1
|
Baltazar VA, Demchenko I, Tassone VK, Sousa-Ho RL, Schweizer TA, Bhat V. Brain-based correlates of depression and traumatic brain injury: a systematic review of structural and functional magnetic resonance imaging studies. FRONTIERS IN NEUROIMAGING 2024; 3:1465612. [PMID: 39563730 PMCID: PMC11573519 DOI: 10.3389/fnimg.2024.1465612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Introduction Depression is prevalent after traumatic brain injury (TBI). However, there is a lack of understanding of the brain-based correlates of depression post-TBI. This systematic review aimed to synthesize findings of structural and functional magnetic resonance imaging (MRI) studies to identify consistently reported neural correlates of depression post-TBI. Methods A search for relevant published studies was conducted through OVID (MEDLINE, APA PsycINFO, and Embase), with an end date of August 3rd, 2023. Fourteen published studies were included in this review. Results TBI patients with depression exhibited distinct changes in diffusion- based white matter fractional anisotropy, with the direction of change depending on the acuteness or chronicity of TBI. Decreased functional connectivity (FC) of the salience and default mode networks was prominent alongside the decreased volume of gray matter within the insular, dorsomedial prefrontal, and ventromedial prefrontal cortices. Seven studies reported the correlation between observed neuroimaging and depression outcomes. Of these studies, 42% indicated that FC of the bilateral medial temporal lobe subregions was correlated with depression outcomes in TBI. Discussion This systematic review summarizes existing neuroimaging evidence and reports brain regions that can be leveraged as potential treatment targets in future studies examining depression post-TBI.
Collapse
Affiliation(s)
- Vanessa A Baltazar
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel L Sousa-Ho
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Tom A Schweizer
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Chan A, Ouyang J, Nguyen K, Jones A, Basso S, Karasik R. Traumatic brain injuries: a neuropsychological review. Front Behav Neurosci 2024; 18:1326115. [PMID: 39444788 PMCID: PMC11497466 DOI: 10.3389/fnbeh.2024.1326115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
The best predictor of functional outcome in victims of traumatic brain injury (TBI) is a neuropsychological evaluation. An exponential growth of research into TBI has focused on diagnosis and treatment. Extant literature lacks a comprehensive neuropsychological review that is simultaneously scholarly and practical. In response, our group included, and went beyond a general overview of TBI's, which commonly include definition, types, severity, and pathophysiology. We incorporate reasons behind the use of particular neuroimaging techniques, as well as the most recent findings on common neuropsychological assessments conducted in TBI cases, and their relationship to outcome. In addition, we include tables outlining estimated recovery trajectories of different age groups, their risk factors and we encompass phenomenological studies, further covering the range of existing-promising tools for cognitive rehabilitation/remediation purposes. Finally, we highlight gaps in current research and directions that would be beneficial to pursue.
Collapse
Affiliation(s)
- Aldrich Chan
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Jason Ouyang
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Kristina Nguyen
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Aaliyah Jones
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Sophia Basso
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Ryan Karasik
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| |
Collapse
|
3
|
Shi Z, Li X, Todaro DR, Cao W, Lynch KG, Detre JA, Loughead J, Langleben DD, Wiers CE. Medial prefrontal neuroplasticity during extended-release naltrexone treatment of opioid use disorder - a longitudinal structural magnetic resonance imaging study. Transl Psychiatry 2024; 14:360. [PMID: 39237534 PMCID: PMC11377591 DOI: 10.1038/s41398-024-03061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Opioid use disorder (OUD) has been linked to macroscopic structural alterations in the brain. The monthly injectable, extended-release formulation of μ-opioid antagonist naltrexone (XR-NTX) is highly effective in reducing opioid craving and preventing opioid relapse. Here, we investigated the neuroanatomical effects of XR-NTX by examining changes in cortical thickness during treatment for OUD. Forty-seven OUD patients underwent structural magnetic resonance imaging and subjectively rated their opioid craving ≤1 day before (pre-treatment) and 11 ± 3 days after (on-treatment) the first XR-NTX injection. A sample of fifty-six non-OUD individuals completed a single imaging session and served as the comparison group. A publicly available [¹¹C]carfentanil positron emission tomography dataset was used to assess the relationship between changes in cortical thickness and μ-opioid receptor (MOR) binding potential across brain regions. We found that the thickness of the medial prefrontal and anterior cingulate cortices (mPFC/aCC; regions with high MOR binding potential) was comparable between the non-OUD individuals and the OUD patients at pre-treatment. However, among the OUD patients, mPFC/aCC thickness significantly decreased from pre-treatment to on-treatment. A greater reduction in mPFC/aCC thickness was associated with a greater reduction in opioid craving. Taken together, our study suggests XR-NTX-induced cortical thickness reduction in the mPFC/aCC regions in OUD patients. The reduction in thickness does not appear to indicate a restoration to the non-OUD level but rather reflects XR-NTX's distinct therapeutic impact on an MOR-rich brain structure. Our findings highlight the neuroplastic effects of XR-NTX that may inform the development of novel OUD interventions.
Collapse
Affiliation(s)
- Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin R Todaro
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wen Cao
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin G Lynch
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Loughead
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel D Langleben
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corinde E Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Andrews MJ, Salat DH, Milberg WP, McGlinchey RE, Fortier CB. Poor sleep and decreased cortical thickness in veterans with mild traumatic brain injury and post-traumatic stress disorder. Mil Med Res 2024; 11:51. [PMID: 39098930 PMCID: PMC11299360 DOI: 10.1186/s40779-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Poor sleep quality has been associated with changes in brain volume among veterans, particularly those who have experienced mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). This study sought to investigate (1) whether poor sleep quality is associated with decreased cortical thickness in Iraq and Afghanistan war veterans, and (2) whether these associations differ topographically depending on the presence or absence of mTBI and PTSD. METHODS A sample of 440 post-9/11 era U.S. veterans enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders study at VA Boston, MA from 2010 to 2022 was included in the study. We examined the relationship between sleep quality, as measured by the Pittsburgh Sleep Quality Index (PSQI), and cortical thickness in veterans with mTBI (n = 57), PTSD (n = 110), comorbid mTBI and PTSD (n = 129), and neither PTSD nor mTBI (n = 144). To determine the topographical relationship between subjective sleep quality and cortical thickness in each diagnostic group, we employed a General Linear Model (GLM) at each vertex on the cortical mantle. The extent of topographical overlap between the resulting statistical maps was assessed using Dice coefficients. RESULTS There were no significant associations between PSQI and cortical thickness in the group without PTSD or mTBI (n = 144) or in the PTSD-only group (n = 110). In the mTBI-only group (n = 57), lower sleep quality was significantly associated with reduced thickness bilaterally in frontal, cingulate, and precuneus regions, as well as in the right parietal and temporal regions (β = -0.0137, P < 0.0005). In the comorbid mTBI and PTSD group (n = 129), significant associations were observed bilaterally in frontal, precentral, and precuneus regions, in the left cingulate and the right parietal regions (β = -0.0094, P < 0.0005). Interaction analysis revealed that there was a stronger relationship between poor sleep quality and decreased cortical thickness in individuals with mTBI (n = 186) compared to those without mTBI (n = 254) specifically in the frontal and cingulate regions (β = -0.0077, P < 0.0005). CONCLUSIONS This study demonstrates a significant relationship between poor sleep quality and lower cortical thickness primarily within frontal regions among individuals with both isolated mTBI or comorbid diagnoses of mTBI and PTSD. Thus, if directionality is established in longitudinal and interventional studies, it may be crucial to consider addressing sleep in the treatment of veterans who have sustained mTBI.
Collapse
Affiliation(s)
- Murray J Andrews
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - David H Salat
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02130, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, 02130, USA
- Anthinoula A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA.
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
5
|
Huang S, Li M, Huang C, Liu J. Acute limbic system connectivity predicts chronic cognitive function in mild traumatic brain injury: An individualized differential structural covariance network study. Pharmacol Res 2024; 206:107274. [PMID: 38906205 DOI: 10.1016/j.phrs.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a known risk factor for neurodegenerative diseases, yet the precise pathophysiological mechanisms remain poorly understand, often obscured by group-level analysis in non-invasive neuroimaging studies. Individual-based method is critical to exploring heterogeneity in mTBI. We recruited 80 mTBI patients and 40 matched healthy controls, obtaining high-resolution structural MRI for constructing Individual Differential Structural Covariance Networks (IDSCN). Comparisons were conducted at both the individual and group levels. Connectome-based Predictive Modeling (CPM) was applied to predict cognitive performance based on whole-brain connectivity. During the acute stage of mTBI, patients exhibited significant heterogeneity in the count and direction of altered edges, obscured by group-level analysis. In the chronic stage, the number of altered edges decreased and became more consistent, aligning with clinical observations of acute cognitive impairment and gradual improvement. Subgroup analysis based on loss of consciousness/post-traumatic amnesia revealed distinct patterns of alterations. The temporal lobe, particularly regions related to the limbic system, significantly predicted cognitive function from acute to chronic stage. The use of IDSCN and CPM has provided valuable individual-level insights, reconciling discrepancies from previous studies. Additionally, the limbic system may be an appropriate target for future intervention efforts.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Xu H, Xu C, Guo Y, Hu Y, Fang Q, Yang D, Niu X, Bai G. Abnormal longitudinal changes of structural covariance networks of cortical thickness in mild traumatic brain injury with posttraumatic headache. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111012. [PMID: 38641235 DOI: 10.1016/j.pnpbp.2024.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND It is widely acknowledged that mild traumatic brain injury (MTBI) leads to either functionally or anatomically abnormal brain regions. Structural covariance networks (SCNs) that depict coordinated regional maturation patterns are commonly employed for investigating brain structural abnormalities. However, the dynamic nature of SCNs in individuals with MTBI who suffer from posttraumatic headache (PTH) and their potential as biomarkers have hitherto not been investigated. METHODS This study included 36 MTBI patients with PTH and 34 well-matched healthy controls (HCs). All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Structural covariance matrices of cortical thickness were generated for each group, and global as well as nodal network measures of SCNs were computed. RESULTS MTBI patients with PTH demonstrated reduced headache impact and improved cognitive function from the acute to subacute phase. In terms of global network metrics, MTBI patients exhibited an abnormal normalized clustering coefficient compared to HCs during the acute phase, although no significant difference in the normalized clustering coefficient was observed between the groups during the subacute phase. Regarding nodal network metrics, MTBI patients displayed alterations in various brain regions from the acute to subacute phase, primarily concentrated in the prefrontal cortex (PFC). CONCLUSIONS These findings indicate that the cortical thickness topography in the PFC determines the typical structural-covariance topology of the brain and may serve as an important biomarker for MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China.
| | - Cheng Xu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Qiaofang Fang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dandan Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
7
|
Recht G, Hou J, Buddenbaum C, Cheng H, Newman SD, Saykin AJ, Kawata K. Multiparameter cortical surface morphology in former amateur contact sport athletes. Cereb Cortex 2024; 34:bhae301. [PMID: 39077916 PMCID: PMC11484490 DOI: 10.1093/cercor/bhae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.
