1
|
Li Y, Xin X, Zhou X, Liu J, Liu H, Yuan S, Liu H, Hao W, Sun J, Wang Y, Gong W, Yang M, Li Z, Han Y, Gao C, Yang Y. ROS-responsive biomimetic nanosystem camouflaged by hybrid membranes of platelet-exosomes engineered with neuronal targeting peptide for TBI therapy. J Control Release 2024; 372:531-550. [PMID: 38851535 DOI: 10.1016/j.jconrel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.
Collapse
Affiliation(s)
- Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xin Xin
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xun Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; College of Pharmacy, Henan University, Kaifeng 475000, People's Republic of China
| | - Jingzhou Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shuo Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanhan Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wenyan Hao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jiejie Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wei Gong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Meiyan Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Zhiping Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| |
Collapse
|
2
|
Mira RG, Quintanilla RA, Cerpa W. Mild Traumatic Brain Injury Induces Mitochondrial Calcium Overload and Triggers the Upregulation of NCLX in the Hippocampus. Antioxidants (Basel) 2023; 12:antiox12020403. [PMID: 36829963 PMCID: PMC9952386 DOI: 10.3390/antiox12020403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage due to external forces. Mild TBI (mTBI) is the most common form of TBI, and repeated mTBI is a risk factor for developing neurodegenerative diseases. Several mechanisms of neuronal damage have been described in the cortex and hippocampus, including mitochondrial dysfunction. However, up until now, there have been no studies evaluating mitochondrial calcium dynamics. Here, we evaluated mitochondrial calcium dynamics in an mTBI model in mice using isolated hippocampal mitochondria for biochemical studies. We observed that 24 h after mTBI, there is a decrease in mitochondrial membrane potential and an increase in basal matrix calcium levels. These findings are accompanied by increased mitochondrial calcium efflux and no changes in mitochondrial calcium uptake. We also observed an increase in NCLX protein levels and calcium retention capacity. Our results suggest that under mTBI, the hippocampal cells respond by incrementing NCLX levels to restore mitochondrial function.
Collapse
Affiliation(s)
- Rodrigo G. Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Correspondence:
| |
Collapse
|
3
|
Liu C, Liu Y, Ma B, Zhou M, Zhao X, Fu X, Kan S, Hu W, Zhu R. Mitochondrial regulatory mechanisms in spinal cord injury: A narrative review. Medicine (Baltimore) 2022; 101:e31930. [PMID: 36401438 PMCID: PMC9678589 DOI: 10.1097/md.0000000000031930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury is a severe central nervous system injury that results in the permanent loss of motor, sensory, and autonomic functions below the level of injury with limited recovery. The pathological process of spinal cord injury includes primary and secondary injuries, characterized by a progressive cascade. Secondary injury impairs the ability of the mitochondria to maintain homeostasis and leads to calcium overload, excitotoxicity, and oxidative stress, further exacerbating the injury. The defective mitochondrial function observed in these pathologies accelerates neuronal cell death and inhibits regeneration. Treatment of spinal cord injury by preserving mitochondrial biological function is a promising, although still underexplored, therapeutic strategy. This review aimed to explore mitochondrial-based therapeutic advances after spinal cord injury. Specifically, it briefly describes the characteristics of spinal cord injury. It then broadly discusses the drugs used to protect the mitochondria (e.g., cyclosporine A, acetyl-L-carnitine, and alpha-tocopherol), phenomena associated with mitochondrial damage processes (e.g., mitophagy, ferroptosis, and cuproptosis), mitochondrial transplantation for nerve cell regeneration, and innovative mitochondrial combined protection therapy.
Collapse
Affiliation(s)
- Chengjiang Liu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Yidong Liu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Boyuan Ma
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center Tianjin, Tianjin, China
- *Correspondence: Rusen Zhu, Department of Spine Surgery, Tianjin Union Medical Center190jieyuan Road, Honggiao District, Tianjin 300121, China (e-mail: )
| |
Collapse
|
4
|
Nie Z, Tan L, Niu J, Wang B. The role of regulatory necrosis in traumatic brain injury. Front Mol Neurosci 2022; 15:1005422. [PMID: 36329694 PMCID: PMC9622788 DOI: 10.3389/fnmol.2022.1005422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in the population worldwide, of which key injury mechanism involving the death of nerve cells. Many recent studies have shown that regulatory necrosis is involved in the pathological process of TBI which includes necroptosis, pyroptosis, ferroptosis, parthanatos, and Cyclophilin D (CypD) mediated necrosis. Therefore, targeting the signaling pathways involved in regulatory necrosis may be an effective strategy to reduce the secondary injury after TBI. Meanwhile, drugs or genes are used as interference factors in various types of regulatory necrosis, so as to explore the potential treatment methods for the secondary injury after TBI. This review summarizes the current progress on regulatory necrosis in TBI.
Collapse
|
5
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
7
|
Hubbard WB, Spry ML, Gooch JL, Cloud AL, Vekaria HJ, Burden S, Powell DK, Berkowitz BA, Geldenhuys WJ, Harris NG, Sullivan PG. Clinically relevant mitochondrial-targeted therapy improves chronic outcomes after traumatic brain injury. Brain 2021; 144:3788-3807. [PMID: 34972207 PMCID: PMC8719838 DOI: 10.1093/brain/awab341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Pioglitazone, an FDA-approved compound, has been shown to target the novel mitochondrial protein mitoNEET and produce short-term neuroprotection and functional benefits following traumatic brain injury. To expand on these findings, we now investigate the dose- and time-dependent effects of pioglitazone administration on mitochondrial function after experimental traumatic brain injury. We then hypothesize that optimal pioglitazone dosing will lead to ongoing neuroprotection and cognitive benefits that are dependent on pioglitazone-mitoNEET signalling pathways. We show that delayed intervention is significantly more effective than early intervention at improving acute mitochondrial bioenergetics in the brain after traumatic brain injury. In corroboration, we demonstrate that mitoNEET is more heavily expressed, especially near the cortical contusion, in the 18 h following traumatic brain injury. To explore whether these findings relate to ongoing pathological and behavioural outcomes, mice received controlled cortical impact followed by initiation of pioglitazone treatment at either 3 or 18 h post-injury. Mice with treatment initiation at 18 h post-injury exhibited significantly improved behaviour and tissue sparing compared to mice with pioglitazone initiated at 3 h post-injury. Further using mitoNEET knockout mice, we show that this therapeutic effect is dependent on mitoNEET. Finally, we demonstrate that delayed pioglitazone treatment improves serial motor and cognitive performance in conjunction with attenuated brain atrophy after traumatic brain injury. This study illustrates that mitoNEET is the critical target for delayed pioglitazone intervention after traumatic brain injury, mitochondrial-targeting is highly time-dependent after injury and there is an extended therapeutic window to effectively treat mitochondrial dysfunction after brain injury.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| | - Malinda L Spry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jennifer L Gooch
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Amber L Cloud
- College of Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Shawn Burden
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - David K Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
8
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
9
|
The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo. Sci Rep 2021; 11:6152. [PMID: 33731782 PMCID: PMC7969970 DOI: 10.1038/s41598-021-85753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.
