collected from each nostril of the horses. The mecA gene was detected by a nested PCR technique. Antibiotic susceptibility was tested for each isolate. RESULTS MRS was isolated from nasal samples of 68/191 (35.6%; 95% CI: 28.9%-42.9%) healthy horses. All isolates were coagulase-negative with the exception of two coagulase-positive MRS strains, identified as Staphylococcus aureus and Staphylococcus pseudintermedius, 2/83 (2.4%; 95% CI: 0.4%-9.2%). Interestingly, both coagulase-positive MRS isolates were from harness racing-horses. These horses also presented a significantly higher positivity for MRS (53.3%; 95% CI: 40.1%-66.1%) than the breeding mares and riding-horses groups. Antibiotic susceptibility testing showed difference between isolates due to different origins except for an almost common high resistance to aminopenicillins, such as ampicillin and amoxicillin. CONCLUSIONS It can be concluded that harness racing-horses may act as a significant reservoir of MRS as compared to breeding mares and riding-horses.
Collapse
Affiliation(s)
- Karina Mallardo
- Department of Pathology and Animal Health, Infectious Diseases Section, University of Naples "Federico II", Naples, Italy, Via F. Delpino 1-80137 Naples, Italy
| | | | | | | | | |
Collapse
|
35
|
van Balen J, Mowery J, Piraino-Sandoval M, Nava-Hoet RC, Kohn C, Hoet AE. Molecular epidemiology of environmental MRSA at an equine teaching hospital: introduction, circulation and maintenance. Vet Res 2014; 45:31. [PMID: 24641543 PMCID: PMC3974172 DOI: 10.1186/1297-9716-45-31] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
The role that environmental contamination might play as a reservoir and a possible source of Methicillin-resistant Staphylococcus aureus (MRSA) for patients and personnel at equine veterinary hospitals remains undefined, as the environment has only been monitored during outbreaks or for short periods. Therefore, the objectives of this study were to determine the monthly presence, distribution, and characteristics of environmental MRSA at an equine hospital, and to establish patterns of contamination over time using molecular epidemiological analyses. For this purpose, a yearlong active MRSA surveillance was performed targeting the environment and incoming patients. Antimicrobial susceptibility testing, SCCmec typing, PFGE typing, and dendrographic analysis were used to characterize and analyze these isolates. Overall, 8.6% of the surfaces and 5.8% of the horses sampled were positive for MRSA. The most common contaminated surfaces were: computers, feed-water buckets, and surgery tables-mats. Ninety percent of the isolates carried SCCmec type IV, and 62.0% were classified as USA500. Molecular analysis showed that new pulsotypes were constantly introduced into the hospital throughout the year. However, maintenance of strains in the environment was also observed when unique clones were detected for 2 consecutive months on the same surfaces. Additionally, pulsotypes were circulating throughout several areas and different contact surfaces of the hospital. Based on these results, it is evident that MRSA is constantly introduced and frequently found in the equine hospital environment, and that some contact surfaces could act as “hot-spots”. These contaminated surfaces should be actively targeted for strict cleaning and disinfection as well as regular monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando E Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Phylogenetic analysis of Staphylococcus aureus CC398 reveals a sub-lineage epidemiologically associated with infections in horses. PLoS One 2014; 9:e88083. [PMID: 24505386 PMCID: PMC3913741 DOI: 10.1371/journal.pone.0088083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
In the early 2000s, a particular MRSA clonal complex (CC398) was found mainly in pigs and pig farmers in Europe. Since then, CC398 has been detected among a wide variety of animal species worldwide. We investigated the population structure of CC398 through mutation discovery at 97 genetic housekeeping loci, which are distributed along the CC398 chromosome within 195 CC398 isolates, collected from various countries and host species, including humans. Most of the isolates in this collection were received from collaborating microbiologists, who had preserved them over years. We discovered 96 bi-allelic polymorphisms, and phylogenetic analyses revealed that an epidemic sub-clone within CC398 (dubbed ‘clade (C)’) has spread within and between equine hospitals, where it causes nosocomial infections in horses and colonises the personnel. While clade (C) was strongly associated with S. aureus from horses in veterinary-care settings (p = 2×10−7), it remained extremely rare among S. aureus isolates from human infections.
Collapse
|
37
|
Loncaric I, Künzel F, Licka T, Simhofer H, Spergser J, Rosengarten R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet Microbiol 2014; 168:381-7. [DOI: 10.1016/j.vetmic.2013.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023]
|
38
|
Boyen F, Smet A, Hermans K, Butaye P, Martens A, Martel A, Haesebrouck F. Methicillin resistant staphylococci and broad-spectrum β-lactamase producing Enterobacteriaceae in horses. Vet Microbiol 2013; 167:67-77. [PMID: 23759364 DOI: 10.1016/j.vetmic.2013.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 12/29/2022]
Abstract
The use of β-lactam antibiotics results in the selection of bacteria showing resistance toward this class of antibiotics. The review focuses on the increasing importance of methicillin resistant staphylococci and broad-spectrum β-lactamase-producing Enterobacteriaceae in horses. Diagnostic protocols that optimize accurate identification of these bacteria from both clinical samples and samples obtained from putative carrier animals are described. In addition, the opportunities and pitfalls for preventive and curative measures are discussed.