Collapse
Affiliation(s)
- Grace Recht
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Jiancheng Hou
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Research Center for Cross-Straits Cultural Development, Fujian Normal University, Cangshan Campus, No. 8 Shangshan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Claire Buddenbaum
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Hu Cheng
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
| | - Sharlene D Newman
- Alabama Life Research Institute, College of Arts & Sciences, University of Alabama, 211 Peter Bryce Blvd., Tuscaloosa, AL 35401, United States
| | - Andrew J Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN 46202, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
- Department of Pediatrics, Indiana University School of Medicine, 1130 W Michigan St, Indianapolis, IN 46202, United States
| |
Collapse
|
8
|
Khoury MA, Churchill NW, Di Battista A, Graham SJ, Symons S, Troyer AK, Roberts A, Kumar S, Tan B, Arnott SR, Ramirez J, Tartaglia MC, Borrie M, Pollock B, Rajji TK, Pasternak SH, Frank A, Tang-Wai DF, Scott CJM, Haddad SMH, Nanayakkara N, Orange JB, Peltsch A, Fischer CE, Munoz DG, Schweizer TA. History of traumatic brain injury is associated with increased grey-matter loss in patients with mild cognitive impairment. J Neurol 2024; 271:4540-4550. [PMID: 38717612 DOI: 10.1007/s00415-024-12369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES To investigate whether a history of traumatic brain injury (TBI) is associated with greater long-term grey-matter loss in patients with mild cognitive impairment (MCI). METHODS 85 patients with MCI were identified, including 26 with a previous history of traumatic brain injury (MCI[TBI-]) and 59 without (MCI[TBI+]). Cortical thickness was evaluated by segmenting T1-weighted MRI scans acquired longitudinally over a 2-year period. Bayesian multilevel modelling was used to evaluate group differences in baseline cortical thickness and longitudinal change, as well as group differences in neuropsychological measures of executive function. RESULTS At baseline, the MCI[TBI+] group had less grey matter within right entorhinal, left medial orbitofrontal and inferior temporal cortex areas bilaterally. Longitudinally, the MCI[TBI+] group also exhibited greater longitudinal declines in left rostral middle frontal, the left caudal middle frontal and left lateral orbitofrontal areas sover the span of 2 years (median = 1-2%, 90%HDI [-0.01%: -0.001%], probability of direction (PD) = 90-99%). The MCI[TBI+] group also displayed greater longitudinal declines in Trail-Making-Test (TMT)-derived ratio (median: 0.737%, 90%HDI: [0.229%: 1.31%], PD = 98.8%) and differences scores (median: 20.6%, 90%HDI: [-5.17%: 43.2%], PD = 91.7%). CONCLUSIONS Our findings support the notion that patients with MCI and a history of TBI are at risk of accelerated neurodegeneration, displaying greatest evidence for cortical atrophy within the left middle frontal and lateral orbitofrontal frontal cortex. Importantly, these results suggest that long-term TBI-mediated atrophy is more pronounced in areas vulnerable to TBI-related mechanical injury, highlighting their potential relevance for diagnostic forms of intervention in TBI.
Collapse
Affiliation(s)
- Marc A Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Alex Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Hospital, Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Angela Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Joel Ramirez
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- . Joseph's Healthcare Centre, London, ON, Canada
| | - Bruce Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen H Pasternak
- . Joseph's Healthcare Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
| | - Andrew Frank
- Bruyère Research Institute, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | | | | | - Joseph B Orange
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- University of Western, London, ON, Canada
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Tech (iBEST), A Partnership Between St. Michael's Hospital and Ryerson University, Toronto, ON, M5V 1T8, Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Gimbel SI, Hungerford LD, Twamley EW, Ettenhofer ML. White Matter Organization and Cortical Thickness Differ Among Active Duty Service Members With Chronic Mild, Moderate, and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:818-835. [PMID: 37800726 PMCID: PMC11005384 DOI: 10.1089/neu.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Abstract This study compared findings from whole-brain diffusion tensor imaging (DTI) and volumetric magnetic resonance imaging (MRI) among 90 Active Duty Service Members with chronic mild traumatic brain injury (TBI; n = 52), chronic moderate-to-severe TBI (n = 17), and TBI-negative controls (n = 21). Data were collected on a Philips Ingenia 3T MRI with DTI in 32 directions. Results demonstrated that history of TBI was associated with differences in white matter microstructure, white matter volume, and cortical thickness in both mild TBI and moderate-to-severe TBI groups relative to controls. However, the presence, pattern, and distribution of these findings varied substantially depending on the injury severity. Spatially-defined forms of DTI fractional anisotropy (FA) analyses identified altered white matter organization within the chronic moderate-to-severe TBI group, but they did not provide clear evidence of abnormalities within the chronic mild TBI group. In contrast, DTI FA "pothole" analyses identified widely distributed areas of decreased FA throughout the white matter in both the chronic mild TBI and chronic moderate-to-severe TBI groups. Additionally, decreased white matter volume was found in several brain regions for the chronic moderate-to-severe TBI group compared with the other groups. Greater number of DTI FA potholes and reduced cortical thickness were also related to greater severity of self-reported symptoms. In sum, this study expands upon a growing body of literature using advanced imaging techniques to identify potential effects of brain injury in military Service Members. These findings may differ from work in other TBI populations due to varying mechanisms and frequency of injury, as well as a potentially higher level of functioning in the current sample related to the ability to maintain continued Active Duty status after injury. In conclusion, this study provides DTI and volumetric MRI findings across the spectrum of TBI severity. These results provide support for the use of DTI and volumetric MRI to identify differences in white matter microstructure and volume related to TBI. In particular, DTI FA pothole analysis may provide greater sensitivity for detecting subtle forms of white matter injury than conventional DTI FA analyses.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Elizabeth W. Twamley
- University of California, San Diego, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, USA
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Patel H, Polam S, Joseph R. Concussions: A Review of Physiological Changes and Long-Term Sequelae. Cureus 2024; 16:e54375. [PMID: 38505457 PMCID: PMC10948337 DOI: 10.7759/cureus.54375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
A concussion is a type of mild traumatic brain injury (mTBI). It is prevalent among athletes across a wide variety of sports. The exact mechanism of a concussion is unknown, but it is currently accepted that the acceleration and deceleration of the brain is the insult causing disturbances in activity. The most common symptoms of concussions include but are not limited to dizziness, nausea, vomiting, and headaches. With repetitive concussive injuries, athletes can experience permanent changes such as chronic traumatic encephalopathy (gradual degeneration of brain tissue), which can lead to personality changes and memory deficits. This literature review aims to provide insight into concussions and the evaluation of physiological changes and long-term sequelae. A comprehensive literature search was performed from April 2012 to April 2022 using PubMed/MEDLINE (Medical Literature Analysis and Retrieval System Online) and Embase databases. Nineteen articles were finally included in the literature review. The review shows that neuroimaging results demonstrated significant changes in the brain structure and function including alternations in the thalamus, hippocampus, corpus callosum, and the white matter, which can extend beyond the symptom amelioration. In addition, other approaches include brain metabolism, cerebral blood flow, and glucose utilization. Additional techniques include the evaluation of fatigue levels and the alterations in biomarkers, specifically IL-6. These approaches have demonstrated that consequences of concussions, including alternations in brain structure and function, can extend beyond an athlete's report of symptom resolution, and should be taken into consideration for return to play. The physiological changes present after a concussion have the potential to develop into long-term complications such as academic difficulty, cognitive decline, gut microbiome changes, gait changes, and increased risk of lower extremity injury. The findings in the literature review determine that is important to immediately address the symptoms of concussions to expedite treatment and prevent deleterious changes to the brain.
