1
|
Rendon-Marin S, Rincón-Tabares DS, Tabares-Guevara JH, Arbeláez N, Forero-Duarte JE, Díaz FJ, Robledo SM, Hernandez JC, Ruiz-Saenz J. Evaluation of the Safety and Immunogenicity of a Multiple Epitope Polypeptide from Canine Distemper Virus (CDV) in Mice. Vaccines (Basel) 2024; 12:1140. [PMID: 39460307 PMCID: PMC11511104 DOI: 10.3390/vaccines12101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Morbillivirus canis is the etiological agent of a highly contagious disease that affects diverse domestic and wild animals. Vaccination is considered the most suitable strategy for controlling CDV dissemination, transmission, and distemper disease. However, the emergence of new CDV strains has led to the need to update the current vaccine strategies employed to prevent CDV infection in domestic and wild animals. Currently, there is a lack of effective alternatives for wild animals. Diverse computational tools, especially peptide-based therapies, enable the development of new universal vaccines. OBJECTIVE The aim of this study was to evaluate the safety and humoral and cellular immune response of a new generation of vaccines based on CDV peptides as single-peptide mixtures or multiepitope CDV polypeptides in mice. METHODS Twenty-four BALB/c mice were subjected to a three-dose regimen for 28 days. Seroconversion was evaluated via ELISA, and cellular immune responses were evaluated via flow cytometry through activation-induced markers (AIMs). RESULTS Compared with the placebo, the peptide mixture and multiepitope CDV polypeptide were safe, and seroconversion was statistically significant in the multiepitope CDV polypeptide and commercial vaccine (CV) groups. The numbers of antigen-specific CD4+CD134+ and IFN-γ+ T cells, CD8+ T cells and TNF-α- and IL-6-producing cells were greater in the mice immunized with the multiepitope CDV polypeptide than in the control mice. CONCLUSION This combined approach represents a potential step forward in developing new immunization candidates or enhancing current commercial vaccines to control CDV disease in domestic dogs and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
| | - Daniel-Santiago Rincón-Tabares
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Jorge H. Tabares-Guevara
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Natalia Arbeláez
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Jorge E. Forero-Duarte
- Grupo de Investigación en Microbiología Ambiental, Escuela de Microbiología, Universidad de Antioquia, Medellín 050001, Colombia;
| | - Francisco J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Sara M. Robledo
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
| |
Collapse
|
2
|
Rendon-Marin S, Ruíz-Saenz J. Universal peptide-based potential vaccine design against canine distemper virus (CDV) using a vaccinomic approach. Sci Rep 2024; 14:16605. [PMID: 39026076 PMCID: PMC11258135 DOI: 10.1038/s41598-024-67781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
Canine distemper virus (CDV) affects many domestic and wild animals. Variations among CDV genome linages could lead to vaccination failure. To date, there are several vaccine alternatives, such as a modified live virus and a recombinant vaccine; however, most of these alternatives are based on the ancestral strain Onderstepoort, which has not been circulating for years. Vaccine failures and the need to update vaccines have been widely discussed, and the development of new vaccine candidates is necessary to reduce circulation and mortality. Current vaccination alternatives cannot be used in wildlife animals due to the lack of safety data for most of the species, in addition to the insufficient immune response against circulating strains worldwide in domestic species. Computational tools, including peptide-based therapies, have become essential for developing new-generation vaccines for diverse models. In this work, a peptide-based vaccine candidate with a peptide library derived from CDV H and F protein consensus sequences was constructed employing computational tools. The molecular docking and dynamics of the selected peptides with canine MHC-I and MHC-II and with TLR-2 and TLR-4 were evaluated. In silico safety was assayed through determination of antigenicity, allergenicity, toxicity potential, and homologous canine peptides. Additionally, in vitro safety was also evaluated through cytotoxicity in cell lines and canine peripheral blood mononuclear cells (cPBMCs) and through a hemolysis potential assay using canine red blood cells. A multiepitope CDV polypeptide was constructed, synthetized, and evaluated in silico and in vitro by employing the most promising peptides for comparison with single CDV immunogenic peptides. Our findings suggest that predicting immunogenic CDV peptides derived from most antigenic CDV proteins could aid in the development of new vaccine candidates, such as multiple single CDV peptides and multiepitope CDV polypeptides, that are safe in vitro and optimized in silico. In vivo studies are being conducted to validate potential vaccines that may be effective in preventing CDV infection in domestic and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julián Ruíz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia.
| |
Collapse
|
3
|
Islam MA, Nahar MT, Rahman A, Monjur Al Hossain ASM, Jui UJ, Tabassum T, Barna SD, Tahmida S, Mishu AA, Parvin S, Naime J, Attar RW, Attar RW, Hossain MT. Experience and side effects of COVID-19 vaccine uptake among university students: a cross-sectional survey study. Front Public Health 2024; 12:1361374. [PMID: 38979046 PMCID: PMC11229781 DOI: 10.3389/fpubh.2024.1361374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/22/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Many people expressed concern over coronavirus vaccinations' reliability and side effects. This research aimed to assess university students' perceptions and experiences regarding the side effects of the COVID-19 vaccines in Bangladesh. Method We conducted an online cross-sectional survey to collect responses from university students vaccinated with any vaccines administered in Bangladesh between November 2021 to April 2022. Bangladeshi university students over the age of 18 and having an internet connection was included in the study. A binary logistic regression analysis along with Pearson's Chi-square test were used to identify COVID-19 vaccine-related side effects predictors after receiving the first dose. Results A total of 1,176 participants responded voluntarily to the online study, and most were vaccinated. More than half of the participants received the Sinopharm vaccine (56.5%), while others received Covishield (8.9%), Moderna (7.3%), and Pfizer (5.8%) vaccine. Around 32% of the participants reported side effects after receiving the first dose of the vaccine, including pain and edema (78.4%), body temperature (20.3%), and headache (14.5%), while a few experienced allergy, anxiety, and uneasy feelings. About 17% of the participants reported experiencing side effects after the second dose of the vaccine, including pain and edema (7.5%), body temperature (8.8%), and headache (7.3%). Most side effects were significantly associated with the Moderna vaccine (p < 0.001). Female students and those previously infected with COVID-19 were significantly associated with the side effects after taking the first dose of the vaccine. Conclusion We found that side effects are mild and did not pose a significant challenge to Bangladesh's effort in managing and reducing the risk associated with the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md. Akhtarul Islam
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | - Mst. Tanmin Nahar
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | - Abdur Rahman
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | | | - Umme Johra Jui
- Department of Bangla, University of Dhaka, Dhaka, Bangladesh
| | - Tarana Tabassum
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | - Sutapa Dey Barna
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | - Shafia Tahmida
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | | | - Shahanaj Parvin
- Department of Statistics, Jagannath University, Dhaka, Bangladesh
| | - Jannatul Naime
- Statistics Discipline, Science Engineering & Technology School, Khulna University, Khulna, Bangladesh
| | - Razaz Waheeb Attar
- Management Department, College of Business Administration, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Renad Waheeb Attar
- Department of Medical Education, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md. Tanvir Hossain
- Sociology Discipline, Social Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
ElSherif M, Halperin SA. Benefits of Combining Molecular Biology and Controlled Human Infection Model Methodologies in Advancing Vaccine Development. J Mol Biol 2023; 435:168322. [PMID: 37866477 DOI: 10.1016/j.jmb.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.
