1
|
Kumar S, Kumar S, Sharma H, Singh VP, Rawale KS, Kahlon KS, Gupta V, Bhatt SK, Vairamani R, Gill KS, Balyan HS. Physical map of QTL for eleven agronomic traits across fifteen environments, identification of related candidate genes, and development of KASP markers with emphasis on terminal heat stress tolerance in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:235. [PMID: 39333356 DOI: 10.1007/s00122-024-04748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
KEY MESSAGE Key message This study identified stable QTL, promising candidate genes and developed novel KASP markers for heat tolerance, providing genomic resources to assist breeding for the development of high-yielding and heat-tolerant wheat germplasm and varieties. To understand the genetic architecture of eleven agronomic traits under heat stress, we used a doubled-haploid population (177 lines) derived from a heat-sensitive cultivar (PBW343) and a heat-tolerant genotype (KSG1203). This population was evaluated under timely, late and very late sown conditions over locations and years comprising fifteen environments. Best linear unbiased estimates and a genetic map (5,710 SNPs) developed using sequencing-based genotyping were used for QTL mapping. The identified 66 QTL (20 novel) were integrated into wheat physical map (14,263.4 Mb). These QTL explained 5.3% (QDth.ccsu-4A for days to heading and QDtm.ccsu-5B for days to maturity) to 24.9% (QGfd.ccsu-7D for grain filling duration) phenotypic variation. Thirteen stable QTL explaining high phenotypic variation were recommended for marker-assisted recurrent selection (MARS) for optimum/heat stress environments. Selected QTL were validated by their presence in high-yielding doubled-haploid lines. Some QTL for 1000-grain weight (TaERF3-3B, TaFER-5B, and TaZIM-A1), grain yield (TaCol-B5), and developmental traits (TaVRT-2) were co-localized with known genes. Specific known genes for traits like abiotic/biotic stress, grain quality and yield were co-located with 26 other QTL. Furthermore, 209 differentially expressed candidate genes for heat tolerance in plants that encode 28 different proteins were identified. KASP markers for three major/stable QTL, namely QGfd.ccsu-7A for grain filling duration on chromosome 7A (timely sown), QNgs.ccsu-3A for number of grains per spike on 3A, and QDth.ccsu-7A for days to heading on 7A (late and very late sown) environments were developed for MARS focusing on the development of heat-tolerant wheat varieties/germplasm.
Collapse
Affiliation(s)
- Sourabh Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Vivudh Pratap Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | | | - Kaviraj Singh Kahlon
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Vikas Gupta
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sunil Kumar Bhatt
- Research and Development Division, JK Agri-Genetics Limited, Hyderabad, Telangana, India
| | | | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| |
Collapse
|
2
|
Kumar RR, Niraj RK, Goswami S, Thimmegowda V, Mishra GP, Mishra D, Rai GK, Kumar SN, Viswanathan C, Tyagi A, Singh GP, Rai AK. Characterization of putative calcium-dependent protein kinase-1 ( TaCPK-1) gene: hubs in signalling and tolerance network of wheat under terminal heat. 3 Biotech 2024; 14:150. [PMID: 38725866 PMCID: PMC11076446 DOI: 10.1007/s13205-024-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03989-6.
Collapse
Affiliation(s)
- Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ravi K. Niraj
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vinutha Thimmegowda
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gyan P. Mishra
- Division of Seed Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dwijesh Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Gyanendra K. Rai
- Sher-E-Kashmir University of Agricultural Science and Technology, Chatta, Jammu, 180009 India
| | | | - Chinnusamy Viswanathan
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Aruna Tyagi
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gyanendra P. Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - Anil K. Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Panzade KP, Tribhuvan KU, Pawar DV, Jasrotia RS, Gaikwad K, Dalal M, Kumar RR, Singh MP, Awasthi OP, Padaria JC. Discovering the regulators of heat stress tolerance in Ziziphus nummularia (Burm.f) wight and walk.-arn. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:497-511. [PMID: 38633271 PMCID: PMC11018567 DOI: 10.1007/s12298-024-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01431-y.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Kishor U. Tribhuvan
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834 003 India
| | - Deepak V. Pawar
- ICAR- Directorate of Weed Research, Maharajpur, Jabalpur, Madhya Pradesh 482004 India
| | - Rahul Singh Jasrotia
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229 USA
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR–Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agrcultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Om Prakash Awasthi
- Division of Horticulture, ICAR-Indian Agrcultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Jasdeep Chatrath Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| |
Collapse
|
4
|
Zhu A, Liu M, Tian Z, Liu W, Hu X, Ao M, Jia J, Shi T, Liu H, Li D, Mao H, Su H, Yan W, Li Q, Lan C, Fernie AR, Chen W. Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat. THE PLANT CELL 2024; 36:540-558. [PMID: 37956052 PMCID: PMC10896294 DOI: 10.1093/plcell/koad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.
Collapse
Affiliation(s)
- Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Department of Root Biology and Symbiosis, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Babaei S, Bhalla PL, Singh MB. Identifying long non-coding RNAs involved in heat stress response during wheat pollen development. FRONTIERS IN PLANT SCIENCE 2024; 15:1344928. [PMID: 38379952 PMCID: PMC10876783 DOI: 10.3389/fpls.2024.1344928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Introduction Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development. Methods This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars. Results and discussion We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in cis and trans and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain. Conclusion Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.