Collapse
Affiliation(s)
- Hemangi Patel
- Sports Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Sneha Polam
- Sports Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Roody Joseph
- Sports Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
11
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
13
|
Li Y, Fan Q, Li F, Pang R, Chen C, Li P, Wang X, Xuan W, Yu W. The multifaceted roles of activating transcription factor 3 (ATF3) in inflammatory responses - Potential target to regulate neuroinflammation in acute brain injury. J Cereb Blood Flow Metab 2023; 43:8-17. [PMID: 37165649 PMCID: PMC10638996 DOI: 10.1177/0271678x231171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Activating transcription factor 3 (ATF3) is one of the most important transcription factors that respond to and exert dual effects on inflammatory responses. Recently, the involvement of ATF3 in the neuroinflammatory response to acute brain injury (ABI) has been highlighted. It functions by regulating neuroimmune activation and the production of neuroinflammatory mediators. Notably, recent clinical evidence suggests that ATF3 may serve as a potential ideal biomarker of the long-term prognosis of ABI patients. This mini-review describes the essential inflammation modulatory roles of ATF3 in different disease contexts and summarizes the regulatory mechanisms of ATF3 in the ABI-induced neuroinflammation.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshi Li
- Department of Neurosurgery, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Ly MT, Merritt VC, Ozturk ED, Clark AL, Hanson KL, Delano-Wood LM, Sorg SF. Subjective memory complaints are associated with decreased cortical thickness in Veterans with histories of mild traumatic brain injury. Clin Neuropsychol 2023; 37:1745-1765. [PMID: 36883430 DOI: 10.1080/13854046.2023.2184720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Objective: Memory problems are frequently endorsed in Veterans following mild traumatic brain injury (mTBI), but subjective complaints are poorly associated with objective memory performance. Few studies have examined associations between subjective memory complaints and brain morphometry. We investigated whether self-reported memory problems were associated with objective memory performance and cortical thickness in Veterans with a history of mTBI. Methods: 40 Veterans with a history of remote mTBI and 29 Veterans with no history of TBI completed the Prospective-Retrospective Memory Questionnaire (PRMQ), PTSD Checklist (PCL), California Verbal Learning Test-2nd edition (CVLT-II), and 3 T T1 structural magnetic resonance imaging. Cortical thickness was estimated in 14 a priori frontal and temporal regions. Multiple regressions adjusting for age and PCL scores examined associations between PRMQ, CVLT-II scores, and cortical thickness within each Veteran group. Results: Greater subjective memory complaints on the PRMQ were associated with lower cortical thickness in the right middle temporal gyrus (β = 0.64, q = .004), right inferior temporal gyrus (β = 0.56, q = .014), right rostral middle frontal gyrus (β = 0.45, q = .046), and right rostral anterior cingulate gyrus (β = 0.58, q = .014) in the mTBI group but not the control group (q's > .05). These associations remained significant after adjusting for CVLT-II learning. CVLT-II performance was not associated with PRMQ score or cortical thickness in either group. Conclusions: Subjective memory complaints were associated with lower cortical thickness in right frontal and temporal regions, but not with objective memory performance, in Veterans with histories of mTBI. Subjective complaints post-mTBI may indicate underlying brain morphometry independently of objective cognitive testing.
Collapse
Affiliation(s)
- Monica T Ly
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, CA, USA
| | - Victoria C Merritt
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| | - Erin D Ozturk
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
- San Diego Joint Doctoral Program, San Diego State University/University of California San Diego, San Diego, CA, USA
| | - Alexandra L Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Karen L Hanson
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, CA, USA
| | - Lisa M Delano-Wood
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| | - Scott F Sorg
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
| |
Collapse
|
15
|
Katlowitz K, Gopinath S, Cruz Navarro J, Robertson C. HMG-CoA Reductase Inhibitors for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1538-1545. [PMID: 37351829 PMCID: PMC10684840 DOI: 10.1007/s13311-023-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Traumatic brain injuries (TBIs) are associated with high morbidity and mortality due to both the original insult as well as the destructive biological response that follows. Medical management aims to slow or even halt secondary neurological injury while simultaneously laying the groundwork for recovery. Statins are one class of medications that is showing increased promise in the management of TBI. Used extensively in cardiovascular disease, these drugs were originally developed as competitive inhibitors within the cholesterol production pipeline. They are now used in diverse disease states due to their pleiotropic effects on other biological processes such as inflammation and angiogenesis. Preclinical studies, retrospective reviews, and randomized clinical trials have shown a variety of benefits in the management of TBI, but to date, no large-scale randomized clinical trial has been performed. Despite this limitation, statins' early promise and well-tolerated side effect profile make them a promising new tool in the management of TBIs. More bench and clinical studies are needed to delineate proper treatment regimens as well as understand their true potential.
Collapse
Affiliation(s)
- Kalman Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Shankar Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jovany Cruz Navarro
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Pankatz L, Rojczyk P, Seitz-Holland J, Bouix S, Jung LB, Wiegand TLT, Bonke EM, Sollmann N, Kaufmann E, Carrington H, Puri T, Rathi Y, Coleman MJ, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, Marx CE, Shenton ME, Koerte IK. Adverse Outcome Following Mild Traumatic Brain Injury Is Associated with Microstructure Alterations at the Gray and White Matter Boundary. J Clin Med 2023; 12:5415. [PMID: 37629457 PMCID: PMC10455493 DOI: 10.3390/jcm12165415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.
Collapse
Affiliation(s)
- Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Département de génie logiciel et TI, École de Technologie Supérieure, Université du Québec, Montreal, QC H3C 1K3, Canada
| | - Leonard B. Jung
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Elena M. Bonke
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Neurology, University Hospital, LMU, 81377 Munich, Germany
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Twishi Puri
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
- Department of Physical Medicine and Rehabilitation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- School of Public Health, University of California San Diego, La Jolla, CA 92093, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC 27705, USA;
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| |
Collapse
|
17
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Traumatic brain injury alters the relationship between brain structure and episodic memory. Brain Behav 2023; 13:e3012. [PMID: 37132290 PMCID: PMC10275516 DOI: 10.1002/brb3.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Focal and diffuse pathology resulting from traumatic brain injury (TBI) often disrupts brain circuitry that is critical for episodic memory, including medial temporal lobe and prefrontal regions. Prior studies have focused on unitary accounts of temporal lobe function, associating verbally learned material and brain morphology. Medial temporal lobe structures, however, are domain-sensitive, preferentially supporting different visual stimuli. There has been little consideration of whether TBI preferentially disrupts the type of visually learned material and its association with cortical morphology following injury. Here, we investigated whether (1) episodic memory deficits differ according to the stimulus type, and (2) the pattern in memory performance can be linked to changes in cortical thickness. METHODS Forty-three individuals with moderate-severe TBI and 38 demographically similar healthy controls completed a recognition task in which memory was assessed for three categories of stimuli: faces, scenes, and animals. The association between episodic memory accuracy on this task and cortical thickness was subsequently examined within and between groups. RESULTS Our behavioral results support the notion of category-specific impairments: the TBI group had significantly impaired accuracy for memory for faces and scenes, but not animals. Moreover, the association between cortical thickness and behavioral performance was only significant for faces between groups. CONCLUSION Taken together, these behavioral and structural findings provide support for an emergent memory account, and highlight that cortical thickness differentially affects episodic memory for specific categories of stimuli.
Collapse
Affiliation(s)
- Abbie S. Taing
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Matthew E. Mundy
- Faculty of Health and EducationTorrens UniversityMelbourneVictoriaAustralia
| | - Jennie L. Ponsford
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Gershon Spitz
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| |
Collapse
|
18
|
Xu H, Xu C, Gu P, Hu Y, Guo Y, Bai G. Neuroanatomical restoration of salience network links reduced headache impact to cognitive function improvement in mild traumatic brain injury with posttraumatic headache. J Headache Pain 2023; 24:43. [PMID: 37081382 PMCID: PMC10120179 DOI: 10.1186/s10194-023-01579-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations have been associated with cognitive deficits in mild traumatic brain injury (MTBI). However, most studies have focused on the abnormal gray matter volume in widespread brain regions using a cross-sectional design in MTBI. This study investigated the neuroanatomical restoration of key regions in salience network and the outcomes in MTBI. METHODS Thirty-six MTBI patients with posttraumatic headache (PTH) and 34 matched healthy controls were enrolled in this study. All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Surface-based morphometry was conducted to get cortical thickness (CT) and cortical surface area (CSA) of neuroanatomical regions which were defined by the Desikan atlas. Then mixed analysis of variance models were performed to examine CT and CSA restoration in patients from acute to subacute phase related to controls. Finally, mediation effects models were built to explore the relationships between neuroanatomical restoration and symptomatic improvement in patients. RESULTS MTBI patients with PTH showed reduced headache impact and improved cognitive function from the acute to subacute phase. Moreover, patients experienced restoration of CT of the left caudal anterior cingulate cortex (ACC) and left insula and cortical surface area of the right superior frontal gyrus from acute to subacute phase. Further mediation analysis found that CT restoration of the ACC and insula mediated the relationship between reduced headache impact and improved cognitive function in patients. CONCLUSIONS These results showed that neuroanatomical restoration of key regions in salience network correlated reduced headache impact with cognitive function improvement in MTBI with PTH, which further substantiated the vital role of salience network and provided an alternative clinical target for cognitive improvement in MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada.
| | - Cheng Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Pengpeng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
19
|
Hurtubise JM, Gorbet DJ, Hynes L, Macpherson AK, Sergio LE. Cortical and cerebellar structural correlates of cognitive-motor integration performance in females with and without persistent concussion symptoms. Brain Inj 2023; 37:397-411. [PMID: 36548113 DOI: 10.1080/02699052.2022.2158231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fifteen percent of individuals who sustain a concussion develop persistent concussion symptoms (PCS). Recent literature has demonstrated atrophy of the frontal, parietal, and cerebellar regions following acute concussive injury. The frontoparietal-cerebellar network is essential for the performance of visuomotor transformation tasks requiring cognitive-motor integration (CMI), important for daily function. PURPOSE We investigated cortical and subcortical structural differences and how these differences are associated with CMI performance in those with PCS versus healthy controls. METHODS Twenty-six age-matched female participants (13 PCS, 13 healthy) completed four visuomotor tasks. Additionally, MR-images were analyzed for cortical thickness and volume, and cerebellar lobule volume. RESULTS No statistically significant group differences were found in CMI performance. However, those with PCS demonstrated a significantly thicker and larger precuneus, and significantly smaller cerebellar lobules (VIIIa, VIIIb, X) compared to controls. When groups were combined, volumes of both the cerebellar lobules and cortical regions were associated with CMI task performance. CONCLUSION The lack of behavioral differences combined with the structural differences may reflect a compensatory mechanism for those with PCS. In addition, this study highlights the effectiveness of CMI tasks in estimating the structural integrity of the frontoparietal-cerebellar network and is among the first to demonstrate structural correlates of PCS.