Collapse
|
10
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Readnower RD, Hubbard WB, Kalimon OJ, Geddes JW, Sullivan PG. Genetic Approach to Elucidate the Role of Cyclophilin D in Traumatic Brain Injury Pathology. Cells 2021; 10:199. [PMID: 33498273 PMCID: PMC7909250 DOI: 10.3390/cells10020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the current understanding of the role CypD plays in TBI pathobiology. Further, we directly assessed the role of CypD in mediating cell death following TBI by utilizing mice lacking the CypD encoding gene Ppif. Following controlled cortical impact (CCI), the genetic knockout of CypD protected acute mitochondrial bioenergetics at 6 h post-injury and reduced subacute cortical tissue and hippocampal cell loss at 18 d post-injury. The administration of CsA following experimental TBI in Ppif-/- mice improved cortical tissue sparing, highlighting the multiple cellular targets of CsA in the mitigation of TBI pathology. The loss of CypD appeared to desensitize the mitochondrial response to calcium burden induced by TBI; this maintenance of mitochondrial function underlies the observed neuroprotective effect of the CypD knockout. These studies highlight the importance of maintaining mitochondrial homeostasis after injury and validate CypD as a therapeutic target for TBI. Further, these results solidify the beneficial effects of CsA treatment following TBI.
Collapse
Affiliation(s)
- Ryan D. Readnower
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - William Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - James W. Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
12
|
Zhang M, He Q, Chen G, Li PA. Suppression of NLRP3 Inflammasome, Pyroptosis, and Cell Death by NIM811 in Rotenone-Exposed Cells as an in vitro Model of Parkinson's Disease. NEURODEGENER DIS 2020; 20:73-83. [PMID: 33176317 DOI: 10.1159/000511207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra. Recently, NLRP3 inflammasome and pyroptosis were found to be associated with PD. Cyclosporine A (CsA), an immunosuppressant, reduces neuronal death in PD. However, CsA could hardly pass through the blood-brain barrier (BBB) and high dose is associated with severe side effects and toxicity. N-methyl-4-isoleucine-cyclosporine (NIM811) is a CsA derivate that can pass through the BBB. However, little is known about its effect on PD. OBJECTIVE The objectives of this study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of NIM811 on the neurotoxicity of a Parkinson-like in vitro model induced by rotenone. METHODS Murine hippocampal HT22 cells were cultured with the mitochondrial complex I inhibitor rotenone, a widely used pesticide that has been used for many years as a tool to induce a PD model in vitro and in vivo and proven to be reproducible. NIM811 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by resazurin assay, reactive oxygen species (ROS) production by dihydroethidine (DHE), and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). TUNEL and caspase-1 immunofluorescent double staining was used to detect pyroptosis. NLRP3, caspase-1, pro-caspase-1, GSDMD, and interleukin-18 (IL-18) were measured using Western blotting after 24 h of rotenone incubation. The reactivity of interleukin-1β (IL-1β) was determined by ELISA. RESULTS Our results demonstrated that rotenone caused more than 40% of cell death, increased ROS production, and reduced mitochondrial membrane potential, while NIM811 reversed these alterations. Immunofluorescent double staining showed that rotenone increased the percentage of caspase-1 and TUNEL double-labelled cells, an indication of pyroptosis, after 24 h of incubation. The protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-18, and IL-1β was significantly increased after 24 h of rotenone incubation. NIM811 suppressed rotenone-induced pyroptosis and downregulated the protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-1β, and IL-18. CONCLUSION These results provide evidence that rotenone activates the NLRP3 inflammomere and induces pyroptosis. NIM811 protects the cell from rotenone-induced damage and inhibits NLRP3 inflammasome and pyroptosis. NIM811 might serve as a potential therapeutic drug in the treatment of PD.
Collapse
Affiliation(s)
- Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qingping He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Guisheng Chen
- Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA,
| |
Collapse
|
13
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Cantu D, Croker D, Shacham S, Tamir S, Dulla C. In vivo KPT-350 treatment decreases cortical hyperexcitability following traumatic brain injury. Brain Inj 2020; 34:1489-1496. [PMID: 32853051 DOI: 10.1080/02699052.2020.1807056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PRIMARY OBJECTIVE We tested whether KPT-350, a novel selective inhibitor of nuclear export, could attenuate cortical network hyperexcitability, a major risk factor for developing post-traumatic epilepsy (PTE) following traumatic brain injury (TBI). RESEARCH DESIGN All mice in this study underwent TBI and were subsequently treated with either KPT-350 or vehicle during the post-injury latent period. Half of the animal cohort was used for electrophysiology while the other half was used for immunohistochemical analysis. METHODS AND PROCEDURES TBI was induced using the controlled cortical impact (CCI) model. Cortical network activity was recorded by evoking field potentials from deep layers of the cortex and analyzed using Matlab software. Immunohistochemistry coupled with fluorescence microscopy and Image J analysis detected changes in neuronal and glial markers. MAIN OUTCOMES AND RESULTS KPT-350 attenuated TBI-associated epileptiform activity and restored disrupted input-output responses in cortical brain slices. In vivo KPT-350 treatment reduced the loss of parvalbumin-(+) GABAergic interneurons after CCI but did not significantly change CCI-induced loss of somatostatin-(+) GABAergic interneurons, nor did it reduce reactivity of GFAP and Iba1 glial markers. CONCLUSION KPT-350 can prevent cortical hyperexcitability and reduce the loss of parvalbumin-(+) GABAergic inhibitory neurons, making it a potential therapeutic option for preventing PTE.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | | | | | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
15
|
Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2020; 41:1413-1430. [DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
16
|
Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol 2020; 144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
|
17
|
Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury. Exp Neurol 2020; 327:113243. [PMID: 32057797 DOI: 10.1016/j.expneurol.2020.113243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.
