1
|
Svirsky SE, Li Y, Henchir J, Rodina A, Carlson SW, Chiosis G, Dixon CE. Experimental traumatic brain injury increases epichaperome formation. Neurobiol Dis 2023; 188:106331. [PMID: 37863370 PMCID: PMC10698712 DOI: 10.1016/j.nbd.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Under normal conditions, heat shock proteins work in unison through dynamic protein interactions collectively referred to as the "chaperome." Recent work revealed that during cellular stress, the functional interactions of the chaperome are modified to form the "epichaperome," which results in improper protein folding, degradation, aggregation, and transport. This study is the first to investigate this novel mechanism of protein dishomeostasis in traumatic brain injury (TBI). Male and female adult, Sprague-Dawley rats received a lateral controlled cortical impact (CCI) and the ipsilateral hippocampus was collected 24 h 1, 2, and 4 weeks after injury. The epichaperome complex was visualized by measuring HSP90, HSC70 and HOP expression in native-PAGE and normalized to monomeric protein expression. A two-way ANOVA examined the effect of injury and sex at each time-point. Native HSP90, HSC70 and HOP protein expression showed a significant effect of injury effect across all time-points. Additionally, HSC70 and HOP showed significant sex effects at 24 h and 4 weeks. Altogether, controlled cortical impact significantly increased formation of the epichaperome across all proteins measured. Further investigation of this pathological mechanism can lead to a greater understanding of the link between TBI and increased risk of neurodegenerative disease and targeting the epichaperome for therapeutics.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Youming Li
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jeremy Henchir
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Shaun W Carlson
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Fleischmann C, Shohami E, Trembovler V, Heled Y, Horowitz M. Cognitive Effects of Astaxanthin Pretreatment on Recovery From Traumatic Brain Injury. Front Neurol 2020; 11:999. [PMID: 33178093 PMCID: PMC7593578 DOI: 10.3389/fneur.2020.00999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Victoria Trembovler
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Kibbutzim College, Tel Aviv, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
6
|
Saikumar J, Byrns CN, Hemphill M, Meaney DF, Bonini NM. Dynamic neural and glial responses of a head-specific model for traumatic brain injury in Drosophila. Proc Natl Acad Sci U S A 2020; 117:17269-17277. [PMID: 32611818 PMCID: PMC7382229 DOI: 10.1073/pnas.2003909117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the strongest environmental risk factor for the accelerated development of neurodegenerative diseases. There are currently no therapeutics to address this due to lack of insight into mechanisms of injury progression, which are challenging to study in mammalian models. Here, we have developed and extensively characterized a head-specific approach to TBI in Drosophila, a powerful genetic system that shares many conserved genes and pathways with humans. The Drosophila TBI (dTBI) device inflicts mild, moderate, or severe brain trauma by precise compression of the head using a piezoelectric actuator. Head-injured animals display features characteristic of mammalian TBI, including severity-dependent ataxia, life span reduction, and brain degeneration. Severe dTBI is associated with cognitive decline and transient glial dysfunction, and stimulates antioxidant, proteasome, and chaperone activity. Moreover, genetic or environmental augmentation of the stress response protects from severe dTBI-induced brain degeneration and life span deficits. Together, these findings present a tunable, head-specific approach for TBI in Drosophila that recapitulates mammalian injury phenotypes and underscores the ability of the stress response to mitigate TBI-induced brain degeneration.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - China N Byrns
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
8
|
Xu Z, Lv XA, Dai Q, Ge YQ, Xu J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI. Mol Brain 2016; 9:75. [PMID: 27485212 PMCID: PMC4971620 DOI: 10.1186/s13041-016-0257-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China.
| | - Xiao-Ai Lv
- Department of Surgery, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Qun Dai
- Central laboratory, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Yu-Qing Ge
- Central laboratory, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Central Hospital, 198 Hongqi Lane, Huzhou, 313003, China
| |
Collapse
|
9
|
DeGracia DJ, Kreipke CW, Kayali FM, Rafols JA. Brain endothelial HSP-70 stress response coincides with endothelial and pericyte death after brain trauma. Neurol Res 2013; 29:356-61. [PMID: 17626730 DOI: 10.1179/016164107x204666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Our objective was to characterize the heat shock response (HSR) in a model of traumatic brain injury (TBI) and to determine the association of HSR to cell death. METHODS We used immunofluorescent detection of HSP-70 to characterize HSR and TUNEL labeling to determine the pattern of cell death. RESULTS HSP-70 immunofluorescence revealed a steady increase from 4 to 48 hours following TBI, culminating in a ubiquitous expression with the capillary bed 48 hours post-TBI. TUNEL labeling revealed a small subset of endothelial cell death and a most robust staining of putative pericyte cell death. DISCUSSION Our results show that while injury causes a detectable stress response, cell death is not a direct consequence of the HSR.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
10
|
Lu DY, Chen JH, Tan TW, Huang CY, Yeh WL, Hsu HC. Resistin protects against 6-hydroxydopamine-induced cell death in dopaminergic-like MES23.5 cells. J Cell Physiol 2013; 228:563-71. [PMID: 22806254 DOI: 10.1002/jcp.24163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/10/2012] [Indexed: 12/24/2022]
Abstract
Resistin is originally reported as an adipose tissue-specific hormone and is thought to represent a link between obesity and insulin-resistant diabetes. Adipokines exert energy-regulation and has been reported to have neuroprotective effect like leptin, adiponectin, and ghrelin. However, the role of resistin in neuroprotective effect has not been explored. 