Collapse
Affiliation(s)
- Johanna M Hurtubise
- School of Kinesiology and Health Science, York University, Toronto, Canada
- Centre for Sport and Exercise Education, Camosun College, Victoria, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Loriann Hynes
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | | | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
20
|
Morita Y, Kamagata K, Andica C, Takabayashi K, Kikuta J, Fujita S, Samoyeau T, Uchida W, Saito Y, Tabata H, Naito H, Someya Y, Kaga H, Tamura Y, Miyata M, Akashi T, Wada A, Taoka T, Naganawa S, Watada H, Kawamori R, Abe O, Aoki S. Glymphatic system impairment in nonathlete older male adults who played contact sports in their youth associated with cognitive decline: A diffusion tensor image analysis along the perivascular space study. Front Neurol 2023; 14:1100736. [PMID: 36873446 PMCID: PMC9977161 DOI: 10.3389/fneur.2023.1100736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
Background and purpose Exposure to contact sports in youth causes brain health problems later in life. For instance, the repetitive head impacts in contact sports might contribute to glymphatic clearance impairment and cognitive decline. This study aimed to assess the effect of contact sports participation in youth on glymphatic function in old age and the relationship between glymphatic function and cognitive status using the analysis along the perivascular space (ALPS) index. Materials and methods A total of 52 Japanese older male subjects were included in the study, including 12 who played heavy-contact sports (mean age, 71.2 years), 15 who played semicontact sports (mean age, 73.1 years), and 25 who played noncontact sports (mean age, 71.3 years) in their youth. All brain diffusion-weighted images (DWIs) of the subjects were acquired using a 3T MRI scanner. The ALPS indices were calculated using a validated semiautomated pipeline. The ALPS indices from the left and right hemispheres were compared between groups using a general linear model, including age and years of education. Furthermore, partial Spearman's rank correlation tests were performed to assess the correlation between the ALPS indices and cognitive scores (Mini-Mental State Examination and the Japanese version of the Montreal Cognitive Assessment [MoCA-J]) after adjusting for age years of education and HbA1c. Results The left ALPS index was significantly lower in the heavy-contact and semicontact groups than that in the noncontact group. Although no significant differences were observed in the left ALPS index between the heavy-contact and semicontact groups and in the right ALPS index among groups, a trend toward lower was found in the right ALPS index in individuals with semicontact and heavy-contact compared to the noncontact group. Both sides' ALPS indices were significantly positively correlated with the MoCA-J scores. Conclusion The findings indicated the potential adverse effect of contact sports experience in youth on the glymphatic system function in old age associated with cognitive decline.
Collapse
Affiliation(s)
- Yuichi Morita
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Thomas Samoyeau
- Department of Radiology, Necker Hospital, Paris University, Paris, France
| | - Wataru Uchida
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mari Miyata
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hirotaka Watada
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
21
|
Deep Grey Matter Volume is Reduced in Amateur Boxers as Compared to Healthy Age-matched Controls. Clin Neuroradiol 2022; 33:475-482. [DOI: 10.1007/s00062-022-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
Abstract
Purpose
Mild traumatic brain injuries (mTBI) sustained during contact sports like amateur boxing are found to have long-term sequelae, being linked to an increased risk of developing neurological conditions like Parkinson’s disease. The aim of this study was to assess differences in volume of anatomical brain structures between amateur boxers and control subjects with a special interest in the affection of deep grey matter structures.
Methods
A total of 19 amateur boxers and 19 healthy controls (HC), matched for age and intelligence quotient (IQ), underwent 3T magnetic resonance imaging (MRI) as well as neuropsychological testing. Body mass index (BMI) was evaluated for every subject and data about years of boxing training and number of fights were collected for each boxer. The acquired 3D high resolution T1 weighted MR images were analyzed to measure the volumes of cortical grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and deep grey matter structures. Multivariate analysis was applied to reveal differences between groups referencing deep grey matter structures to normalized brain volume (NBV) to adjust for differences in head size and brain volume as well as adding BMI as cofactor.
Results
Total intracranial volume (TIV), comprising GM, WM and CSF, was lower in boxers compared to controls (by 7.1%, P = 0.009). Accordingly, GM (by 5.5%, P = 0.038) and WM (by 8.4%, P = 0.009) were reduced in boxers. Deep grey matter showed statistically lower volumes of the thalamus (by 8.1%, P = 0.006), caudate nucleus (by 11.1%, P = 0.004), putamen (by 8.1%, P = 0.011), globus pallidus (by 9.6%, P = 0.017) and nucleus accumbens (by 13.9%, P = 0.007) but not the amygdala (by 5.5%, P = 0.221), in boxers compared to HC.
Conclusion
Several deep grey matter structures were reduced in volume in the amateur boxer group. Furthermore, longitudinal studies are needed to determine the damage pattern affecting deep grey matter structures and its neuropsychological relevance.
Collapse
|
22
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Reese C, Cooper L, Shepherd K, Alzheimer's Disease Neuroimaging Initiative FT. Journey to the other side of the brain: asymmetry in patients with chronic mild or moderate traumatic brain injury. Concussion 2022; 8:CNC101. [PMID: 36874877 PMCID: PMC9979152 DOI: 10.2217/cnc-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023] Open
Abstract
Aim Patients with chronic mild or moderate traumatic brain injury have some regions of brain atrophy (including cerebral white matter) but even more regions of abnormal brain enlargement (including other cerebral regions). Hypothesis Ipsilateral injury and atrophy cause the eventual development of contralateral compensatory hypertrophy. Materials & methods 50 patients with mild or moderate traumatic brain injury were compared to 80 normal controls (n = 80) with respect to MRI brain volume asymmetry. Asymmetry-based correlations were used to test the primary hypothesis. Results The group of patients had multiple regions of abnormal asymmetry. Conclusion The correlational analyses supported the conclusion that acute injury to ipsilateral cerebral white matter regions caused atrophy, leading eventually to abnormal enlargement of contralateral regions due to compensatory hypertrophy.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - John D Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Jan M Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| | - For The Alzheimer's Disease Neuroimaging Initiative
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| |
Collapse
|
23
|
Kosaraju S, Galatzer-Levy I, Schultebraucks K, Winters S, Hinrichs R, Reddi PJ, Maples-Keller JL, Hudak L, Michopoulos V, Jovanovic T, Ressler KJ, Allen JW, Stevens JS. Associations among civilian mild traumatic brain injury with loss of consciousness, posttraumatic stress disorder symptom trajectories, and structural brain volumetric data. J Trauma Stress 2022; 35:1521-1534. [PMID: 35776892 DOI: 10.1002/jts.22858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Posttraumatic stress disorder (PTSD) is prevalent and associated with significant morbidity. Mild traumatic brain injury (mTBI) concurrent with psychiatric trauma may be associated with PTSD. Prior studies of PTSD-related structural brain alterations have focused on military populations. The current study examined correlations between PTSD, acute mTBI, and structural brain alterations longitudinally in civilian patients (N = 504) who experienced a recent Criterion A traumatic event. Participants who reported loss of consciousness (LOC) were characterized as having mTBI; all others were included in the control group. PTSD symptoms were assessed at enrollment and over the following year; a subset of participants (n = 89) underwent volumetric brain MRI (M = 53 days posttrauma). Classes of PTSD symptom trajectories were modeled using latent growth mixture modeling. Associations between PTSD symptom trajectories and cortical thicknesses or subcortical volumes were assessed using a moderator-based regression. mTBI with LOC during trauma was positively correlated with the likelihood of developing a chronic PTSD symptom trajectory. mTBI showed significant interactions with cortical thickness in the rostral anterior cingulate cortex (rACC) in predicting PTSD symptoms, r = .461-.463. Bilateral rACC thickness positively predicted PTSD symptoms but only among participants who endorsed LOC, p < .001. The results demonstrate positive correlations between mTBI with LOC and PTSD symptom trajectories, and findings related to mTBI with LOC and rACC thickness interactions in predicting subsequent chronic PTSD symptoms suggest the importance of further understanding the role of mTBI in the context of PTSD to inform intervention and risk stratification.
Collapse
Affiliation(s)
- Siddhartha Kosaraju
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaac Galatzer-Levy
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Katharina Schultebraucks
- Department of Emergency Medicine, Vagelos School of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Sterling Winters
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Hinrichs
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preethi J Reddi
- Department of Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lauren Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tanja Jovanovic
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S Stevens
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
Vedung F, Fahlström M, Wall A, Antoni G, Lubberink M, Johansson J, Tegner Y, Stenson S, Haller S, Weis J, Larsson EM, Marklund N. Chronic cerebral blood flow alterations in traumatic brain injury and sports-related concussions. Brain Inj 2022; 36:948-960. [PMID: 35950271 DOI: 10.1080/02699052.2022.2109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PRIMARY OBJECTIVE Traumatic brain injury (TBI) and sports-related concussion (SRC) may result in chronic functional and neuroanatomical changes. We tested the hypothesis that neuroimaging findings (cerebral blood flow (CBF), cortical thickness, and 1H-magnetic resonance (MR) spectroscopy (MRS)) were associated to cognitive function, TBI severity, and sex. RESEARCH DESIGN Eleven controls, 12 athletes symptomatic following ≥3SRCs and 6 patients with moderate-severe TBI underwent MR scanning for evaluation of cortical thickness, brain metabolites (MRS), and CBF using pseudo-continuous arterial spin labeling (ASL). Cognitive screening was performed using the RBANS cognitive test battery. MAIN OUTCOMES AND RESULTS RBANS-index was impaired in both injury groups and correlated with the injury severity, although not with any neuroimaging parameter. Cortical thickness correlated with injury severity (p = 0.02), while neuronal density, using the MRS marker ((NAA+NAAG)/Cr, did not. On multivariate analysis, injury severity (p = 0.0003) and sex (p = 0.002) were associated with CBF. Patients with TBI had decreased gray (p = 0.02) and white matter (p = 0.02) CBF compared to controls. CBF was significantly lower in total gray, white matter and in 16 of the 20 gray matter brain regions in female but not male athletes when compared to female and male controls, respectively. CONCLUSIONS Injury severity correlated with CBF, cognitive function, and cortical thickness. CBF also correlated with sex and was reduced in female, not male, athletes. Chronic CBF changes may contribute to the persistent injury mechanisms in TBI and rSRC.