Collapse
|
18
|
Tóth E, Maléth J, Závogyán N, Fanczal J, Grassalkovich A, Erdős R, Pallagi P, Horváth G, Tretter L, Bálint ER, Rakonczay Z, Venglovecz V, Hegyi P. Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis. J Physiol 2019; 597:5879-5898. [PMID: 31631343 DOI: 10.1113/jp278517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS •Bile acids, ethanol and fatty acids affect pancreatic ductal fluid and bicarbonate secretion via mitochondrial damage, ATP depletion and calcium overload. •Pancreatitis-inducing factors open the membrane transition pore (mPTP) channel via cyclophilin D activation in acinar cells, causing calcium overload and cell death; genetic or pharmacological inhibition of mPTP improves the outcome of acute pancreatitis in animal models. •Here we show that genetic and pharmacological inhibition of mPTP protects mitochondrial homeostasis and cell function evoked by pancreatitis-inducing factors in pancreatic ductal cells. •The results also show that the novel cyclosporin A derivative NIM811 protects mitochondrial function in acinar and ductal cells, and it preserves bicarbonate transport mechanisms in pancreatic ductal cells. •We found that NIM811 is highly effective in different experimental pancreatitis models and has no side-effects. NIM811 is a highly suitable compound to be tested in clinical trials. ABSTRACT Mitochondrial dysfunction plays a crucial role in the development of acute pancreatitis (AP); however, no compound is currently available with clinically acceptable effectiveness and safety. In this study, we investigated the effects of a novel mitochondrial transition pore inhibitor, N-methyl-4-isoleucine cyclosporin (NIM811), in AP. Pancreatic ductal and acinar cells were isolated by enzymatic digestion from Bl/6 mice. In vitro measurements were performed by confocal microscopy and microfluorometry. Preventative effects of pharmacological [cylosporin A (2 µm), NIM811 (2 µm)] or genetic (Ppif-/- /Cyp D KO) inhibition of the mitochondrial transition pore (mPTP) during the administration of either bile acids (BA) or ethanol + fatty acids (EtOH+FA) were examined. Toxicity of mPTP inhibition was investigated by detecting apoptosis and necrosis. In vivo effects of the most promising compound, NIM811 (5 or 10 mg kg-1 per os), were checked in three different AP models induced by either caerulein (10 × 50 µg kg-1 ), EtOH+FA (1.75 g kg-1 ethanol and 750 mg kg-1 palmitic acid) or 4% taurocholic acid (2 ml kg-1 ). Both genetic and pharmacological inhibition of Cyp D significantly prevented the toxic effects of BA and EtOH+FA by restoring mitochondrial membrane potential (Δψ) and preventing the loss of mitochondrial mass. In vivo experiments revealed that per os administration of NIM811 has a protective effect in AP by reducing oedema, necrosis, leukocyte infiltration and serum amylase level in AP models. Administration of NIM811 had no toxic effects. The novel mitochondrial transition pore inhibitor NIM811 thus seems to be an exceptionally good candidate compound for clinical trials in AP.
Collapse
Affiliation(s)
- Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Noémi Závogyán
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Júlia Fanczal
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Anna Grassalkovich
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Réka Erdős
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Tretter
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
20
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
21
|
Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, Bayır H. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 2019; 145:209-219. [PMID: 30009835 PMCID: PMC6309489 DOI: 10.1016/j.neuropharm.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are a keystone of neuronal function, serving a dual role as sustainer of life and harbinger of death. While mitochondria are indispensable for energy production, a dysregulated mitochondrial network can spell doom for both neurons and the functions they provide. Traumatic brain injury (TBI) is a complex and biphasic injury, often affecting children and young adults. The primary pathological mechanism of TBI is mechanical, too rapid to be mitigated by anything but prevention. However, the secondary injury of TBI evolves over hours and days after the initial insult providing a window of opportunity for intervention. As a nexus point of both survival and death during this second phase, targeting mitochondrial pathology in TBI has long been an attractive strategy. Often these attempts are mired by efficacy-limiting unintended off-target effects. Specific delivery to and enrichment of therapeutics at their submitochondrial site of action can reduce deleterious effects and increase potency. Mitochondrial drug localization is accomplished using (1) the mitochondrial membrane potential, (2) affinity of a carrier to mitochondria-specific components (e.g. lipids), (3) piggybacking on the cells own mitochondria trafficking systems, or (4) nanoparticle-based approaches. In this review, we briefly consider the mitochondrial delivery strategies and drug targets that illustrate the promise of these mitochondria-specific approaches in the design of TBI pharmacotherapy. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M Kenny
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elif Soysal
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
SS-31 Provides Neuroprotection by Reversing Mitochondrial Dysfunction after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4783602. [PMID: 30224944 PMCID: PMC6129854 DOI: 10.1155/2018/4783602] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
SS-31, a novel mitochondria-targeted peptide, has been proven to provide neuroprotection in a variety of neurological diseases. Its role as a mitochondrial reactive oxygen species (ROS) scavenger and the underlying pathophysiological mechanisms in traumatic brain injury (TBI) are still not well understood. The aim of the designed study was to investigate the potential neuroprotective effects of SS-31 and fulfill our understanding of the process of the mitochondrial change in the modified Marmarou weight-drop model of TBI. Mice were randomly divided into sham, TBI, TBI + vehicle, and TBI + SS-31 groups in this study. Peptide SS-31 (5 mg/kg) or vehicle was intraperitoneally administrated 30 min after TBI with brain samples harvested 24 h later for further analysis. SS-31 treatment significantly reversed mitochondrial dysfunction and ameliorated secondary brain injury caused by TBI. SS-31 can directly decrease the ROS content, restore the activity of superoxide dismutase (SOD), and decrease the level of malondialdehyde (MDA) and the release of cytochrome c, thus attenuating neurological deficits, brain water content, DNA damage, and neural apoptosis. Moreover, SS-31 restored the expression of SIRT1 and upregulated the nuclear translocation of PGC-1α, which were proved by Western blot and immunohistochemistry. Taken together, these data demonstrate that SS-31 improves the mitochondrial function and provides neuroprotection in mice after TBI potentially through enhanced mitochondrial rebiogenesis. The present study gives us an implication for further clinical research.