Collapse
Affiliation(s)
| | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Zeng Z, Zhao D, Wang C, Yan X, Song J, Chen P, Lan C, Singh RP. QTL cluster analysis and marker development for kernel traits based on DArT markers in spring bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1072233. [PMID: 36844075 PMCID: PMC9951491 DOI: 10.3389/fpls.2023.1072233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Genetic dissection of yield component traits including kernel characteristics is essential for the continuous improvement in wheat yield. In the present study, one recombinant inbred line (RIL) F6 population derived from a cross between Avocet and Chilero was used to evaluate the phenotypes of kernel traits of thousand-kernel weight (TKW), kernel length (KL), and kernel width (KW) in four environments at three experimental stations during the 2018-2020 wheat growing seasons. The high-density genetic linkage map was constructed with the diversity arrays technology (DArT) markers and the inclusive composite interval mapping (ICIM) method to identify the quantitative trait loci (QTLs) for TKW, KL, and KW. A total of 48 QTLs for three traits were identified in the RIL population on the 21 chromosomes besides 2A, 4D, and 5B, accounting for 3.00%-33.85% of the phenotypic variances. Based on the physical positions of each QTL, nine stable QTL clusters were identified in the RILs, and among these QTL clusters, TaTKW-1A was tightly linked to the DArT marker interval 3950546-1213099, explaining 10.31%-33.85% of the phenotypic variances. A total of 347 high-confidence genes were identified in a 34.74-Mb physical interval. TraesCS1A02G045300 and TraesCS1A02G058400 were among the putative candidate genes associated with kernel traits, and they were expressed during grain development. Moreover, we also developed high-throughput kompetitive allele-specific PCR (KASP) markers of TaTKW-1A, validated in a natural population of 114 wheat varieties. The study provides a basis for cloning the functional genes underlying the QTL for kernel traits and a practical and accurate marker for molecular breeding.
Collapse
Affiliation(s)
- Zhankui Zeng
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Dehui Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Chunping Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Xuefang Yan
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Junqiao Song
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Peng Chen
- College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ravi P. Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
| |
Collapse
|
7
|
Cao Y, Dou D, Zhang D, Zheng Y, Ren Z, Su H, Sun C, Hu X, Bao M, Zhu B, Liu T, Chen Y, Ku L. ZmDWF1 regulates leaf angle in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111459. [PMID: 36113675 DOI: 10.1016/j.plantsci.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Leaf angle (LA) is a critical agronomic trait enhancing grain yield under high-density planting in maize. A number of researches have been conducted in recent years to investigate the quantitative trait loci/genes responsible for LA variation, while only a few genes were identified through map-based cloning. Here we cloned the ZmDWF1 gene, which was previously reported to encode Δ24-sterol reductase in the brassinosteroids (BRs) biosynthesis pathway. Overexpression of ZmDWF1 resulted in enlarged LA, indicating that ZmDWF1 is a positive regulator of LA in maize. To reveal the regulatory framework of ZmDWF1, we conducted RNA-Sequencing and yeast-two hybrid (Y2H) screening analysis. RNA-Sequencing analyzing results indicate ZmDWF1 mainly affected expression level of genes involved in cell wall associated metabolism and hormone metabolism including BR, gibberellin, and auxin. Y2H screening with Bi-FC assay confirmed three proteins (ZmPP2C-1, ZmROF1, and ZmTWD1) interacting with ZmDWF1. We revealed a new regulatory network of ZmDWF1 gene in controlling plant architecture in maize.
Collapse
Affiliation(s)
- Yingying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Dandan Dou
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China; Henan Academy of Agricultural Science, Zhengzhou, Henan 450002, China
| | - Dongling Zhang
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Yaogang Zheng
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Chongyu Sun
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Xiaomeng Hu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Miaomiao Bao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Bingqi Zhu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Tianxue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Yanhui Chen
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China.
| |
Collapse
|
8
|
Lamba K, Kumar M, Singh V, Chaudhary L, Sharma R, Yadav S, Yashveer S, Dalal MS, Gupta V, Nagpal S, Saini M, Rai NK, Pati R, Malhotra K. Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3100. [PMID: 36432828 PMCID: PMC9692328 DOI: 10.3390/plants11223100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Hexaploid wheat is the main cereal food crop for most people but it is highly influenced by climatic variations. The influence of these climatic variations was studies in wheat genotype WH -1184 in field conditions under two different environments (normal and late sown) and it was found that the genotype is less yielding under late sown conditions. To study the effects of heat stress at transcript level, it was grown under two different conditions (WH-1184 control and heat treated) in pots and transcriptome analysis based on Illumina Novoseq 6000 was carried out for the identification of the differentially expressed genes (DEGs) and metabolic processes or gene regulations influenced by heat stress which lead to a reduction in both quality and quantity of wheat production. These DEGs were utilized to set up a subsequent unigene assembly and GO analysis was performed using unigenes to analyze functions of DEGs which were classified into three main domains, i.e., biological process, cellular component, and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) ontology was used to visualize the physiological processes or to identify KEGG pathways that provide plants their ability to shield in adverse conditions of heat stress. From KEGG ontology, it was reported that genes which encoded protein detoxification and ABC1 domain-containing protein were upregulated while genes thatencoded glutathione transferase (GST), peroxidase, and chitinase enzymes were downregulated. Downregulation of these enzymes during heat stress causes oxidative damages in plants while upregulated proteins play a main role in detoxification to protect plants from heat stress. It was hypothesized that the yield of WH-1184 decreased 44% under heat stress due to the downregulation of genes that encoded GST, peroxidase, and chitinase enzymes which can protect plants from oxidative damage. Hence, upregulation of these genes might be helpful for the adaptation of this genotype under heat stress condition.
Collapse
Affiliation(s)
- Kavita Lamba
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Mukesh Kumar
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Vikram Singh
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Lakshmi Chaudhary
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Rajat Sharma
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Samita Yadav
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Mohinder Singh Dalal
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Vijeta Gupta
- Indian Institute of Wheat and Barley Research, Karnal 132 001, India
| | - Shreya Nagpal
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Manuj Saini
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Navreet Kaur Rai
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Rutuparna Pati
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Karuna Malhotra
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| |
Collapse
|
9
|
Li N, Liu T, Guo F, Yang J, Shi Y, Wang S, Sun D. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011064. [PMID: 36304395 PMCID: PMC9592863 DOI: 10.3389/fpls.2022.1011064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe abiotic stresses that influence wheat production across the globe. Understanding the molecular regulatory network of wheat in response to drought is of great importance in molecular breeding. Noncoding RNAs influence plant development and resistance to abiotic stresses by regulating gene expression. In this study, whole-transcriptome sequencing was performed on the seedlings of two wheat varieties with contrasting levels of drought tolerance under drought and control conditions to identify long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and mRNAs related to drought stress and explore the potential lncRNA-miRNA-mRNA regulatory modules in controlling wheat drought stress response. A total of 1515 differentially expressed lncRNAs (DELs), 209 differentially expressed miRNAs (DEMs), and 20462 differentially expressed genes (DEGs) were identified. Of the 20462 DEGs, 1025 were identified as potential wheat drought resistance-related DEGs. Based on the regulatory relationship and expression patterns of DELs, DEMs, and DEGs, 10 DEL-DEM-DEG regulatory modules related to wheat drought stress response were screened, and preliminary expression verification of two important candidate modules was performed. Our results revealed the possible roles of lncRNA-miRNA-mRNA modules in regulatory networks related to drought tolerance and provided useful information as valuable genomic resources in molecular breeding of wheat.