Collapse
Affiliation(s)
- Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Wall
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jakob Johansson
- Department of Surgical Sciences, Anesthesiology, Uppsala University, Uppsala, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Uppsala, Sweden
| | - Staffan Stenson
- Department of Neuroscience, Rehabilitation Medicine, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Affidea CDRC Centre de Diagnostic Radiologique de Carouge SA, Geneva, Switzerland
| | - Jan Weis
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Huang W, Hu W, Zhang P, Wang J, Jiang Y, Ma L, Zheng Y, Zhang J. Early Changes in the White Matter Microstructure and Connectome Underlie Cognitive Deficit and Depression Symptoms After Mild Traumatic Brain Injury. Front Neurol 2022; 13:880902. [PMID: 35847204 PMCID: PMC9279564 DOI: 10.3389/fneur.2022.880902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive and emotional impairments are frequent among patients with mild traumatic brain injury (mTBI) and may reflect alterations in the brain structural properties. The relationship between microstructural changes and cognitive and emotional deficits remains unclear in patients with mTBI at the acute stage. The purpose of this study was to analyze the alterations in white matter microstructure and connectome of patients with mTBI within 7 days after injury and investigate whether they are related to the clinical questionnaires. A total of 79 subjects (42 mTBI and 37 healthy controls) underwent neuropsychological assessment and diffusion-tensor MRI scan. The microstructure and connectome of white matter were characterized by tract-based spatial statistics (TBSSs) and graph theory approaches, respectively. Mini-mental state examination (MMSE) and self-rating depression scale (SDS) were used to evaluate the cognitive function and depressive symptoms of all the subjects. Patients with mTBI revealed early increases of fractional anisotropy in most areas compared with the healthy controls. Graph theory analyses showed that patients with mTBI had increased nodal shortest path length, along with decreased nodal degree centrality and nodal efficiency, mainly located in the bilateral temporal lobe and right middle occipital gyrus. Moreover, lower nodal shortest path length and higher nodal efficiency of the right middle occipital gyrus were associated with higher SDS scores. Significantly, the strength of the rich club connection in the mTBI group decreased and was associated with the MMSE. Our study demonstrated that the neuroanatomical alterations of mTBI in the acute stage might be an initial step of damage leading to cognitive deficits and depression symptoms, and arguably, these occur due to distinct mechanisms.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- *Correspondence: Jing Zhang
| |
Collapse
|
26
|
Barcelona J, Ross DE, Seabaugh JD, Seabaugh JM. Abnormal asymmetry correlates with abnormal enlargement in a patient with chronic moderate traumatic brain injury. Concussion 2022; 7:CNC96. [PMID: 36262480 PMCID: PMC9219597 DOI: 10.2217/cnc-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Recent studies found patients with chronic, mild or moderate traumatic brain injury had more regions of enlargement than atrophy. There is little research discussing brain volume enlargement, asymmetry and TBI. Materials & methods: In this report, we describe a 40-year-old man who suffered a left cerebral hemorrhage resulting in a moderate TBI, suggesting greater forces on the left side of his brain. NeuroQuant® brain volumetric analyses of his MRI obtained 1.7 years post injury showed left cerebral white matter atrophy but right gray matter abnormal enlargement. Abnormal asymmetry of multiple regions (R >L) was confirmed by NeuroGage® asymmetry analyses. Discussion: The findings suggested that abnormal brain volume enlargement was due to hyperactivity and hypertrophy of less-injured brain regions as a compensatory response to more-injured regions.
Collapse
Affiliation(s)
- Justis Barcelona
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - David E Ross
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - John D Seabaugh
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Jan M Seabaugh
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| |
Collapse
|
27
|
Ross DE, Seabaugh J, Seabaugh JM, Barcelona J, Seabaugh D, Wright K, Norwind L, King Z, Graham TJ, Baker J, Lewis T. Updated Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant ® and NeuroGage ® in Patients With Traumatic Brain Injury. Front Hum Neurosci 2022; 16:715807. [PMID: 35463926 PMCID: PMC9027332 DOI: 10.3389/fnhum.2022.715807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Over 40 years of research have shown that traumatic brain injury affects brain volume. However, technical and practical limitations made it difficult to detect brain volume abnormalities in patients suffering from chronic effects of mild or moderate traumatic brain injury. This situation improved in 2006 with the FDA clearance of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. More recent strides were made with the introduction of NeuroGage®, commercially available software that is based on NeuroQuant® and extends its utility in several ways. Studies using these and similar methods have found that most patients with chronic mild or moderate traumatic brain injury have brain volume abnormalities, and several of these studies found-surprisingly-more abnormal enlargement than atrophy. More generally, 102 peer-reviewed studies have supported the reliability and validity of NeuroQuant® and NeuroGage®. Furthermore, this updated version of a previous review addresses whether NeuroQuant® and NeuroGage® meet the Daubert standard for admissibility in court. It concludes that NeuroQuant® and NeuroGage® meet the Daubert standard based on their reliability, validity, and objectivity. Due to the improvements in technology over the years, these brain volumetric techniques are practical and readily available for clinical or forensic use, and thus they are important tools for detecting signs of brain injury.
Collapse
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Radiology, St. Mary’s Hospital School of Medical Imaging, Richmond, VA, United States
| | - Jan M. Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Justis Barcelona
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Daniel Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Katherine Wright
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee Norwind
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | - Zachary King
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | | | - Joseph Baker
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Neuroscience, Christopher Newport University, Newport News, VA, United States
| | - Tanner Lewis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Undergraduate Studies, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
Diaz-Pacheco V, Vargas-Medrano J, Tran E, Nicolas M, Price D, Patel R, Tonarelli S, Gadad BS. Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects. J Alzheimers Dis 2022; 86:943-959. [PMID: 35147534 DOI: 10.3233/jad-215158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mild traumatic brain injury (mTBI) is the most prevalent type of TBI (80-90%). It is characterized by a loss consciousness for less than 30 minutes, post-traumatic amnesia for less than 24 hours, and Glasgow Coma Score of 13-15. Accurately diagnosing mTBIs can be a challenge because the majority of these injuries do not show noticeable or visible changes on neuroimaging studies. Appropriate determination of mTBI is tremendously important because it might lead in some cases to post-concussion syndrome, cognitive impairments including attention, memory, and speed of information processing problems. The scientists have studied different methods to improve mTBI diagnosis and enhanced approaches that would accurately determine the severity of the trauma. The present review focuses on discussing the role of biomarkers as potential key factors in diagnosing mTBI. The present review focuses on 1) protein based peripheral and CNS markers, 2) genetic biomarkers, 3) imaging biomarkers, 4) neurophysiological biomarkers, and 5) the studies and clinical trials in mTBI. Each section provides information and characteristics on different biomarkers for mTBI.
Collapse
Affiliation(s)
- Valeria Diaz-Pacheco
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Eric Tran
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Meza Nicolas
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Diamond Price
- The Chicago School of Professional Psychology, Irvine, CA, USA
| | - Richa Patel
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Silvina Tonarelli
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
29
|
Cao M, Luo Y, Wu Z, Wu K, Li X. Abnormal neurite density and orientation dispersion in frontal lobe link to elevated hyperactive/impulsive behaviours in young adults with traumatic brain injury. Brain Commun 2022; 4:fcac011. [PMID: 35187485 PMCID: PMC8853727 DOI: 10.1093/braincomms/fcac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury is a major public health concern. A significant proportion of individuals experience post-traumatic brain injury behavioural impairments, especially in attention and inhibitory control domains. Traditional diffusion-weighted MRI techniques, such as diffusion tensor imaging, have provided tools to assess white matter structural disruptions reflecting the long-term brain tissue alterations associated with traumatic brain injury. The recently developed neurite orientation dispersion and density imaging is a more advanced diffusion MRI modality, which provides more refined characterization of brain tissue microstructures by assessing the neurite orientation dispersion and neurite density properties. In this study, neurite orientation dispersion and density imaging data from 44 young adults with chronic traumatic brain injury (who had no prior-injury diagnoses of any sub-presentation of attention deficits/hyperactivity disorder or experience of severe inattentive and/or hyperactive behaviours) and 45 group-matched normal controls were investigated, to assess the post-injury morphometrical and microstructural brain alterations and their relationships with the behavioural outcomes. Maps of fractional anisotropy, neurite orientation dispersion index and neurite density index were calculated. Vertex-wise and voxel-wise analyses were conducted for grey matter and white matter, respectively. Post hoc region-of-interest-based analyses were also performed. Compared to the controls, the group of traumatic brain injury showed significantly increased orientation dispersion index and significantly decreased neurite density index in various grey matter regions, as well as significantly decreased orientation dispersion index in several white matter regions. Brain-behavioural association analyses indicated that the reduced neurite density index of the left precentral gyrus and the reduced orientation dispersion index of the left superior longitudinal fasciculus were significantly associated with elevated hyperactive/impulsive symptoms in the patients with traumatic brain injury. These findings suggest that post-injury chronical neurite intracellular volume and angular distribution anomalies in the frontal lobe, practically the precentral area, can significantly contribute to the onset of hyperactive/impulsive behaviours in young adults with traumatic brain injury.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yuyang Luo
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
30
|
Li MJ, Huang SH, Huang CX, Liu J. Morphometric changes in the cortex following acute mild traumatic brain injury. Neural Regen Res 2022; 17:587-593. [PMID: 34380898 PMCID: PMC8504398 DOI: 10.4103/1673-5374.320995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, China (approval No. 086) on February 9, 2019.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
31
|
Muller AM, Panenka WJ, Lange RT, Iverson GL, Brubacher JR, Virji-Babul N. Longitudinal changes in brain parenchyma due to mild traumatic brain injury during the first year after injury. Brain Behav 2021; 11:e2410. [PMID: 34710284 PMCID: PMC8671787 DOI: 10.1002/brb3.2410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022] Open
Abstract
Chronic gray matter (GM) atrophy is a known consequence of moderate and severe traumatic brain injuries but has not been consistently shown in mild traumatic brain injury (mTBI). The aim of this study was to investigate the longitudinal effect of uncomplicated mTBI on the brain's GM and white matter (WM) from 6 weeks to 12 months after injury. Voxel-based-morphometry (VBM) was computed with the T1-weighted images of 48 uncomplicated mTBI patients and 37 orthopedic controls. Over the period from 6 weeks to 12 months, only patients who experienced uncomplicated mTBI, but not control participants, showed significant GM decrease predominantly in the right hemisphere along the GM-CSF border in lateral and medial portions of the sensorimotor cortex extending into the rolandic operculum, middle frontal gyrus, insula, and temporal pole. Additionally, only mTBI patients, but not controls, experienced significant WM decrease predominantly in the right hemisphere in the superior fasciculus longitudinalis, arcuate fasciculus, and cortical-pontine tracts as well as a significant WM increase in left arcuate fasciculus and left capsula extrema. We did not observe any significant change in the controls for the same time interval or any significant group differences in GM and WM probability at each of the two timepoints. This suggests that the changes along the brain tissue borders observed in the mTBI group represent a reorganization associated with subtle microscopical changes in intracortical myelin and not a direct degenerative process as a result of mTBI.