Collapse
|
23
|
Kulbe JR, Singh IN, Wang JA, Cebak JE, Hall ED. Continuous Infusion of Phenelzine, Cyclosporine A, or Their Combination: Evaluation of Mitochondrial Bioenergetics, Oxidative Damage, and Cytoskeletal Degradation following Severe Controlled Cortical Impact Traumatic Brain Injury in Rats. J Neurotrauma 2018; 35:1280-1293. [PMID: 29336204 PMCID: PMC5962911 DOI: 10.1089/neu.2017.5353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To date, all monotherapy clinical traumatic brain injury (TBI) trials have failed, and there are currently no Food and Drug Administration (FDA)-approved pharmacotherapies for the acute treatment of severe TBI. Due to the complex secondary injury cascade following injury, there is a need to develop multi-mechanistic combinational neuroprotective approaches for the treatment of acute TBI. As central mediators of the TBI secondary injury cascade, both mitochondria and lipid peroxidation-derived aldehydes make promising therapeutic targets. Cyclosporine A (CsA), an FDA-approved immunosuppressant capable of inhibiting the mitochondrial permeability transition pore, and phenelzine (PZ), an FDA-approved monoamine oxidase inhibitor capable of scavenging neurotoxic lipid peroxidation-derived aldehydes, have both been shown to be partially neuroprotective following experimental TBI. Therefore, it follows that the combination of PZ and CsA may enhance neuroprotection over either agent alone through the combining of distinct but complementary mechanisms of action. Additionally, as the first 72 h represents a critical time period following injury, it follows that continuous drug infusion over the first 72 h following injury may also lead to optimal neuroprotective effects. This is the first study to examine the effects of a 72 h subcutaneous continuous infusion of PZ, CsA, and the combination of these two agents on mitochondrial respiration, mitochondrial bound 4-hydroxynonenal (4-HNE), and acrolein, and α-spectrin degradation 72 h following a severe controlled cortical impact injury in rats. Our results indicate that individually, both CsA and PZ are able to attenuate mitochondrial 4-HNE and acrolein, PZ is able to maintain mitochondrial respiratory control ratio and cytoskeletal integrity but together, PZ and CsA are unable to maintain neuroprotective effects.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - John E Cebak
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
24
|
Chen ZR, Ma Y, Guo HH, Lu ZD, Jin QH. Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia. Mol Med Rep 2018; 17:4369-4375. [PMID: 29328412 PMCID: PMC5802210 DOI: 10.3892/mmr.2018.8422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to explore the therapeutic effects of cyclosporin A (CsA) on spinal cord injury (SCI) in rats with hyperglycemia and to identify a novel potential method to treat SCI in the presence of hyperglycemia. Female Sprague‑Dawley (SD) rats were randomly allocated into four groups: Sham, SCI, SCI+hyperglycemia and SCI+hyperglycemia+CsA groups. Streptozotocin‑induced hyperglycemic SD rats and a weight‑drop contusion SCI model were established. The Basso, Beattie, Bresnahan scale and inclined plane test were used to evaluate the neurological function of the rats. Flow cytometric assay was performed to detect the apoptotic rates of cells in the spinal cord. ELISA and western blot analysis were performed to determine the levels of interleukin (IL)‑10, tumor necrosis factor (TNF)‑α, cyclophilin‑D (Cyp‑D) and apoptosis‑inducing factor (AIF). The results demonstrated that CsA significantly improved the neurological function of the SCI rats with hyperglycemia. CsA markedly reduced the number of apoptotic cells exaggerated by hyperglycemia in the spinal cord of the SCI rats. CsA significantly decreased the expression levels of IL‑10, TNF‑α, Cyp‑D and AIF in the spinal cord of the SCI rats. Overall, the present study revealed a significant role of CsA in the treatment of SCI in the presence of hyperglycemia by inhibiting the apoptosis of spinal cord cells.
Collapse
Affiliation(s)
- Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi Ma
- Department of Pathology and Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao-Hui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qun-Hua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
25
|
Springer JE, Prajapati P, Sullivan PG. Targeting the mitochondrial permeability transition pore in traumatic central nervous system injury. Neural Regen Res 2018; 13:1338-1341. [PMID: 30106036 PMCID: PMC6108215 DOI: 10.4103/1673-5374.235218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion serves many functions in the central nervous system (CNS) and other organs beyond the well-recognized role of adenosine triphosphate (ATP) production. This includes calcium-dependent cell signaling, regulation of gene expression, synthesis and release of cytotoxic reactive oxygen species, and the release of cytochrome c and other apoptotic cell death factors. Traumatic injury to the CNS results in a rapid and, in some cases, sustained loss of mitochondrial function. One consequence of compromised mitochondrial function is induction of the mitochondrial permeability transition (mPT) state due to formation of the cyclosporine A sensitive permeability transition pore (mPTP). In this mini-review, we summarize evidence supporting the involvement of the mPTP as a mediator of mitochondrial and cellular demise following CNS traumatic injury and discuss the beneficial effects and limitations of the current ex-perimental strategies targeting the mPTP.