6-hydroxydopamine (6-OHDA), one of the most investigated Parkinson's disease neurotoxins, is widely used to study mechanisms of cell death in dopaminergic neurons. In the present study, our results show that treatment of resistin protects 6-OHDA-induced cell death in dopaminergic-like MES23.5 cells. Resistin also antagonizes 6-OHDA-induced apoptotic cell death measured by fluorescence-activated cell sorter (FACS) analysis and Hochest 33342 staining. Furthermore, treatment of resistin also dramatically reduces 6-OHDA-mediated ROS production and mitochondria transmembrane potential dissipation. Moreover, expression of 6-OHDA-induced apoptotic markers, such as Bcl-2 degradation, Bax expression, PARP degradation and caspase 3 activity increase, are all attenuated by resistin treatment. Our results also show that resistin induces up-regulation of heat shock protein (Hsp) 32 (heme oxygenase-1, HO-1) and Hsc (heat shock cognate) 70. The protective effect of resistin on 6-OHDA-induced cell death is abolished by HO-1 inhibitor zinc protoporphyrin IX and HSP inhibitor KNK437. These results suggest the neuroprotective effects of resistin against 6-OHDA-induced cell death with the underlying mechanisms of inhibiting oxidative stress and apoptosis. Therefore, we suggest that resistin may provide a useful therapeutic strategy for neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, College of Life Sciences, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z. Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 2011; 95:20-34. [PMID: 21439793 DOI: 10.1016/j.eplepsyres.2011.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/18/2011] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) can result in the development of posttraumatic epilepsy (PTE). Recently, we reported differential alterations in tonic and phasic GABA(A) receptor (GABA(A)R) currents in hippocampal dentate granule cells 90 days after controlled cortical impact (CCI) (Mtchedlishvili et al., 2010). In the present study, we investigated long-term changes in the protein expression of GABA(A)R α1, α4, γ2, and δ subunits, NMDA (NR2B) and AMPA (GluR1) receptor subunits, and heat shock proteins (HSP70 and HSP90) in the hippocampus of Sprague-Dawley rats evaluated by Western blotting in controls, CCI-injured animals without PTE (CCI group), and CCI-injured animals with PTE (PTE group). No differences were found among all three groups for α1 and α4 subunits. Significant reduction of γ2 protein was observed in the PTE group compared to control. CCI caused a 194% and 127% increase of δ protein in the CCI group compared to control (p<0.0001), and PTE (p<0.0001) groups, respectively. NR2B protein was increased in CCI and PTE groups compared to control (p=0.0001, and p=0.011, respectively). GluR1 protein was significantly decreased in CCI and PTE groups compared to control (p=0.003, and p=0.001, respectively), and in the PTE group compared to the CCI group (p=0.036). HSP70 was increased in CCI and PTE groups compared to control (p=0.014, and p=0.005, respectively); no changes were found in HSP90 expression. These results provide for the first time evidence of long-term alterations of GABA(A) and glutamate receptor subunits and a HSP following CCI.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA 15212-4772, United States.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Innate pathways of immune activation in transplantation. J Transplant 2010; 2010. [PMID: 20871653 PMCID: PMC2939398 DOI: 10.1155/2010/826240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/22/2010] [Indexed: 01/04/2023] Open
Abstract
Studies of the immune mechanisms of allograft rejection have predominantly focused on the adaptive immune system that includes T cells and B cells. Recent investigations into the innate immune system, which recognizes foreign antigens through more evolutionarily primitive pathways, have demonstrated a critical role of the innate immune system in the regulation of the adaptive immune system. Innate immunity has been extensively studied in its role as the host's first-line defense against microbial pathogens; however, it is becoming increasingly recognized for its ability to also recognize host-derived molecules that result from tissue damage. The capacity of endogenous damage signals acting through the innate immune system to lower immune thresholds and promote immune recognition and rejection of transplant grafts is only beginning to be appreciated. An improved understanding of these pathways may reveal novel therapeutic targets to decrease graft alloreactivity and increase graft longevity.
Collapse
|
13
|
Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, Trembovler V, Mascagni P, Dinarello CA, Shohami E. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 2009; 23:4266-75. [PMID: 19723705 DOI: 10.1096/fj.09-134700] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite efforts aimed at developing novel therapeutics for traumatic brain injury (TBI), no specific pharmacological agent is currently clinically available. Here, we show that the pan-histone deacetylase (HDAC) inhibitor ITF2357, a compound shown to be safe and effective in humans, improves functional recovery and attenuates tissue damage when administered as late as 24 h postinjury. Using a well-characterized, clinically relevant mouse model of closed head injury (CHI), we demonstrate that a single dose of ITF2357 administered 24 h postinjury improves neurobehavioral recovery from d 6 up to 14 d postinjury (improved neurological score vs. vehicle; P< or =0.05), and that this functional benefit is accompanied by decreased neuronal degeneration, reduced lesion volume (22% reduction vs. vehicle; P< or =0.01), and is preceded by increased acetylated histone H3 levels and attenuation of injury-induced decreases in cytoprotective heat-shock protein 70 kDa and phosphorylated Akt. Moreover, reduced glial accumulation and activation were observed 3 d postinjury, and total p53 levels at the area of injury and caspase-3 immunoreactivity within microglia/macrophages at the trauma area were elevated, suggesting enhanced clearance of these cells via apoptosis following treatment. Hence, our findings underscore the relevance of HDAC inhibitors for ameliorating trauma-induced functional deficits and warrant consideration of applying ITF2357 for this indication.
Collapse
Affiliation(s)
- Na'ama A Shein
- Department of Pharmacology, The Hebrew University School of Pharmacy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neuroprotective actions of androgens on motoneurons. Front Neuroendocrinol 2009; 30:130-41. [PMID: 19393684 PMCID: PMC2726741 DOI: 10.1016/j.yfrne.2009.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/03/2009] [Accepted: 04/14/2009] [Indexed: 01/30/2023]
Abstract
Androgens have a variety of protective and therapeutic effects in both the central and peripheral nervous systems. Here we review these effects as they related specifically to spinal and cranial motoneurons. Early in development, androgens are critical for the formation of important neuromuscular sex differences, decreasing the magnitude of normally occurring cell death in select motoneuron populations. Throughout the lifespan, androgens also protect against motoneuron death caused by axonal injury. Surviving motoneurons also display regressive changes to their neurites as a result of both direct axonal injury and loss of neighboring motoneurons. Androgen treatment enhances the ability of motoneurons to recover from these regressive changes and regenerate both axons and dendrites, restoring normal neuromuscular function. Androgens exert these protective effects by acting through a variety of molecular pathways. Recent work has begun to examine how androgen treatment can interact with other treatment strategies in promoting recovery from motoneuron injury.