Collapse
Affiliation(s)
- Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wendlandt S, Feßler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol 2013; 303:338-49. [DOI: 10.1016/j.ijmm.2013.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
40
|
Gómez-Sanz E, Simón C, Ortega C, Gómez P, Lozano C, Zarazaga M, Torres C. First detection of methicillin-resistant Staphylococcus aureus ST398 and Staphylococcus pseudintermedius ST68 from hospitalized equines in Spain. Zoonoses Public Health 2013; 61:192-201. [PMID: 23773775 DOI: 10.1111/zph.12059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 11/28/2022]
Abstract
Eight coagulase-positive staphylococci from equines with different pathologies obtained between 2005 and 2011 were investigated. Isolates were characterized by different molecular techniques (spa-, agr-, MLST), and clonal relatedness of strains was investigated by ApaI and SmaI PFGE. Anti-microbial resistance and virulence profiles were determined. Six isolates were identified as Staphylococcus aureus, and two as Staphylococcus pseudintermedius. Of these, four isolates were methicillin-resistant S. aureus (MRSA) ST398 and one S. pseudintermedius was mecA positive and typed as ST68. One MRSA ST398 strain was isolated in 2005 and might be one of the earliest MRSA ST398 descriptions in Spain. All 5 mecA-positive strains were multidrug resistant and were isolated from hospitalized equines. Three MRSA ST398 strains carried the recently described transposon Tn559 within the chromosomal radC gene. The mecA-positive S. pseudintermedius ST68 strain was also multidrug resistant and harboured the erm(B)-Tn5405-like element. This ST68 strain presented a clear susceptible phenotype to oxacillin and cefoxitin regardless of the presence of an integral and conserved mecA gene and mecA promoter, which enhances the need for testing the presence of this gene in routine analysis to avoid treatment failures. These data reflect the extended anti-microbial resistance gene acquisition capacities of both bacterial species and evidence their pathogenic properties. The first detection of MRSA ST398 and S. pseudintermedius ST68 in horses in Spain is reported.
Collapse
Affiliation(s)
- E Gómez-Sanz
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Food-borne intoxication, caused by heat-stable enterotoxins produced by Staphylococcus aureus, causes over 240,000 cases of food-borne illness in the United States annually. Other staphylococci commonly associated with animals may also produce these enterotoxins. Foods may be contaminated by infected food handlers during slaughter and processing of livestock or by cross-contamination during food preparation. S. aureus also causes a variety of mild to severe skin and soft tissue infections in humans and other animals. Antibiotic resistance is common in staphylococci. Hospital-associated (HA) S. aureus are resistant to numerous antibiotics, with methicillin-resistant S. aureus (MRSA) presenting significant challenges in health care facilities for over 40 years. During the mid-1990s new human MRSA strains developed outside of hospitals and were termed community-associated (CA). A few years later, MRSA was isolated from horses and methicillin resistance was detected in Staphylococcus intermedius/pseudintermedius from dogs and cats. In 2003, a livestock-associated (LA) MRSA strain was first detected in swine. These methicillin-resistant staphylococci pose additional food safety and occupational health concerns. MRSA has been detected in a small percentage of retail meat and raw milk samples indicating a potential risk for food-borne transmission of MRSA. Persons working with animals or handling meat products may be at increased risk for antibiotic-resistant infections. This review discusses the scope of the problem of methicillin-resistant staphylococci and some strategies for control of these bacteria and prevention of illness.
Collapse
|
43
|
Crombé F, Argudín MA, Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Transmission Dynamics of Methicillin-Resistant Staphylococcus aureus in Pigs. Front Microbiol 2013; 4:57. [PMID: 23518663 PMCID: PMC3602589 DOI: 10.3389/fmicb.2013.00057] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/28/2013] [Indexed: 12/14/2022] Open
Abstract
From the mid-2000s on, numerous studies have shown that methicillin-resistant Staphylococcus aureus (MRSA), renowned as human pathogen, has a reservoir in pigs and other livestock. In Europe and North America, clonal complex (CC) 398 appears to be the predominant lineage involved. Especially worrisome is its capacity to contaminate humans in close contact with affected animals. Indeed, the typical multi-resistant phenotype of MRSA CC398 and its observed ability of easily acquiring genetic material suggests that MRSA CC398 strains with an increased virulence potential may emerge, for which few therapeutic options would remain. This questions the need to implement interventions to control the presence and spread of MRSA CC398 among pigs. MRSA CC398 shows a high but not fully understood transmission potential in the pig population and is able to persist within that population. Although direct contact is probably the main route for MRSA transmission between pigs, also environmental contamination, the presence of other livestock, the herd size, and farm management are factors that may be involved in the dissemination of MRSA CC398. The current review aims at summarizing the research that has so far been done on the transmission dynamics and risk factors for introduction and persistence of MRSA CC398 in farms.