Collapse
Affiliation(s)
- Joe E Springer
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Pareshkumar Prajapati
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Springer JE, Visavadiya NP, Sullivan PG, Hall ED. Post-Injury Treatment with NIM811 Promotes Recovery of Function in Adult Female Rats after Spinal Cord Contusion: A Dose-Response Study. J Neurotrauma 2017; 35:492-499. [PMID: 28967329 DOI: 10.1089/neu.2017.5167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial homeostasis is essential for maintaining cellular function and survival in the central nervous system (CNS). Mitochondrial function is significantly compromised after spinal cord injury (SCI) and is associated with accumulation of high levels of calcium, increased production of free radicals, oxidative damage, and eventually mitochondrial permeability transition (mPT). The formation of the mPT pore (mPTP) and subsequent mPT state are considered to be end stage events in the decline of mitochondrial integrity, and strategies that inhibit mPT can limit mitochondrial demise. Cyclosporine A (CsA) is thought to inhibit mPT by binding to cyclophilin D and has been shown to be effective in models of CNS injury. CsA, however, also inhibits calcineurin, which is responsible for its immunosuppressive properties. In the present study, we conducted a dose-response examination of NIM811, a nonimmunosuppressive CsA analog, on recovery of function and tissue sparing in a rat model of moderate to severe SCI. The results of our experiments revealed that NIM811 (10 mg/kg) significantly improved open field locomotor performance, while the two higher doses tested (20 and 40 mg/kg) significantly improved return of reflexive bladder control and significantly decreased the rostral-caudal extent of the lesion. Taken together, these results demonstrate the ability of NIM811 to improve recovery of function in SCI and support the role of protecting mitochondrial function as a potential therapeutic target.
Collapse
Affiliation(s)
- Joe E Springer
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Nishant P Visavadiya
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Edward D Hall
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| |
Collapse
|
27
|
Huang ZL, Pandya D, Banta DK, Ansari MS, Oh U. Cyclophilin inhibitor NIM811 ameliorates experimental allergic encephalomyelitis. J Neuroimmunol 2017; 311:40-48. [PMID: 28789840 DOI: 10.1016/j.jneuroim.2017.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
Abstract
Cyclophilins have diverse functions that may affect the course of central nervous system (CNS) inflammatory disorders. Anti-inflammatory and neuroprotective mechanisms may be targeted by inhibition of cyclophilin A-dependent and cyclophilin D-dependent functions, respectively. We tested the effect of cyclophilin inhibition on CNS inflammation by administering N-methyl-4-isoleucine-cyclosporin (NIM811) to mice undergoing experimental allergic encephalomyelitis (EAE). Treatment with NIM811 resulted in significant reduction of EAE clinical severity. Analysis of mitochondrial calcium retention capacity and the course of EAE in cyclophilin D knockout mice indicated that the effect of NIM811 on EAE was not entirely cyclophilin D-dependent. NIM811-treated EAE animals showed reduction in interleukin-2 expression and reduction in CNS inflammatory infiltrates. These results indicate that anti-inflammatory rather than neuroprotective mechanisms associated with cyclophilins are likely involved in the mechanism of NIM811 in EAE.
Collapse
Affiliation(s)
- Zi L Huang
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Darshan Pandya
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daisy K Banta
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Maryam S Ansari
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
28
|
Vekaria HJ, Talley Watts L, Lin AL, Sullivan PG. Targeting mitochondrial dysfunction in CNS injury using Methylene Blue; still a magic bullet? Neurochem Int 2017; 109:117-125. [PMID: 28396091 PMCID: PMC5632129 DOI: 10.1016/j.neuint.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022]
Abstract
Complex, multi-factorial secondary injury cascades are initiated following traumatic brain injury, which makes this a difficult disease to treat. The secondary injury cascades following the primary mechanical tissue damage, are likely where effective therapeutic interventions may be targeted. One promising therapeutic target following brain injury are mitochondria. Mitochondria are complex organelles found within the cell, which act as powerhouses within all cells by supplying ATP. These organelles are also necessary for calcium cycling, redox signaling and play a major role in the initiation of cell death pathways. When mitochondria become dysfunctional, there is a tendency for the cell to loose cellular homeostasis and can lead to eventual cell death. Targeting of mitochondrial dysfunction in various diseases has proven a successful approach, lending support to mitochondria as a pivotal player in TBI cell death and loss of behavioral function. Within this mixed mini review/research article there will be a general discussion of mitochondrial bioenergetics, followed by a brief discussion of traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. We will also give an overview of one relatively new TBI therapeutic approach, Methylene Blue, currently being studied to ameliorate mitochondrial dysfunction following brain injury. We will also present novel experimental findings, that for the first time, characterize the ex vivo effect of Methylene Blue on mitochondrial function in synaptic and non-synaptic populations of mitochondria.
Collapse
Affiliation(s)
- Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Lora Talley Watts
- Department of Cell Systems and Anatomy, Neurology and Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Research Physiologist, Lexington VAMC, Lexington, KY, USA.
| |
Collapse
|
29
|
Xu Z, Lv XA, Dai Q, Lu M, Jin Z. Exogenous BDNF Increases Mitochondrial pCREB and Alleviates Neuronal Metabolic Defects Following Mechanical Injury in a MPTP-Dependent Way. Mol Neurobiol 2017; 55:3499-3512. [PMID: 28508150 DOI: 10.1007/s12035-017-0576-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/25/2017] [Indexed: 11/29/2022]
Abstract
Metabolic defects are common pathological phenomena following traumatic brain injury (TBI) which contribute to poor prognosis. Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal survival, development, function, and plasticity. This study was designed to investigate the potential effects of BDNF on TBI-induced metabolic defects and their underlying molecular mechanisms. BDNF was added into cultured neurons to a concentration of 25, 50, and 100 ng/ml, respectively, right after mechanical injury and metabolite levels were analyzed 4 h post injury. The mitochondrial phosphorylated cAMP response element-binding protein (pCREB) distribution and complex V synthesis, as well as their roles in metabolic defects, were evaluated. We found that exogenous BDNF improved metabolic defects, especially the uncoupling of oxidative phosphorylation. BDNF increased pCREB in mitochondrial inner membrane and matrix and promoted mitochondrial complex V synthesis. We also found that these results were negatively regulated by the mitochondrial permeability transition pore (MPTP) antagonist CsA and positively regulated by the MPTP agonist atractyloside. BDNF's protectional effects on metabolic defects were abolished by CREB knockout. When administrated in a dominant interfering CREB mutant (A-CREB) model, mitochondrial pCREB accumulation could still be observed, but the synthesis of complex V and alleviation of metabolic defects were repressed. Our data demonstrate that exogenous BDNF mitigates neuronal metabolic defects following mechanical injury by promoting the pCREB accumulation in mitochondrial inner membrane and matrix, which is regulated by MPTP opening, thus facilitating the synthesis of mitochondrial complex V.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China.