Collapse
Affiliation(s)
- May ElSherif
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
5
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Inspiring Anti-Tick Vaccine Research, Development and Deployment in Tropical Africa for the Control of Cattle Ticks: Review and Insights. Vaccines (Basel) 2022; 11:vaccines11010099. [PMID: 36679944 PMCID: PMC9866923 DOI: 10.3390/vaccines11010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.
Collapse
|
8
|
Ferraresi A, Isidoro C. Will Omics Biotechnologies Save Us from Future Pandemics? Lessons from COVID-19 for Vaccinomics and Adversomics. Biomedicines 2022; 11:52. [PMID: 36672560 PMCID: PMC9855897 DOI: 10.3390/biomedicines11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic had cross-cutting impacts on planetary health, quotidian life, and society. Mass vaccination with the current gene-based vaccines has helped control the pandemic but unfortunately it has not shown effectiveness in preventing the spread of the virus. In addition, not all individuals respond to these vaccines, while others develop adverse reactions that cannot be neglected. It is also a fact that some individuals are more susceptible to infection while others develop effective immunization post-infection. We note here that the person-to-person and population variations in vaccine efficacy and side effects have been studied in the field of vaccinomics long before the COVID-19 pandemic. Additionally, the field of adversomics examines the mechanisms of individual differences in the side effects of health interventions. In this review, we discuss the potential of a multi-omics approach for comprehensive profiling of the benefit/risk ratios of vaccines. Vaccinomics and adversomics stand to benefit planetary health and contribute to the prevention of future pandemics in the 21st century by offering precision guidance to clinical trials as well as promoting precision use of vaccines in ways that proactively respond to individual and population differences in their efficacy and safety. This vision of pandemic prevention based on personalized instead of mass vaccination also calls for equity in access to precision vaccines and diagnostics that support a vision and practice of vaccinomics and adversomics in planetary health.
Collapse
Affiliation(s)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
9
|
Poland GA. The human immune response to vaccines is symphonic, polyphonic, homophonic, and megaphonic. Vaccine 2022; 40:6189-6191. [PMID: 36163091 DOI: 10.1016/j.vaccine.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Gregory A Poland
- Mayo Vaccine Research Group, 200 First Street, SW, Guggenheim 611B, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
10
|
Al-Zyoud W, Haddad H. Potential linear B-cells epitope change to a helix structure in the spike of Omicron 21L or BA.2 predicts increased SARS-CoV-2 antibodies evasion. Virology 2022; 573:84-95. [PMID: 35732100 PMCID: PMC9212391 DOI: 10.1016/j.virol.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022]
Abstract
The world health organization has announced that SARS-CoV-2 Omicron variant (B.1.1.529), including the three versions; 21K (BA.1), 21L (BA.2) and 21M (BA.3) as a variant of concern (VOC) on November 2022. In this study, we used the specialized computational platforms to predict the stability and flexibility of the spike protein of Omicron. The aim of this study was to investigate the expected effect of Omicron spike mutations on its physiochemical properties. Findings of this study revealed 16 stabilizing mutations that might explain a newly gained environmental stability. We expect the new mutations to play a crucial role in changing the physiochemical properties of epitopes of the spike protein. The notable finding of SuerPose work was the potential linear B-cells epitope G252 → S255 that has been changed in the spike protein of the Omicron 21L to a helix structure which might confer an escape from human monoclonal antibodies.
Collapse
Affiliation(s)
- Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| |
Collapse
|
11
|
Brooks BD, Beland A, Aguero G, Taylor N, Towne FD. Moving beyond Titers. Vaccines (Basel) 2022; 10:vaccines10050683. [PMID: 35632439 PMCID: PMC9144832 DOI: 10.3390/vaccines10050683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccination to prevent and even eliminate disease is amongst the greatest achievements of modern medicine. Opportunities remain in vaccine development to improve protection across the whole population. A next step in vaccine development is the detailed molecular characterization of individual humoral immune responses against a pathogen, especially the rapidly evolving pathogens. New technologies such as sequencing the immune repertoire in response to disease, immunogenomics/vaccinomics, particularly the individual HLA variants, and high-throughput epitope characterization offer new insights into disease protection. Here, we highlight the emerging technologies that could be used to identify variation within the human population, facilitate vaccine discovery, improve vaccine safety and efficacy, and identify mechanisms of generating immunological memory. In today’s vaccine-hesitant climate, these techniques used individually or especially together have the potential to improve vaccine effectiveness and safety and thus vaccine uptake rates. We highlight the importance of using these techniques in combination to understand the humoral immune response as a whole after vaccination to move beyond neutralizing titers as the standard for immunogenicity and vaccine efficacy, especially in clinical trials.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58103, USA
- Correspondence: ; Tel.: +1-(435)-222-1304
| | - Alexander Beland
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Gabriel Aguero
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Nicholas Taylor
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Francina D. Towne
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| |
Collapse
|
12
|
Evaluation of BNT162b2 Vaccine Effectiveness in Galicia, Northwest Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074039. [PMID: 35409724 PMCID: PMC8998680 DOI: 10.3390/ijerph19074039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
Investigating vaccine effectiveness (VE) in real-world conditions is crucial, especially its variation across different settings and populations. We undertook a test-negative control study in Galicia (Northwest Spain) to assess BNT162b2 effectiveness against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as well as COVID-19 associated hospitalization, intensive care unit (ICU) admission and mortality. A total of 44,401 positive and 817,025 negative SARS-CoV-2 test results belonging to adults were included. Adjusted odds ratios of vaccination and their 95% confidence interval (CI) were estimated using multivariate logistic-regression models. BNT162b2 showed high effectiveness in reducing SARS-CoV-2 infections in all age categories, reaching maximum VE ≥ 14 days after administering the second dose [18-64 years: VE = 92.9% (95%CI: 90.2-95.1); 65-79 years: VE = 85.8% (95%CI: 77.3-91.9), and ≥80 years: VE = 91.4% (95%CI: 87.9-94.1)]. BNT162b2 also demonstrated effectiveness in preventing COVID-19 hospitalization for all age categories, with VE more pronounced for those aged ≥80 years [VE = 60.0% (95%CI: 49.4-68.3)]. Moreover, there was a considerable reduction in ICU admission [VE = 88.0% (95%CI: 74.6-95.8)] and mortality [VE = 38.0% (95%CI: 15.9-55.4)] in the overall population. BNT162b2 showed substantial protection against SARS-CoV-2 infections and COVID-19 severity. Our findings would prove useful for systematic reviews and meta-analysis on COVID-19 VE.