Collapse
|
15
|
Kim TY, Yi JS, Chung SJ, Kim DK, Byun HR, Lee JY, Koh JY. Pyruvate protects against kainate-induced epileptic brain damage in rats. Exp Neurol 2007; 208:159-67. [PMID: 17905231 DOI: 10.1016/j.expneurol.2007.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/30/2007] [Accepted: 08/20/2007] [Indexed: 11/20/2022]
Abstract
Although the majority of epileptic seizures can be effectively controlled with antiepileptic drugs and/or surgery, a significant number progress to status epilepticus of sufficient duration to cause permanent brain damage. Combined treatment with antiepileptic drugs and neuroprotective agents, however, may help protect these individuals from permanent brain damage. Since toxicity induced by endogenous zinc contributes to epileptic brain injury, and since pyruvate is effective in reducing zinc-triggered neuronal death in cortical culture as well as ischemic neuronal death in vivo, we examined whether systemic pyruvate administration reduces seizure-induced brain damage. Na pyruvate (500 mg/kg) or osmolarity-matched saline (265 mg/kg NaCl, i.p.) were given to adult SD rats 30 or 150 min after 10 mg/kg kainite injection (i.p.), and there was no significant difference in the time course or severity of seizures between these groups. Zinc accumulation in neuronal cell bodies in the hippocampus, however, was much lower in the pyruvate than in the saline group. There was a close correlation between zinc accumulation and cell death, as assessed by acid-fuchsin and TUNEL staining. Pyruvate treatment markedly reduced neuronal death in the hippocampus, neocortex and thalamus. Pyruvate increased HSP-70 expression in hippocampal neurons. These results suggest that pyruvate, a natural glucose metabolite, may be useful as adjunct treatment in status epilepticus to reduce permanent brain damage.
Collapse
Affiliation(s)
- Tae-Youn Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Ishikawa T, Zhu BL, Li DR, Zhao D, Michiue T, Maeda H. Immunohistochemical investigation of ubiquitin and myoglobin in the kidney in medicolegal autopsy cases. Forensic Sci Int 2007; 171:136-41. [PMID: 17166680 DOI: 10.1016/j.forsciint.2006.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/28/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
We examined the immunohistochemical distributions of ubiquitin (Ub) and myoglobin (Mb) in human kidney tissues to assist the pathological assessment of death due to trauma. Medicolegal autopsy cases at our institute (n=138: 0-96 years of age, 105 males and 33 females) were examined. Causes of death were blunt injury (n=31), sharp injury (n=15), poisoning (n=11), drowning (n=10), fire fatalities (n=25), hypothermia (n=7), asphyxiation (n=14), hyperthermia (n=3), and natural diseases (n=22) for controls. Immunostaining of Ub and Mb was performed on the formalin-fixed paraffin-embedded kidney tissue sections. Quantitative analyses by estimating the proportion of Ub- and Mb-positive cells (%positivity) of renal tubule epithelial cells showed that the positivities for Ub and Mb were higher in subjects who died due to fire, blunt injury, sharp injury and fatal hypothermia than in other groups. The Ub-positivity correlated with the severity of airway thermal injury in fire deaths, survival time in blunt injury, and serum markers for renal failure in deaths due to sharp injury. Concomitant increases in the tubular Mb- and Ub-positivities were characteristic to deaths from injury and hypothermia. These findings suggest that Ub may serve as a sensitive indicator of the fatal influence of traumas.
Collapse
Affiliation(s)
- Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka 545-8558, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Koedel U, Merbt UM, Schmidt C, Angele B, Popp B, Wagner H, Pfister HW, Kirschning CJ. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:200-13. [PMID: 17591966 PMCID: PMC1941591 DOI: 10.2353/ajpath.2007.060821] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endogenous molecules released from disrupted cells and extracellular matrix degradation products activate Toll-like receptors (TLRs) and, thus, might contribute to immune activation after tissue injury. Here, we show that aseptic, cold-induced cortical injury triggered an acute immune response that involves increased production of multiple cytokines/chemokines accompanied by neutrophil recruitment to the lesion site. We observed selective reductions in injury-induced cytokine/chemokine expression as well as in neutrophil accumulation in mice lacking the common TLR signaling adaptor MyD88 compared with wild-type mice. Notably, attenuation of the immune response was paralleled by a reduction in lesion size. Neutrophil depletion of wild-type mice and transplantation of MyD88-deficient bone marrow into lethally irradiated wild-type recipients had no substantial impact on injury-induced expression of cytokines/chemokines and on lesion development. In contrast to MyD88 deficiency, double deficiency of TLR2 and TLR4 -- despite the two receptors being activated by specific endogenous molecules associated to danger and signal through MyD88 -- altered neither immune response nor extent of tissue lesion size on injury. Our data indicate modulation of the neuroinflammatory response and lesion development after aseptic cortical injury through MyD88-dependent but TLR2/4-independent signaling by central nervous system resident nonmyeloid cells.
Collapse
Affiliation(s)
- Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians-University, Marchioninistr 15, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lai Y, Du L, Dunsmore KE, Jenkins LW, Wong HR, Clark RSB. Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity. J Neurochem 2005; 94:360-6. [PMID: 15998287 DOI: 10.1111/j.1471-4159.2005.03212.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induction of heat shock protein 70 (Hsp70) via sublethal stress protects neurons from subsequent lethal injuries. Here we show that specific and efficient intracellular transduction of Hsp70 can be achieved utilizing an 11 amino acid leading sequence from human immunodeficiency virus (TAT-Hsp70) in primary neuronal cultures. Western blot and immunohistochemistry demonstrated intracellular accumulation of Hsp70 in insoluble protein fractions and mitochondrial compartments. We then examined the effects of Hsp70 overexpression using TAT-Hsp70 in models of nitrosative and excitotoxic neuronal death in vitro. Neurons were pre-incubated with 300 nM TAT-Hsp 70 overnight, then exposed to either peroxynitrite (ONOO-) or glutamate. TAT-Hsp70 maintained cellular respiration, inhibited extracellular lactate dehydrogenase release, and/or reduced cell death assessed by flow cytometry vs. vehicle, wild-type Hsp70, and TAT-beta-galactosidase controls. Hsp70 transduction using a TAT fusion protein is an effective method to selectively increase Hsp70 in neurons and is sufficient to provide neuroprotection from nitrosative stress and excitotoxicity. Further study is needed to confirm whether TAT-Hsp70 is protective in in vivo models of brain injury.
