1
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2024; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
2
|
Kamoga R, Rukundo GZ, Kalungi S, Adriko W, Nakidde G, Obua C, Obongoloch J, Ihunwo AO. Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. AIMS Neurosci 2024; 11:398-420. [PMID: 39431268 PMCID: PMC11486617 DOI: 10.3934/neuroscience.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dementia is a prevalent, progressive, neurodegenerative condition with multifactorial causes. Due to the lack of effective pharmaceutical treatments for dementia, there are growing clinical and research interests in using vagus nerve stimulation (VNS) as a potential non-pharmacological therapy for dementia. However, the extent of the research volume and nature into the effects of VNS on dementia is not well understood. This study aimed to examine the extent and nature of research activities in relation to the use of VNS in dementia and disseminate research findings for the potential utility in dementia care. Methods We performed a scoping review of literature searches in PubMed, HINARI, Google Scholar, and the Cochrane databases from 1980 to November 30th, 2023, including the reference lists of the identified studies. The following search terms were utilized: brain stimulation, dementia, Alzheimer's disease, vagal stimulation, memory loss, Deme*, cognit*, VNS, and Cranial nerve stimulation. The included studies met the following conditions: primary research articles pertaining to both humans and animals for both longitudinal and cross-sectional study designs and published in English from January 1st, 1980, to November 30th, 2023; investigated VNS in either dementia or cognitive impairment; and were not case studies, conference proceedings/abstracts, commentaries, or ordinary review papers. Findings and conclusions We identified 8062 articles, and after screening for eligibility (sequentially by titles, abstracts and full text reading, and duplicate removal), 10 studies were included in the review. All the studies included in this literature review were conducted over the last three decades in high-income geographical regions (i.e., Europe, the United States, the United Kingdom, and China), with the majority of them (7/10) being performed in humans. The main reported outcomes of VNS in the dementia cases were enhanced cognitive functions, an increased functional connectivity of various brain regions involved in learning and memory, microglial structural modifications from neurodestructive to neuroprotective configurations, a reduction of cerebral spinal fluid tau-proteins, and significant evoked brain tissue potentials that could be utilized to diagnose neurodegenerative disorders. The study outcomes highlight the potential for VNS to be used as a non-pharmacological therapy for cognitive impairment in dementia-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald Kamoga
- Department of Anatomy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Godfrey Zari Rukundo
- Department of Psychiatry, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Samuel Kalungi
- Makerere University, School of health sciences, Department of Pathology. Kampala, Uganda
| | - Wilson Adriko
- Library department, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara Uganda
| | - Gladys Nakidde
- Faculty of Nursing and Health Sciences, Bishop Stuart University, Mbarara, Uganda
| | - Celestino Obua
- Department of Pharmacology, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Johnes Obongoloch
- Department of Biomedical engineering, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Amadi Ogonda Ihunwo
- University of the Witwatersrand, School of Anatomical Sciences, Faculty of Health Sciences, Johannesburg, South Africa
| |
Collapse
|
3
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Morais A, Chung JY, Wu L, Ayata C, Simon B, Whalen MJ. Non-Invasive Vagal Nerve Stimulation Pre-Treatment Reduces Neurological Dysfunction After Closed Head Injury in Mice. Neurotrauma Rep 2024; 5:150-158. [PMID: 38435077 PMCID: PMC10908330 DOI: 10.1089/neur.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice. We show that nVNS pre-treatment suppresses CHI-associated spatial learning and memory impairment and prevents IL-1β activation in injured neurons, but not endothelial cells. In contrast, nVNS administered 10 min after CHI was ineffective. These data suggest that nVNS prophylaxis might ameliorate neuronal dysfunction associated with CHI in populations at high risk for concussive TBI.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bruce Simon
- ElectroCore, Inc., Basking Ridge, New Jersey, USA
| | - Michael J. Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
5
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. Neurobiol Aging 2023; 132:85-99. [PMID: 37769491 PMCID: PMC10840698 DOI: 10.1016/j.neurobiolaging.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Paul Lehrer
- Rutgers University, New Brunswick, NJ 08852, USA
| | - Catie Chang
- Vanderbilt University, Nashville, TN 37235, USA
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Lu HC, Gevirtz R, Yang CC, Hauson AO. Heart Rate Variability Biofeedback for Mild Traumatic Brain Injury: A Randomized-Controlled Study. Appl Psychophysiol Biofeedback 2023; 48:405-421. [PMID: 37335413 PMCID: PMC10582136 DOI: 10.1007/s10484-023-09592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
To determine whether heart rate variability biofeedback (HRV-BF) training, compared to a psychoeducation control condition can strengthen the integration of the central and autonomic nervous systems as measured by neuropsychological measures in patients with mild traumatic brain injury (mTBI). Participants were recruited from two university hospitals in Taipei, Taiwan. A total of 49 participants with mTBI were recruited for this study. Forty-one participants completed the study, 21 in the psychoeducation group and 20 in the HRV-BF group. Randomized controlled study. The Taiwanese Frontal Assessment Battery, the Semantic Association of Verbal Fluency Test, the Taiwanese version of the Word Sequence Learning Test, the Paced Auditory Serial Addition Test-Revised, and the Trail Making Test were used as performance-based neuropsychological functioning measures. The Checklist of Post-concussion Symptoms, the Taiwanese version of the Dysexecutive Questionnaire, the Beck Anxiety Inventory, the Beck Depression Inventory, and the National Taiwan University Irritability Scale were used as self-report neuropsychological functioning measures. Furthermore, heart rate variability pre- vs. post-training was used to measure autonomic nervous system functioning. Executive, information processing, verbal memory, emotional neuropsychological functioning, and heart rate variability (HRV) were improved significantly in the HRV-BF group at the posttest whereas the psychoeducation group showed no change. HRV biofeedback is a feasible technique following mild TBI that can improve neuropsychological and autonomic nervous system functioning. HRV-BF may be clinically feasible for the rehabilitation of patients with mTBI.