Collapse
|
13
|
Sarma VR, Olotu FA, Soliman MES. Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence. Biomed J 2021; 44:447-460. [PMID: 34489196 PMCID: PMC8130595 DOI: 10.1016/j.bj.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/16/2020] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
Background The increase in global mortality rates from SARS-COV2 (COVID-19) infection has been alarming thereby necessitating the continual search for viable therapeutic interventions. Due to minimal microbial components, subunit (peptide-based) vaccines have demonstrated improved efficacies in stimulating immunogenic responses by host B- and T-cells. Methods Integrative immunoinformatics algorithms were used to determine linear and discontinuous B-cell epitopes from the S-glycoprotein sequence. End-point selection of the most potential B-cell epitope was based on highly essential physicochemical attributes. NetCTL-I and NetMHC-II algorithms were used to predict probable MHC-I and II T-cell epitopes for globally frequent HLA-A∗O2:01, HLA-B∗35:01, HLA-B∗51:01 and HLA-DRB1∗15:02 molecules. Highly probable T-cell epitopes were selected based on their high propensities for C-terminal cleavage, transport protein (TAP) processing and MHC-I/II binding. Results Preferential epitope binding sites were further identified on the HLA molecules using a blind peptide-docking method. Phylogenetic analysis revealed close relativity between SARS-CoV-2 and SARS-CoV S-protein. LALHRSYLTPGDSSSGWTAGAA242→263 was the most probable B-cell epitope with optimal physicochemical attributes. MHC-I antigenic presentation pathway was highly favourable for YLQPRTFLL269-277 (HLA-A∗02:01), LPPAYTNSF24-32 (HLA-B∗35:01) and IPTNFTISV714-721 (HLA-B∗51:01). Also, LTDEMIAQYTSALLA865-881 exhibited the highest binding affinity to HLA-DR B1∗15:01 with core interactions mediated by IAQYTSALL870-878. COVID-19 YLQPRTFLL269-277 was preferentially bound to a previously undefined site on HLA-A∗02:01 suggestive of a novel site for MHC-I-mediated T-cell stimulation. Conclusion This study implemented combinatorial immunoinformatics methods to model B- and T-cell epitopes with high potentials to trigger immunogenic responses to the S protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Vyshnavie R Sarma
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
14
|
Xie J, Zi W, Li Z, He Y. Ontology-based Precision Vaccinology for Deep Mechanism Understanding and Precision Vaccine Development. Curr Pharm Des 2021; 27:900-910. [PMID: 33238868 DOI: 10.2174/1381612826666201125112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Vaccination is one of the most important innovations in human history. It has also become a hot research area in a new application - the development of new vaccines against non-infectious diseases such as cancers. However, effective and safe vaccines still do not exist for many diseases, and where vaccines exist, their protective immune mechanisms are often unclear. Although licensed vaccines are generally safe, various adverse events, and sometimes severe adverse events, still exist for a small population. Precision medicine tailors medical intervention to the personal characteristics of individual patients or sub-populations of individuals with similar immunity-related characteristics. Precision vaccinology is a new strategy that applies precision medicine to the development, administration, and post-administration analysis of vaccines. Several conditions contribute to make this the right time to embark on the development of precision vaccinology. First, the increased level of research in vaccinology has generated voluminous "big data" repositories of vaccinology data. Secondly, new technologies such as multi-omics and immunoinformatics bring new methods for investigating vaccines and immunology. Finally, the advent of AI and machine learning software now makes possible the marriage of Big Data to the development of new vaccines in ways not possible before. However, something is missing in this marriage, and that is a common language that facilitates the correlation, analysis, and reporting nomenclature for the field of vaccinology. Solving this bioinformatics problem is the domain of applied biomedical ontology. Ontology in the informatics field is human- and machine-interpretable representation of entities and the relations among entities in a specific domain. The Vaccine Ontology (VO) and Ontology of Vaccine Adverse Events (OVAE) have been developed to support the standard representation of vaccines, vaccine components, vaccinations, host responses, and vaccine adverse events. Many other biomedical ontologies have also been developed and can be applied in vaccine research. Here, we review the current status of precision vaccinology and how ontological development will enhance this field, and propose an ontology-based precision vaccinology strategy to support precision vaccine research and development.
Collapse
Affiliation(s)
- Jiangan Xie
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Wenrui Zi
- Chongqing engineering research center of medical electronics and information technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Chongqing engineering research center of medical electronics and information technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Development of Microbiology and Immunology, Center of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
15
|
Traversi D, Pulliero A, Izzotti A, Franchitti E, Iacoviello L, Gianfagna F, Gialluisi A, Izzi B, Agodi A, Barchitta M, Calabrò GE, Hoxhaj I, Sassano M, Sbrogiò LG, Del Sole A, Marchiori F, Pitini E, Migliara G, Marzuillo C, De Vito C, Tamburro M, Sammarco ML, Ripabelli G, Villari P, Boccia S. Precision Medicine and Public Health: New Challenges for Effective and Sustainable Health. J Pers Med 2021; 11:135. [PMID: 33669364 PMCID: PMC7920275 DOI: 10.3390/jpm11020135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The development of high-throughput omics technologies represents an unmissable opportunity for evidence-based prevention of adverse effects on human health. However, the applicability and access to multi-omics tests are limited. In Italy, this is due to the rapid increase of knowledge and the high levels of skill and economic investment initially necessary. The fields of human genetics and public health have highlighted the relevance of an implementation strategy at a national level in Italy, including integration in sanitary regulations and governance instruments. In this review, the emerging field of public health genomics is discussed, including the polygenic scores approach, epigenetic modulation, nutrigenomics, and microbiomes implications. Moreover, the Italian state of implementation is presented. The omics sciences have important implications for the prevention of both communicable and noncommunicable diseases, especially because they can be used to assess the health status during the whole course of life. An effective population health gain is possible if omics tools are implemented for each person after a preliminary assessment of effectiveness in the medium to long term.
Collapse
Affiliation(s)
- Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy;
| | - Alessandra Pulliero
- Department of Health Sciences School of Medicine, University of Genoa, 16132 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 161632 Genova, Italy
| | - Elena Franchitti
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy;
| | - Licia Iacoviello
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (L.I.); (F.G.)
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Francesco Gianfagna
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (L.I.); (F.G.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.)