Collapse
|
10
|
Lee MH, Kim KM, Sang WG, Kang CS, Choi C. Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis. Int J Mol Sci 2022; 23:ijms231810734. [PMID: 36142649 PMCID: PMC9505106 DOI: 10.3390/ijms231810734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959, 7946, and 14,205; and 22,895, 13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress—and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity—were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerance.
Collapse
|
11
|
Azameti MK, Ranjan A, Singh PK, Gaikwad K, Singh AK, Dalal M, Arora A, Rai V, Padaria JC. Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765. Sci Rep 2022; 12:14831. [PMID: 36050336 PMCID: PMC9437100 DOI: 10.1038/s41598-022-18625-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Wheat, one of the most widely consumed staple food crops globally, is relatively vulnerable to high temperature-induced heat stress. It is therefore essential to gain more insight into the comprehensive mechanism of thermotolerance of wheat in order to safeguard its production. In view of this, we analysed heat stress responsive transcriptome data of wheat to determine its gene expression level under heat stress. A total of 7990 DEGs, including 4483 up-regulated and 3507 down regulated genes were identified. Gene Ontology (GO) analysis categorized 3910 DEGs into different ontology families. 146 pathways involving 814 DEGs were enriched during KEGG analysis. Metabolic pathways and biosynthesis of secondary metabolites were the major pathways enriched. MYB (myeloblastosis) transcription factors (TFs) and many other TFs as bHLH, WRKY, NAC, ERF, were determined to be quite abundant in the DEGs. Since various reports indicate that these TFs play important role in plants abiotic stress, it is an indication that our DEGs are functional in heat stress tolerance. Verification of few selected DEGs using RT-qPCR produced expression levels similar to the transcriptome data. This indicates that the transcriptome data is reliable. These results could be helpful in enhancing our understanding of the mechanism underlying thermotolerance in wheat.
Collapse
Affiliation(s)
- Mawuli K Azameti
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.,CSIR-Food Research Institute, Accra, Ghana
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - P K Singh
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Jasdeep C Padaria
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. .,ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
12
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
13
|
Wang Y, Guo H, Wu X, Wang J, Li H, Zhang R. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:928897. [PMID: 35991451 PMCID: PMC9381927 DOI: 10.3389/fpls.2022.928897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 05/27/2023]
Abstract
Drought is a significant environmental stress factor that adversely affects maize productivity. However, many details regarding the molecular mechanisms of maize against drought are still unclear. In this study, leaf transcriptomics and physiological traits of two maize genotypes with differing drought resistance were analyzed. Transcriptome sequencing identified 8985 and 7305 differentially expressed genes (DEGs) in SD902 and SD609, respectively. Functional analysis suggested that numerous genes are highly involved in oxidative defense, protein modification, photosynthesis, phytohormone response, MAPK signaling, and transcription factors (TFs). Compared to SD902, SD609 had a higher expression of DEGs related to antioxidant enzymes, photosynthetic electron transport, heat shock proteins, and indole-3-acetic acid (IAA) signaling under drought conditions, which might contribute to its tolerance mechanisms to drought. Stress-induced TFs may play a crucial regulatory role in genotypic differences. Moreover, the physiological changes and gene expression abundance determined using quantitative reverse transcription polymerase chain reaction were consistent with the RNA sequencing data. The study results suggest that the higher drought tolerance of SD609 than SD902 can be attributed to stronger stress defense capabilities, IAA signal transduction, and more stable photosynthesis. Our findings provide new insights into the molecular mechanisms of maize against drought stress, and the candidate genes identified may be used in breeding drought-tolerant maize cultivars.
Collapse
|
14
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
15
|
Sun L, Wen J, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH 2022; 3:25-39. [PMID: 36304198 PMCID: PMC9590529 DOI: 10.1007/s42994-021-00064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022]
Abstract
Wheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00064-z.
Collapse
Affiliation(s)
- Lv Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Jingjing Wen
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| |
Collapse
|
16
|
Mishra DC, Arora D, Budhlakoti N, Solanke AU, Mithra SVACR, Kumar A, Pandey PS, Srivastava S, Kumar S, Farooqi MS, Lal SB, Rai A, Chaturvedi KK. Identification of Potential Cytokinin Responsive Key Genes in Rice Treated With Trans-Zeatin Through Systems Biology Approach. Front Genet 2022; 12:780599. [PMID: 35198001 PMCID: PMC8859635 DOI: 10.3389/fgene.2021.780599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023] Open
Abstract
Rice is an important staple food grain consumed by most of the population around the world. With climate and environmental changes, rice has undergone a tremendous stress state which has impacted crop production and productivity. Plant growth hormones are essential component that controls the overall outcome of the growth and development of the plant. Cytokinin is a hormone that plays an important role in plant immunity and defense systems. Trans-zeatin is an active form of cytokinin that can affect plant growth which is mediated by a multi-step two-component phosphorelay system that has different roles in various developmental stages. Systems biology is an approach for pathway analysis to trans-zeatin treated rice that could provide a deep understanding of different molecules associated with them. In this study, we have used a weighted gene co-expression network analysis method to identify the functional modules and hub genes involved in the cytokinin pathway. We have identified nine functional modules comprising of different hub genes which contribute to the cytokinin signaling route. The biological significance of these identified hub genes has been tested by applying well-proven statistical techniques to establish the association with the experimentally validated QTLs and annotated by the DAVID server. The establishment of key genes in different pathways has been confirmed. These results will be useful to design new stress-resistant cultivars which can provide sustainable yield in stress-specific conditions.