| | - Xiao-Ai Lv
- Department of Surgery, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Qun Dai
- Central Laboratory, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Man Lu
- Department of Anesthesiology, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Zhang Jin
- Department of Spine Surgery, The People's Hospital of Lishui, 15 Dazong Road, Lishui, 323000, China
| |
Collapse
|
30
|
Dixon CE, Bramlett HM, Dietrich WD, Shear DA, Yan HQ, Deng-Bryant Y, Mondello S, Wang KKW, Hayes RL, Empey PE, Povlishock JT, Tortella FC, Kochanek PM. Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:553-66. [PMID: 26671075 DOI: 10.1089/neu.2015.4122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation.
Collapse
Affiliation(s)
- C Edward Dixon
- 1 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,3 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Hong Q Yan
- 1 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ying Deng-Bryant
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Stefania Mondello
- 5 Department of Neurosciences, University of Messina , Messina, Italy
| | - Kevin K W Wang
- 6 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | - Philip E Empey
- 8 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - John T Povlishock
- 9 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick M Kochanek
- 10 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A. J Neurotrauma 2016; 34:1291-1301. [PMID: 27596283 DOI: 10.1089/neu.2016.4628] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Rachel L Hill
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
32
|
Harmon JL, Gibbs WS, Whitaker RM, Schnellmann RG, Adkins DL. Striatal Mitochondrial Disruption following Severe Traumatic Brain Injury. J Neurotrauma 2016; 34:487-494. [PMID: 27321815 DOI: 10.1089/neu.2015.4395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) results in oxidative stress and calcium dysregulation in mitochondria. However, little work has examined perturbations of mitochondrial homeostasis in peri-injury tissue. We examined mitochondrial homeostasis after a unilateral controlled cortical impact over the sensorimotor cortex in adult male rats. There was a significant reduction in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) messenger RNA (mRNA) at post-injury days 3 and 6 and a transient reduction in mitochondrial DNA copy number at 3 days post-injury that recovered by 6 days in the ipsi-injury striatum. In ipsilateral cortex, PGC-1α mRNA was reduced only at 6 days post-injury. Additionally, expression of mitochondrial-encoded mRNAs, cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 1, was decreased at 3 and 6 days post-injury in ipsilesional striatum and at 6 days post-injury in ipsilesional cortex. There was no observable decrease in nuclear-encoded mRNAs mitochondrial transcription factor A or NADH dehydrogenase (ubiquinone) Fe-S protein 1. We detected an acute increase in superoxide dismutase 2 mRNA expression, as well as an induction of microRNA (miR)-21 and miR-155, which have been previously demonstrated to disrupt mitochondrial homeostasis. Behaviorally, rats with TBI exhibited marked error rates in contrainjury forelimb performance on the ladder test. These findings reveal that there may be differential susceptibilities of various peri-injury brain structures to mitochondrial dysfunction and associated behavioral deficits, and that molecular pathways demonstrated to interfere with mitochondrial homeostasis and function are activated subacutely post-TBI.
Collapse
Affiliation(s)
- Jennifer L Harmon
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Whitney S Gibbs
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Ryan M Whitaker
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Rick G Schnellmann
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina.,2 Ralph H. Johnson Veterans Administration Medical Center , Charleston, South Carolina
| | - DeAnna L Adkins
- 3 Department of Neurosciences, Medical University of South Carolina , Charleston, South Carolina.,4 Department of Health Sciences and Research, Medical University of South Carolina , Charleston, South Carolina.,5 Center for Biomedical Imaging, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
33
|
Sun J, Jacobs KM. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury. Front Syst Neurosci 2016; 10:63. [PMID: 27489538 PMCID: PMC4951523 DOI: 10.3389/fnsys.2016.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the CypDKO likely has a direct effect on membrane properties, rather than producing a selective reduction of the effects of mTBI. These results suggest that inhibiting CypD after TBI is an effective strategy to reduce synaptic hyperexcitation, making it a continued target for potential treatment of network abnormalities.
Collapse
Affiliation(s)
- Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
34
|
Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats. Neural Plast 2016; 2016:8181393. [PMID: 27504204 PMCID: PMC4967704 DOI: 10.1155/2016/8181393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/20/2016] [Indexed: 01/10/2023] Open
Abstract
Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree. This is accompanied by an apparent increase in synaptic contacts to Purkinje cell proximal dendrites, presumably from climbing fibers originating in the inferior olive. We also observed an early stage injury-induced decrease in the levels of cerebellin-1, a synaptic organizing molecule that is critical for establishing and maintaining parallel fiber-Purkinje cell synaptic integrity. Interestingly, this transsynaptic reorganizational pattern is consistent with that reported during development and in certain transgenic mouse models. To our knowledge, such a reorganizational event has not been described in response to SCI in adult rats. Regardless, the novel results of this study are important for understanding SCI-induced synaptic changes in the cerebellum, which may prove critical for strategies focusing on promoting functional recovery.
Collapse
|
35
|
Osier ND, Bales JW, Pugh B, Shin S, Wyrobek J, Puccio AM, Okonkwo DO, Ren D, Alexander S, Conley YP, Dixon CE. Variation in PPP3CC Genotype Is Associated with Long-Term Recovery after Severe Brain Injury. J Neurotrauma 2016; 34:86-96. [PMID: 27225880 DOI: 10.1089/neu.2015.4343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After experimental traumatic brain injury (TBI), calcineurin is upregulated; blocking calcineurin is associated with improved outcomes. In humans, variation in the calcineurin A-gamma gene (PPP3CC) has been associated with neuropsychiatric disorders, though any role in TBI recovery remains unknown. This study examines associations between PPP3CC genotype and mortality, as well as gross functional status assessed at admission using the Glasgow Coma Scale (GCS) and at 3, 6, and 12 months after severe TBI using the Glasgow Outcome Score (GOS). The following tagging single nucleotide polymorphisms (tSNPs) in PPP3CC were genotyped: rs2443504, rs2461491, rs2469749, and rs10108011. The rs2443504 AA genotype was univariately associated with GCS (p = 0.022), GOS at 3, 6, and 12 months (p = 0.002, p = 0.034, and p = 0.004, respectively), and mortality (p = 0.007). In multivariate analysis controlling for age, sex, and GCS, the AA genotype of rs2443504 was associated with GOS at 3 (p = 0.02), and 12 months (p = 0.01), with a trend toward significance at 6 months (p = 0.05); the AA genotype also was associated with mortality in the multivariate model (p = 0.04). Further work is warranted to better understand the role of calcineurin, as well as the genes encoding it and their relevance to outcomes after brain injury.