Collapse
Affiliation(s)
- Angela M Muller
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - William J Panenka
- British Columbia Neuropsychiatry Program, University of British Columbia, Vancouver, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Rael T Lange
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey R Brubacher
- Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
| | - Naznin Virji-Babul
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Song J, Li J, Chen L, Lu X, Zheng S, Yang Y, Cao B, Weng Y, Chen Q, Ding J, Huang R. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging Behav 2021; 15:1840-1854. [PMID: 32880075 DOI: 10.1007/s11682-020-00378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.
Collapse
Affiliation(s)
- Jie Song
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Li
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixiang Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xingqi Lu
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Senning Zheng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Yang
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Bolin Cao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yihe Weng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Qinyuan Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Jianping Ding
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China. .,School of Medicine, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Ruiwang Huang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China. .,School of Psychology, South China Normal University, Guangzhou, 510631, China. .,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
33
|
Sultan W, Sapkota A, Khurshid H, Qureshi IA, Jahan N, Went TR, Dominic JL, Win M, Kannan A, Tara A, Ruo SW, Alfonso M. Statins' Effect on Cognitive Outcome After Traumatic Brain Injury: A Systematic Review. Cureus 2021; 13:e16953. [PMID: 34405076 PMCID: PMC8352842 DOI: 10.7759/cureus.16953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI), also known as the "Silent Epidemic," is a growing devastating global health problem estimated to affect millions of individuals yearly worldwide with little public recognition, leading to many individuals living with a TBI-related disability. TBI has been associated with up to five times increase in the risk of dementia among multiple neurologic complications compared with the general population. Several therapies, including statins, have been tried and showed promising benefits for TBI patients. In this systematic review, we evaluated the recent literature that tested the role of statins on neurological and cognitive outcomes such as Alzheimer's Disease and non-Alzheimer's dementia in survivors of TBI with various severities. We conducted a systematic search on PubMed, PubMed Central, MEDLINE, and Google Scholar. MeSH terms and keywords were used to search for full-text randomized clinical trials (RCTs), cross-sectional, case-control, cohort studies, systematic reviews, and animal studies published in English. Inclusion and exclusion criteria were applied, and the articles were subjected to quality appraisal by two reviewers. Our data search retrieved 4948 nonduplicate records. A total of 18 studies were included - nine human studies, and nine animal laboratory trials - after meeting inclusion, eligibility, and quality assessment criteria. Simvastatin was the most tested statin, and the oral route of administration was the most used. Eight human studies showed a significant neuroprotective effect and improvement in the cognitive outcomes, including dementia. Four randomized clinical trials with 296 patients showed that statins play a neuroprotective role and improve cognitive outcomes through different mechanisms, especially their anti-inflammatory effect; they were shown to lower tumor necrosis factor (TNF)-α and C-reactive protein (CRP) levels. Also, they decreased axonal injury and cortical thickness changes. In addition, four cohort studies compared a total of 867.953 patients. One study showed a decrease in mortality in statin-treated patients (p=0.05). Another study showed a reduction in the incidence of Alzheimer's disease and related dementias (RR, 0.77; 95% CI, 0.73-0.81), while one study showed a decreased risk of dementia after concussions by 6.13% (p=0.001). On the other hand, one cohort study showed no significant difference with the use of statins. In eight animal trials, statins showed a significant neuroprotective effect, improved cognitive outcomes, and neurological functions. Different molecular and cellular mechanisms were suggested, including anti-inflammatory effects, promoting angiogenesis, neurogenesis, increasing cerebral blood flow, neurite outgrowth, promoting the proliferation and differentiation of neural stem cells, and reducing axonal injury. On the contrary, one study showed no benefit and actual adverse effect on the cognitive outcome. Most of the studies showed promising neuroprotective effects of statins in TBI patients. Cognitive outcomes, especially dementia, were improved. However, the optimal therapeutic protocol is still unknown. Thus, statins are candidates for more advanced studies to test their efficacy in preventing cognitive decline in patients with TBI.
Collapse
Affiliation(s)
- Waleed Sultan
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Alisha Sapkota
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Hajra Khurshid
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Israa A Qureshi
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Nasrin Jahan
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Terry R Went
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Jerry Lorren Dominic
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Myat Win
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Amudhan Kannan
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Anjli Tara
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Sheila W Ruo
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Michael Alfonso
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| |
Collapse
|
34
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|
35
|
Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer's disease. GeroScience 2021; 43:2015-2039. [PMID: 33900530 DOI: 10.1007/s11357-021-00355-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Traumatic brain injuries (TBIs) are often followed by persistent structural brain alterations and by cognitive sequalae, including memory deficits, reduced neural processing speed, impaired social function, and decision-making difficulties. Although mild TBI (mTBI) is a risk factor for Alzheimer's disease (AD), the extent to which these conditions share patterns of macroscale neurodegeneration has not been quantified. Comparing such patterns can not only reveal how the neurodegenerative trajectories of TBI and AD are similar, but may also identify brain atrophy features which can be leveraged to prognosticate AD risk after TBI. The primary aim of this study is to systematically map how TBI affects white matter (WM) and gray matter (GM) properties in AD-analogous patterns. Our findings identify substantial similarities in the regional macroscale neurodegeneration patterns associated with mTBI and AD. In cerebral GM, such similarities are most extensive in brain areas involved in memory and executive function, such as the temporal poles and orbitofrontal cortices, respectively. Our results indicate that the spatial pattern of cerebral WM degradation observed in AD is broadly similar to the pattern of diffuse axonal injury observed in TBI, which frequently affects WM structures like the fornix, corpus callosum, and corona radiata. Using machine learning, we find that the severity of AD-like brain changes observed during the chronic stage of mTBI can be accurately prognosticated based on acute assessments of post-traumatic mild cognitive impairment. These findings suggest that acute post-traumatic cognitive impairment predicts the magnitude of AD-like brain atrophy, which is itself associated with AD risk.
Collapse
|
36
|
Wiegand TLT, Sollmann N, Bonke EM, Umeasalugo KE, Sobolewski KR, Plesnila N, Shenton ME, Lin AP, Koerte IK. Translational neuroimaging in mild traumatic brain injury. J Neurosci Res 2021; 100:1201-1217. [PMID: 33789358 DOI: 10.1002/jnr.24840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI.
Collapse
Affiliation(s)
- Tim L T Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kosisochukwu E Umeasalugo
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kristen R Sobolewski
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Zivanovic N, Virani S, Rajaram AA, Lebel C, Yeates KO, Brooks BL. Cortical Volume and Thickness in Youth Several Years After Concussion. J Child Neurol 2021; 36:186-194. [PMID: 33059521 DOI: 10.1177/0883073820962930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The long-term effects of pediatric concussion on brain morphometry remain poorly delineated. This study used magnetic resonance imaging (MRI) to investigate cortical volume and thickness in youth several years after concussion. METHODS Participants aged 8-19 years old with a history of concussion (n = 37) or orthopedic injury (n = 20) underwent MRI, rated their postconcussion symptoms, and completed cognitive testing on average 2.6 years (SD = 1.6) after injury. FreeSurfer was used to obtain cortical volume and thickness measurements as well as determine any significant correlations between brain morphometry, postconcussion symptoms (parent and self-report), and cognitive functioning. RESULTS No significant group differences were found for either cortical volume or thickness. Youth with a history of concussion had higher postconcussion symptom scores (both parent and self-report Postconcussion Symptom Inventory) than the orthopedic injury group, but symptom ratings did not significantly correlate with cortical volume or thickness. Across both groups, faster reaction time on a computerized neurocognitive test battery (CNS Vital Signs) was associated with a thinner cortex in the left pars triangularis of the inferior frontal gyrus and the left caudal anterior cingulate. Better verbal memory was associated with a thinner cortex in the left rostral middle frontal gyrus. CONCLUSION Findings do not support differences in cortical volume or thickness approximately 2.5 years postconcussion in youth, suggesting either long-term cortical recovery or no cortical differences as a result of injury. Further research using a longitudinal study design and larger samples is needed.
Collapse
Affiliation(s)
- Nikola Zivanovic
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Shane Virani
- 70402Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Neurosciences Program, 157744Alberta Children's Hospital, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alysha A Rajaram
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Lebel
- 157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Radiology, 2129University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian L Brooks
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Neurosciences Program, 157744Alberta Children's Hospital, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
39
|
Proessl F, Dretsch MN, Connaboy C, Lovalekar M, Dunn-Lewis C, Canino MC, Sterczala AJ, Deshpande G, Katz JS, Denney TS, Flanagan SD. Structural Connectome Disruptions in Military Personnel with Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2020; 37:2102-2112. [DOI: 10.1089/neu.2020.6999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Felix Proessl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael N. Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, Alabama, USA
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Chris Connaboy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mita Lovalekar
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Courtenay Dunn-Lewis
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria C. Canino
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam J. Sterczala
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
- School of Psychology, Capital Normal University, Beijing, China
| | - Jeffrey S. Katz
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
| | - Thomas S. Denney
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
| | - Shawn D. Flanagan
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Bobholz SA, Brett BL, España LY, Huber DL, Mayer AR, Harezlak J, Broglio SP, McAllister T, McCrea MA, Meier TB. Prospective study of the association between sport-related concussion and brain morphometry (3T-MRI) in collegiate athletes: study from the NCAA-DoD CARE Consortium. Br J Sports Med 2020; 55:169-174. [PMID: 32917671 DOI: 10.1136/bjsports-2020-102002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To determine the acute and early long-term associations of sport-related concussion (SRC) and subcortical and cortical structures in collegiate contact sport athletes. METHODS Athletes with a recent SRC (n=99) and matched contact (n=91) and non-contact sport controls (n=95) completed up to four neuroimaging sessions from 24 to 48 hours to 6 months postinjury. Subcortical volumes (amygdala, hippocampus, thalamus and dorsal striatum) and vertex-wise measurements of cortical thickness/volume were computed using FreeSurfer. Linear mixed-effects models examined the acute and longitudinal associations between concussion and structural metrics, controlling for intracranial volume (or mean thickness) and demographic variables (including prior concussions and sport exposure). RESULTS There were significant group-dependent changes in amygdala volumes across visits (p=0.041); this effect was driven by a trend for increased amygdala volume at 6 months relative to subacute visits in contact controls, with no differences in athletes with SRC. No differences were observed in any cortical metric (ie, thickness or volume) for primary or secondary analyses. CONCLUSION A single SRC had minimal associations with grey matter structure across a 6-month time frame.