| | - Giovanna Elisa Calabrò
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Ilda Hoxhaj
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Michele Sassano
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Luca Gino Sbrogiò
- Dipartimento di Prevenzione, Az. ULSS3 Serenissima, 30174 Venezia, Italy;
| | | | | | - Erica Pitini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Manuela Tamburro
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Michela Lucia Sammarco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Giancarlo Ripabelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
- Department of Woman and Child Health and Public Health-Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
16
|
Srivastava S, Sharma SK, Srivastava V, Kumar A. Proteomic Exploration of Listeria monocytogenes for the Purpose of Vaccine Designing Using a Reverse Vaccinology Approach. Int J Pept Res Ther 2020; 27:779-799. [PMID: 33144851 PMCID: PMC7595573 DOI: 10.1007/s10989-020-10128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Listeriosis is a major foodborne infection provoked by a bacterium known as Listeria monocytogenes. It is one of the predominant causes of death in pregnant women, infants, and immunocompromised persons. Despite such fatal effects, until now there is no proper medication or drug available for such a serious foodborne infection. One of the most promising ways to deal with this challenge is vaccination. This present study aims at the prediction of B cell epitopes for subunit vaccine designing against Listeria monocytogenes using a reverse vaccinology approach. Among screened out 299 epitopes of strain F2365 of Listeria monocytogenes, based on the VaxiJen score, the top 20 epitopes were selected. 3D modeling of epitopes and alleles was generated by PEPstrMOD and Swiss Model respectively. Molecular docking reveals 4 epitopes viz., MKFLFPLKL, CEETFGIRL, FLKIDPPIL, and VRHHGGGHK based on binding energy. All 4 epitopes were investigated for non-toxicity, binding affinity, and population coverage. After vigorous investigation, epitope FLKIDPPIL was anticipated as the best vaccine contender. The stability of the FLKIDPPIL-HLA DRB1 _0101 complex was proved by performing the simulation. Here, predicted peptide through the Insilico approach may become a potential remedy against listeriosis, after the wet-lab approach and clinical trials.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University Uttar Pradesh, Kanpur, 209217 India
| | - Suraj Kumar Sharma
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University Uttar Pradesh, Kanpur, 209217 India
| | - Vivek Srivastava
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University Uttar Pradesh, Kanpur, 209217 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University Uttar Pradesh, Kanpur, 209217 India
| |
Collapse
|
17
|
Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F, Paul A, Shahriar A, Tareq AM, Emon NU, Chakraborty S, Shil S, Mily SJ, Ben Hadda T, Almalki FA, Emran TB. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med 2020; 124:103967. [PMID: 32828069 PMCID: PMC7423576 DOI: 10.1016/j.compbiomed.2020.103967] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
AIMS With a large number of fatalities, coronavirus disease-2019 (COVID-19) has greatly affected human health worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19. The World Health Organization has declared a global pandemic of this contagious disease. Researchers across the world are collaborating in a quest for remedies to combat this deadly virus. It has recently been demonstrated that the spike glycoprotein (SGP) of SARS-CoV-2 is the mediator by which the virus enters host cells. MAIN METHODS Our group comprehensibly analyzed the SGP of SARS-CoV-2 through multiple sequence analysis and a phylogenetic analysis. We predicted the strongest immunogenic epitopes of the SGP for both B cells and T cells. KEY FINDINGS We focused on predicting peptides that would bind major histocompatibility complex class I. Two optimal epitopes were identified, WTAGAAAYY and GAAAYYVGY. They interact with the HLA-B*15:01 allele, which was further validated by molecular docking simulation. This study also found that the selected epitopes are able to be recognized in a large percentage of the world's population. Furthermore, we predicted CD4+ T-cell epitopes and B-cell epitopes. SIGNIFICANCE Our study provides a strong basis for designing vaccine candidates against SARS-CoV-2. However, laboratory work is required to validate our theoretical results, which would lay the foundation for the appropriate vaccine manufacturing and testing processes.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Computational Biology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- HLA-B15 Antigen/chemistry
- HLA-B15 Antigen/metabolism
- HLA-DRB1 Chains/chemistry
- HLA-DRB1 Chains/metabolism
- Humans
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nusrat Jahan Mimi
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan, 90245, Indonesia
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Sajal Chakraborty
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sagar Shil
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sabrina Jahan Mily
- Department of Gynaecology and Obstetrics, Banshkhali Upazila Health Complex, Jaldi Union, Chittagong, 4390, Bangladesh
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed the First, BP 524, 60000, Oujda, Morocco; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia.
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
18
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Priorización de nuevas vacunas e innovación al servicio de estrategias de vacunación. REVISTA MÉDICA CLÍNICA LAS CONDES 2020. [DOI: 10.1016/j.rmclc.2020.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
21
|
Martinón-Torres F, Bosch X, Rappuoli R, Ladhani S, Redondo E, Vesikari T, García-Sastre A, Rivero-Calle I, Gómez-Rial J, Salas A, Martín C, Finn A, Butler R. TIPICO IX: report of the 9 th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2019; 15:2405-2415. [PMID: 31158041 PMCID: PMC6816368 DOI: 10.1080/21645515.2019.1609823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ninth Interactive Infectious Disease workshop TIPICO was held on November 22–23, 2018, in Santiago de Compostela, Spain. This 2-day academic experience addressed current and topical issues in the field of infectious diseases and vaccination. Summary findings of the meeting include: cervical cancer elimination will be possible in the future, thanks to the implementation of global vaccination action plans in combination with appropriate screening interventions. The introduction of appropriate immunization programs is key to maintain the success of current effective vaccines such as those against meningococcal disease or rotavirus infection. Additionally, reduced dose schedules might improve the efficiency of some vaccines (i.e., PCV13). New vaccines to improve current preventive alternatives are under development (e.g., against tuberculosis or influenza virus), while others to protect against infectious diseases with no current available vaccines (e.g., enterovirus, parechovirus and flaviviruses) need to be developed. Vaccinomics will be fundamental in this process, while infectomics will allow the application of precision medicine. Further research is also required to understand the impact of heterologous vaccine effects. Finally, vaccination requires education at all levels (individuals, community, healthcare professionals) to ensure its success by helping to overcome major barriers such as vaccine hesitancy and false contraindications.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela , Santiago de Compostela , Spain.,Genetics, Vaccines and Infections Research group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela , Santiago de Compostela , Spain
| | - Xavier Bosch
- Cancer Epidemiology Research Programme (e-oncología), Catalan Institute of Oncology, L'Hospitalet de Llobregat , Barcelona , Spain.,Cancer Prevention and Palliative Care Program, IDIBELL, L'Hospitalet de Llobregat , Barcelona , Spain
| | - Rino Rappuoli
- R&D Centre, GlaxoSmithKline , Siena , Italy.,Department of Medicine, Imperial College London , London , UK
| | - Shamez Ladhani
- Immunisation Department, Public Health England , London , UK
| | - Esther Redondo
- International Vaccination Center of Madrid , Madrid , Spain.,Grupo de Actividades Preventivas y Salud Pública SEMERGEN , Madrid , Spain
| | - Timo Vesikari
- Faculty of Medicine and Life Sciences, Vaccine Research Center, University of Tampere , Tampere , Finland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York , NY , USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai , New York , NY , USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela , Santiago de Compostela , Spain.,Genetics, Vaccines and Infections Research group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela , Santiago de Compostela , Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela , Santiago de Compostela , Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela , Santiago de Compostela , Spain.,Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, of the Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago (SERGAS) , Galicia , Spain
| | - Carlos Martín
- Faculty of Medicine, Microbiology Department, University of Zaragoza , Zaragoza , Spain.,CIBER of Respiratory Diseases, Instituto de Salud Carlos III , Madrid , Spain
| | - Adam Finn
- Bristol Children's Vaccine Centre, Schools of Cellular and Molecular Medicine and Population Health Sciences, University of Bristol , Bristol , UK
| | | |
Collapse
|
22
|