Collapse
Affiliation(s)
- Florence Crombé
- Department of Bacterial Diseases, Veterinary and Agrochemical Research CentreBrussels, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent UniversityGhent, Belgium
| | - M. Angeles Argudín
- Department of Bacterial Diseases, Veterinary and Agrochemical Research CentreBrussels, Belgium
| | - Wannes Vanderhaeghen
- Department of Bacterial Diseases, Veterinary and Agrochemical Research CentreBrussels, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent UniversityGhent, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent UniversityGhent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent UniversityGhent, Belgium
| | - Patrick Butaye
- Department of Bacterial Diseases, Veterinary and Agrochemical Research CentreBrussels, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent UniversityGhent, Belgium
| |
Collapse
|
44
|
Van den Eede A, Hermans K, Van den Abeele A, Floré K, Dewulf J, Vanderhaeghen W, Némeghaire S, Butaye P, Gasthuys F, Haesebrouck F, Martens A. The nasal vestibulum is the optimal sampling site for MRSA screening in hospitalised horses. Vet J 2013; 197:415-9. [PMID: 23465751 DOI: 10.1016/j.tvjl.2013.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/19/2012] [Accepted: 01/24/2013] [Indexed: 01/26/2023]
Abstract
The increased incidence of methicillin-resistant Staphylococcus aureus (MRSA) infection in equine hospitals highlights the need for infection control protocols based on optimal patient screening. In horses, the deep ventral meatus of the nasal cavity is the principal site sampled to detect MRSA. However, in humans, the anterior nares are the preferred sampling site. The objective of this study was to determine the optimal sampling location in the nasal chambers for MRSA in horses by comparing the results obtained from three different locations (the vestibulum, diverticulum and ventral meatus) in 240 hospitalised animals. Antimicrobial susceptibility testing and epidemiological typing were conducted on representative subsets of the isolates obtained. Compared to the more invasive ventral meatus sampling (relative sensitivity 68.9%; isolation rate 37.9%), vestibulum (RS 81.1%; IR 44.6%, P=0.13) and diverticulum (RS 52.3%; IR 28.8%, P=0.03) sampling were more or less sensitive, respectively. In total, 132 horses (55%) were MRSA positive with the vast majority (98.5%) carrying genotyped isolates of the livestock-associated (LA)-MRSA clonal complex (CC) 398, and only a minority (1.5%) CC8. Of the 22 MLST typed isolates, five belonged to a novel ST2197 (t011, CC398). Although 93.9% of the isolates were multi-resistant (to β-lactam, tetracycline, trimethoprim, and gentamicin), <5% were resistant to virtually all antimicrobials commonly used in equine medicine. The study findings indicate that detection of MRSA in horses may be enhanced by replacing the traditional deep sampling of the ventral nasal meatus by the less invasive approach of sampling the nasal vestibulum.