Collapse
Affiliation(s)
- Hsueh Chen Lu
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA
| | - Richard Gevirtz
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA.
| | - Chi Cheng Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Alexander O Hauson
- California School of Professional Psychology at Alliant International University, Clinical Psychology PhD Program, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.Org), San Diego, CA, USA
| |
Collapse
|
7
|
Choudhary T, Elliott M, Euliano NR, Gurel NZ, Rivas AG, Wittbrodt MT, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Effect of transcutaneous cervical vagus nerve stimulation on declarative and working memory in patients with Posttraumatic Stress Disorder (PTSD): A pilot study. J Affect Disord 2023; 339:418-425. [PMID: 37442455 DOI: 10.1016/j.jad.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is associated with changes in multiple neurophysiological systems, including verbal declarative memory deficits. Vagus Nerve Stimulation (VNS) has been shown in preliminary studies to enhance function when paired with cognitive and motor tasks. The purpose of this study was to analyze the effect of transcutaneous cervical VNS (tcVNS) on attention, declarative and working memory in PTSD patients. METHODS Fifteen PTSD patients were randomly assigned to active tcVNS (N = 8) or sham (N = 7) stimulation in a double-blinded fashion. Memory assessment tests including paragraph recall and N-back tests were performed to assess declarative and working memory function when paired with active/sham tcVNS once per month in a longitudinal study during which patients self-administered tcVNS/sham twice daily. RESULTS Active tcVNS stimulation resulted in a significant improvement in paragraph recall performance following pairing with paragraph encoding for PTSD patients at two months (p < 0.05). It resulted in a 91 % increase in paragraph recall performance within group (p = 0.03), while sham tcVNS exhibited no such trend in performance improvement. In the N-back study, positive deviations in accuracy, precision and recall measures on different day visits (7,34,64,94) of patients with respect to day 1 revealed a pattern of better performance of the active tcVNS population compared to sham VNS which did not reach statistical significance. LIMITATIONS Our sample size was small. CONCLUSIONS These preliminary results suggest that tcVNS improves attention, declarative and working memory, which may improve quality of life and productivity for patients with PTSD. Future studies are required to confirm these results.
Collapse
Affiliation(s)
- Tilendra Choudhary
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | | | | | - Nil Z Gurel
- Reality Labs, Meta Platforms Inc., Menlo Park, CA, USA
| | - Amanda G Rivas
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Yan Q, Chen J, Ren X, Song Y, Xu J, Xuan S, Jiang X, Kuang Z, Tang Z. Vagus Nerve Stimulation Relives Irritable Bowel Syndrome and the Associated Depression via α7nAChR-mediated Anti-inflammatory Pathway. Neuroscience 2023; 530:26-37. [PMID: 37625687 DOI: 10.1016/j.neuroscience.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES The present study is designed to investigate the role of vagus nerve in the treatments of irritable bowel syndrome (IBS) and the associated central nervous system disorders. METHODS An IBS animal model was established by giving acetic acid and chronic-acute stress (AA-CAS) treatment in adult male Wistar rats. Subdiaphragmatic vagotomy (SDV) and vagus nerve stimulation (VNS) were performed to intervene the excitability of vagus nerve. Permeability of blood brain barrier (BBB) was measured and agonist and antagonist of α7 nicotinic acetylcholine receptor (α7nAChR) were used to explore the relevant mechanisms. RESULTS AA-CAS treatment resulted in abnormal fecal output, increased visceral sensitivity, depressive-like behaviors, and overexpression of inflammatory mediators, all of which were reversed by VNS treatment. The effects of VNS could also be observed when α7nAChR agonist was applied. Whereas α7nAChR antagonist (methyllycaconitine, MLA) reversed VNS's effects. Interestingly, VNS also reduced the increased permeability of blood brain barrier (BBB) following AA-CAS treatment in IBS rats. SDV treatment only show temporary efficacy on AA-CAS-induced symptoms and had no effect on the permeability of BBB. CONCLUSION The intestinal abnormalities and depressive symptoms in IBS rats can be improved by VNS treatment. This positive effect of VNS was achieved through α7nAChR-mediated inflammatory pathway and may also be associated with the decreased of BBB permeability.
Collapse
Affiliation(s)
- Qizhi Yan
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Jiawei Chen
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Xiuying Ren
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Yibo Song
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Jian Xu
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Shaoyan Xuan
- Shaoxing People's Hospital, Shaoxing 312000, China
| | - Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo 315000, China
| | - Zhijian Kuang
- Zhejiang University Mingzhou Hospital, Ningbo 315000, China
| | - Zhihua Tang
- Shaoxing People's Hospital, Shaoxing 312000, China.
| |
Collapse
|
9
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.02.23286715. [PMID: 37745356 PMCID: PMC10516053 DOI: 10.1101/2023.03.02.23286715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: 1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); 2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition x time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
10
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
11
|
Bremner JD, Gazi AH, Lambert TP, Nawar A, Harrison AB, Welsh JW, Vaccarino V, Walton KM, Jaquemet N, Mermin-Bunnell K, Mesfin H, Gray TA, Ross K, Saks G, Tomic N, Affadzi D, Bikson M, Shah AJ, Dunn KE, Giordano NA, Inan OT. Noninvasive Vagal Nerve Stimulation for Opioid Use Disorder. ANNALS OF DEPRESSION AND ANXIETY 2023; 10:1117. [PMID: 38074313 PMCID: PMC10699253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Background Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications. Methods This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and Medline were queried for these topics for 1982-present. Results Opioid withdrawal in the context of OUD is associated with activation of peripheral sympathetic and inflammatory systems as well as alterations in central brain regions including anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. Preliminary studies show that it is potentially effective at acting through sympathetic pathways to reduce the effects of opioid withdrawal, in addition to reducing pain and distress. Conclusions NVNS shows promise as a non-medication approach to OUD, both in terms of its known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms as well as physiological manifestations of opioid withdrawal.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
- Atlanta Veterans Affairs Healthcare System, Decatur GA
| | - Asim H Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Tamara P Lambert
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Afra Nawar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anna B Harrison
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Justine W Welsh
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kevin M Walton
- Clinical Research Grants Branch, Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD
| | - Nora Jaquemet
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Kellen Mermin-Bunnell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Hewitt Mesfin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Trinity A Gray
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Keyatta Ross
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Georgia Saks
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Nikolina Tomic
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Danner Affadzi
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Amit J Shah
- Atlanta Veterans Affairs Healthcare System, Decatur GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD
| | | | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
12
|
Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, Mahmoudi J, Seletska A, SantaCruz KS, Torbey MT, Liebler EJ, Bragina OA, Morton RA, Bragin DE. Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:1481-1494. [PMID: 36869619 PMCID: PMC10294566 DOI: 10.1089/neu.2022.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.