Collapse
Affiliation(s)
- Yichen Lai
- Department of Critical Care Medicine, The Safar Center for Resuscitation Research, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Michael DB, Byers DM, Irwin LN. Gene expression following traumatic brain injury in humans: analysis by microarray. J Clin Neurosci 2005; 12:284-90. [PMID: 15851083 DOI: 10.1016/j.jocn.2004.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 11/15/2004] [Indexed: 11/16/2022]
Abstract
Global changes in gene expression were analyzed in pericontusional tissue taken during surgery from 4 patients with traumatic brain injury (TBI), in cerebral infarction tissue from a patient with vasculitis and in normal brain tissue resected during craniotomy for meningioma. Of approximately 1,200 genes showing some level of expression by cDNA microarray hybridization, 104 ( approximately 8%) showed differential expression in traumatized tissue. Genes controlling transcriptional regulation, intermediary and energy metabolism, signal transduction, and intercellular adhesion and recognition were differentially affected most often. Four genes previously shown to be associated with TBI (c-Fos, Jun B, HSP70, and Zif/268) were all found to be up-regulated in at least one TBI patient. Thus, the robust response to TBI of several immediate early genes is confirmed, and a longer list of candidate genes from other functional categories is suggested for further studies aimed at understanding the molecular and cellular consequences of TBI.
Collapse
Affiliation(s)
- Daniel B Michael
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
20
|
Lai Y, Kochanek PM, Adelson PD, Janesko K, Ruppel RA, Clark RSB. Induction of the Stress Response after Inflicted and Non-Inflicted Traumatic Brain Injury in Infants and Children. J Neurotrauma 2004; 21:229-37. [PMID: 15115598 DOI: 10.1089/089771504322972022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rapid induction of 72-kD heat shock protein (Hsp70) is a key component of the stress response and is seen after a variety of insults to the brain including experimental hyperthermia, ischemia, seizures, and traumatic brain injury (TBI). Little is known about the endogenous stress response in pediatric patients after brain injury. Accordingly, the concentration of Hsp70 was determined in 61 cerebrospinal fluid (CSF) samples from 20 infants and children after TBI. Peak Hsp70 level were increased in TBI patients vs. controls (4.60 [1.49-78.99] vs. 2.18 [1.38-4.25] ng/mL, respectively, median (range), p = 0.01) and occurred most often on day 1 after injury. Strikingly, CSF levels of Hsp70 were positively and independently associated with inflicted vs. non-inflicted TBI (7.03 [2.30-27.22] vs. 2.06 [1.06-78.99] ng/mL, respectively, p = 0.05). Endogenous Hsp70 expression was confirmed by Western blot and immunocytochemistry using brain tissue samples removed from patients who underwent decompressive craniotomy for refractory intracranial hypertension or at autopsy. These data suggest that the endogenous stress response, as measured and quantified by the Hsp70 concentration in CSF, occurs in infants and children after TBI. The endogenous stress response is more robust in victims of child abuse, compared with patients with accidental TBI, supporting age-dependence or a difference in either injury frequency, duration, severity, or mechanism in this subgroup of TBI patients. Further studies are needed to determine the role of Hsp70 in both non-inflicted and inflicted TBI in infants and children.
Collapse
Affiliation(s)
- Yichen Lai
- Department of Critical Care Medicine,University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kazanis I, Bozas E, Philippidis H, Stylianopoulou F. Neuroprotective effects of insulin-like growth factor-I (IGF-I) following a penetrating brain injury in rats. Brain Res 2003; 991:34-45. [PMID: 14575874 DOI: 10.1016/s0006-8993(03)03525-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The elucidation of the molecular mechanisms involved in the response of brain tissue to trauma and the recognition of substances with neuroprotective properties is a prerequisite for the development of rational therapeutic approaches. In this study, we used a model of, unilateral, penetrating stab-like brain injury and examined the possible beneficial effects of post-injury administration of insulin-like growth factor-I (IGF-I) both at the cellular level, 4 and 12 h post-injury, and on the physical condition of the animals up to 1 week following the trauma. The consequences of injury were assessed by immunohistochemically observing the expression of heat-shock protein 70 (Hsp70), which is thought to be a marker of cell stress and injury, and by staining the tissue with the TUNEL reaction, in order to detect apoptotic cell death. Injury resulted in an increase in the number of Hsp70 and TUNEL positive cells in the peritraumatic area. The physical condition of the rats was followed by measuring body weight changes, food and water intake and by estimating their "motor activity". IGF-I administration resulted in a significant decrease in the number of Hsp70 and TUNEL positive cells in the peritraumatic area. Additionally, it improved the total "motor activity" of injured rats, increased food intake and attenuated the post-injury body weight loss. IGF-I thus emerges as a factor acting both at the cellular level as a neuroprotectant and at the systemic level as an anabolic agent.
Collapse
Affiliation(s)
- Ilias Kazanis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, 123 Papadiamantopoulou Str, 115 27, Athens, Greece
| | | | | | | |
Collapse
|
22
|
Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI. Gene Expression Profile Changes Are Commonly Modulated across Models and Species after Traumatic Brain Injury. J Neurotrauma 2003; 20:907-27. [PMID: 14588109 DOI: 10.1089/089771503770195777] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Brain trauma is a major cause of morbidity and mortality, both in adult and pediatric populations. Much of the functional deficit derives from delayed cell death resulting from induction of neurotoxic factors that overwhelm endogenous neuroprotective responses. To identify the potential molecular mechanisms underlying such delayed responses, we compared gene expression patterns using high-density oligonucleotide arrays at 4, 8, 24, and 72 h after moderate levels of lateral fluid percussion-induced brain injury in rats and lateral controlled cortical impact injury in mice (a total of 47 profiles). Expression of 82 genes in 12 functional categories was significantly changed in both species after trauma. The largest number of gene expression changes were found in the functional groups related to inflammation (17%), transcription regulation (16%), and cell adhesion/extracellular matrix (15%). Fifty percent of genes similarly altered across models had not been previously implicated in traumatic brain injury. Of particular interest were expression changes in genes linked to neurodegeneration, such as ATF3 and lysosomal membrane glycoprotein 2, and to neuroprotection including lipocortin 1, calponin 3, gelsolin, Id-1, and p45 NF-E2. Gene expression profiling across species and models may help identify candidate molecular pathways induced by brain injury, some of which may provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joanne E Natale
- Research Centers for Genetic Medicine and Neuroscience, Children's National Medical Center, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
23
|
Thom M, Seetah S, Sisodiya S, Koepp M, Scaravilli F. Sudden and unexpected death in epilepsy (SUDEP): evidence of acute neuronal injury using HSP-70 and c-Jun immunohistochemistry. Neuropathol Appl Neurobiol 2003; 29:132-43. [PMID: 12662321 DOI: 10.1046/j.1365-2990.2003.00452.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-mortem and neuropathological examination in sudden and unexpected death in epilepsy (SUDEP) shows no specific lesions and the exact cause and mechanism of death in these cases remains undetermined. There is clinical evidence to support the fact that SUDEP is a seizure-mediated event, and patients with poorly controlled seizures are at higher risk. We aimed to identify any evidence of acute neuronal injury in SUDEP cases at post-mortem to support that a recent seizure had occurred. We analysed the distribution and frequency of heat shock protein (HSP)-70 and c-Jun immunopositive neurones in the hippocampus in 18 SUDEP cases and 22 control cases, both markers being nonspecific but early and reliable indicators of acute neuronal injury. Post-mortem control groups included patients with epilepsy with cause of death other than SUDEP (including status epilepticus and accidental death), and patients with sudden cardiac death without an epilepsy history. An additional surgical control group included patients with refractory epilepsy and hippocampal sclerosis who had undergone temporal lobectomy. Semiquantitative analysis of the distribution of HSP-70 staining showed significantly more SUDEP cases with positively labelled neurones in hippocampal subfields compared to epilepsy and cardiac post-mortem controls (P < 0.001) but not compared to the epilepsy surgical controls (P = 0.4). No significant difference in immunostaining patterns between groups was seen in the parahippocampal gyrus with HSP-70 or with c-Jun in either the hippocampus or parahippocampal gyrus regions. The detection of HSP-70 positive neurones in the hippocampus in SUDEP is supportive of ante-mortem neuronal injury including a recent seizure prior to death.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London.