Collapse
Affiliation(s)
- Nicole D Osier
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - James W Bales
- 2 Department of Neurosurgery, University of Washington , Seattle, Washington
| | - Bunny Pugh
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Safar Center for Resuscitation Research, Seton Hill University , Greensburg, Pennsylvania
| | - Samuel Shin
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Julie Wyrobek
- 5 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Ava M Puccio
- 6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Dianxu Ren
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sheila Alexander
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yvette P Conley
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,8 Department of Human Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania.,9 VA Pittsburgh Healthcare System , Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39:311-324. [PMID: 27040729 PMCID: PMC5405046 DOI: 10.1016/j.tins.2016.03.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets. Multiple therapeutic targets are emerging that offer the potential to reduce secondary brain injury at a cellular level. These include cytoskeletal and membrane stabilisation, control of calcium flux and calpain activation, optimisation of cellular energetics, and modulation of the inflammatory response. Wallerian degeneration, as occurs following an axonal injury, is an active, cell-autonomous death pathway that involves failure of axonal transport to deliver key enzymes involved in NAD biosynthesis. Chronic microglial activation occurs following traumatic brain injury (TBI) and may persist for decades afterwards. This ongoing response has been linked to long-term neurodegeneration, particularly of white matter tracts. Phagoptosis is the process whereby physiologically stressed but otherwise viable neurons are phagocytosed by microglia in response to a range of eat-me signals induced by tissue injury.
Collapse
|
37
|
Warne J, Pryce G, Hill JM, Shi X, Lennerås F, Puentes F, Kip M, Hilditch L, Walker P, Simone MI, Chan AWE, Towers GJ, Coker AR, Duchen MR, Szabadkai G, Baker D, Selwood DL. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. J Biol Chem 2016; 291:4356-73. [PMID: 26679998 PMCID: PMC4813465 DOI: 10.1074/jbc.m115.700385] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.
Collapse
Affiliation(s)
- Justin Warne
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gareth Pryce
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom, the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Julia M Hill
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Xiao Shi
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Felicia Lennerås
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Fabiola Puentes
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Maarten Kip
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Laura Hilditch
- the Medical Research Council Centre for Medical Molecular Biology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Paul Walker
- Cyprotex Discovery Ltd., 100 Barbirolli Square, Manchester M2 3AB, United Kingdom, and
| | - Michela I Simone
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A W Edith Chan
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Greg J Towers
- the Medical Research Council Centre for Medical Molecular Biology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alun R Coker
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michael R Duchen
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Gyorgy Szabadkai
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom, the Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - David Baker
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom,
| | - David L Selwood
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
38
|
Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res 2016; 1640:77-93. [PMID: 26872596 DOI: 10.1016/j.brainres.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury is a complicated disease to treat due to the complex multi-factorial secondary injury cascade that is initiated following the initial impact. This secondary injury cascade causes nonmechanical tissue damage, which is where therapeutic interventions may be efficacious for intervention. One therapeutic target that has shown much promise following brain injury are mitochondria. Mitochondria are complex organelles found within the cell. At a superficial level, mitochondria are known to produce the energy substrate used within the cell called ATP. However, their importance to overall cellular homeostasis is even larger than their production of ATP. These organelles are necessary for calcium cycling, ROS production and play a role in the initiation of cell death pathways. When mitochondria become dysfunctional, they can become dysregulated leading to a loss of cellular homeostasis and eventual cell death. Within this review there will be a deep discussion into mitochondrial bioenergetics followed by a brief discussion into traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. The review will conclude with a discussion pertaining to the therapeutic approaches currently being studied to ameliorate mitochondrial dysfunction following brain injury. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- H M Yonutas
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - H J Vekaria
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - P G Sullivan
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States.
| |
Collapse
|
39
|
Pandya JD, Sullivan PG, Leung LY, Tortella FC, Shear DA, Deng-Bryant Y. Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma. Methods Mol Biol 2016; 1462:597-610. [PMID: 27604740 DOI: 10.1007/978-1-4939-3816-2_32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Frank C Tortella
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
40
|
Kim DY, Simeone KA, Simeone TA, Pandya JD, Wilke JC, Ahn Y, Geddes JW, Sullivan PG, Rho JM. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 2015; 78:77-87. [PMID: 25899847 DOI: 10.1002/ana.24424] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism. METHODS We studied the effects of both the KD and KB in spontaneously epileptic Kcna1-null mice using a combination of behavioral, planar multielectrode, and standard cellular electrophysiological techniques. Thresholds for mitochondrial permeability transition (mPT) were determined in acutely isolated brain mitochondria. RESULTS KB alone were sufficient to: (1) exert antiseizure effects in Kcna1-null mice, (2) restore intrinsic impairment of hippocampal long-term potentiation and spatial learning-memory defects in Kcna1-null mutants, and (3) raise the threshold for calcium-induced mPT in acutely prepared mitochondria from hippocampi of Kcna1-null animals. Targeted deletion of the cyclophilin D subunit of the mPT complex abrogated the effects of KB on mPT, and in vivo pharmacological inhibition and activation of mPT were found to mirror and reverse, respectively, the antiseizure effects of the KD in Kcna1-null mice. INTERPRETATION The present data reveal the first direct link between mPT and seizure control, and provide a potential mechanistic explanation for the KD. Given that mPT is increasingly being implicated in diverse neurological disorders, our results suggest that metabolism-based treatments and/or metabolic substrates might represent a worthy paradigm for therapeutic development.