Collapse
Affiliation(s)
- Samuel A Bobholz
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin L Brett
- Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lezlie Y España
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel L Huber
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew R Mayer
- Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA.,Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jaroslaw Harezlak
- Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Michael A McCrea
- Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B Meier
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA .,Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
41
|
Vedantam A, Brennan J, Levin HS, McCarthy JJ, Dash PK, Redell JB, Yamal JM, Robertson CS. Early versus Late Profiles of Inflammatory Cytokines after Mild Traumatic Brain Injury and Their Association with Neuropsychological Outcomes. J Neurotrauma 2020; 38:53-62. [PMID: 32600167 DOI: 10.1089/neu.2019.6979] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite pre-clinical evidence for the role of inflammation in traumatic brain injury (TBI), there is limited data on inflammatory biomarkers in mild TBI (mTBI). In this study, we describe the profile of plasma inflammatory cytokines and explore associations between these cytokines and neuropsychological outcomes after mTBI. Patients with mTBI with negative computed tomography and orthopedic injury (OI) controls without mTBI were prospectively recruited from emergency rooms at three trauma centers. Plasma inflammatory cytokine levels were measured from venous whole-blood samples that were collected at enrollment (within 24 h of injury) and at 6 months after injury. Neuropsychological tests were performed at 1 week, 1 month, 3 months, and 6 months after the injury. Multivariate regression analysis was performed to identify associations between inflammatory cytokines and neuropsychological outcomes. A total of 53 mTBI and 24 OI controls were included in this study. The majority of patients were male (62.3%), and injured in motor vehicle accidents (37.7%). Plasma interleukin (IL)-2 (p = 0.01) and IL-6 (p = 0.01) within 24 h post-injury were significantly higher for mTBI patients compared with OI controls. Elevated plasma IL-2 at 24 h was associated with more severe 1-week post-concussive symptoms (p = 0.001). At 6 months, elevated plasma IL-10 was associated with greater depression scores (p = 0.004) and more severe post-traumatic stress disorder (PTSD) symptoms (p = 0.001). Plasma cytokine levels (within 24 h and at 6 months post-injury) were significantly associated with early and late post-concussive symptoms, PTSD, and depression scores after mTBI. These results highlight the potential role of inflammation in the pathophysiology of post-traumatic symptoms after mTBI.
Collapse
Affiliation(s)
- Aditya Vedantam
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey Brennan
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - James J McCarthy
- Department of Emergency Medicine, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, University of Texas Health Sciences Center, Houston, Texas, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jose-Miguel Yamal
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | | |
Collapse
|
42
|
Mills BD, Goubran M, Parivash SN, Dennis EL, Rezaii P, Akers C, Bian W, Mitchell LA, Boldt B, Douglas D, Sami S, Mouchawar N, Wilson EW, DiGiacomo P, Parekh M, Do H, Lopez J, Rosenberg J, Camarillo D, Grant G, Wintermark M, Zeineh M. Longitudinal alteration of cortical thickness and volume in high-impact sports. Neuroimage 2020; 217:116864. [DOI: 10.1016/j.neuroimage.2020.116864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
|
43
|
Different Cortical Thinning Patterns Depending on Their Prognosis in Individuals with Subjective Cognitive Decline. Dement Neurocogn Disord 2019; 18:113-121. [PMID: 31942170 PMCID: PMC6946618 DOI: 10.12779/dnd.2019.18.4.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Subjective cognitive decline (SCD) may be the first stage corresponding to subtle cognitive changes in patients with Alzheimer's disease (AD) spectrum disorders. We evaluated the differences in cortical thinning patterns among patients with SCD who progressed to mild cognitive impairment or dementia (pSCD), those who remained stable (sSCD), and healthy normal controls (NCs). Methods We retrospectively recruited SCD subjects (14 pSCD and 21 sSCD cases) and 29 NCs. Structural 3-dimensional-T1-weighted magnetic resonance imaging was performed using a single 1.5 Tesla scanner. Freesurfer software was used to map cortical thickness for group comparisons. Results Compared with NC group, the sSCD group showed diffuse cortical atrophy associated with bilateral fronto-parieto-temporal area. The pSCD group showed further characteristic cortical atrophy in AD-vulnerable regions including the inferior parieto-temporal and middle temporal areas. Cortical thinning in the bilateral medial frontal areas was observed in patients with sSCD and involved the right inferior temporal and left precentral areas in those with pSCD. Conclusions Our study showed that SCD subjects exhibit different cortical thinning patterns depending on their prognosis.
Collapse
|
44
|
Mac Donald CL, Barber J, Andre J, Panks C, Zalewski K, Temkin N. Longitudinal neuroimaging following combat concussion: sub-acute, 1 year and 5 years post-injury. Brain Commun 2019; 1:fcz031. [PMID: 31915753 PMCID: PMC6935683 DOI: 10.1093/braincomms/fcz031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Questions remain regarding the long-term impact of combat concussive blast exposure. While efforts have begun to highlight the clinical impact, less is known about neuroimaging trajectories that may inform underlying pathophysiological changes post-injury. Through collaborative efforts in combat, following medical evacuation, and at universities in the USA, this study followed service members both with and without blast concussion from the sub-acute to 1-year and 5-year outcomes with quantitative neuroimaging. The following two primary and two exploratory groups were examined: combat-deployed controls without blast exposure history ‘non-blast control’ and concussive blast patients (primary) and combat concussion arising not from blast ‘non-blast concussion’ and combat-deployed controls with blast exposure history ‘blast control’ (exploratory). A total of 575 subjects were prospectively enrolled and imaged; 347 subjects completed further neuroimaging examination at 1 year and 342 subjects completed further neuroimaging examination at 5 years post-injury. At each time point, MRI scans were completed that included high-resolution structural as well as diffusion tensor imaging acquisitions processed for quantitative volumetric and diffusion tensor imaging changes. Longitudinal evaluation of the number of abnormal diffusion tensor imaging and volumetric regions in patients with blast concussion revealed distinct trends by imaging modality. While the presence of abnormal volumetric regions remained quite stable comparing our two primary groups of non-blast control to blast concussion, the diffusion tensor imaging abnormalities were observed to have varying trajectories. Most striking was the fractional anisotropy ‘U-shaped’ curve observed for a proportion of those that, if we had only followed them to 1 year, would look like trajectories of recovery. However, by continuing the follow-up to 5 years in these very same patients, a secondary increase in the number of reduced fractional anisotropy regions was identified. Comparing non-blast controls to blast concussion at each time point revealed significant differences in the number of regions with reduced fractional anisotropy at both the sub-acute and 5-year time points, which held after adjustment for age, education, gender, scanner and subsequent head injury exposure followed by correction for multiple comparisons. The secondary increase identified in patients with blast concussion may be the earliest indications of microstructural changes underlying the ‘accelerated brain aging’ theory recently reported from chronic, cross-sectional studies of veterans following brain injury. These varying trajectories also inform potential prognostic neuroimaging biomarkers of progression and recovery.
Collapse
Affiliation(s)
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Jalal Andre
- Department of Radiology, University of Washington, Seattle, WA 98104, USA
| | - Chris Panks
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Kody Zalewski
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA.,Department of Biostatistics, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
45
|
Parivash SN, Goubran M, Mills BD, Rezaii P, Thaler C, Wolman D, Bian W, Mitchell LA, Boldt B, Douglas D, Wilson EW, Choi J, Xie L, Yushkevich PA, DiGiacomo P, Wongsripuemtet J, Parekh M, Fiehler J, Do H, Lopez J, Rosenberg J, Camarillo D, Grant G, Wintermark M, Zeineh M. Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football. J Neurotrauma 2019; 36:2762-2773. [PMID: 31044639 PMCID: PMC7872005 DOI: 10.1089/neu.2018.6357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Collegiate football athletes are subject to repeated traumatic brain injuriesthat may cause brain injury. The hippocampus is composed of several distinct subfields with possible differential susceptibility to injury. The aim of this study is to determine whether there are longitudinal changes in hippocampal subfield volume in collegiate football. A prospective cohort study was conducted over a 5-year period tracking 63 football and 34 volleyball male collegiate athletes. Athletes underwent high-resolution structural magnetic resonance imaging, and automated segmentation provided hippocampal subfield volumes. At baseline, football (n = 59) athletes demonstrated a smaller subiculum volume than volleyball (n = 32) athletes (-67.77 mm3; p = 0.012). A regression analysis performed within football athletes similarly demonstrated a smaller subiculum volume among those at increased concussion risk based on athlete position (p = 0.001). For the longitudinal analysis, a linear mixed-effects model assessed the interaction between sport and time, revealing a significant decrease in cornu ammonis area 1 (CA1) volume in football (n = 36) athletes without an in-study concussion compared to volleyball (n = 23) athletes (volume difference per year = -35.22 mm3; p = 0.005). This decrease in CA1 volume over time was significant when football athletes were examined in isolation from volleyball athletes (p = 0.011). Thus, this prospective, longitudinal study showed a decrease in CA1 volume over time in football athletes, in addition to baseline differences that were identified in the downstream subiculum. Hippocampal changes may be important to study in high-contact sports.