Collapse
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pascal Salazar
- Canon Medical Informatics, Inc., Minnetonka, Minnesota, USA
| | - Hafiz A. Ikram
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Erik Taylor
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Colin M. Wilson
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alina Seletska
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Karen S. SantaCruz
- Department of Pathology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michel T. Torbey
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Olga A. Bragina
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Russel A. Morton
- Department of Neuroscience, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Ziesel D, Nowakowska M, Scheruebel S, Kornmueller K, Schäfer U, Schindl R, Baumgartner C, Üçal M, Rienmüller T. Electrical stimulation methods and protocols for the treatment of traumatic brain injury: a critical review of preclinical research. J Neuroeng Rehabil 2023; 20:51. [PMID: 37098582 PMCID: PMC10131365 DOI: 10.1186/s12984-023-01159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of disabilities resulting from cognitive and neurological deficits, as well as psychological disorders. Only recently, preclinical research on electrical stimulation methods as a potential treatment of TBI sequelae has gained more traction. However, the underlying mechanisms of the anticipated improvements induced by these methods are still not fully understood. It remains unclear in which stage after TBI they are best applied to optimize the therapeutic outcome, preferably with persisting effects. Studies with animal models address these questions and investigate beneficial long- and short-term changes mediated by these novel modalities. METHODS In this review, we present the state-of-the-art in preclinical research on electrical stimulation methods used to treat TBI sequelae. We analyze publications on the most commonly used electrical stimulation methods, namely transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS) and vagus nerve stimulation (VNS), that aim to treat disabilities caused by TBI. We discuss applied stimulation parameters, such as the amplitude, frequency, and length of stimulation, as well as stimulation time frames, specifically the onset of stimulation, how often stimulation sessions were repeated and the total length of the treatment. These parameters are then analyzed in the context of injury severity, the disability under investigation and the stimulated location, and the resulting therapeutic effects are compared. We provide a comprehensive and critical review and discuss directions for future research. RESULTS AND CONCLUSION: We find that the parameters used in studies on each of these stimulation methods vary widely, making it difficult to draw direct comparisons between stimulation protocols and therapeutic outcome. Persisting beneficial effects and adverse consequences of electrical simulation are rarely investigated, leaving many questions about their suitability for clinical applications. Nevertheless, we conclude that the stimulation methods discussed here show promising results that could be further supported by additional research in this field.
Collapse
Affiliation(s)
- D Ziesel
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - M Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - S Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - K Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - U Schäfer
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - R Schindl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - C Baumgartner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - M Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - T Rienmüller
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
14
|
Surendrakumar S, Rabelo TK, Campos ACP, Mollica A, Abrahao A, Lipsman N, Burke MJ, Hamani C. Neuromodulation Therapies in Pre-Clinical Models of Traumatic Brain Injury: Systematic Review and Translational Applications. J Neurotrauma 2023; 40:435-448. [PMID: 35983592 DOI: 10.1089/neu.2022.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been associated with several lasting impairments that affect quality of life. Pre-clinical models of TBI have been studied to further our understanding of the underlying short-term and long-term symptomatology. Neuromodulation techniques have become of great interest in recent years as potential rehabilitative therapies after injury because of their capacity to alter neuronal activity and neural circuits in targeted brain regions. This systematic review aims to provide an overlook of the behavioral and neurochemical effects of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS) in pre-clinical TBI models. After screening 629 abstracts, 30 articles were pooled for review. These studies showed that tDCS, TMS, DBS, or VNS delivered to rodents restored TBI-induced deficits in coordination, balance, locomotor activity and improved cognitive impairments in memory, learning, and impulsivity. Potential mechanisms for these effects included neuroprotection, a decrease in apoptosis, neuroplasticity, and the restoration of neural circuit abnormalities. The translational value, potential applicability, and the interpretation of these findings in light of outcome data from clinical trials in patients with TBI are discussed.
Collapse
Affiliation(s)
- Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Adriano Mollica
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Burke
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Muthiah N, Joseph B, Varga G, Vodovotz L, Sharma N, Abel TJ. Investigation of the effectiveness of vagus nerve stimulation for pediatric drug-resistant epilepsies secondary to nonaccidental trauma. Childs Nerv Syst 2023; 39:1201-1206. [PMID: 36602582 DOI: 10.1007/s00381-022-05817-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Epilepsy following non-accidental trauma (NAT) occurs in 18% of pediatric patients. About 33% of patients with epilepsy develop drug-resistant epilepsy. For these patients, vagus nerve stimulation (VNS) is a palliative treatment option. We aimed to investigate the effectiveness of VNS among pediatric NAT-related epilepsy patients compared to those with non-NAT-related epilepsy. METHODS We performed an 11-year retrospective analysis of VNS implantations for drug-resistant epilepsy at UPMC Children's Hospital of Pittsburgh. Patients were split into two groups: NAT vs. non-NAT. The primary outcome was the attainment of ≥ 50% seizure frequency reduction at 1-year post-VNS implantation. Fisher's exact tests and Wilcoxon rank-sum tests were used to compare groups. Significance was assessed at the alpha = 0.05 level. RESULTS This analysis included data from 370 pediatric VNS patients, of whom 9 had NAT-related epilepsy. NAT patients had a significantly younger age of epilepsy onset than non-NAT patients (0.3 years vs. 3.3 years). Otherwise, there were no statistically significant baseline differences between groups, including patient sex and quantity of antiseizure medications pre-VNS. Overall, 71% of NAT patients experienced ≥ 50% seizure frequency reduction compared to 48% of non-NAT patients (p = 0.269). CONCLUSION VNS may allow a higher proportion of pediatric patients with NAT-related epilepsy to achieve ≥ 50% seizure frequency reduction compared to other epilepsy etiologies. While the results of this study were not statistically significant, the effect size was large. Our results underscore the need for larger, multi-center studies to validate the effectiveness of VNS for this patient population.
Collapse
Affiliation(s)
| | - Brigit Joseph
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gregory Varga
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lena Vodovotz
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Jeong H, Cho A, Ay I, Bonmassar G. Short-pulsed micro-magnetic stimulation of the vagus nerve. Front Physiol 2022; 13:938101. [PMID: 36277182 PMCID: PMC9585240 DOI: 10.3389/fphys.2022.938101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Vagus nerve stimulation (VNS) is commonly used to treat drug-resistant epilepsy and depression. The therapeutic effect of VNS depends on stimulating the afferent vagal fibers. However, the vagus is a mixed nerve containing afferent and efferent fibers, and the stimulation of cardiac efferent fibers during VNS may produce a rare but severe risk of bradyarrhythmia. This side effect is challenging to mitigate since VNS, via electrical stimulation technology used in clinical practice, requires unique electrode design and pulse optimization for selective stimulation of only the afferent fibers. Here we describe a method of VNS using micro-magnetic stimulation (µMS), which may be an alternative technique to induce a focal stimulation, enabling a selective fiber stimulation. Micro-coils were implanted into the cervical vagus nerve in adult male Wistar rats. For comparison, the physiological responses were recorded continuously before, during, and after stimulation with arterial blood pressure (ABP), respiration rate (RR), and heart rate (HR). The electrical VNS caused a decrease in ABP, RR, and HR, whereas µM-VNS only caused a transient reduction in RR. The absence of an HR modulation indicated that µM-VNS might provide an alternative technology to VNS with fewer heart-related side effects, such as bradyarrhythmia. Numerical electromagnetic simulations helped estimate the optimal coil orientation with respect to the nerve to provide information on the electric field’s spatial distribution and strength. Furthermore, a transmission emission microscope provided very high-resolution images of the cervical vagus nerve in rats, which identified two different populations of nerve fibers categorized as large and small myelinated fibers.