Yao Y, Yang H, Shi L, Liu S, Li C, Chen J, Zhou Z, Sun M, Shi L. HLA Class II Genes HLA-DRB1, HLA-DPB1, and HLA-DQB1 Are Associated With the Antibody Response to Inactivated Japanese Encephalitis Vaccine. Front Immunol 2019; 10:428. [PMID: 30906300 PMCID: PMC6418001 DOI: 10.3389/fimmu.2019.00428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: The objective of this study was to evaluate the association of the human leukocyte antigen (HLA) class II genes HLA-DRB1, HLA-DPB1, and HLA-DQB1 with the humoral immune response elicited by inactivated Japanese encephalitis (JE) vaccine (IJEV). Methods: A total of 373 individuals aged 3–12 years in the Inner Mongolia Autonomous Region in China, who received two doses of IJEV at 0 and 7 days, were enrolled in the current study. Based on the individuals' specific JE virus (JEV)-neutralizing antibodies (NAbs), they were divided into a seropositive and a seronegative group. HLA-DRB1, HLA-DPB1, and HLA-DQB1 were genotyped using a sequencing-based typing method. Next, the association of the HLA class II genes and their haplotypes with antibody response was evaluated. Results: Based on NAbs, a total of 161 individuals were classified as seropositive and 212 as seronegative. DQB1*02:01 was significantly associated with JEV seropositivity (P < 0.001, OR = 0.364, 95% CI: 0.221–0.600), while DQB1*02:02 was significantly associated with JEV seronegativity (P = 5.03 × 10−6, OR = 7.341, 95% CI: 2.876–18.736). The haplotypes DRB1*07:01-DPB1*04:01-DQB1*02:01, DRB1*15:01-DPB1*02:01-DQB1*06:02, DRB1*07:01-DQB1*02:01, and DPB1*02:01-DQB1*06:02 were very frequent in the seropositive group, while DRB1*07:01-DPB1*17:01-DQB1*02:02, DRB1*07:01-DQB1*02:02, and DPB1*17:01-DQB1*02:02 were very frequent in the seronegative group. The presence of DRB1*01:01, DRB1*04:05, DRB1*09:01, DRB1*12:02, DRB1*13:02, and DRB1*14:01 was associated with a higher geometric mean titer (GMT) of NAbs than that of DRB1*11:01 at the DRB1 locus (P < 0.05). At the DPB1 locus, the presence of DPB1*05:01 was associated with higher GMTs than that of DPB1*02:01 and DPB1*13:01 (P < 0.05), and the presence of DPB1*04:01 and DPB1*09:01 was associated with higher GMTs than that of DPB1*13:01 (P < 0.05). Conclusions: The present study suggests that HLA class II genes may influence the antibody response to IJEV.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Huijuan Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Lei Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chuanying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
23
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Schaid DJ, Poland GA. Current perspectives in assessing humoral immunity after measles vaccination. Expert Rev Vaccines 2019; 18:75-87. [PMID: 30585753 PMCID: PMC6413513 DOI: 10.1080/14760584.2019.1559063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Repeated measles outbreaks in countries with relatively high vaccine coverage are mainly due to failure to vaccinate and importation; however, cases in immunized individuals exist raising questions about suboptimal measles vaccine-induced humoral immunity and/or waning immunity in a low measles-exposure environment. AREAS COVERED The plaque reduction neutralization measurement of functional measles-specific antibodies correlates with protection is the gold standard in measles serology, but it does not assess cellular-immune or other parameters that may be associated with durable and/or protective immunity after vaccination. Additional correlates of protection and long-term immunity and new determinants/signatures of vaccine responsiveness such as specific CD46 and IFI44L genetic variants associated with neutralizing antibody titers after measles vaccination are under investigation. Current and future systems biology studies, coupled with new technology/assays and analytical approaches, will lead to an increasingly sophisticated understanding of measles vaccine-induced humoral immunity and will identify 'signatures' of protective and durable immune responses. EXPERT OPINION This will translate into the development of highly predictive assays of measles vaccine efficacy, effectiveness, and durability for prospective identification of potential low/non-responders and susceptible individuals who require additional vaccine doses. Such new advances may drive insights into the development of new/improved vaccine formulations and delivery systems.
Collapse
Affiliation(s)
| | - Richard B Kennedy
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Daniel J Schaid
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
- b Department of Health Sciences Research , Mayo Clinic , Rochester , MN , USA
| | - Gregory A Poland
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
24
|
Rahim M, El Khoury LY, Raleigh SM, Ribbans WJ, Posthumus M, Collins M, September AV. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis-Associated Genes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 20:520-7. [PMID: 27631191 DOI: 10.1089/omi.2016.0116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sport and Exercise Medicine is one of the important subspecialties of 21st century healthcare contributing to improving the physical function, health, and vitality of populations while reducing the prevalence of lifestyle-related diseases. Moreover, sport and exercise are associated with injuries such as Achilles tendinopathy, which is a common tendon injury. The angiogenesis-associated signaling pathway plays a key role in extracellular matrix remodeling, with increased levels of angiogenic cytokines reported after cyclic stretching of tendon fibroblasts. We investigated the variants in angiogenesis genes in relation to the risk of Achilles tendinopathy in two population samples drawn independently from South Africa (SA) and the United Kingdom (UK). The study sample comprised 120 SA and 130 UK healthy controls, and 108 SA and 87 UK participants with Achilles tendinopathy. All participants were genotyped for five functional polymorphisms in the vascular endothelial growth factor, A isoform (VEGFA) (rs699947, rs1570360, rs2010963) and kinase insert-domain receptor (KDR) genes (rs1870377, rs2071559). The VEGFA A-G-G inferred haplotype was associated with an increased risk of Achilles tendinopathy in the SA group (15% in controls vs. 20% in cases, p = 0.048) and the combined SA+UK group (14% in controls vs. 20% in cases, p = 0.009). These new findings implicate the VEGFA gene with Achilles tendinopathy risk, while highlighting the potential biological significance of the angiogenesis signaling pathway in the etiology of Achilles tendinopathy. The evidence suggesting a genetic contribution to the susceptibility of sustaining a tendon injury is growing. We anticipate that high-throughput and multi-omics approaches, building on genomics, proteomics, and metabolomics, may soon uncover the pathophysiology of many diseases in the field of Sports and Exercise Medicine, as a new frontier of global precision medicine.
Collapse
Affiliation(s)
- Masouda Rahim
- 1 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Louis Y El Khoury
- 2 School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Stuart M Raleigh
- 3 Division of Health and Life Sciences, Centre for Physical Activity and Chronic Disease, Institute of Health and Wellbeing, University of Northampton , Northampton, United Kingdom
| | - William J Ribbans
- 3 Division of Health and Life Sciences, Centre for Physical Activity and Chronic Disease, Institute of Health and Wellbeing, University of Northampton , Northampton, United Kingdom
| | - Michael Posthumus
- 1 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Malcolm Collins
- 1 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Alison V September
- 1 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
25
|
Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018; 6:62. [PMID: 29556492 PMCID: PMC5845111 DOI: 10.3389/fpubh.2018.00062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Vincenza Gianfredi
- Department of Experimental Medicine, Unit of Public Health, School of Specialization in Hygiene and Preventive Medicine, University of Perugia, Perugia, Italy
| | - Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Ahmed Nasr
- Department of Medicine and Surgery, Pathology University Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Amr Hussein
- Medical Faculty, University of Parma, Parma, Italy
| | - Mariano Martini
- Section of History of Medicine and Ethics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Masoud Behzadifar
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Munjal A, Khandia R, Tiwari R, Chakrabort S, Karthik K, Dhama K. Advances in Designing and Developing Vaccines Against Zika Virus. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.667.676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Chang TZ, Diambou I, Kim JR, Wang B, Champion JA. Host- and pathogen-derived adjuvant coatings on protein nanoparticle vaccines. Bioeng Transl Med 2017; 2:120-130. [PMID: 28516165 PMCID: PMC5412930 DOI: 10.1002/btm2.10052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 02/01/2023] Open
Abstract
Nanoparticulate and molecular adjuvants have shown great efficacy in enhancing immune responses, and the immunogenic vaccines of the future will most likely contain both. To investigate the immunostimulatory effects of molecular adjuvants on nanoparticle vaccines, we have designed ovalbumin (OVA) protein nanoparticles coated with two different adjuvants-flagellin (FliC) and immunoglobulin M (IgM). These proteins, derived from Salmonella and mice, respectively, are representatives of pathogen- and host-derived molecules that can enhance immune responses. FliC-coated OVA nanoparticles, soluble FliC (sFliC) admixed with OVA nanoparticles, IgM-coated nanoparticles, and OVA-coated nanoparticles were assessed for immunogenicity in an in vivo mouse immunization study. IgM coatings on nanoparticles significantly enhanced both antibody and T cell responses, and promoted IgG2a class switching but not affinity maturation. FliC-coated nanoparticles and FliC-admixed with nanoparticles both triggered IgG2a class switching, but only FliC-coated nanoparticles enhanced antibody affinity maturation. Our findings that affinity maturation and class switching can be directed independently of one another suggest that adjuvant coatings on nanoparticles can be tailored to generate specific vaccine effector responses against different classes of pathogens.
