1
|
Liu X, Chen Q, Yin X, Wang X, Ran J, Yu W, Wang B. Study on chromatin regulation patterns of expression vectors in the PhiC31 integration site. Epigenetics 2024; 19:2337085. [PMID: 38595049 PMCID: PMC11008548 DOI: 10.1080/15592294.2024.2337085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The PhiC31 integration system allows for targeted and efficient transgene integration and expression by recognizing pseudo attP sites in mammalian cells and integrating the exogenous genes into the open chromatin regions of active chromatin. In order to investigate the regulatory patterns of efficient gene expression in the open chromatin region of PhiC31 integration, this study utilized Ubiquitous Chromatin Opening Element (UCOE) and activating RNA (saRNA) to modulate the chromatin structure in the promoter region of the PhiC31 integration vector. The study analysed the effects of DNA methylation and nucleosome occupancy changes in the integrated promoter on gene expression levels. The results showed that for the OCT4 promoter with moderate CG density, DNA methylation had a smaller impact on expression compared to changes in nucleosome positioning near the transcription start site, which was crucial for enhancing downstream gene expression. On the other hand, for the SOX2 promoter with high CG density, increased methylation in the CpG island upstream of the transcription start site played a key role in affecting high expression, but the positioning and clustering of nucleosomes also had an important influence. In conclusion, analysing the DNA methylation patterns, nucleosome positioning, and quantity distribution of different promoters can determine whether the PhiC31 integration site possesses the potential to further enhance expression or overcome transgene silencing effects by utilizing chromatin regulatory elements.
Collapse
Affiliation(s)
- Xueli Liu
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
- Pharmaceutical Department, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qina Chen
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
| | - Xudong Yin
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
| | - Xiao Wang
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
| | - Jinshan Ran
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
| | - Wei Yu
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Bin Wang
- Key Technology Engineering Center for New Veterinary Vaccine and Industry of Yunnan Provincial Education Department, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Pottmeier P, Nikolantonaki D, Lanner F, Peuckert C, Jazin E. Sex-biased gene expression during neural differentiation of human embryonic stem cells. Front Cell Dev Biol 2024; 12:1341373. [PMID: 38764741 PMCID: PMC11101176 DOI: 10.3389/fcell.2024.1341373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Danai Nikolantonaki
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Min AK, Javidfar B, Missall R, Doanman D, Durens M, Graziani M, Mordelt A, Marro SG, de Witte L, Chen BK, Swartz TH, Akbarian S. HIV-1 infection of genetically engineered iPSC-derived central nervous system-engrafted microglia in a humanized mouse model. J Virol 2023; 97:e0159523. [PMID: 38032195 PMCID: PMC10734545 DOI: 10.1128/jvi.01595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madel Durens
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Samuele G. Marro
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Panyutin IV, Wakim PG, Maass-Moreno R, Pritchard WF, Neumann RD, Panyutin IG. Effect of exposure to ionizing radiation on competitive proliferation and differentiation of hESC. Int J Radiat Biol 2022; 99:760-768. [PMID: 36352506 DOI: 10.1080/09553002.2023.2146231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE We studied the effects of computed tomography (CT) scan irradiation on proliferation and differentiation of human embryonic stem cells (hESCs). It was reported that hESC is extremely radiosensitive; exposure of hESC in cultures to 1 Gy of ionizing radiation (IR) results in massive apoptosis of the damaged cells and, thus, they are eliminated from the cultures. However, after recovery the surviving cells proliferate and differentiate normally. We hypothesized that IR-exposed hESC may still have growth rate disadvantage when they proliferate or differentiate in the presence of non-irradiated hESC, as has been shown for mouse hematopoietic stem cells in vivo. MATERIALS AND METHODS To study such competitive proliferation and differentiation, we obtained cells of H9 hESC line that stably express green fluorescent protein (H9GFP). Irradiated with 50 mGy or 500 mGy H9GFP and non-irradiated H9 cells (or vice versa) were mixed and allowed to grow under pluripotency maintaining conditions or under conditions of directed differentiation into neuronal lineage for several passages. The ratio of H9GFP to H9 cells was measured after every passage or approximately every week. RESULTS We observed competition of H9 and H9GFP cells; we found that the ratio of H9GFP to H9 cells increased with time in both proliferation and differentiation conditions regardless of irradiation, i.e. the H9GFP cells in general grew faster than H9 cells in the mixtures. However, we did not observe any consistent changes in the relative growth rate of irradiated versus non-irradiated hESC. CONCLUSIONS We conclude that population of pluripotent hESC is very resilient; while damaged cells are eliminated from colonies, the surviving cells retain their pluripotency, ability to differentiate, and compete with non-irradiated isogenic cells. These findings are consistent with the results of our previous studies, and with the concept that early in pregnancy omnipotent cells injured by IR can be replaced by non-damaged cells with no impact on embryo development.