| | | | | | | | | |
Collapse
|
24
|
Rall JM, Matzilevich DA, Dash PK. Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol Appl Neurobiol 2003; 29:118-31. [PMID: 12662320 DOI: 10.1046/j.1365-2990.2003.00439.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Damage to the frontal cortex and to the hippocampus, both in terms of cell loss and neuronal dysfunction, is thought to underlie many of the neurological and behavioural consequences of traumatic brain injury (TBI). Several studies have indicated that the hippocampus is particularly susceptible to central nervous system insults, whereas the frontal cortex possesses relatively higher capacities for regeneration and plasticity. It has been postulated that dissimilarities in the gene expression profiles in these structures, both in the normal and the postinjury states, may underlie these differences. In order to explore this issue, mRNA samples taken from the frontal cortex and the hippocampus of uninjured animals were subjected to high-density microarray analysis. The analysis indicated that the mRNA levels of 65 genes were differentially expressed between these two brain regions. Among these, genes involved in intracellular signalling, neurotransmitter release, and genes encoding for channels and receptors were identified. Samples taken from animals injured using controlled cortical impact (a model of TBI) showed altered mRNA levels for 341 frontal cortex genes 24 h following injury. These genes can be broadly classified into one of 12 functional classes: cell cycle, metabolism, reactive oxygen metabolism, inflammation, receptors, channels and transporters, signal transduction, cytoskeleton, membrane proteins, neuropeptides, growth factors, and proteins involved in transcription/translation. The expression profile of these genes is compared to the expression profile of 241 genes in the hippocampus 24 h following cortical impact injury as previously reported by our laboratory. In addition to genes previously reported in the literature, this study found several genes that have not been associated with TBI. The functional implications of changes in the expression of some of these genes are discussed.
Collapse
Affiliation(s)
- J M Rall
- The Vivian L Smith Center for Neurologic Research, Department of Neurobiology, The University of Texas Medical School, Houston, TX 77225, USA
| | | | | |
Collapse
|
25
|
Seidberg NA, Clark RSB, Zhang X, Lai Y, Chen M, Graham SH, Kochanek PM, Watkins SC, Marion DW. Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury. J Neurochem 2003; 84:514-21. [PMID: 12558971 DOI: 10.1046/j.1471-4159.2003.01547.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stress response in injured brain is well characterized after experimental ischemic and traumatic brain injury (TBI); however, the induction and regulation of the stress response in humans after TBI remains largely undefined. Accordingly, we examined injured brain tissue from adult patients (n = 8) that underwent emergent surgical decompression after TBI, for alterations in the inducible 72-kDa heat shock protein (Hsp70), the constitutive 73-kDa heat shock protein (Hsc70), and isoforms of the chaperone cofactor BAG-1. Control samples (n = 6) were obtained postmortem from patients dying of causes unrelated to CNS trauma. Western blot analysis showed that Hsp70, but not Hsc70, was increased in patients after TBI versus controls. Both Hsp70 and Hsc70 coimmunoprecipitated with the cofactor BAG-1. The 33 and 46, but not the 50-kDa BAG-1 isoforms were increased in patients after TBI versus controls. The ratio of the 46/33-kDa isoforms was increased in TBI versus controls, suggesting negative modulation of Hsp70/Hsc70 protein refolding activity in injured brain. These data implicate induction of the stress response and its modulation by the chaperone cofactor and Bcl-2 family member BAG-1, after TBI in humans.
Collapse
Affiliation(s)
- Neal A Seidberg
- Department of Critical Care Medicine, The Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Despite the considerable advances made in understanding the pathophysiology of systemic inflammation during critical illness, clinical progress has been elusive as it remains a very deadly condition. Cortisol and thyroid hormone levels can be as predictive of outcome as the commonly used severity parameters (i.e. APACHE). Indeed, levels of endocrine humoral substances such as arachidonic acids, nitric oxide, endothelin, calcitonin precursors, leptin and adenosine correlate with the severity and outcome of critical illness. Furthermore, calcitonin precursors represent a potentially new hormokine paradigm, being transcriptionally activated in all cells in response to infection. The cytokines are immune markers that often correlate with severity and outcome, but their release is transient. In contrast, the so-called acute phase proteins, such as C-reactive protein and serum amyloid A, are highly sensitive to inflammatory activity and can be important markers of severity and outcome. Leukocyte esterase, adhesion molecules, platelet activating factor and activated protein C are additional humoral immune markers; the replacement of the latter has been shown to be a promising therapeutic option. Natriuretic peptides are neurocrine humoral markers that have important cardiovascular implications. The level of macrophage migrating inhibitory factor, released by the pituitary, is elevated in sepsis and counteracts glucocorticoid action. Cellular markers to severe stress include the enhanced expression of protective substances in the form of heat shock proteins. High mobility group-1 is a DNA-binding protein and a late mediator of the inflammatory response. Apoptotic markers such as the soluble fas ligand are also elevated in inflammation. In summary, during critical illness, the endocrine, immune and nervous systems elaborate a multitude of humoral markers, the roles of which merit further scrutiny in order to improve therapeutic outcome.