Collapse
Affiliation(s)
- Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Annabel Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Bioengineering, Harvard University, Cambridge, MA, United States
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- *Correspondence: Giorgio Bonmassar,
| |
Collapse
|
17
|
Zhang H, Li CL, Qu Y, Yang YX, Du J, Zhao Y. Effects and neuroprotective mechanisms of vagus nerve stimulation on cognitive impairment with traumatic brain injury in animal studies: A systematic review and meta-analysis. Front Neurol 2022; 13:963334. [PMID: 36237612 PMCID: PMC9551312 DOI: 10.3389/fneur.2022.963334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction Cognitive impairment is the main clinical feature after traumatic brain injury (TBI) and is usually characterized by attention deficits, memory loss, and decreased executive function. Vagus nerve stimulation (VNS) has been reported to show potential improvement in the cognition level after traumatic brain injury in clinical and preclinical studies. However, this topic has not yet been systematically reviewed in published literature. In this study, we present a systematic review and meta-analysis of the effects of VNS on cognitive function in animal models of TBI and their underlying mechanisms. Methods We performed a literature search on PubMed, PsycINFO, Web of Science, Embase, Scopus, and Cochrane Library from inception to December 2021 to identify studies describing the effects of VNS on animal models of TBI. Results Overall, nine studies were identified in animal models (36 mice, 268 rats, and 27 rabbits). An analysis of these studies showed that VNS can improve the performance of TBI animals in behavioral tests (beam walk test: SMD: 4.95; 95% confidence interval [CI]: 3.66, 6.23; p < 0.00001) and locomotor placing tests (SMD: -2.39; 95% CI: -4.07, -0.71; p = 0.005), whereas it reduced brain edema (SMD: -1.58; 95% CI: -2.85, -0.31; p = 0. 01) and decrease TNF-α (SMD: -3.49; 95% CI: -5.78, -1.2; p = 0.003) and IL-1β (SMD: -2.84; 95% CI: -3.96, -1.71; p < 0.00001) expression level in the brain tissue. However, the checklist for SYRCLE showed a moderate risk of bias (quality score between 30% and 60%), mainly because of the lack of sample size calculation, random assignment, and blinded assessment. Conclusion The present review showed that VNS can effectively promote cognitive impairment and neuropathology in animal models of TBI. We hope that the results of this systematic review can be applied to improve the methodological quality of animal experiments on TBI, which will provide more important and conclusive evidence on the clinical value of VNS. To further confirm these results, there is a need for high-quality TBI animal studies with sufficient sample size and a more comprehensive outcome evaluation. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290797, identifier: CRD42021290797.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Chun-liu Li
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Juan Du
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
18
|
Effects of Long-Term Vagus Nerve Electrical Stimulation Therapy on Acute Cerebral Infarction and Neurological Function Recovery in Post MCAO Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8131391. [PMID: 35391930 PMCID: PMC8983242 DOI: 10.1155/2022/8131391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022]
Abstract
Background Vagus nerve stimulation therapy is proven to produce neuroprotective effects against central nervous system diseases and reduce neurological injury, having a positive effect on the recovery of neurological functions in mouse model of stroke. Objective This study was aimed at exploring a wider time window for VNS treatment, investigating the long-term behavioral improvement of long-term VNS in mice after pMCAO, and exploring the antiapoptotic properties of VNS and its role in autophagy, all of which may be a permanent deficiency potential mechanism of neuroprotection in hemorrhagic stroke. Methods Permanent focal cerebral ischemia and implantation of vagus nerve stimulator were performed through intracavitary occlusion of the right middle cerebral artery (MCA). The vagus nerve stimulation group received five times vagus nerve stimulation from 6 h after surgery for 5 days. Adhesive removal test and NSS neurological score were used to evaluate the neurological deficit of mice. TTC staining of mouse brain tissue was performed one week after surgery in order to assess the area of cerebral infarction. Additionally, frozen sections were stained with Fluoro-Jade B to observe the apoptotic cells in the ischemic penumbra of brain tissue. Finally, Western blot was used to detect the changes in the levels of apoptosis-related proteins such as cleaved-caspase3 and Bcl-2 and autophagy-related proteins such as mTOR, Beclin-1, and LC3-II in brain tissue. Results VNS can effectively reduce the behavioral score of pMCAO mice; TTC results showed that VNS could effectively reduce the infarct area after pMCAO (P < 0.05). After VNS intervention of the pMCAO group compared with the pMCAO+VNI group, the FJB-positive cells in the VNS group were significantly decreased (P < 0.05); Western Blot analysis showed that the expression of cleaved-caspase3 in the brain tissue of mice increased after pMCAO (P < 0.05), and the expression of Bcl-2 decreased (P < 0.05). This change could be effectively reversed after VNS intervention (P < 0.05). Conclusion VNS could effectively improve the behavioral performance of mice after permanent stroke in addition to significantly reducing the infarct size of the brain tissue. The mechanism may be related to the effective reduction of cell apoptosis and excessive autophagy after pMCAO by VNS.
Collapse
|
19
|
El-Hakim Y, Bake S, Mani KK, Sohrabji F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol Dis 2022; 165:105627. [PMID: 35032636 DOI: 10.1016/j.nbd.2022.105627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022] Open
Abstract
Brain injuries and neurological diseases have a significant impact on the gut microbiome and the gut barrier. Reciprocally, gut disorders, such as Inflammatory Bowel Syndromes (IBS), can affect the development and pathology of neurodegenerative and neuropsychiatric diseases, although this aspect is less well studied and is the focus of this review. Inflammatory Bowel Syndrome (IBS) is a chronic and debilitating functional gastrointestinal disorder afflicting an estimated 9-23% of the world's population. A hallmark of this disease is leaky gut, a pathology in which the integrity of the gut blood barrier is compromised, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. The increased levels of inflammation associated cytokines in circulation has the potential to affect all organs, including the brain. Although the brain is protected by the blood brain barrier, inflammation associated cytokines can damage the junctions in this barrier and allow brain infiltration of peripheral immune cells. Central inflammation in the brain is associated with various neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuropsychiatric disorders, namely, depression, and anxiety. Neurodegenerative diseases are of particular concern due to the anticipated rise in the population of the elderly and consequently, the prevalence of these diseases. Additionally, depression and anxiety are the most common mental illnesses affecting roughly 18% of the American population. In this review, we will explore the mechanisms by which IBS can influence the risk and severity of neurological disease.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Shameena Bake
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA.
| |
Collapse
|
20
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Shaping plasticity with non-invasive brain stimulation in the treatment of psychiatric disorders: Present and future. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:497-507. [PMID: 35034757 PMCID: PMC9985830 DOI: 10.1016/b978-0-12-819410-2.00028-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The final chapter of this book addresses plasticity in the setting of treating psychiatric disorders. This chapter largely focuses on the treatment of depression and reviews the established antidepressant brain stimulation treatments, focusing on plasticity and maladaptive plasticity. Depression is a unique neuropsychiatric disease in that the brain goes from a healthy state into a pathologic state, and then, with appropriate treatment, can return to health often without permanent sequelae. Depression thus differs fundamentally from neurodegenerative brain diseases like Parkinson's disease or stroke. Some have theorized that depression involves a lack of flexibility or a lack of plasticity. The proven brain stimulation methods for treating depression cause plastic changes and include acute and maintenance electroconvulsive therapy (ECT), acute and maintenance transcranial magnetic stimulation (TMS), and chronically implanted cervical vagus nerve stimulation (VNS). These treatments vary widely in their speed of onset and durability. This variability in onset speed and durability raises interesting, and so far, largely unanswered questions about the underlying neurobiological mechanisms and forms of plasticity being invoked. The chapter also covers exciting recent work with vagus nerve stimulation (VNS) that is delivered paired with behaviors to cause learning and memory and plasticity changes. Taken together these current and future brain stimulation treatments for psychiatric disorders are especially promising. They are unlocking how to shape the brain in diseases to restore balance and health, with an increasing understanding of how to effectively and precisely induce therapeutic neuroplastic changes in the brain.