Collapse
Affiliation(s)
- A Van den Eede
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McCarthy AJ, Lindsay JA, Loeffler A. Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA. Vet Dermatol 2012; 23:267-75, e53-4. [PMID: 22823579 DOI: 10.1111/j.1365-3164.2012.01072.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meticillin-resistant Staphylococcus aureus (MRSA) continues to pose a major threat to human health. In animals, MRSA has become established as a veterinary pathogen in pets and horses; in livestock, it presents a concern for public health as a reservoir that can infect humans and as a source of transferrable resistance genes. Genetic analyses have revealed that the epidemiology of MRSA is different in different animal hosts. While human hospital-associated MRSA lineages are most commonly involved in pet infection and carriage, horse-specific MRSA most often represent 'traditional' equine S. aureus lineages. A recent development in the epidemiology of animal MRSA is the emergence of pig-adapted strains, such as CC398 and CC9, which appear to have arisen independently in the pig population. Recent insight into the genome structure and the evolution of S. aureus has helped to explain key aspects of these three distinct epidemiological scenarios. This nonsystematic literature review summarizes the structure and variations of the S. aureus genome and gives an overview of the current distribution of MRSA lineages in various animal species. It also discusses present knowledge about the emergence and evolution of MRSA in animals, adaptation to different host species and response to selective pressure from animal-specific environments. An improved understanding of the genetics and selective pressure that underpin the adaptive behaviour of S. aureus may be used in the future to predict new developments in staphylococcal diseases and to investigate novel control strategies required at a time of increasing resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Alex J McCarthy
- Centre for Infection, Division of Clinical Sciences, St George's University of London, London SW17 0RE, UK
| | | | | |
Collapse
|
46
|
Clonal transmission of a rare methicillin-resistant Staphylococcus aureus genotype between horses and staff at a veterinary teaching hospital. Vet Microbiol 2012; 162:907-911. [PMID: 23265243 DOI: 10.1016/j.vetmic.2012.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection or colonization has become a serious emerging condition in equine hospitals. Following the detection of MRSA in asymptomatic hospitalized horses and in two horses with post-operative wound infections, an investigation was conducted. Twelve of 84 horses (14.3%) and 16 of 139 personnel (11.5%) were MRSA carriers. The profile of the dominant MRSA strain common to horses and staff was multi-drug-resistant, spa-type t535, SCCmec type V, pvl-negative. MLST of a representative isolate yielded sequence type (ST) 5. The risk of MRSA carriage among veterinary personnel was greater in equine veterinarians and full-time technicians in comparison to part-time technicians and to other personnel not working with horses. Strict infection control measures were implemented, horses infected or colonized with MRSA were isolated and decolonization of personnel was attempted. Six months after the intervention, the large animal department personnel and hospitalized horses were all MRSA-negative and the decolonization was considered successful. This outbreak, caused by a rare MRSA strain and involving both hospitalized horses and personnel, further demonstrates the ability of MRSA to spread between animals and humans and emphasizes the importance of infection control measures to decrease the risk for MRSA colonization and infection of both horses and personnel.
Collapse
|
47
|
Van den Eede A, Martens A, Feryn I, Vanderhaeghen W, Lipinska U, Gasthuys F, Butaye P, Haesebrouck F, Hermans K. Low MRSA prevalence in horses at farm level. BMC Vet Res 2012; 8:213. [PMID: 23134703 PMCID: PMC3536571 DOI: 10.1186/1746-6148-8-213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022] Open
Abstract
Background In Europe, methicillin-resistant Staphylococcus aureus (MRSA) belonging to the clonal complex (CC) 398 has become an important pathogen in horses, circulating in equine clinics and causing both colonization and infection. Whether equine MRSA is bound to hospitals or can also circulate in the general horse population is currently unknown. This study, therefore, reports the nasal and perianal MRSA screening of 189 horses on 10 farms in a suspected high prevalence region (East- and West-Flanders, Belgium). Results Only one horse (0.53%) from one farm (10%) tested positive in the nose. It carried a spa type t011-SCCmecV isolate, resistant to β-lactams and tetracycline, which is typical for livestock-associated MRSA CC398. Conclusion In the region tested here, horses on horse farms seem unlikely to substantially contribute to the large animal associated ST398 MRSA reservoir present at intensive animal production units.
Collapse
Affiliation(s)
- Annelies Van den Eede
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Petinaki E, Spiliopoulou I. Methicillin-resistant Staphylococcus aureus among companion and food-chain animals: impact of human contacts. Clin Microbiol Infect 2012; 18:626-34. [DOI: 10.1111/j.1469-0691.2012.03881.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
High throughput multiple locus variable number of tandem repeat analysis (MLVA) of Staphylococcus aureus from human, animal and food sources. PLoS One 2012; 7:e33967. [PMID: 22567085 PMCID: PMC3342327 DOI: 10.1371/journal.pone.0033967] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, a relevant pathogen in veterinary medicine, and a major cause of food poisoning. Epidemiological investigation tools are needed to establish surveillance of S. aureus strains in humans, animals and food. In this study, we investigated 145 S. aureus isolates recovered from various animal species, disease conditions, food products and food poisoning events. Multiple Locus Variable Number of Tandem Repeat (VNTR) analysis (MLVA), known to be highly efficient for the genotyping of human S. aureus isolates, was used and shown to be equally well suited for the typing of animal S. aureus isolates. MLVA was improved by using sixteen VNTR loci amplified in two multiplex PCRs and analyzed by capillary electrophoresis ensuring a high throughput and high discriminatory power. The isolates were assigned to twelve known clonal complexes (CCs) and –a few singletons. Half of the test collection belonged to four CCs (CC9, CC97, CC133, CC398) previously described as mostly associated with animals. The remaining eight CCs (CC1, CC5, CC8, CC15, CC25, CC30, CC45, CC51), representing 46% of the animal isolates, are common in humans. Interestingly, isolates responsible for food poisoning show a CC distribution signature typical of human isolates and strikingly different from animal isolates, suggesting a predominantly human origin.
Collapse
|