Collapse
Affiliation(s)
- E S Nylén
- Department of Medicine, Section of Endocrinology, George Washington University School of Medicine, Veterans Affairs Medical Center, Washington, DC, USA
| | | |
Collapse
|
27
|
A Comparative Clinical and Histologic Study of Hair Transplantation Using Er:YAG, Er:YAG/CO2, and Standard Punch Techniques. Dermatol Surg 2001. [DOI: 10.1097/00042728-200109000-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sadick NS, Shea CR, Nicholson J, Gat M, Lunievski S, Prieto VG. A comparative clinical and histologic study of hair transplantation using Er:YAG, Er:YAG/CO2, and standard punch techniques. Dermatol Surg 2001; 27:807-12. [PMID: 11553169 DOI: 10.1046/j.1524-4725.2001.01033.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study compares the effects of Er:YAG laser alone, Er:YAG/CO2 laser at 5 W (low power), Er:YAG/CO2 at 10 W (high power), and standard punch techniques in 10 men with androgenetic alopecia. OBJECTIVE To study the clinical and histologic features of hair transplantation with recipient graft defects created by a new hybrid Er:YAG and CO2 laser. METHODS Ten male patients (mean age 34 y) with Norwood IV-VI androgenetic alopecia had hair replacement surgery with the recipient sites divided into four quadrants comparing cold stell, erbium, combined erbium low-power CO2, and combined erbium high-power CO2 technologies. Hair growth, intraoperative procedure, lateral thermal damage, and patient satisfaction were compared, utilizing each of the four stated technologies. RESULTS The addition of CO2 laser at both low and high power settings resulted in improved hemostasis when compared with standard punch or Er:YAG laser alone. The mean hair counts were similar for the Er:YAG laser, Er:YAG/CO2 (5 W) laser, and standard punch at both 3 and 6 months after treatment. Lateral thermal damage was not significantly increased by the addition of low-power CO2 to Er:YAG. The addition of high-power CO2 (10 W) laser resulted in slightly lower mean hair counts at 3 months, but significantly decreased at 6 months (P =.05). Also, high-power CO2 laser caused significantly increased lateral damage. There were no detectable differences in hsp70 expression among the groups. CONCLUSION The addition of 5 W CO2 laser to Er:YAG laser results in better hemostasis than Er:YAG laser alone, while not significantly diminishing mean hair counts or inducing increased lateral thermal damage.
Collapse
Affiliation(s)
- N S Sadick
- Department of Dermatology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
29
|
Allen GV, Chase T. Induction of heat shock proteins and motor function deficits after focal cerebellar injury. Neuroscience 2001; 102:603-14. [PMID: 11226697 DOI: 10.1016/s0306-4522(00)00519-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A weight drop model of focal cerebellar injury was used to identify heat shock protein induction and motor function deficits in the anesthetized, adult male, Sprague-Dawley rat. All animals were trained on a beam walking test prior to surgery. Groups of animals received severe, mild or sham weight drop injury to the lateral/paravermal region of the cerebellum. The mild and sham-injured animals showed no motor deficits in the beam walking test, whereas animals with severe cerebellar injury showed significant motor deficits in the beam walking test that approached recovery of motor function 20 days after injury. Following severe injury, induction of heat shock protein of 27kDa was observed in Purkinje cells and in neurons of the deep cerebellar nuclei, as well as Bergmann glial cells, glial cells located in the granule cell layer and the underlying white matter. Following mild injury, heat shock protein of 27kDa induction was observed in Purkinje cells and glial cells, but not in neurons of the deep cerebellar nuclei. The labeled Purkinje cells were widely distributed in the ipsilateral cerebellar cortex. Many of the glial cells that were immunostained with heat shock protein of 27kDa co-localized with cells immunoreactive for glial fibrillary acidic protein. After severe injury, heat shock protein of 72kDa was localized mainly in granule cells at the site of the trauma and in the ipsilateral deep cerebellar nuclei whereas, after mild injury, light labeling was observed only in the granule cell layer. The results demonstrate that focal cerebellar injury has profound effects on motor behavior and induces different families of heat shock proteins in specific groups of neurons and glial cells in the cerebellum.
Collapse
Affiliation(s)
- G V Allen
- Department of Anatomy & Neurobiology, Faculty of Medicine, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada.
| | | |
Collapse
|
30
|
Zhou F, Xiang Z, Peiling L, Junjie J, Zhen LX. The expression and changes of heat shock protein 70, MDA and haemorheology in rat cortex after diffuse axonal injury with secondary insults. J Clin Neurosci 2001; 8:250-2. [PMID: 11386800 DOI: 10.1054/jocn.2000.0760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present study the role of heat shock protein 70 (HSP70) expression, changes of malonyldialdehyde (MDA) in rat cortex and haemorheology with time after diffuse axonal injury (DAI) only and DAI with secondary insults (SI) were studied. The rat DAI and DAI with SI model were made according to our previous work and animals were divided into a control and another five injury groups with time after injury. Immunohistochemical assay was used to detect the neuronal expression of HSP70 at 0.5h, 3h, 12h, 24h, 72h after DAI or DAI with SI. In the meantime, the high (etah ) and low whole blood viscosity (etaL ), haematocrit (HCT) and RBC aggregation index (AI = etaL/etah ) were also detected and calculated. MDA in the homogenised brain tissue was assayed by thiobarbituric acid (TBA) reaction. The results showed that HSP70 positive neurons were not detected at 30 minutes, but the number of HSP70 positive neurons begin to increase obviously at 3 hours, reach a peak at 24 hours (P< 0.01), and decrease at 72 hours (P= 0.05) after brain injury. The trend of expression of HSP70 was alike for both DAI only or DAI with SI. Meanwhile, MDA, etah, etaL, HCT and AI changes showed the same tendency. Compared with DAI only group, MDA and blood viscosity indexes in DAI with SI were significantly higher at respective time points (P< 0.01). It is concluded that HSP70 expression, MDA and haemorheology indices increased after brain injury and brain injury with SI. Free radicals and haemorheological changes play an important role in the aggravation of brain damage and HSP70 expression upregulation.