Collapse
|
22
|
Bremner JD, Wittbrodt MT, Gurel NZ, Shandhi MH, Gazi AH, Jiao Y, Levantsevych OM, Huang M, Beckwith J, Herring I, Murrah N, Driggers EG, Ko YA, Alkhalaf ML, Soudan M, Shallenberger L, Hankus AN, Nye JA, Park J, Woodbury A, Mehta PK, Rapaport MH, Vaccarino V, Shah AJ, Pearce BD, Inan OT. Transcutaneous Cervical Vagal Nerve Stimulation in Patients with Posttraumatic Stress Disorder (PTSD): A Pilot Study of Effects on PTSD Symptoms and Interleukin-6 Response to Stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100190. [PMID: 34778863 PMCID: PMC8580056 DOI: 10.1016/j.jadr.2021.100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and inflammatory responses to stress. METHODS Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of inflammation. Patients then self administered active or sham tcVNS twice daily for three months. PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of measurement of biomarkers with traumatic scripts. After three months patients self treated with twice daily open label active tcVNS for another three months followed by assessment with the CGI. RESULTS Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS (p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI compared to the sham treatment period p<0.05). CONCLUSIONS These preliminary results suggest that tcVNS reduces inflammatory responses to stress, which may in part underlie beneficial effects on PTSD symptoms.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Medical Center, Decatur, Georgia
| | - Matthew T. Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Oleksiy M. Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Joy Beckwith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Isaias Herring
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Emily G. Driggers
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - MhmtJamil L. Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Allison N. Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Anna Woodbury
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| | - Puja K. Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
23
|
Potential roles of vagus nerve stimulation on traumatic brain injury: Evidence from in vivo and clinical studies. Exp Neurol 2021; 347:113887. [PMID: 34624329 DOI: 10.1016/j.expneurol.2021.113887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Traumatic Brain Injury (TBI) is a one of the leading causes of death and disability worldwide. The consequences of TBI can be divided into two stages: 1) the immediate neuronal destruction during the initial trauma, resulting in the primary brain injury and pathophysiologic sequelae, and 2) the secondary brain injury, encompassing mitochondrial dysfunction, inflammation, cellular excitotoxicity, oxidative stress, and cortical edema, resulting in increased intracranial pressure (ICP) with exacerbated brain damage. Although the pathophysiology in TBI has been thoroughly investigated, the effectivity of therapeutic approaches for TBI is still lacking. Vagus nerve stimulation (VNS) has been used for treating medical refractory epilepsy and chronic drug-resistant depression. Several previous studies also demonstrated that VNS has beneficial effects for TBI in animal models and patients. The neuroprotective effects of VNS on TBI are possibly explained through several mechanisms, including a noradrenergic mechanism, anti-inflammatory effects, regulation of neurotransmitters, and attenuation of blood brain barrier breakdown, and brain edema. The aims of this review are to summarize and discuss the current evidence pertinent to the effect of VNS on both primary and secondary brain injury following TBI from both in vivo and clinical studies.
Collapse
|
24
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
25
|
Salemi-Mokri-Boukani P, Karimian-Sani-Varjovi H, Safari MS. The promoting effect of vagus nerve stimulation on Lempel-Ziv complexity index of consciousness. Physiol Behav 2021; 240:113553. [PMID: 34375622 DOI: 10.1016/j.physbeh.2021.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that vagus nerve stimulation (VNS) promotes cognitive and behavioral restoration after traumatic brain injuries. As vagus nerve has wide effects over the brain and visceral organs, stimulation of the sensory/visceral afferents might have a therapeutic potential to modulate the level of consciousness. One of the most important challenges in studying consciousness is objective evaluation of the consciousness level. Brain complexity that can be measured through Lempel-Ziv complexity (LZC) index was used as a novel mathematical approach for objective measurement of consciousness. The main goal of our study was to examine the effects of VNS on LZC index of consciousness. In this study, we did VNS on the anesthetized rats, and simultaneously LFPs recording was performed in two different cortical areas of primary somatosensory (S1) or visual (V1) cortex. LZC and the amplitude of slow waves were computed during different periods of VNS. We found that the LZC index during VNS period was significantly higher in both of the cortical areas of S1 and V1. Slow-wave activity decreased during VNS in S1, while there was no significant change in V1. Our findings showed that VNS can augment the consciousness level, and LZC index is a more sensitive parameter for detecting the level of consciousness.
Collapse
Affiliation(s)
- Paria Salemi-Mokri-Boukani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Karimian-Sani-Varjovi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Future Institute, Tehran, Iran
| | - Mir-Shahram Safari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Future Institute, Tehran, Iran.
| |
Collapse
|
26
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
27
|
Thompson SL, O'Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front Neurosci 2021; 15:709436. [PMID: 34326720 PMCID: PMC8313807 DOI: 10.3389/fnins.2021.709436] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an established form of neuromodulation with a long history of promising applications. Earliest reports of VNS in the literature date to the late 1800’s in experiments conducted by Dr. James Corning. Over the past century, both invasive and non-invasive VNS have demonstrated promise in treating a variety of disorders, including epilepsy, depression, and post-stroke motor rehabilitation. As VNS continues to rapidly grow in popularity and application, the field generally lacks a consensus on optimum stimulation parameters. Stimulation parameters have a significant impact on the efficacy of neuromodulation, and here we will describe the longitudinal evolution of VNS parameters in the following categorical progression: (1) animal models, (2) epilepsy, (3) treatment resistant depression, (4) neuroplasticity and rehabilitation, and (5) transcutaneous auricular VNS (taVNS). We additionally offer a historical perspective of the various applications and summarize the range and most commonly used parameters in over 130 implanted and non-invasive VNS studies over five applications.
Collapse
Affiliation(s)
- Sean L Thompson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W Austelle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Elise Gruber
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Alex T Kahn
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J Manett
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Baron Short
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
28
|
Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats. Biomedicines 2021; 9:biomedicines9070789. [PMID: 34356853 PMCID: PMC8301489 DOI: 10.3390/biomedicines9070789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The major surgical treatment for Parkinson’s disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25–0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25–0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device.