Collapse
Affiliation(s)
- Timothy Z. Chang
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Ishatou Diambou
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Jong Rok Kim
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Baozhong Wang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| |
Collapse
|
28
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Oberg AL, Zimmermann MT, Grill DE, Poland GA. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front Immunol 2016; 7:450. [PMID: 27853459 PMCID: PMC5089977 DOI: 10.3389/fimmu.2016.00450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report, we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/CD8 T cell ratio) with additional markers of immune response (serum cytokine and chemokine expression) and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels) network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), as well as a gene expression module not previously annotated with a known function. These results may improve our ability to predict immune responses to influenza and aid in new vaccine development, and highlight the need for additional studies to better define and characterize immunosenescence.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Diane E Grill
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
29
|
Salk HM, Simon WL, Lambert ND, Kennedy RB, Grill DE, Kabat BF, Poland GA. Taxa of the Nasal Microbiome Are Associated with Influenza-Specific IgA Response to Live Attenuated Influenza Vaccine. PLoS One 2016; 11:e0162803. [PMID: 27643883 PMCID: PMC5028048 DOI: 10.1371/journal.pone.0162803] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
Live attenuated influenza vaccine (LAIV) has demonstrated varying levels of efficacy against seasonal influenza; however, LAIV may be used as a tool to measure interactions between the human microbiome and a live, replicating virus. To increase our knowledge of this interaction, we measured changes to the nasal microbiome in subjects who received LAIV to determine if associations between influenza-specific IgA production and the nasal microbiome exist after immunization with a live virus vaccine. The anterior nares of 47 healthy subjects were swabbed pre- (Day 0) and post- (Days 7 and 28) LAIV administration, and nasal washes were conducted on Days 0 and 28. We performed next-generation sequencing on amplified 16s rRNA genes and measured mucosal influenza-specific IgA titers via enzyme-linked immunosorbent assay (ELISA). A significant increase in alpha diversity was identified (Observed, CHAO, and ACE) between Days 7 vs 0 (p-values = 0.017, 0.005, 0.005, respectively) and between Days 28 vs 0 (p-values = 0.054, 0.030, 0.050, respectively). Several significant associations between the presence of different microbial species, including Lactobacillus helveticus, Prevotella melaninogenica, Streptococcus infantis, Veillonella dispar, and Bacteroides ovatus, and influenza-specific H1 and H3 IgA antibody response were demonstrated. These data suggest that LAIV alters the nasal microbiome, allowing several less-abundant OTUs to establish a community niche. Additionally, specific alterations in the nasal microbiome are significantly associated with variations in influenza-specific IgA antibody production and could be clinically relevant.
Collapse
Affiliation(s)
- Hannah M. Salk
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Whitney L. Simon
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Nathaniel D. Lambert
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Brian F. Kabat
- Division of Biostatistics, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gene signatures associated with adaptive humoral immunity following seasonal influenza A/H1N1 vaccination. Genes Immun 2016; 17:371-379. [PMID: 27534615 PMCID: PMC5133148 DOI: 10.1038/gene.2016.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
This study aimed to identify gene expression markers shared between both influenza hemagglutination-inhibition (HAI) and virus-neutralization antibody (VNA) responses. We enrolled 158 older subjects who received the 2010–2011 trivalent inactivated influenza vaccine (TIV). Influenza-specific HAI and VNA titers, and mRNA-sequencing were performed using blood samples obtained at Days 0, 3 and 28 post-vaccination. For antibody response at Day 28 vs Day 0, several genesets were identified as significant in predictive models for HAI (n=7) and VNA (n=35) responses. Five genesets (comprising the genes MAZ, TTF, GSTM, RABGGTA, SMS, CA, IFNG, and DOPEY) were in common for both HAI and VNA. For response at Day 28 vs Day 3, many genesets were identified in predictive models for HAI (n=13) and VNA (n=41). Ten genesets (comprising biologically related genes, such as MAN1B1, POLL, CEBPG, FOXP3, IL12A, TLR3, TLR7, and others) were shared between HAI and VNA. These identified genesets demonstrated a high degree of network interactions and likelihood for functional relationships. Influenza-specific HAI and VNA responses demonstrated a remarkable degree of similarity. Although unique geneset signatures were identified for each humoral outcome, several genesets were determined to be in common with both HAI and VNA response to influenza vaccine.
Collapse
|
31
|
Anaplasma marginale: Diversity, Virulence, and Vaccine Landscape through a Genomics Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9032085. [PMID: 27610385 PMCID: PMC5005611 DOI: 10.1155/2016/9032085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022]
Abstract
In order to understand the genetic diversity of A. marginale, several efforts have been made around the world. This rickettsia affects a significant number of ruminants, causing bovine anaplasmosis, so the interest in its virulence and how it is transmitted have drawn interest not only from a molecular point of view but also, recently, some genomics research have been performed to elucidate genes and proteins with potential as antigens. Unfortunately, so far, we still do not have a recombinant anaplasmosis vaccine. In this review, we present a landscape of the multiple approaches carried out from the genomic perspective to generate valuable information that could be used in a holistic way to finally develop an anaplasmosis vaccine. These approaches include the analysis of the genetic diversity of A. marginale and how this affects control measures for the disease. Anaplasmosis vaccine development is also reviewed from the conventional vaccinomics to genome-base vaccinology approach based on proteomics, metabolomics, and transcriptomics analyses reported. The use of these new omics approaches will undoubtedly reveal new targets of interest in the near future, comprising information of potential antigens and the immunogenic effect of A. marginale proteins.
Collapse
|
32
|
Haralambieva IH, Zimmermann MT, Ovsyannikova IG, Grill DE, Oberg AL, Kennedy RB, Poland GA. Whole Transcriptome Profiling Identifies CD93 and Other Plasma Cell Survival Factor Genes Associated with Measles-Specific Antibody Response after Vaccination. PLoS One 2016; 11:e0160970. [PMID: 27529750 PMCID: PMC4987012 DOI: 10.1371/journal.pone.0160970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background There are insufficient system-wide transcriptomic (or other) data that help explain the observed inter-individual variability in antibody titers after measles vaccination in otherwise healthy individuals. Methods We performed a transcriptome(mRNA-Seq)-profiling study after in vitro viral stimulation of PBMCs from 30 measles vaccine recipients, selected from a cohort of 764 schoolchildren, based on the highest and lowest antibody titers. We used regression and network biology modeling to define markers associated with neutralizing antibody response. Results We identified 39 differentially expressed genes that demonstrate significant differences between the high and low antibody responder groups (p-value≤0.0002, q-value≤0.092), including the top gene CD93 (p<1.0E-13, q<1.0E-09), encoding a receptor required for antigen-driven B-cell differentiation, maintenance of immunoglobulin production and preservation of plasma cells in the bone marrow. Network biology modeling highlighted plasma cell survival (CD93, IL6, CXCL12), chemokine/cytokine activity and cell-cell communication/adhesion/migration as biological processes associated with the observed differential response in the two responder groups. Conclusion We identified genes and pathways that explain in part, and are associated with, neutralizing antibody titers after measles vaccination. This new knowledge could assist in the identification of biomarkers and predictive signatures of protective immunity that may be useful in the design of new vaccine candidates and in clinical studies.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group-Department of Medicine, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics- Department of Health Science Research, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group-Department of Medicine, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics- Department of Health Science Research, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics- Department of Health Science Research, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group-Department of Medicine, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group-Department of Medicine, Mayo Clinic and Foundation, Rochester, MN, United States of America
| |
Collapse
|
33
|
McKinney BA, Lareau C, Oberg AL, Kennedy RB, Ovsyannikova IG, Poland GA. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS One 2016; 11:e0158016. [PMID: 27513748 PMCID: PMC4981436 DOI: 10.1371/journal.pone.0158016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine.