Collapse
Affiliation(s)
- F Zhou
- Department of Neurosurgery, Xijing Hospital, Xi'an, PRChina.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Gun shot wounds to the brain are among the most devastating causes of morbidity and mortality in the civilian population. The majority of the victims will not survive and for a great number of survivors life becomes an uphill battle with permanent deficits and complications. While the fundamental surgical care of these patients is essentially unchanged, our scientific understanding of the pathophysiological changes and the post-injury care of the victims has been evolving. The purpose of this article is to provide an overview of the current clinical and laboratory advances in understanding and treating gun shot injuries to the brain.
Collapse
Affiliation(s)
- R M Abdolvahabi
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
It has been established that following injury to the central nervous system two types of damage take place, the initial insult and the secondary response to injury. This review will focus on the secondary molecular aspects of neurotrauma. These responses may be either deleterious or have protective effects upon the injured cell population. Molecular responses include the regulation of genes which change cellular architecture, up-regulate of growth factors, induce reparative stress responses, influence apoptosis and regulate the transcriptional process. The purpose of this study is to provide the reader with a brief overview of some of the molecular mechanisms which are activated following a neurological insult.
Collapse
Affiliation(s)
- S A Dutcher
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
33
|
Mautes AE, Noble LJ. Co-induction of HSP70 and heme oxygenase-1 in macrophages and glia after spinal cord contusion in the rat. Brain Res 2000; 883:233-7. [PMID: 11074053 DOI: 10.1016/s0006-8993(00)02846-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HSP70 and heme oxygenase-1 (HO-1) are thought to be markers of cell injury and oxidative stress, respectively. We have immunolocalized these proteins in the spinal cord at 1-14 days after contusion. HSP70 and HO-1 were co-induced in glia and macrophages within the injured segment at all time points. This co-induction may reflect complementary functions that serve to protect these cells as they respond to the postcontusional environment.
Collapse
Affiliation(s)
- A E Mautes
- Neurosurgical Research Laboratory, Saarland University Medical School, Saarland, Germany
| | | |
Collapse
|
34
|
Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience 2000; 99:93-105. [PMID: 10924955 DOI: 10.1016/s0306-4522(00)00185-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A weight drop model of brain injury was used to determine the effects of repetitive mild brain injury on motor function, heat shock protein and glial fibrillary acidic protein expression in the anesthetized, adult male, Sprague-Dawley rat. Repetitive mild brain injury was produced when animals received a series of three mild injuries spaced three days apart. A separate group of repetitive mild injured animals also received a subsequent severe brain injury between three and five days after the last mild injury. All animals were trained on a beam-walking test prior to surgery. The mild, repetitive mild and repetitive mild plus severe brain injury groups showed no motor deficits in the beam-walking test, whereas the animals with only severe brain injury showed significant motor deficits (increase in number of footslips) in the beam-walking test that recovered within eight days after injury. Both repetitive mild plus severe injury and severe injury only animals had cortical necrotic cavities of similar size in the region of the hindlimb motor cortex. Both the repetitive mild and severe brain-injured animals had marked heat shock protein 27kDa and glial fibrillary acidic protein staining in the cerebral cortex. Fluoro-Jade, heat shock protein 27kDa and 72kDa labeling indicated that there were widespread effects on cortical, subcortical and spinal neurons and glial cells after repetitive mild brain injury. These results suggest that repetitive mild brain injury conditions the brain so that subsequent brain injury at the same site has no effect on motor function. Furthermore, repetitive mild injury-induced activation of processes distant to the primary injury site may have a role in activation of secondary sites involved in recovery of motor function.
Collapse
Affiliation(s)
- G V Allen
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada.
| | | | | |
Collapse
|
35
|
Rao ZR, Ge X, Qiou JY, Yang T, Duan L, Ju G. Expression and changes of HSP70 in the rat forebrain subjected to gamma knife (100Gy) irradiation targeted on the caudate putamen and survived for different times. Neurosci Res 2000; 38:139-46. [PMID: 11000440 DOI: 10.1016/s0168-0102(00)00134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Forebrain heat shock protein 70 (HSP70) immunohistochemical reactivity was investigated in rats subjected to gamma knife irradiation focusing on the right caudate putamen nucleus. The forebrain sections of all experimental animals were processed with anti-HSP70 antiserum and then by avidin-biotin peroxidase complex immunohistochemistry after gamma ray irradiation with a dose of 100Gy and they each survived for different times (from 30 min to 30 days). Some neurons, glial cells, and endothelial cells were HSP70-like immunoreactivity (HSP70-LI) positive. HSP70-LI was mainly distributed in the target area of irradiation, as well as in non-target regions, e.g. the cortex, hippocampus, and hypothalamus, etc. The expression and change of HSP70-LI from 3 h to 30 days after irradiation followed the following rules: (1) Within 3 to 24 h, the dilated vessels with HSP70-LI endothelial cells were found at first, and a few lightly stained HSP70-LI neurons and glias were observed in the target and non-target regions; (2) In 3-7 days, darkly stained HSP70-LI neurons and glias were apparently increased and formed an expression peak. From 14 to 30 days, HSP70-LI cells were distinctly decreased and became weakly stained or negative. These results suggested that although the irradiation target of the gamma knife was localized, the response to irradiation occurred extensively.
Collapse
Affiliation(s)
- Z R Rao
- Department of Neuromorphology, Institute of Neuroscience, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Lee JY, Park J, Kim YH, Kim DH, Kim CG, Koh JY. Induction by synaptic zinc of heat shock protein-70 in hippocampus after kainate seizures. Exp Neurol 2000; 161:433-41. [PMID: 10686065 DOI: 10.1006/exnr.1999.7297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following seizures, heat shock protein (HSP)-70 is induced in various brain regions. Since zinc that can induce HSP-70 in various cell systems is enriched in certain glutamatergic terminals and translocates to postsynaptic neurons with seizures, we examined the possibility that HSP-70 induction in the epileptic brain is mediated by synaptic zinc. Adult rats were injected intraperitoneally with kainate to induce seizures. Seizures were halted 3 h after the kainate administration by the injection of phenytoin. Staining of brain sections with zinc-specific fluorescent dye TFL at 24 h after the kainate injection revealed a one-to-one correlation between dense TFL fluorescence and acidophilic neuronal degeneration in the hippocampus. Subsequent staining with anti-HSP-70 antibody, however, revealed that more numerous neurons than degenerating neurons exhibited HSP-70 immunoreactivity. Most of the HSP-70(+) neurons were not stained with acid fuchsin but exhibited mild zinc fluorescence in the cytoplasm. Intraventricular injection of CaEDTA attenuated neuronal death as well as the HSP-70 induction in a dose-dependent manner. Supporting the specificity of zinc rather than calcium as the inducer of HSP-70 in neurons, exposure to zinc but not to a calcium ionophore or excitotoxins increased expression of HSP-70 mRNA and protein in cultured cortical neurons. The present results suggest that not only selective neuronal death, but also HSP-70 induction in neurons after seizures, is mediated by the translocation of endogenous synaptic zinc.