Collapse
|
29
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Abstract
Background: Reviving patients with prolonged disorders of consciousness (DOCs) has always been focused and challenging in medical research. Owing to the limited effectiveness of available medicine, recent research has increasingly turned towards neuromodulatory therapies, involving the stimulation of neural circuits. We summarised the progression of research regarding neuromodulatory therapies in the field of DOCs, compared the differences among different studies, in an attempt to explore optimal stimulation patterns and parameters, and analyzed the major limitations of the relevant studies to facilitate future research. Methods: We performed a search in the PubMed database, using the concepts of DOCs and neuromodulation. Inclusion criteria were: articles in English, published after 2002, and reporting clinical trials of neuromodulatory therapies in human patients with DOCs. Results: Overall, 187 published articles met the search criteria, and 60 articles met the inclusion criteria. There are differences among these studies regarding the clinical efficacies of neurostimulation techniques for patients with DOCs, and large-sample studies are still lacking. Conclusions: Neuromodulatory techniques were used as trial therapies for DOCs wherein their curative effects were controversial. The difficulties in detecting residual consciousness, the confounding effect between the natural course of the disease and therapeutic effect, and the heterogeneity across patients are the major limitations. Large-sample, well-designed studies, and innovations for both treatment and assessment are anticipated in future research.
Collapse
|
31
|
Zhang LN, Zhang XW, Li CQ, Guo J, Chen YP, Chen SL. Vagal Nerve Stimulation Protects Against Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting Autophagy and Apoptosis. Neuropsychiatr Dis Treat 2021; 17:905-913. [PMID: 33790559 PMCID: PMC8008252 DOI: 10.2147/ndt.s300535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cumulative evidence suggests that neuronal death including autophagy, apoptosis, and necrosis is closely related to the occurrence and development of cerebral ischemia-reperfusion (I/R) injury. Moreover, vagal nerve stimulation (VNS) is involved in many different neuroprotective and neuroplasticity pathways. Thus, VNS may be a novel approach for treating various neurodegenerative diseases. The present study aims to determine whether VNS protects against cerebral I/R injury in rats by inhibiting autophagy and apoptosis. METHODS Cerebral I/R injury is induced by middle cerebral artery occlusion (MCAO) and VNS is carried out. Infarct volume, neurological deficit, autophagy, and apoptosis are examined 24 h after reperfusion. RESULTS Vagal nerve stimulation decreases infarct volume and suppresses neurological deficit. Moreover, obvious autophagy and apoptosis are detected in rats that have undergone I/R, and VNS inhibits autophagy and apoptosis. CONCLUSION Vagal nerve stimulation exerts neuroprotective effects following I/R injury by inhibiting autophagy and apoptosis.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Xian-Wei Zhang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Chang-Qing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jing Guo
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Yong-Ping Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Sheng-Li Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| |
Collapse
|
32
|
Bremner JD, Gurel NZ, Jiao Y, Wittbrodt MT, Levantsevych OM, Huang M, Jung H, Shandhi MH, Beckwith J, Herring I, Rapaport MH, Murrah N, Driggers E, Ko YA, Alkhalaf ML, Soudan M, Song J, Ku BS, Shallenberger L, Hankus AN, Nye JA, Park J, Vaccarino V, Shah AJ, Inan OT, Pearce BD. Transcutaneous vagal nerve stimulation blocks stress-induced activation of Interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain Behav Immun Health 2020; 9:100138. [PMID: 34589887 PMCID: PMC8474180 DOI: 10.1016/j.bbih.2020.100138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress. Thirty subjects with a history of exposure to traumatic stress with (N = 10) and without (N = 20) PTSD underwent exposure to stressful tasks immediately followed by active or sham tcVNS and measurement of multiple biomarkers of inflammation (interleukin-(IL)-6, IL-2, IL-1β, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ) over multiple time points. Stressful tasks included exposure to personalized scripts of traumatic events on day 1, and public speech and mental arithmetic (Mental Stress) tasks on days 2 and 3. Traumatic scripts were associated with a pattern of subjective anger measured with Visual Analogue Scales and increased IL-6 and IFNγ in PTSD patients that was blocked by tcVNS (p < .05). Traumatic stress had minimal effects on these biomarkers in non-PTSD subjects and there was no difference between tcVNS or sham. No significant differences were seen between groups in IL-2, IL-1β, or TNFα. These results demonstrate that tcVNS blocks behavioral and inflammatory responses to stress reminders in PTSD.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Minxuan Huang
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joy Beckwith
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaias Herring
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark H. Rapaport
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy Murrah
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Emily Driggers
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Yi-An Ko
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | | | - Majd Soudan
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jiawei Song
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Benson S. Ku
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Allison N. Hankus
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A. Nye
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeanie Park
- Departments of Renal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Viola Vaccarino
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Amit J. Shah
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bradley D. Pearce
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
33
|
Wittbrodt MT, Gurel NZ, Nye JA, Ladd S, Shandhi MMH, Huang M, Shah AJ, Pearce BD, Alam ZS, Rapaport MH, Murrah N, Ko YA, Haffer AA, Shallenberger LH, Vaccarino V, Inan OT, Bremner JD. Non-invasive vagal nerve stimulation decreases brain activity during trauma scripts. Brain Stimul 2020; 13:1333-1348. [PMID: 32659483 PMCID: PMC8214872 DOI: 10.1016/j.brs.2020.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Traumatic stress can have lasting effects on neurobiology and result in psychiatric conditions such as posttraumatic stress disorder (PTSD). We hypothesize that non-invasive cervical vagal nerve stimulation (nVNS) may alleviate trauma symptoms by reducing stress sympathetic reactivity. This study examined how nVNS alters neural responses to personalized traumatic scripts. Methods: Nineteen participants who had experienced trauma but did not have the diagnosis of PTSD completed this double-blind sham-controlled study. In three sequential time blocks, personalized traumatic scripts were presented to participants immediately followed by either sham stimulation (n = 8; 0–14 V, 0.2 Hz, pulse width = 5s) or active nVNS (n = 11; 0–30 V, 25 Hz, pulse width = 40 ms). Brain activity during traumatic scripts was assessed using High Resolution Positron Emission Tomography (HR-PET) with radiolabeled water to measure brain blood flow. Results: Traumatic scripts resulted in significant activations within the bilateral medial and orbital prefrontal cortex, premotor cortex, anterior cingulate, thalamus, insula, hippocampus, right amygdala, and right putamen. Greater activation was observed during sham stimulation compared to nVNS within the bilateral prefrontal and orbitofrontal cortex, premotor cortex, temporal lobe, parahippocampal gyrus, insula, and left anterior cingulate. During the first exposure to the trauma scripts, greater activations were found in the motor cortices and ventral visual stream whereas prefrontal cortex and anterior cingulate activations were more predominant with later script presentations for those subjects receiving sham stimulation. Conclusion: nVNS decreases neural reactivity to an emotional stressor in limbic and other brain areas involved in stress, with changes over repeated exposures suggesting a shift from scene appraisal to cognitively processing the emotional event.