Collapse
Affiliation(s)
- Brett A. McKinney
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Caleb Lareau
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
34
|
He Y, Ong E, Xie J. Integrative representations and analyses of vaccine-induced intended protective immunity and unintended adverse events using ontology-based and theory-guided approaches. ACTA ACUST UNITED AC 2016; 1:37-39. [PMID: 27868103 DOI: 10.15761/gvi.1000110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongqun He
- University of Michigan Medical School, USA
| | - Edison Ong
- University of Michigan Medical School, USA
| | | |
Collapse
|
35
|
Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016; 17:116-125. [PMID: 27039875 PMCID: PMC4902778 DOI: 10.1016/j.coviro.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
The epidemiology of deaths due to vaccine-preventable diseases has been significantly and positively altered through the use of vaccines. Despite this, significant challenges remain in vaccine development and use in the third millennium. Both new (Ebola, Chikungunya, Zika, and West Nile) and re-emerging diseases (measles, mumps, and influenza) require the development of new or next-generation vaccines. The global aging of the population, and accumulating numbers of immunocompromised persons, will require new vaccine and adjuvant development to protect large segments of the population. After vaccine development, significant challenges remain globally in the cost and efficient use and acceptance of vaccines by the public. This article raises issues in these two areas and suggests a way forward that will benefit current and future generations.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Caroline M Poland
- Taylor University Counseling Center, Taylor University, Upland, IN 46989, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
36
|
He Y. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research. ACTA ACUST UNITED AC 2016; 2:113-128. [PMID: 27458549 DOI: 10.1007/s40495-016-0055-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Majumder PP. Genomics of immune response to typhoid and cholera vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0142. [PMID: 25964454 DOI: 10.1098/rstb.2014.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.
Collapse
Affiliation(s)
- Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
38
|
Abstract
In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development.
Collapse
Affiliation(s)
- Lei Li
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| |
Collapse
|
39
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends Mol Med 2015; 21:789-801. [PMID: 26602762 DOI: 10.1016/j.molmed.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Despite the existence of an effective measles vaccine, resurgence in measles cases in the USA and across Europe has occurred, including in individuals vaccinated with two doses of the vaccine. Host genetic factors result in inter-individual variation in measles vaccine-induced antibodies, and play a role in vaccine failure. Studies have identified HLA (human leukocyte antigen) and non-HLA genetic influences that individually or jointly contribute to the observed variability in the humoral response to vaccination among healthy individuals. In this exciting era, new high-dimensional approaches and techniques including vaccinomics, systems biology, GWAS, epitope prediction and sophisticated bioinformatics/statistical algorithms provide powerful tools to investigate immune response mechanisms to the measles vaccine. These might predict, on an individual basis, outcomes of acquired immunity post measles vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics 2015; 67:547-61. [PMID: 26329766 DOI: 10.1007/s00251-015-0864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Hannah M Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA.
| |
Collapse
|
41
|
Whitaker JA, Ovsyannikova IG, Poland GA. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines 2015; 14:935-47. [PMID: 25937189 DOI: 10.1586/14760584.2015.1038249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the enormous population benefits of routine vaccination, vaccine adverse events (AEs) and reactions, whether real or perceived, have posed one of the greatest barriers to vaccine acceptance--and thus to infectious disease prevention--worldwide. A truly integrated clinical, translational, and basic science approach is required to understand the mechanisms behind vaccine AEs, predict them, and then apply this knowledge to new vaccine design approaches that decrease, or avoid, these events. The term 'adversomics' was first introduced in 2009 and refers to the study of vaccine adverse reactions using immunogenomics and systems biology approaches. In this review, we present the current state of adversomics research, review known associations and mechanisms of vaccine AEs/reactions, and outline a plan for the further development of this emerging research field.
Collapse
|
42
|
Haralambieva IH, Lambert ND, Ovsyannikova IG, Kennedy RB, Larrabee BR, Pankratz VS, Poland GA. Associations between single nucleotide polymorphisms in cellular viral receptors and attachment factor-related genes and humoral immunity to rubella vaccination. PLoS One 2014; 9:e99997. [PMID: 24945853 PMCID: PMC4063777 DOI: 10.1371/journal.pone.0099997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Background Viral attachment and cell entry host factors are important for viral replication, pathogenesis, and the generation and sustenance of immune responses after infection and/or vaccination, and are plausible genetic regulators of vaccine-induced immunity. Methods Using a tag-SNP approach in candidate gene study, we assessed the role of selected cell surface receptor genes, attachment factor-related genes, along with other immune genes in the genetic control of immune response variations after live rubella vaccination in two independent study cohorts. Results Our analysis revealed evidence for multiple associations between genetic variants in the PVR, PVRL2, CD209/DC-SIGN, RARB, MOG, IL6 and other immune function-related genes and rubella-specific neutralizing antibodies after vaccination (meta p-value <0.05). Conclusion Our results indicate that multiple SNPs from genes involved in cell adhesion, viral attachment, and viral entry, as well as others in genes involved in signaling and/or immune response regulation, play a role in modulating humoral immune responses following live rubella vaccination.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Child
- Cohort Studies
- Female
- Gene Expression
- Host-Pathogen Interactions
- Humans
- Immunity, Humoral
- Interleukin-6/genetics
- Interleukin-6/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Male
- Measles-Mumps-Rubella Vaccine/administration & dosage
- Measles-Mumps-Rubella Vaccine/immunology
- Myelin-Oligodendrocyte Glycoprotein/genetics
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Polymorphism, Single Nucleotide
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Rubella/immunology
- Rubella/prevention & control
- Rubella/virology
- Rubella virus/immunology
- Vaccination
- Virus Attachment/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Iana H. Haralambieva
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nathaniel D. Lambert
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Beth R. Larrabee
- Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - V. Shane Pankratz
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
43
|
He Y. Ontology-supported research on vaccine efficacy, safety and integrative biological networks. Expert Rev Vaccines 2014; 13:825-41. [PMID: 24909153 DOI: 10.1586/14760584.2014.923762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Ovsyannikova IG, Pankratz VS, Larrabee BR, Jacobson RM, Poland GA. HLA genotypes and rubella vaccine immune response: additional evidence. Vaccine 2014; 32:4206-13. [PMID: 24837503 DOI: 10.1016/j.vaccine.2014.04.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Recent population-based studies have demonstrated the genetic heritability of rubella vaccine response and assessed that the HLA system may explain about 20% of the inter-individual variance in humoral immune response to this vaccine. Our earlier studies compared HLA allelic associations with rubella vaccine-specific antibodies between two smaller cohorts of healthy Rochester, MN, children (346 and 396 subjects) after two doses of rubella-containing vaccine. This study found that specific HLA alleles were consistently associated with rubella-specific antibody titers (B*27:05, DPA1*02:01, and DPB1*04:01 alleles). The current study examined HLA associations in an independent larger cohort of 1012 healthy San Diego, CA, subjects (age 19-40 years) after rubella vaccine in order to replicate our previous findings in the Rochester subjects. Two HLA associations of comparable magnitudes were consistently observed between B*27:05 (median NT50 Rochester cohort 48.9, p=0.067; San Diego cohort 54.8, p=0.047) and DPB1*04:01 (median NT50 Rochester cohort 61.6, p<0.001; San Diego cohort 70.8, p=0.084) alleles and rubella virus-neutralizing antibody titers. Additional HLA alleles resulted in consistent effects on IL-6 production in both cohorts, but did not meet criteria for statistical significance. Our data suggest these HLA alleles play a role in rubella vaccine-induced immunity and provide the basis for future studies that may explain the mechanism(s) by which these HLA polymorphisms affect immune responses to rubella vaccine.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert M Jacobson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
45
|
Petrizzo A, Tagliamonte M, Tornesello M, Buonaguro FM, Buonaguro L. Systems vaccinology for cancer vaccine development. Expert Rev Vaccines 2014; 13:711-9. [PMID: 24766452 DOI: 10.1586/14760584.2014.913484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Results of therapeutic vaccines for established chronic infections or cancers are still unsatisfactory. The only therapeutic cancer vaccine approved for clinical use is the sipuleucel-T, for the treatment of metastatic prostate cancer, which induces a limited 4-month improvement in the overall survival of vaccinated patients compared to controls. This represents a remarkable advancement in the cancer immunotherapy field, although the clinical outcome of cancer vaccines needs to be substantially improved. To this aim, a multipronged strategy is required, including the evaluation of mechanisms underlying the effective elicitation of immune responses by cancer vaccines. The recent development of new technologies and computational tools allows the comprehensive and quantitative analysis of the interactions between all of the components of innate and adaptive immunity over time. Here we review the potentiality of systems biology in providing novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
System-level approaches will provide a more complete picture of the immune response. Omic studies will allow identification of signatures of immune protection. Network-based methods are powerful tools for multi-omic data integration. Discovery of host–virus interactions will improve vaccine development. An emphasis on producing clinically actionable findings is necessary.