Collapse
Affiliation(s)
- J Y Lee
- National Creative Research Initiative Center for the Study of CNS Zinc, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In response to many environmental and pathophysiologic stressful stimuli, cells undergo a stress response characterized by induction of a variety of proteins, including the heat shock protein family. The inducible heat shock protein 70 (hsp70) is believed to participate in an array of cellular activities, including cytoprotection. Normal brain cells have little detectable hsp70 RNA or protein. However, following a stressful condition hsp70 mRNA and protein are induced in different cell types depending on the severity and the nature of the stimulus. The induction of hsp70 protein correlates with the regional and cellular vulnerability to a particular injury as identified by standard histologic methods. The pattern of hsp70 expression differs in response to various neurotoxic stimuli, including hyperthermia, ischemia, seizures, hemorrhage, and N-methyl-D-aspartate receptor antagonist administration. Hsp70 expression is a useful marker of cellular injury and may help to identify previously unrecognized areas of vulnerability in the nervous system after a neurotoxic stimulus. Hsp70 may also play a neuroprotective role in the brain.
Collapse
Affiliation(s)
- S Rajdev
- Department of Neurology, University of California-San Francisco and VA Medical Center, 94121, USA.
| | | |
Collapse
|
38
|
Truettner J, Schmidt-Kastner R, Busto R, Alonso OF, Loor JY, Dietrich WD, Ginsberg MD. Expression of brain-derived neurotrophic factor, nerve growth factor, and heat shock protein HSP70 following fluid percussion brain injury in rats. J Neurotrauma 1999; 16:471-86. [PMID: 10391364 DOI: 10.1089/neu.1999.16.471] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury can induce the expression of stress-related and neurotrophic genes both within the injury site and in distant regions. These genes may affect severity of damage and/or be neuroprotective. We used in situ hybridization to assess the alterations in expression of the heat shock protein HSP70, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) genes in rat brain following moderate fluid-percussion (F-P) injury at various survival times. HSP70 gene expression was induced at and surrounding the injury site as early as 30 min after trauma. This elevated signal spread ventrally and laterally through the ipsilateral cortex and into the underlying white matter over the next few hours. In addition, there was elevated expression in the temporal hippocampus. BDNF was strongly upregulated in the granular cells of the dentate gyrus and in the CA3 hippocampus 2-6 h after injury. Cortical regions at and near the injury site showed no response at the mRNA level. NGF mRNA increased over the granular cells of the dentate gyrus at early time points. There was also a weaker secondary induction of the NGF gene in the contralateral dentate gyrus of some animals. Cortical response was observed in the entorhinal cortex, bilaterally, but not at the injury site. All three of the studied genes responded quickly to injury, as early as 30 min. The induction of gene expression for neurotrophins in regions remote from areas with histopathology may reflect coupling of gene expression to neuronal excitation, which may be associated with neuroprotection and plasticity.
Collapse
Affiliation(s)
- J Truettner
- Neurotrauma Research Center, Department of Neurology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tytell M, Brown WR, Moody DM, Challa VR. Immunohistochemical assessment of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 35:97-117. [PMID: 10343973 DOI: 10.1007/bf02815118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distributions of constitutive and inducible 70-kDa heatshock proteins (Hsc70 and Hsp70, respectively) and ubiquitin (Ub) were investigated in autopsy specimens from 24 adult human brains. The objectives were to verify that the milder fixation and celloidin embedding applied to those specimens preserved protein immunoreactivity in the tissue sections, even with extended intervals between death and fixation, and to determine the typical pattern of distribution of the proteins in aged human cerebellum and caudate nucleus. To achieve these objectives, the patterns of immunoreactivity in human specimens were compared with those in normal rat brain after three methods of immersion fixation: 1. 1% Formalin; 2. 10% Formalin; 3. Methacarn (a modification of Carnoy's solution). Additionally, some rats were left refrigerated, but unfixed for up to 24 h to mimic the postmortem interval that commonly occurs prior to fixation of human autopsy material. Tissues were embedded in celloidin, sectioned at 100 microns, and the celloidin dissolved to permit immunostaining. Immunoreactivity for all antigens was greatly diminished in the rat brain by fixation in 10% formalin compared to 1% formalin or methacarn. Rat and human brain tissues fixed in the latter two solutions showed similar patterns of low levels of Hsp70 immunostaining in gray matter and other areas where neuronal somata were concentrated, whereas Hsc70 immunostaining was much greater in those same areas. Little Hsc70 or Hsp70 immunoreactivity was detected in the white matter from either source, but immunoblots of human gray and white matter suggested that white matter contained more Hsc70 and Hsp70 than apparent by tissue section immunoreactivity. Ubiquitin immunostaining in rat and human brain showed the same high levels as Hsc70 in gray matter, but unlike Hsc70, was also visible in white matter. These patterns remained the same in rat brains even if fixation was delayed for 24 h. In three human brain specimens, elevated Hsc70 staining, but not Hsp70 or Ub, was found in a ring pattern similar to that described as the ischemic penumbra in experimentally induced brain ischemia. These results indicated that dilute formalin preserved Hsc/Hsp70 and Ub antigenicity well, and that the proteins had similar distributions in human and rat brains, despite the extended postmortem delay in fixation of the former. They also suggested that evidence of premortem, localized cellular metabolic stress may be preserved in the postmortem human brain by an alteration in the typical distribution of Hsc70.
Collapse
Affiliation(s)
- M Tytell
- Department of Neurobiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|