Collapse
Affiliation(s)
- Dwijesh Chandra Mishra
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Devender Arora
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- National Institute of Animal Science, Rural Development Administration, Jeonju, South Korea
| | - Neeraj Budhlakoti
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - P. S. Pandey
- Agricultural Education Division, Indian Council of Agricultural Research, New Delhi, India
| | - Sudhir Srivastava
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sanjeev Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - M. S. Farooqi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - S. B. Lal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K. K. Chaturvedi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- *Correspondence: K. K. Chaturvedi,
| |
Collapse
|
17
|
Seni S, Kaur S, Malik P, Yadav IS, Sirohi P, Chauhan H, Kaur A, Chhuneja P. Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides. Sci Rep 2021; 11:22049. [PMID: 34764387 PMCID: PMC8586331 DOI: 10.1038/s41598-021-01596-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.
Collapse
Affiliation(s)
- Sushmita Seni
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Palvi Malik
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Inderjit Singh Yadav
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parul Sirohi
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Harsh Chauhan
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amandeep Kaur
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parveen Chhuneja
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
18
|
Maren N, Zhao F, Aryal R, Touchell D, Liu W, Ranney T, Ashrafi H. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics 2021; 22:483. [PMID: 34182921 PMCID: PMC8237498 DOI: 10.1186/s12864-021-07641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.
Collapse
Affiliation(s)
- Nathan Maren
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Darren Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Thomas Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| |
Collapse
|
19
|
Yang Y, Zheng C, Zhong C, Lu T, Gul J, Jin X, Zhang Y, Liu Q. Transcriptome analysis of Sonneratia caseolaris seedlings under chilling stress. PeerJ 2021; 9:e11506. [PMID: 34141477 PMCID: PMC8180195 DOI: 10.7717/peerj.11506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
Sonneratia caseolaris is a native mangrove species found in China. It is fast growing and highly adaptable for mangrove afforestation, but suffered great damage by chilling event once introduced to high latitude area. To understand the response mechanisms under chilling stress, physiological and transcriptomic analyses were conducted. The relative electrolyte conductivity, malondialdehyde (MDA) content, soluble sugar content and soluble protein content increased significantly under chilling stress. This indicated that S. caseolaris suffered great damage and increased the levels of osmoprotectants in response to the chilling stress. Gene expression comparison analysis of S. caseolaris leaves after 6 h of chilling stress was performed at the transcriptional scale using RNA-Seq. A total of 168,473 unigenes and 3,706 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that the DEGs were mainly involved in carbohydrate metabolism, antioxidant enzyme, plant hormone signal transduction, and transcription factors (TFs). Sixteen genes associated with carbohydrate metabolism, antioxidant enzyme, phytohormones and TFs were selected for qRT-PCR verification, and they indicated that the transcriptome data were reliable. Our work provided a comprehensive review of the chilling response of S. caseolaris at both physiological and transcriptomic levels, which will prove useful for further studies on stress-responses in mangrove plants.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Chunfang Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Cairong Zhong
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, Hainan, China
| | - Tianxi Lu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Juma Gul
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ying Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Qiang Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
20
|
Ramakrishna G, Kaur P, Singh A, Yadav SS, Sharma S, Singh NK, Gaikwad K. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives. PLANT CELL REPORTS 2021; 40:881-898. [PMID: 33837822 DOI: 10.1007/s00299-021-02686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Comparative transcriptome analyses accompanied by biochemical assays revealed high variability in heat stress response in Cajanus species. Among the studied species, C. scarabaeoides was the most thermotolerant followed by C. cajanifolius, C. cajan, and C. acutifolius. Pigeonpea is one of the climate-resilient grain legumes. Though the optimum temperature for cultivated pigeonpea is ~ 25-35 °C, its wild relatives grow in temperatures ranging between 18 and 45 °C. To gain insight into molecular mechanisms responsible for the heat stress tolerance in pigeonpea, we conducted time-series transcriptome analysis of one pigeonpea cultivar (Cajanus cajan) and two wild relatives, Cajanus acutifolius, and Cajanus scarabaeoides subjected to heat stress at 42 ± 2 ºC for 30 min and 3 h. A total of 9521, 12,447, and 5282 identified transcripts were differentially expressed in C. cajan, C. acutifolius, and C. scarabaeoides, respectively. In this study, we observed that a significant number of genes undergo alternative splicing in a species-specific pattern during heat stress. Gene expression profiling analysis, histochemical assay, chlorophyll content, and electrolyte leakage assay showed that C. scarabaeoides has adaptive features for heat stress tolerance. The gene set enrichment analyses of differentially expressed genes in these Cajanus species during heat stress revealed that oxidoreductase activity, transcription factor activity, oxygen-evolving complex, photosystem-II, thylakoid, phenylpropanoid biosynthetic process, secondary metabolic process, and flavonoid biosynthetic process were highly affected. The histochemical assay showed more lipid peroxidation in C. acutifolius compared to other Cajanus species inferring the presence of higher quantities of polyunsaturated fatty acids in the plasma membrane which might have led to severe damage of membrane-bound organelles like chloroplast, and high electrolyte leakage during heat stress. This study paves the way for the identification of candidate genes, which can be useful for the development of thermo-tolerant pigeonpea cultivars.
Collapse
Affiliation(s)
- G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Parampreet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sunishtha S Yadav
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
21
|
Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021; 22:ijms22084075. [PMID: 33920817 PMCID: PMC8071135 DOI: 10.3390/ijms22084075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.
Collapse
|
22
|
Dahuja A, Kumar RR, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. PHYSIOLOGIA PLANTARUM 2021; 171:785-801. [PMID: 33280130 DOI: 10.1111/ppl.13302] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 05/20/2023]
Abstract
The ATP-binding cassette (ABC) transporters belong to a large protein family predominantly present in diverse species. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. These proteins are localized in the membranes of chloroplasts, mitochondria, peroxisomes and vacuoles. ABC proteins are involved in regulating diverse biological processes in plants, such as growth, development, uptake of nutrients, tolerance to biotic and abiotic stresses, tolerance to metal toxicity, stomatal closure, shape and size of grains, protection of pollens, transport of phytohormones, etc. In mitochondria and chloroplast, the iron metabolism and its transport across the membrane are mediated by ABC transporters. Tonoplast-localized ABC transporters are involved in internal detoxification of metal ion; thus protecting against the DNA impairment and maintaining cell growth. ABC transporters are involved in the transport of secondary metabolites inside the cells. Microorganisms also engage a large number of ABC transporters to import and expel substrates decisive for their pathogenesis. ABC transporters also suppress the seed embryonic growth until favorable conditions come. This review aims at giving insights on ABC transporters, their evolution, structure, functions and roles in different biological processes for helping the terrestrial plants to survive under adverse environmental conditions. These specialized plant membrane transporters ensure a sustainable economic yield and high-quality products, especially under unfavorable conditions of growth. These transporters can be suitably manipulated to develop 'Plants for the Future'.