Numerous challenges have been identified in vaccine development, including variable efficacy as a function of population demographics and a lack of characterization and mechanistic understanding of immune correlates of protection able to guide delivery and dosing. There is tremendous opportunity in recent technological and computational advances to elucidate systems level understanding of pathogen–host interactions and correlates of immunity. A systems biology approach to vaccinology provides a new paradigm for rational vaccine design in a ‘precision medicine’ context.
Collapse
|
47
|
Kennedy RB, Ovsyannikova IG, Lambert ND, Haralambieva IH, Poland GA. The personal touch: strategies toward personalized vaccines and predicting immune responses to them. Expert Rev Vaccines 2014; 13:657-69. [PMID: 24702429 DOI: 10.1586/14760584.2014.905744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The impact of vaccines on public health and wellbeing has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as hepatitis C, malaria or tuberculosis, as well as new and re-emerging pathogens for which we lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population.
Collapse
|
48
|
Haralambieva IH, Salk HM, Lambert ND, Ovsyannikova IG, Kennedy RB, Warner ND, Pankratz VS, Poland GA. Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts. Vaccine 2014; 32:1946-53. [PMID: 24530932 DOI: 10.1016/j.vaccine.2014.01.090] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Immune response variations after vaccination are influenced by host genetic factors and demographic variables, such as race, ethnicity and sex. The latter have not been systematically studied in regard to live rubella vaccine, but are of interest for developing next generation vaccines for diverse populations, for predicting immune responses after vaccination, and for better understanding the variables that impact immune response. METHODS We assessed associations between demographic variables, including race, ethnicity and sex, and rubella-specific neutralizing antibody levels and secreted cytokines (IFNγ, IL-6) in two independent cohorts (1994 subjects), using linear and linear mixed models approaches, and genetically defined racial and ethnic categorizations. RESULTS Our replicated findings in two independent, large, racially diverse cohorts indicate that individuals of African descent have significantly higher rubella-specific neutralizing antibody levels compared to individuals of European descent and/or Hispanic ethnicity (p<0.001). CONCLUSION Our study provides consistent evidence for racial/ethnic differences in humoral immune response following rubella vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, United States
| | - Hannah M Salk
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States
| | - Nathaniel D Lambert
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, United States
| | - Inna G Ovsyannikova
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, United States
| | - Richard B Kennedy
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, United States
| | - Nathaniel D Warner
- Division of Biostatistics, Mayo Clinic, Rochester, MN 55905, United States
| | - V Shane Pankratz
- Division of Biostatistics, Mayo Clinic, Rochester, MN 55905, United States
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, United States; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
49
|
New Wisdom to Defy an Old Enemy: Summary from a scientific symposium at the 4th Influenza Vaccines for the World (IVW) 2012 Congress, 11 October, Valencia, Spain. Vaccine 2014; 31 Suppl 1:A1-20. [PMID: 23587330 DOI: 10.1016/j.vaccine.2013.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Both seasonal and pandemic influenza cause considerable morbidity and mortality globally. In addition, the ongoing threat of new, unpredictable influenza pandemics from emerging variant strains cannot be underestimated. Recently bioCSL (previously known as CSL Biotherapies) sponsored a symposium 'New Wisdom to Defy an Old Enemy' at the 4th Influenza Vaccines for the World Congress in Valencia, Spain. This symposium brought together a renowned faculty of experts to discuss lessons from past experience, novel influenza vaccine developments, and new methods to increase vaccine acceptance and coverage. Specific topics reviewed and discussed included new vaccine development efforts focused on improving efficacy via alternative administration routes, dose modifications, improved adjuvants, and the use of master donor viruses. Improved safety was also discussed, particularly the new finding of an excess of febrile reactions isolated to children who received the 2010 Southern Hemisphere (SH) trivalent inactivated influenza vaccine (TIV). Significant work has been done to both identify the cause and minimize the risk of febrile reactions in children. Other novel prophylactic and therapeutic advances were discussed including immunotherapy. Standard IVIg and hIVIg have been used in ferret studies and human case reports with promising results. New adjuvants, such as ISCOMATRIX™ adjuvant, were noted to provide single-dose, prolonged protection with seasonal vaccine after lethal H5N1 virus challenge in a ferret model of human influenza disease. The data suggest that adjuvanted seasonal influenza vaccines may provide broader protection than unadjuvanted vaccines. The use of an antigen-formulated vaccine to induce broad protection between pandemics that could bridge the gap between pandemic declaration and the production of a homologous vaccine was also discussed. Finally, despite the availability of effective vaccines, most current efforts to increase influenza vaccine coverage rates to higher levels (i.e., above 70-80%) have been ineffective in highly developed countries where the vaccine is used, hindered by the public's skepticism towards vaccines in general. New educational and social media methods to increase vaccine acceptance and coverage were discussed. While the first priority should be the development of improved influenza vaccines, a particular focus on the aging global population is critical. It is also important to draw lessons from other academic disciplines that can help to inform vaccine education programs, policy, and communication. By tailoring communications and patient education using an understanding of cognitive bias and the model of preferred cognitive styles, the likelihood of effecting desirable health decisions can be maximized, leading to improved vaccine coverage and control of influenza and other vaccine-preventable diseases.
Collapse
|
50
|
|