Collapse
Affiliation(s)
- Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nil Z Gurel
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacy Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Mobashir H Shandhi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amit J Shah
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bradley D Pearce
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zuhayr S Alam
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark H Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy Murrah
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ammer A Haffer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Viola Vaccarino
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Omer T Inan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
34
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
35
|
Hakon J, Moghiseh M, Poulsen I, Øland CML, Hansen CP, Sabers A. Transcutaneous Vagus Nerve Stimulation in Patients With Severe Traumatic Brain Injury: A Feasibility Trial. Neuromodulation 2020; 23:859-864. [PMID: 32227429 DOI: 10.1111/ner.13148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Preclinical studies have shown that surgically implanted vagus nerve stimulation (VNS) promotes recovery of consciousness and cognitive function following experimental traumatic brain injury (TBI). The aim of this study is to report the feasibility and safety of a noninvasive transcutaneous vagus nerve stimulation (tVNS) in patients with persistent impairment of consciousness following severe TBI. MATERIALS AND METHODS The feasibility of tVNS was evaluated in five patients presenting with diffuse axonal injury and reduced dominant EEG activity one month following severe TBI. tVNS was applied to the left cymba conchae of the external ear using a skin electrode four hours daily for eight weeks. Possible effects of tVNS on physiological parameters and general side effects were recorded. In addition, we report the rate of recovery using coma recovery scale revised (CRS-R). RESULTS The tVNS regime of four hours daily for eight weeks was feasible and well tolerated with little side effects and no clinically relevant effects on physiological parameters. Three patients showed improvements (>3 points) in the CRS-R following eight weeks tVNS. CONCLUSION We demonstrated that tVNS is a feasible and safe VNS strategy for patients following severe TBI. Controlled studies are needed to clarify whether tVNS has a potential to promote recovery of consciousness following severe TBI.
Collapse
Affiliation(s)
- Jakob Hakon
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, TBI Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Melika Moghiseh
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, TBI Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ingrid Poulsen
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, TBI Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Research Unit Nursing and Health Care, Health, Aarhus University, Aarhus, Denmark
| | - Christoffer M L Øland
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, TBI Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian P Hansen
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, TBI Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne Sabers
- The Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00167-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull 2020; 155:37-47. [DOI: 10.1016/j.brainresbull.2019.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
38
|
Sattin D, Leonardi M, Picozzi M. The autonomic nervous system and the brainstem: A fundamental role or the background actors for consciousness generation? Hypothesis, evidence, and future directions for rehabilitation and theoretical approaches. Brain Behav 2020; 10:e01474. [PMID: 31782916 PMCID: PMC6955833 DOI: 10.1002/brb3.1474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION One of the hardest challenges of the third century is to develop theories that could joint different results for a global explanation of human consciousness. Some important theories have been proposed, trying to explain the emergence of consciousness as the result of different progressive changes in the elaboration of information during brain processing, giving particular attention to the thalamocortical system. METHODS In this article, a summary review of results that highlighted as cerebral cortex could not be so fundamental for consciousness generation is proposed. In detail, three topics were analyzed: (a) studies using experimental approach (manipulating stimuli or brain areas), such as decorticated animals or subliminal presentation of stimuli; (b) studies using anatomo-clinical method (conscious inferenced from observed behaviors); and (c) data from neurostimulation of subcortical areas or of the autonomic nervous system. RESULTS We sketch two speculative hypothesis relative, firstly, to the possible independence from cortical areas of the on/off mechanism for consciousness generation and, secondly, to the possible role of information variability generated by the bottom-up exchange of information among neural systems as a switch for consciousness. CONCLUSIONS A broad range of evidence regarding the functional role of the brainstem and autonomic nervous system is reviewed for its bearing on a future hypothesis regarding the generation of consciousness experience.
Collapse
Affiliation(s)
- Davide Sattin
- Neurology, Public Health, Disability Unit and Coma Research CentreFondazione IRCCS Istituto Neurologico C.BestaMilanItaly
- Experimental Medicine and Medical Humanities‐PhD ProgramBiotechnology and Life Sciences Department and Center for Clinical EthicsInsubria UniversityVareseItaly
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit and Coma Research CentreFondazione IRCCS Istituto Neurologico C.BestaMilanItaly
| | - Mario Picozzi
- Biotechnology and Life Sciences Department and Center for Clinical EthicsInsubria UniversityVareseItaly
| |
Collapse
|
39
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
40
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
41
|
GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Res Bull 2019; 147:110-123. [DOI: 10.1016/j.brainresbull.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
|
42
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Medial septal cholinergic mediation of hippocampal theta rhythm induced by vagal nerve stimulation. PLoS One 2018; 13:e0206532. [PMID: 30395575 PMCID: PMC6218045 DOI: 10.1371/journal.pone.0206532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/15/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Electrical vagal nerve stimulation (VNS) has been used for years to treat patients with drug-resistant epilepsy. This technique also remains under investigation as a specific treatment of patients with Alzheimer's disease. Recently we discovered that VNS induced hippocampal formation (HPC) type II theta rhythm, which is involved in memory consolidation. In the present study, we have extended our previous observation and addressed the neuronal substrate and pharmacological profile of HPC type II theta rhythm induced by VNS in anesthetized rats. METHODS Male Wistar rats were implanted with a VNS cuff electrode around the left vagus nerve, a tungsten microelectrode for recording the HPC field activity, and a medial septal (MS) cannula for the injection of a local anesthetic, procaine, and muscarinic agents. A direct, brief effect of VNS on the HPC field potential was evaluated before and after medial-septal drug injection. RESULTS Medial septal injection of local anesthetic, procaine, reversibly abolished VNS-induced HPC theta rhythm. With the use of cholinergic muscarinic agonist and antagonists, we demonstrated that medial septal M1 receptors are involved in the mediation of the VNS effect on HPC theta field potential. CONCLUSION The MS cholinergic M1 receptor mechanism integrates not only central inputs from the brainstem synchronizing pathway, which underlies the production of HPC type II theta rhythm, but also the input from the vagal afferents in the brain stem.