Collapse
Affiliation(s)
- Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Akshay Sakhare
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Archana Watts
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
23
|
Kothari A, Lachowiec J. Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. Int J Mol Sci 2021; 22:2706. [PMID: 33800127 PMCID: PMC7962182 DOI: 10.3390/ijms22052706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Heat stress causes huge losses in the yield of cereal crops. Temperature influences the rate of plant metabolic and developmental processes that ultimately determine the production of grains, with high temperatures causing a reduction in grain yield and quality. To ensure continued food security, the tolerance of high temperature is rapidly becoming necessary. Brassinosteroids (BR) are a class of plant hormones that impact tolerance to various biotic and abiotic stresses and regulate cereal growth and fertility. Fine-tuning the action of BR has the potential to increase cereals' tolerance and acclimation to heat stress and maintain yields. Mechanistically, exogenous applications of BR protect yields through amplifying responses to heat stress and rescuing the expression of growth promoters. Varied BR compounds and differential signaling mechanisms across cereals point to a diversity of mechanisms that can be leveraged to mitigate heat stress. Further, hormone transport and BR interaction with other molecules in plants may be critical to utilizing BR as protective agrochemicals against heat stress. Understanding the interplay between heat stress responses, growth processes and hormone signaling may lead us to a comprehensive dogma of how to tune BR application for optimizing cereal growth under challenging environments in the field.
Collapse
Affiliation(s)
| | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
24
|
Chu C, Wang S, Paetzold L, Wang Z, Hui K, Rudd JC, Xue Q, Ibrahim AMH, Metz R, Johnson CD, Rush CM, Liu S. RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars 'TAM 111' and 'TAM 112'. Sci Rep 2021; 11:4301. [PMID: 33619336 PMCID: PMC7900135 DOI: 10.1038/s41598-021-83372-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Wheat cultivars 'TAM 111' and 'TAM 112' have been dominantly grown in the Southern U.S. Great Plains for many years due to their high yield and drought tolerance. To identify the molecular basis and genetic control of drought tolerance in these two landmark cultivars, RNA-seq analysis was conducted to compare gene expression difference in flag leaves under fully irrigated (wet) and water deficient (dry) conditions. A total of 2254 genes showed significantly altered expression patterns under dry and wet conditions in the two cultivars. TAM 111 had 593 and 1532 dry-wet differentially expressed genes (DEGs), and TAM 112 had 777 and 1670 at heading and grain-filling stages, respectively. The two cultivars have 1214 (53.9%) dry-wet DEGs in common, which agreed with their excellent adaption to drought, but 438 and 602 dry-wet DEGs were respectively shown only in TAM 111 and TAM 112 suggested that each has a specific mechanism to cope with drought. Annotations of all 2254 genes showed 1855 have functions related to biosynthesis, stress responses, defense responses, transcription factors and cellular components related to ion or protein transportation and signal transduction. Comparing hierarchical structure of biological processes, molecule functions and cellular components revealed the significant regulation differences between TAM 111 and TAM 112, particularly for genes of phosphorylation and adenyl ribonucleotide binding, and proteins located in nucleus and plasma membrane. TAM 112 showed more active than TAM 111 in response to drought and carried more specific genes with most of them were up-regulated in responses to stresses of water deprivation, heat and oxidative, ABA-induced signal pathway and transcription regulation. In addition, 258 genes encoding predicted uncharacterized proteins and 141 unannotated genes with no similar sequences identified in the databases may represent novel genes related to drought response in TAM 111 or TAM 112. This research thus revealed different drought-tolerance mechanisms in TAM 111 and TAM 112 and identified useful drought tolerance genes for wheat adaption. Data of gene sequence and expression regulation from this study also provided useful information of annotating novel genes associated with drought tolerance in the wheat genome.
Collapse
Affiliation(s)
- Chenggen Chu
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA.
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, 1616 Albrecht Blvd. N, Fargo, ND, 58102, USA.
| | - Shichen Wang
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Li Paetzold
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Zhen Wang
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Kele Hui
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Jackie C Rudd
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Soil and Crop Sciences Department, Texas A&M University, College Station, TX, 77843, USA
| | - Richard Metz
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Charles M Rush
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research Center, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA.
| |
Collapse
|
25
|
Vicente R, Bolger AM, Martínez-Carrasco R, Pérez P, Gutiérrez E, Usadel B, Morcuende R. De Novo Transcriptome Analysis of Durum Wheat Flag Leaves Provides New Insights Into the Regulatory Response to Elevated CO 2 and High Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1605. [PMID: 31921252 PMCID: PMC6915051 DOI: 10.3389/fpls.2019.01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/14/2019] [Indexed: 05/08/2023]
Abstract
Global warming is becoming a significant problem for food security, particularly in the Mediterranean basin. The use of molecular techniques to study gene-level responses to environmental changes in non-model organisms is increasing and may help to improve the mechanistic understanding of durum wheat response to elevated CO2 and high temperature. With this purpose, we performed transcriptome RNA sequencing (RNA-Seq) analyses combined with physiological and biochemical studies in the flag leaf of plants grown in field chambers at ear emergence. Enhanced photosynthesis by elevated CO2 was accompanied by an increase in biomass and starch and fructan content, and a decrease in N compounds, as chlorophyll, soluble proteins, and Rubisco content, in association with a decline of nitrate reductase and initial and total Rubisco activities. While high temperature led to a decline of chlorophyll, Rubisco activity, and protein content, the glucose content increased and starch decreased. Furthermore, elevated CO2 induced several genes involved in mitochondrial electron transport, a few genes for photosynthesis and fructan synthesis, and most of the genes involved in secondary metabolism and gibberellin and jasmonate metabolism, whereas those related to light harvesting, N assimilation, and other hormone pathways were repressed. High temperature repressed genes for C, energy, N, lipid, secondary, and hormone metabolisms. Under the combined increases in atmospheric CO2 and temperature, the transcript profile resembled that previously reported for high temperature, although elevated CO2 partly alleviated the downregulation of primary and secondary metabolism genes. The results suggest that there was a reprogramming of primary and secondary metabolism under the future climatic scenario, leading to coordinated regulation of C-N metabolism towards C-rich metabolites at elevated CO2 and a shift away from C-rich secondary metabolites at high temperature. Several candidate genes differentially expressed were identified, including protein kinases, receptor kinases, and transcription factors.