Collapse
Affiliation(s)
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, California
| | - Brian D. Mills
- Department of Radiology, Stanford University, Stanford, California
| | - Paymon Rezaii
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dylan Wolman
- Department of Radiology, Stanford University, Stanford, California
| | - Wei Bian
- Department of Radiology, Stanford University, Stanford, California
| | - Lex A. Mitchell
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii
| | - Brian Boldt
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, Madigan Army Medical Center, Tacoma, Washington
| | - David Douglas
- Department of Radiology, Stanford University, Stanford, California
| | - Eugene W. Wilson
- Department of Radiology, Stanford University, Stanford, California
| | - Jay Choi
- Department of Radiology, Stanford University, Stanford, California
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phil DiGiacomo
- Department of Radiology, Stanford University, Stanford, California
| | | | - Mansi Parekh
- Department of Radiology, Stanford University, Stanford, California
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Huy Do
- Department of Radiology, Stanford University, Stanford, California
| | - Jaime Lopez
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | | | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, California
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
46
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Hall C, Reese C, Cooper L, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal brain enlargement. Brain Inj 2019; 34:11-19. [DOI: 10.1080/02699052.2019.1669074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
| | | | | | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Hall
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of Virginia, Charlottesville, VA, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alfred L. Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Bigler ED, Abildskov TJ, Eggleston B, Taylor BA, Tate DF, Petrie JA, Newsome MR, Scheibel RS, Levin H, Walker WC, Goodrich‐Hunsaker N, Tustison NJ, Stone JR, Mayer AR, Duncan TD, York GE, Wilde EA. Structural neuroimaging in mild traumatic brain injury: A chronic effects of neurotrauma consortium study. Int J Methods Psychiatr Res 2019; 28:e1781. [PMID: 31608535 PMCID: PMC6877164 DOI: 10.1002/mpr.1781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES The chronic effects of neurotrauma consortium (CENC) observational study is a multisite investigation designed to examine the long-term longitudinal effects of mild traumatic brain injury (mTBI). All participants in this initial CENC cohort had a history of deployment in Operation Enduring Freedom (Afghanistan), Operation Iraqi Freedom (Iraq), and/or their follow-on conflicts (Operation Freedom's Sentinel). All participants undergo extensive medical, neuropsychological, and neuroimaging assessments and either meet criteria for any lifetime mTBI or not. These assessments are integrated into six CENC core studies-Biorepository, Biostatistics, Data and Study Management, Neuroimaging, and Neuropathology. METHODS The current study outlines the quantitative neuroimaging methods managed by the Neuroimaging Core using FreeSurfer automated software for image quantification. RESULTS At this writing, 319 participants from the CENC observational study have completed all baseline assessments including the imaging protocol and tertiary data quality assurance procedures. CONCLUSIONS/DISCUSSION The preliminary findings of this initial cohort are reported to describe how the Neuroimaging Core manages neuroimaging quantification for CENC studies.
Collapse
Affiliation(s)
- Erin D. Bigler
- Psychology Department and Neuroscience CenterBrigham Young UniversityProvoUtah
- Department of NeurologyUniversity of UtahSalt Lake CityUtah
| | - Tracy J. Abildskov
- Psychology Department and Neuroscience CenterBrigham Young UniversityProvoUtah
- Department of NeurologyUniversity of UtahSalt Lake CityUtah
| | - Barry Eggleston
- Biostatistics and EpidemiologyRTI InternationalDurhamNorth Carolina
| | - Brian A. Taylor
- Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginia
| | - David F. Tate
- Missouri Institute of Mental HealthUniversity of Missouri‐St. LouisSt. LouisMissouri
| | - Jo Ann Petrie
- Psychology Department and Neuroscience CenterBrigham Young UniversityProvoUtah
- Department of NeurologyUniversity of UtahSalt Lake CityUtah
| | - Mary R. Newsome
- Michael DeBakey VA Medical Center and Baylor College of MedicineHoustonTexas
| | - Randall S. Scheibel
- Michael DeBakey VA Medical Center and Baylor College of MedicineHoustonTexas
| | - Harvey Levin
- Michael DeBakey VA Medical Center and Baylor College of MedicineHoustonTexas
| | - William C. Walker
- Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginia
| | - Naomi Goodrich‐Hunsaker
- Department of NeurologyUniversity of UtahSalt Lake CityUtah
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginia
| | - Nicholas J. Tustison
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginia
| | - James R. Stone
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginia
| | - Andrew R. Mayer
- Neurology and Brain and Behavioral Health InstituteUniversity of New MexicoAlbuquerqueNew Mexico
| | - Timothy D. Duncan
- Medical Imaging and RadiologyVA Portland Health Care SystemPortlandOregon
| | - Gerry E. York
- Alaska Radiology AssociatesTBI Imaging and ResearchAnchorageAlaska
| | - Elisabeth A. Wilde
- Michael DeBakey VA Medical Center and Baylor College of MedicineHoustonTexas
- Department of NeurologyUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
48
|
Abstract
OBJECTIVE The influence of confounding neurocognitive comorbidities in people living with HIV (PLWH) on neuroimaging has not been systematically evaluated. We determined associations between comorbidity burden and brain integrity and examined the moderating effect of age on these relationships. DESIGN Observational, cross-sectional substudy of the CNS HIV Antiretroviral Therapy Effects Research cohort. METHODS A total of 288 PLWH (mean age = 44.2) underwent structural MRI and magnetic resonance spectroscopy as well as neurocognitive and neuromedical assessments. Consistent with Frascati criteria for HIV-associated neurocognitive disorders (HAND), neuromedical and neuropsychiatric comorbidity burden was classified as incidental (mild), contributing (moderate), or confounding (severe-exclusionary) to a diagnosis of HAND. Multiple regression modeling predicted neuroimaging outcomes as a function of comorbidity classification, age, and their interaction. RESULTS Comorbidity classifications were 176 incidental, 77 contributing, and 35 confounded; groups did not differ in HIV disease characteristics. Relative to incidental and contributing participants, confounded participants had less cortical gray matter and more abnormal white matter and ventricular cerebrospinal fluid, alongside more neuroinflammation (choline, myo-inositol) and less neuronal integrity (N-acetylaspartate). Older age exacerbated the impact of comorbidity burden: to a greater extent in the confounded group, older age was associated with more abnormal white matter (P = 0.017), less total white matter (P = 0.015), and less subcortical gray matter (P = 0.014). CONCLUSION Neuroimaging in PLWH reveals signatures associated with confounding neurocognitive conditions, emphasizing the importance of evaluating these among individuals with suspected HAND. Older age amplifies subcortical and white matter tissue injury, especially in PLWH with severe comorbidity burden, warranting increased attention to this population as it ages.
Collapse
|
49
|
Cortical thinning in military blast compared to non-blast persistent mild traumatic brain injuries. NEUROIMAGE-CLINICAL 2019; 22:101793. [PMID: 30939340 PMCID: PMC6446073 DOI: 10.1016/j.nicl.2019.101793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/28/2019] [Accepted: 03/24/2019] [Indexed: 01/07/2023]
Abstract
In the military, explosive blasts are a significant cause of mild traumatic brain injuries (mTBIs). The symptoms associated with blast mTBIs causes significant economic burdens and a diminished quality of life for many service members. At present, the distinction of the injury mechanism (blast versus non-blast) may not influence TBI diagnosis. However, using noninvasive imaging, this study reveals significant distinctions between the blast and non-blast TBI mechanisms. A cortical whole-brain thickness analysis was performed using structural high-resolution T1-weighted MRI to identify the effects of blasts in persistent mTBI (pmTBI) subjects. A total of 41 blast pmTBI subjects were individually age- and gender-matched to 41 non-blast pmTBI subjects. Using FreeSurfer, cortical thickness was quantified for the blast group, relative to the non-blast group. Cortical thinning was identified within the blast mTBI group, in two clusters bilaterally. In the left hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, superior frontal, rostral anterior cingulate and frontal pole cortices (p < 0.02, two-tailed, size = 1680 mm2). In the right hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, pars orbitalis, pars triangularis and insula cortices (p < 0.002, two-tailed, cluster size = 2453 mm2). Self-report assessments suggest significant differences in the Post-Traumatic Stress Disorder Checklist-Civilian Version (p < 0.05, Bonferroni-corrected) and the Neurobehavioral Symptom Inventory (p < 0.01, uncorrected) between the blast and non-blast mTBI groups. These results suggest that blast may cause a unique injury pattern related to a reduction in cortical thickness within specific brain regions which could affect symptoms. No other study has found cortical thickness difference between blast and non-blast mTBI groups and further replication is needed to confirm these initial observations.
Collapse
|
50
|
Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage. Brain Imaging Behav 2019; 14:907-916. [PMID: 30734204 DOI: 10.1007/s11682-019-00053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cognitive impairment is a major cause of disability and decline in quality of life in mild traumatic brain injury (mTBI) survivors, but the underlying pathophysiology is still poorly understood. The insula has extensive connections to other cortex and is believed to responsible for integrating external and internal processes and controlling cognitive functions. To explore this hypothesis, we investigated early alterations in the gray matter volume (GMV) and brain functional connectivity (FC) of insula in mTBI patients within 7 days after injury and any possible correlations with cognitive function. A total of 58 mTBI patients at the acute stage and 32 matched healthy controls were recruited and underwentT1-weighted magnetic resonance imaging (MRI)andresting-state functional MRI scans within 7 days of injury. FC was characterized using seed-based region of interest analysis method. The patients' cognitive function was evaluated with Montreal Cognitive Assessment (MoCA) score. The resulting of GMV and FC of insula were correlated with cognitive alterations. We found that the GMV was significantly reduced only in the right insula in mTBI patients and no significant GMV increase was observed in either hemisphere. mTBI patients demonstrated decreased FC in the right parahippocampal gyrus and increased FC in the right supramargianl gyrus. In addition, compared to the healthy controls, the mTBI patients in the acute stage presented a decline in the visuospatial/executive (p = 0.013) and attention (p = 0.038) subcategories. In the mTBI group, the changes in GMV in the right insula were positively correlated with poor attention performance (r = 0.316, p = 0.016). Our data demonstrated alterations of the GMV and resting-stateFC of the right insula in mTBI patients at the acute stage. These early changes in GMV and resting-state FC perhaps serve as a potential biomarker for improving the understanding of cognitive decline for mTBI in the acute setting.
Collapse
|