Collapse
Affiliation(s)
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| | - Paulina Kłos-Wojtczak
- Neuromedical, Research Department, Łódź, Poland
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| |
Collapse
|
43
|
Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the Impact of Brief Noninvasive Vagal Nerve Stimulation on EEG and Event‐Related Potentials. Neuromodulation 2018; 22:564-572. [DOI: 10.1111/ner.12864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Jeffrey D. Lewine
- The Mind Research Network Albuquerque NM USA
- The Lovelace Family of Companies Albuquerque NM USA
- The Department of Neurology and the Department of PsychologyUniversity of New Mexico Albuquerque NM USA
| | - Kim Paulson
- The Mind Research Network Albuquerque NM USA
| | | | | |
Collapse
|
44
|
Chen X, He X, Luo S, Feng Y, Liang F, Shi T, Huang R, Pei Z, Li Z. Vagus Nerve Stimulation Attenuates Cerebral Microinfarct and Colitis-induced Cerebral Microinfarct Aggravation in Mice. Front Neurol 2018; 9:798. [PMID: 30319530 PMCID: PMC6168656 DOI: 10.3389/fneur.2018.00798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
Cerebral cortical microinfarct (CMI) is common in patients with dementia and cognitive decline. Emerging studies reported that intestinal dysfunction influenced the outcome of ischemic stroke and that vagus nerve stimulation (VNS) protected against ischemic stroke. However, the effects of intestinal dysfunction and VNS on CMI are not clear. Therefore, we examined the influence of colitis and VNS on CMI and the mechanisms of VNS attenuating CMI in mice with colitis. CMI was induced using a two-photon laser. Colitis was induced using oral dextran sodium sulfate (DSS). The cervical vagus nerve was stimulated using a constant current. In vivo blood-brain barrier (BBB) permeability was evaluated using two-photon imaging. Infarct volume, microglial and astrocyte activation, oxidative stress and proinflammatory cytokine levels were assessed using immunofluorescent and immunohistochemical staining. The BBB permeability, infarct volume, activation of microglia and astrocytes and oxidative stress increased significantly in mice with colitis and CMI compared to those in mice with CMI. However, these processes were reduced in CMI mice when VNS was performed. Brain lesions in mice with colitis and CMI were significantly ameliorated when VNS was performed during the acute phase of colitis. Our study demonstrated that VNS alleviated CMI and this neuroprotection was associated with the suppression of BBB permeability, neuroinflammation and oxidative stress. Also, our results indicated that VNS reduced colitis-induced microstroke aggravation.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaofei He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yukun Feng
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Fengyin Liang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taotao Shi
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ruxun Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhendong Li
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
45
|
Combination of curcumin and vagus nerve stimulation attenuates cerebral ischemia/reperfusion injury-induced behavioral deficits. Biomed Pharmacother 2018; 103:614-620. [DOI: 10.1016/j.biopha.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
|
46
|
Mourdoukoutas AP, Truong DQ, Adair DK, Simon BJ, Bikson M. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation 2018; 21:261-268. [PMID: 29076212 PMCID: PMC5895480 DOI: 10.1111/ner.12706] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To develop the first high-resolution, multi-scale model of cervical non-invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds. METHODS An MRI-derived Finite Element Method (FEM) model was developed to accurately simulate key macroscopic (e.g., skin, soft tissue, muscle) and mesoscopic (cervical enlargement, vertebral arch and foramen, cerebral spinal fluid [CSF], nerve sheath) tissue components to predict extracellular potential, electric field (E-Field), and activating function along the vagus nerve. Microscopic scale biophysical models of axons were developed to compare axons of varying size (Aα-, Aβ- and Aδ-, B-, and C-fibers). Rheobase threshold estimates were based on a step function waveform. RESULTS Macro-scale accuracy was found to determine E-Field magnitudes around the vagus nerve, while meso-scale precision determined E-field changes (activating function). Mesoscopic anatomical details that capture vagus nerve passage through a changing tissue environment (e.g., bone to soft tissue) profoundly enhanced predicted axon sensitivity while encapsulation in homogenous tissue (e.g., nerve sheath) dulled axon sensitivity to nVNS. CONCLUSIONS These findings indicate that realistic and precise modeling at both macroscopic and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on this approach, we predict conventional cervical nVNS protocols can activate A- and B- but not C-fibers. Our state-of-the-art implementation across scales is equally valuable for models of spinal cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models.
Collapse
Affiliation(s)
- Antonios P. Mourdoukoutas
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| | - Dennis Q. Truong
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| | - Devin K. Adair
- Department of Psychology, The Graduate Center, City University of New York, New York, New York
| | | | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| |
Collapse
|
47
|
Dong XY, Feng Z. Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex. Neural Regen Res 2018; 13:244-251. [PMID: 29557373 PMCID: PMC5879895 DOI: 10.4103/1673-5374.226395] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expression coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz; current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OX1R) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expression reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stimulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OX1R expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.
Collapse
Affiliation(s)
- Xiao-Yang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
48
|
Lu XX, Hong ZQ, Tan Z, Sui MH, Zhuang ZQ, Liu HH, Zheng XY, Yan TB, Geng DF, Jin DM. Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway. Med Sci Monit 2017; 23:6072-6081. [PMID: 29274273 PMCID: PMC5747934 DOI: 10.12659/msm.907628] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The role of nicotinic acetylcholine receptor alpha7 subunit (a7nAchR) in the treatment of acute cerebral ischemia by VNS has not been thoroughly clarified to date. Therefore, this study aimed to investigate the specific role of a7nAchR and explore whether this process is involved in the mechanisms of VNS-induced neuroprotection in rats undergoing permanent middle cerebral artery occlusion (PMCAO) surgery. Material/Methods Rats received a7nAChR antagonist (A) or antagonist placebo injection for control (AC), followed by PMCAO and VNS treatment, whereas the a7nAChR agonist (P) was utilized singly without VNS treatment but only with PMCAO pretreatment. The rats were randomly divided into 6 groups: sham PMCAO, PMCAO, PMCAO+VNS, PMCAO+VNS+A, PMCAO+VNS+AC, and PMCAO+P. Neurological function and cerebral infarct volume were measured to evaluate the level of brain injury at 24 h after PMCAO or PMCAO-sham. Moreover, the related proteins levels of a7nAChR, p-JAK2, and p-STAT3 in the ischemic penumbra were assessed by Western blot analysis. Results Rats pretreated with VNS had significantly improved neurological function and reduced cerebral infarct volume after PMCAO injury (p<0.05). In addition, VNS enhanced the levels of a7nAchR, p-JAK2, and p-STAT3 in the ischemic penumbra (p<0.05). However, inhibition of a7nAchR not only attenuated the beneficial neuroprotective effects induced by VNS, but also decreased levels of p-JAK2 and p-STAT3. Strikingly, pharmacological activation of a7nAchR can partially substitute for VNS-induced beneficial neurological protection. Conclusions These results suggest that a7nAchR is a pivotal mediator of VNS-induced neuroprotective effects on PMCAO injury, which may be related to suppressed inflammation via activation of the a7nAchR/JAK2 anti-inflammatory pathway.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Department of Rehabilitation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhong-Qiu Hong
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Ming-Hong Sui
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen University, Shenzhen, Guangdong, China (mainland)
| | - Zhi-Qiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Xiu-Yuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Tie-Bin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Deng-Feng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Dong-Mei Jin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| |
Collapse
|
49
|
Vagus nerve stimulation produces a hippocampal formation theta rhythm in anesthetized rats. Brain Res 2017; 1675:41-50. [DOI: 10.1016/j.brainres.2017.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
|
50
|
Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE, Pitkänen A. Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res 2017; 136:18-34. [DOI: 10.1016/j.eplepsyres.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|