Collapse
Affiliation(s)
- Rubén Vicente
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Rafael Martínez-Carrasco
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pilar Pérez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Elena Gutiérrez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Björn Usadel
- Institute for Biology 1, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| |
Collapse
|
26
|
Su W, Ye C, Zhang Y, Hao S, Li QQ. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:191-201. [PMID: 31103657 DOI: 10.1016/j.scitotenv.2019.05.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/28/2023]
Abstract
Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.
Collapse
Affiliation(s)
- Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
27
|
Tang C, Zhang H, Zhang P, Ma Y, Cao M, Hu H, Shah FA, Zhao W, Li M, Wu L. iTRAQ-based quantitative proteome analysis reveals metabolic changes between a cleistogamous wheat mutant and its wild-type wheat counterpart. PeerJ 2019; 7:e7104. [PMID: 31245178 PMCID: PMC6585907 DOI: 10.7717/peerj.7104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background Wheat is one of the most important staple crops worldwide. Fusarium head blight (FHB) severely affects wheat yield and quality. A novel bread wheat mutant, ZK001, characterized as cleistogamic was isolated from a non-cleistogamous variety Yumai 18 (YM18) through static magnetic field mutagenesis. Cleistogamy is a promising strategy for controlling FHB. However, little is known about the mechanism of cleistogamy in wheat. Methods We performed a FHB resistance test to identify the FHB infection rate of ZK001. We also measured the agronomic traits of ZK001 and the starch and total soluble sugar contents of lodicules in YM18 and ZK001. Finally, we performed comparative studies at the proteome level between YM18 and ZK001 based on the proteomic technique of isobaric tags for relative and absolute quantification. Results The infection rate of ZK001 was lower than that of its wild-type and Aikang 58. The abnormal lodicules of ZK001 lost the ability to push the lemma and palea apart during the flowering stage. Proteome analysis showed that the main differentially abundant proteins (DAPs) were related to carbohydrate metabolism, protein transport, and calcium ion binding. These DAPs may work together to regulate cellular homeostasis, osmotic pressure and the development of lodicules. This hypothesis is supported by the analysis of starch, soluble sugar content in the lodicules as well as the results of Quantitative reverse transcription polymerase chain reaction. Conclusions Proteomic analysis has provided comprehensive information that should be useful for further research on the lodicule development mechanism in wheat. The ZK001 mutant is optimal for studying flower development in wheat and could be very important for FHB resistant projects via conventional crossing.
Collapse
Affiliation(s)
- Caiguo Tang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huilan Zhang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pingping Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuhan Ma
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghui Cao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Hu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weiwei Zhao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghao Li
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lifang Wu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
28
|
Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep 2019; 9:4814. [PMID: 30886204 PMCID: PMC6423321 DOI: 10.1038/s41598-019-41234-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
In Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6). Thousands of genes were differentially expressed in response to temperature, time of day, and/or the clock mutation. Approximately 30% more genes were differentially expressed in the afternoon compared to the morning, and heat stress significantly perturbed the transcriptome. Of the DEGs (~3000) specifically responsive to heat stress, ~70% showed time of day (ZT1 or ZT6) occurrence of the transcriptional response. For the DEGs (~1400) that are shared between ZT1 and ZT6, we observed changes to the magnitude of the transcriptional response. In addition, ~2% of all DEGs showed differential responses to temperature stress in the clock mutants. The findings in this study highlight a significant role for time of day in the heat stress responsive transcriptome, and the clock through CCA1 and LHY, appears to have a more profound role than PRR7 and PRR9 in modulating heat stress responses during the day. Our results emphasize the importance of considering the dimension of time in studies on abiotic stress responses in Arabidopsis.
Collapse
|
29
|
Challa GS, Li W. De novo assembly of wheat root transcriptomes and transcriptional signature of longitudinal differentiation. PLoS One 2018; 13:e0205582. [PMID: 30395610 PMCID: PMC6218025 DOI: 10.1371/journal.pone.0205582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023] Open
Abstract
Hidden underground, root systems constitute an important part of the plant for its development, nourishment and sensing the soil environment around it, but we know very little about its genetic regulation in crop plants like wheat. In the present study, we de novo assembled the root transcriptomes in reference cultivar Chinese Spring from RNA-seq reads generated by the 454-GS-FLX and HiSeq platforms. The FLX reads were assembled into 24,986 transcripts with completeness of 54.84%, and the HiSeq reads were assembled into 91,543 high-confidence protein-coding transcripts, 2,404 low-confidence protein-coding transcripts, and 13,181 non-coding transcripts with the completeness of >90%. Combining the FLX and HiSeq assemblies, we assembled a root transcriptome of 92,335 ORF-containing transcripts. Approximately 7% of the coding transcripts and ~2% non-coding transcripts are not present in the current wheat genome assembly. Functional annotation of both assemblies showed similar gene ontology patterns and that ~7% coding and >5% non-coding transcripts are root-specific. Transcription quantification identified 1,728 differentially expressed transcripts between root tips and maturation zone, and functional annotation of these transcripts captured a transcriptional signature of longitudinal development of wheat root. With the transcriptomic resources developed, this study provided the first view of wheat root transcriptome under different developmental zones and laid a foundation for molecular studies of wheat root development and growth using a reverse genetic approach.