Collapse
Affiliation(s)
- Do Young Kim
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Julianne C Wilke
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Younghee Ahn
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Jong M Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Hånell A, Greer JE, McGinn MJ, Povlishock JT. Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol 2015; 129:317-32. [PMID: 25528329 DOI: 10.1007/s00401-014-1376-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/25/2022]
Abstract
Injured axons with distinct morphologies have been found following mild traumatic brain injury (mTBI), although it is currently unclear whether they reflect varied responses to the injury or represent different stages of progressing pathology. This complicates evaluation of therapeutic interventions targeting axonal injury. To address this issue, we assessed axonal injury over time within a well-defined axonal population, while also evaluating mitochondrial permeability transition as a therapeutic target. We utilized mice expressing yellow fluorescent protein (YFP) in cortical neurons which were crossed with mice which lacked Cyclophilin D (CypD), a positive regulator of mitochondrial permeability transition pore opening. Their offspring were subjected to mTBI and the ensuing axonal injury was assessed using YFP expression and amyloid precursor protein (APP) immunohistochemistry, visualized by confocal and electron microscopy. YFP(+) axons initially developed a single, APP(+), focal swelling (proximal bulb) which progressed to axotomy. Disconnected axonal segments developed either a single bulb (distal bulb) or multiple bulbs (varicosities), which were APP(-) and whose ultrastructure was consistent with ongoing Wallerian degeneration. CypD knock-out failed to reduce proximal bulb formation but decreased the number of distal bulbs and varicosities, as well as a population of small, APP(+), callosal bulbs not associated with YFP(+) axons. The observation that YFP(+) axons contain several pathological morphologies points to the complexity of traumatic axonal injury. The fact that CypD knock-out reduced some, but not all, subtypes highlights the need to appropriately characterize injured axons when evaluating potential neuroprotective strategies.
Collapse
Affiliation(s)
- Anders Hånell
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Post Office Box 980709, Richmond, VA, 23298-0709, USA
| | | | | | | |
Collapse
|
42
|
Sweeney ZK, Fu J, Wiedmann B. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 2014; 57:7145-59. [PMID: 24831536 DOI: 10.1021/jm500223x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cyclophilins are widely expressed enzymes that catalyze the interconversion of the cis and trans peptide bonds of prolines. The immunosuppressive natural products cyclosporine A and sanglifehrin A inhibit the enzymatic activity of the cyclophilins. Chemical modification of both the cyclosporine and sanglifehrin scaffolds has produced many analogues that inhibit cyclophilins in vitro but have reduced immunosuppressive properties. Three nonimmunosuppressive cyclophilin inhibitors (alisporivir, SCY-635, and NIM811) have demonstrated clinical efficacy for the treatment of hepatitis C infection. Additional candidates are in various stages of preclinical development for the treatment of hepatitis C or myocardial reperfusion injury. Recent publications suggest that cyclophilin inhibitors may have utility for the treatment of diverse viral infections, inflammatory indications, and cancer. In this review, we document the structure-activity relationships of the nonimmunosuppressive cyclosporins and sanglifehrins in clinical and preclinical development. Aspects of the pharmacokinetic behavior and chemical biology of these drug candidates are also described.
Collapse
Affiliation(s)
- Zachary K Sweeney
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608, United States
| | | | | |
Collapse
|
43
|
Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, Rabchevsky AG, Sullivan PG. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 2014; 257:106-13. [PMID: 24792639 DOI: 10.1016/j.expneurol.2014.04.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has become a growing epidemic but no approved pharmacological treatment has been identified. Our previous work indicates that mitochondrial oxidative stress/damage and loss of bioenergetics play a pivotal role in neuronal cell death and behavioral outcome following experimental TBI. One tactic that has had some experimental success is to target glutathione using its precursor N-acetylcysteine (NAC). However, this approach has been hindered by the low CNS bioavailability of NAC. The current study evaluated a novel, cell permeant amide form of N-acetylcysteine (NACA), which has high permeability through cellular and mitochondrial membranes resulting in increased CNS bioavailability. Cortical tissue sparing, cognitive function and oxidative stress markers were assessed in rats treated with NACA, NAC, or vehicle following a TBI. At 15days post-injury, animals treated with NACA demonstrated significant improvements in cognitive function and cortical tissue sparing compared to NAC or vehicle treated animals. NACA treatment also was shown to reduce oxidative damage (HNE levels) at 7days post-injury. Mechanistically, post-injury NACA administration was demonstrated to maintain levels of mitochondrial glutathione and mitochondrial bioenergetics comparable to sham animals. Collectively these data provide a basic platform to consider NACA as a novel therapeutic agent for treatment of TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536
| | - Ryan D Readnower
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536
| | - Samir P Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536
| | - James R Pauly
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - Glenn A Goldstein
- Pediatric Endocrinology Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alexander G Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
44
|
Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, Dulla CG. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control. Cereb Cortex 2014; 25:2306-20. [PMID: 24610117 DOI: 10.1093/cercor/bhu041] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Kendall Walker
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Lauren Andresen
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Program in Neuroscience at the Sackler School of Biomedical Sciences, Tufts University
| | - Amaro Taylor-Weiner
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Current address: Broad Institute, Cambridge, MA 02142, USA
| | - David Hampton
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Giuseppina Tesco
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| |
Collapse
|
45
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
46
|
Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL. Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. FRONTIERS IN NEUROENERGETICS 2013; 5:8. [PMID: 24109452 PMCID: PMC3790078 DOI: 10.3389/fnene.2013.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of (13)C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how (13)C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. (13)C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from (13)C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.
Collapse
|
47
|
Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 2013; 5:29. [PMID: 23847533 PMCID: PMC3705200 DOI: 10.3389/fnagi.2013.00029] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.
Collapse
Affiliation(s)
- Kendall R Walker
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
48
|
In Reply:. Anesthesiology 2013; 118:1238-40. [DOI: 10.1097/aln.0b013e31828baec5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
50
|
Readnower RD, Brainard RE, Hill BG, Jones SP. Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics 2012; 44:1208-13. [PMID: 23092951 DOI: 10.1152/physiolgenomics.00129.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.
Collapse
Affiliation(s)
- Ryan D Readnower
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|