Collapse
Affiliation(s)
- Ghana Shyam Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States of America
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States of America
- Department of Plant Science, South Dakota State University, Brookings, SD, United States of America
- * E-mail:
| |
Collapse
|
30
|
Henry RJ, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:231-236. [PMID: 29779965 DOI: 10.1016/j.pbi.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 05/23/2023]
Abstract
Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| | - Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| |
Collapse
|
31
|
Transcriptional profiling and genes involved in acquired thermotolerance in Banana: a non-model crop. Sci Rep 2018; 8:10683. [PMID: 30013168 PMCID: PMC6048128 DOI: 10.1038/s41598-018-27820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
Banana is a non- model crop plant, and one of the most important crops in the tropics and sub tropics. Heat stress is the major abiotic stress affecting banana crop production because of its long growth period and is likely to become a threat due to global warming. To understand an acquired thermotolerance phenomenon at the molecular level, the RNA-seq approach was employed by adapting TIR method. A total of 136.38 million high quality reads were assembled. Differentially expressed genes under induction (I) was 3936, I + L was 2268 and lethal stress was 907 compared to control. Gene ontology and DGE analysis showed that genes related to heat shock factors, heat shock proteins, stress associated proteins, ROS scavenging, fatty acid metabolism, protein modification were significantly up regulated during induction, thus preparing the organism or tissue at molecular and cellular level for acquired thermotolerance. KEGG pathway analysis revealed the significant enrichment of pathways involved in protein processing, MAPK signaling and HSPs which indicates that these processes are conserved and involved in thermo tolerance. Thus, this study provides insights into the acquired thermotolerance phenomena in plants especially banana.
Collapse
|
32
|
Muthusamy B, Selvan LDN, Nguyen TT, Manoj J, Stawiski EW, Jaiswal BS, Wang W, Raja R, Ramprasad VL, Gupta R, Murugan S, Kadandale JS, Prasad TSK, Reddy K, Peterson A, Pandey A, Seshagiri S, Girimaji SC, Gowda H. Next-Generation Sequencing Reveals Novel Mutations in X-linked Intellectual Disability. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:295-303. [PMID: 28481730 DOI: 10.1089/omi.2017.0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robust diagnostics for many human genetic disorders are much needed in the pursuit of global personalized medicine. Next-generation sequencing now offers new promise for biomarker and diagnostic discovery, in developed as well as resource-limited countries. In this broader global health context, X-linked intellectual disability (XLID) is an inherited genetic disorder that is associated with a range of phenotypes impacting societies in both developed and developing countries. Although intellectual disability arises due to diverse causes, a substantial proportion is caused by genomic alterations. Studies have identified causal XLID genomic alterations in more than 100 protein-coding genes located on the X-chromosome. However, the causes for a substantial number of intellectual disability and associated phenotypes still remain unknown. Identification of causative genes and novel mutations will help in early diagnosis as well as genetic counseling of families. Advent of next-generation sequencing methods has accelerated the discovery of new genes involved in mental health disorders. In this study, we analyzed the exomes of three families from India with nonsyndromic XLID comprising seven affected individuals. The affected individuals had varying degrees of intellectual disability, microcephaly, and delayed motor and language milestones. We identified potential causal variants in three XLID genes, including PAK3 (V294M), CASK (complex structural variant), and MECP2 (P354T). Our findings reported in this study extend the spectrum of mutations and phenotypes associated with XLID, and calls for further studies of intellectual disability and mental health disorders with use of next-generation sequencing technologies.
Collapse
Affiliation(s)
- Babylakshmi Muthusamy
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 Centre for Bioinformatics, Pondicherry University , Puducherry, India
| | | | - Thong T Nguyen
- 3 Molecular Biology Department, Genentech, Inc. , South San Francisco, California
| | - Jesna Manoj
- 4 Department of Child and Adolescent Psychiatry, NIMHANS , Bangalore, India
| | - Eric W Stawiski
- 3 Molecular Biology Department, Genentech, Inc. , South San Francisco, California.,5 Department of Bioinformatics and Computational Biology, Genentech, Inc. , South San Francisco, California
| | - Bijay S Jaiswal
- 3 Molecular Biology Department, Genentech, Inc. , South San Francisco, California
| | - Weiru Wang
- 6 Department of Structural Biology, Genentech, Inc. , South San Francisco, California
| | - Remya Raja
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | | | | | - T S Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,9 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,10 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Kavita Reddy
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Andrew Peterson
- 3 Molecular Biology Department, Genentech, Inc. , South San Francisco, California
| | - Akhilesh Pandey
- 11 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland.,13 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Somasekar Seshagiri
- 3 Molecular Biology Department, Genentech, Inc. , South San Francisco, California
| | | | - Harsha Gowda
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,9 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| |
Collapse
|
33
|
Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat. Funct Integr Genomics 2017; 17:621-640. [PMID: 28573536 DOI: 10.1007/s10142-017-0560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Global warming is a major threat for agriculture and food security, and in many cases the negative impacts are already apparent. Wheat is one of the most important staple food crops and is highly sensitive to the heat stress (HS) during reproductive and grain-filling stages. Here, whole transcriptome analysis of thermotolerant wheat cv. HD2985 was carried out at the post-anthesis stage under control (22 ± 3 °C) and HS-treated (42 °C, 2 h) conditions using Illumina Hiseq and Roche GS-FLX 454 platforms. We assembled ~24 million (control) and ~23 million (HS-treated) high-quality trimmed reads using different assemblers with optimal parameters. De novo assembly yielded 52,567 (control) and 59,658 (HS-treated) unigenes. We observed 785 transcripts to be upregulated and 431 transcripts to be downregulated under HS; 78 transcripts showed >10-fold upregulation such as HSPs, metabolic pathway-related genes, etc. Maximum number of upregulated genes was observed to be associated with processes such as HS-response, protein-folding, oxidation-reduction and photosynthesis. We identified 2008 and 2483 simple sequence repeats (SSRs) markers from control and HS-treated samples; 243 SSRs were observed to be overlying on stress-associated genes. Polymorphic study validated four SSRs to be heat-responsive in nature. Expression analysis of identified differentially expressed transcripts (DETs) showed very high fold increase in the expression of catalytic chaperones (HSP26, HSP17, and Rca) in contrasting wheat cvs. HD2985 and HD2329 under HS. We observed positive correlation between RNA-seq and qRT-PCR expression data. The present study culminated in greater understanding of the heat-response of tolerant genotype and has provided good candidate genes for the marker development and screening of wheat germplasm for thermotolerance.
Collapse
|
34
|
Kumar RR, Goswami S, Singh K, Dubey K, Singh S, Sharma R, Verma N, Kala YK, Rai GK, Grover M, Mishra DC, Singh B, Pathak H, Chinnusamy V, Rai A, Praveen S. Identification of Putative RuBisCo Activase (TaRca1)-The Catalytic Chaperone Regulating Carbon Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:986. [PMID: 27462325 PMCID: PMC4940427 DOI: 10.3389/fpls.2016.00986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/21/2016] [Indexed: 05/12/2023]
Abstract
RuBisCo activase (Rca) is a catalytic chaperone involved in modulating the activity of RuBisCo (key enzyme of photosynthetic pathway). Here, we identified eight novel transcripts from wheat through data mining predicted to be Rca and cloned a transcript of 1.4 kb from cv. HD2985, named as TaRca1 (GenBank acc. no. KC776912). Single copy number of TaRca1 was observed in wheat genome. Expression analysis in diverse wheat genotypes (HD2985, Halna, PBW621, and HD2329) showed very high relative expression of TaRca1 in Halna under control and HS-treated, as compared to other cultivars at different stages of growth. TaRca1 protein was predicted to be chloroplast-localized with numerous potential phosphorylation sites. Northern blot analysis showed maximum accumulation of TaRca1 transcript in thermotolerant cv. during mealy-ripe stage, as compared to thermosusceptible. Decrease in the photosynthetic parameters was observed in all the cultivars, except PBW621 in response to HS. We observed significant increase in the Rca activity in all the cultivars under HS at different stages of growth. HS causes decrease in the RuBisCo activity; maximum reduction was observed during pollination stage in thermosusceptible cvs. as validated through immunoblotting. We observed uniform carbon distribution in different tissues of thermotolerant cvs., as compared to thermosusceptible. Similarly, tolerance level of leaf was observed maximum in Halna having high Rca activity under HS. A positive correlation was observed between the transcript and activity of TaRca1 in HS-treated Halna. Similarly, TaRca1 enzyme showed positive correlation with the activity of RuBisCo. There is, however, need to manipulate the thermal stability of TaRca1 enzyme through protein engineering for sustaining the photosynthetic rate under HS-a novel approach toward development of "climate-smart" crop.
Collapse
Affiliation(s)
- Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Shweta Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Renu Sharma
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Neeraj Verma
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Yugal K. Kala
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Gyanendra K. Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and TechnologyJammu, India
| | - Monendra Grover
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Dwijesh C. Mishra
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Bhupinder Singh
- Nuclear Research Laboratory, Plant Physiology, Indian Agricultural Research InstituteNew Delhi, India
| | - Himanshu Pathak
- Center for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research InstituteNew Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
35
|
Moustafa K, Cross JM. Genetic Approaches to Study Plant Responses to Environmental Stresses: An Overview. BIOLOGY 2016; 5:biology5020020. [PMID: 27196939 PMCID: PMC4929534 DOI: 10.3390/biology5020020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
The assessment of gene expression levels is an important step toward elucidating gene functions temporally and spatially. Decades ago, typical studies were focusing on a few genes individually, whereas now researchers are able to examine whole genomes at once. The upgrade of throughput levels aided the introduction of systems biology approaches whereby cell functional networks can be scrutinized in their entireties to unravel potential functional interacting components. The birth of systems biology goes hand-in-hand with huge technological advancements and enables a fairly rapid detection of all transcripts in studied biological samples. Even so, earlier technologies that were restricted to probing single genes or a subset of genes still have their place in research laboratories. The objective here is to highlight key approaches used in gene expression analysis in plant responses to environmental stresses, or, more generally, any other condition of interest. Northern blots, RNase protection assays, and qPCR are described for their targeted detection of one or a few transcripts at a once. Differential display and serial analysis of gene expression represent non-targeted methods to evaluate expression changes of a significant number of gene transcripts. Finally, microarrays and RNA-seq (next-generation sequencing) contribute to the ultimate goal of identifying and quantifying all transcripts in a cell under conditions or stages of study. Recent examples of applications as well as principles, advantages, and drawbacks of each method are contrasted. We also suggest replacing the term “Next-Generation Sequencing (NGS)” with another less confusing synonym such as “RNA-seq”, “high throughput sequencing”, or “massively parallel sequencing” to avoid confusion with any future sequencing technologies.
Collapse
Affiliation(s)
- Khaled Moustafa
- Conservatoire National des Arts et Métiers, Paris 75003, France.
| | - Joanna M Cross
- Faculty of Agriculture, Inonu University, Malatya 44000, Turkey.
| |
Collapse
|
36
|
Chen S, Li H. Heat Stress Regulates the Expression of Genes at Transcriptional and Post-Transcriptional Levels, Revealed by RNA-seq in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2016; 7:2067. [PMID: 28119730 PMCID: PMC5222869 DOI: 10.3389/fpls.2016.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/26/2016] [Indexed: 05/04/2023]
Abstract
Heat stress greatly affects plant growth/development and influences the output of crops. With the increased occurrence of extreme high temperature, the negative influence on cereal products from heat stress becomes severer and severer. It is urgent to reveal the molecular mechanism in response to heat stress in plants. In this research, we used RNA-seq technology to identify differentially expressed genes (DEGs) in leaves of seedlings, leaves and inflorescences at heading stage of Brachypodium distachyon, one model plant of grasses. Results showed many genes in responding to heat stress. Of them, the expression level of 656 DEGs were altered in three groups of samples treated with high temperature. Gene ontology (GO) analysis showed that the highly enriched DEGs were responsible for heat stress and protein folding. According to KEGG pathway analysis, the DEGs were related mainly to photosynthesis-antenna proteins, the endoplasmic reticulum, and the spliceosome. Additionally, the expression level of 454 transcription factors belonging to 49 gene families was altered, as well as 1,973 splicing events occurred after treatment with high temperature. This research lays a foundation for characterizing the molecular mechanism of heat stress response and identifying key genes for those responses in plants. These findings also clearly show that heat stress regulates the expression of genes not only at transcriptional level, but also at post-transcriptional level.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Xinjiang Agricultural Vocational Technical CollegeChangji, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Xinjiang Agricultural Vocational Technical CollegeChangji, China
- *Correspondence: Haifeng Li,
| |
Collapse
|