Collapse
Affiliation(s)
- Irina V. Panyutin
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Paul G. Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Roberto Maass-Moreno
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - William F. Pritchard
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Ronald D. Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| | - Igor G. Panyutin
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892
| |
Collapse
|
6
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Park SB, Uchida T, Tilson S, Hu Z, Ma CD, Leek M, Eichner M, Hong SG, Liang TJ. A dual conditional CRISPR-Cas9 system to activate gene editing and reduce off-target effects in human stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:656-669. [PMID: 35615005 PMCID: PMC9112054 DOI: 10.1016/j.omtn.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas9 system has emerged as a powerful and efficient tool for genome editing. An important drawback of the CRISPR-Cas9 system is the constitutive endonuclease activity when Cas9 endonuclease and its sgRNA are co-expressed. This constitutive activity results in undesirable off-target effects that hinder studies using the system, such as probing gene functions or its therapeutic use in humans. Here, we describe a convenient method that allows temporal and tight control of CRISPR-Cas9 activity by combining transcriptional regulation of Cas9 expression and protein stability control of Cas9 in human stem cells. To achieve this dual control, we combined the doxycycline-inducible system for transcriptional regulation and FKBP12-derived destabilizing domain fused to Cas9 for protein stability regulation. We showed that approximately 5%–10% of Cas9 expression was observed when only one of the two controls was applied. By combining two systems, we markedly lowered the baseline Cas9 expression and limited the exposure time of Cas9 endonuclease in the cell, resulting in little or no undesirable on- or off-target effects. We anticipate that this dual conditional CRISPR-Cas9 system can serve as a valuable tool for systematic characterization and identification of genes for various pathological processes.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Takuro Uchida
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Samantha Tilson
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Christopher D Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Madeleine Leek
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Eichner
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20814, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD 20814, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
9
|
Surbhi, Wittmann G, Low MJ, Lechan RM. Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Mol Metab 2021; 53:101312. [PMID: 34329773 PMCID: PMC8383116 DOI: 10.1016/j.molmet.2021.101312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential regulators of energy balance. Selective loss of POMC production in these cells results in extreme obesity and metabolic comorbidities. Neurogenesis occurs in the adult hypothalamus, but it remains uncertain whether functional POMC neurons emerge in physiologically significant numbers during adulthood. Here, we tested whether Rax-expressing precursors generate POMC neurons in adult mice and rescue the metabolic phenotype caused by congenital hypothalamic POMC deficiency. METHODS Initially, we identified hypothalamic Rax-expressing cell types using wild-type and Rax-CreERT2:Ai34D mice. Then we generated compound Rax-CreERT2:ArcPomcloxTB/loxTB mice in which endogenous hypothalamic Pomc expression is silenced, but can be restored by tamoxifen administration selectively in neurons derived from Rax+ progenitors. The number of POMC neurons generated by Rax+ progenitors in adult mice and their axonal projections was determined. The metabolic effects of these neurons were assessed by measuring food intake, bodyweight, and body composition, along with glucose and insulin levels. RESULTS We found that Rax is expressed by tanycytes and a previously unrecognized cell type in the hypothalamic parenchyma of adult mice. Rax+ progenitors generated ~10% of the normal adult hypothalamic POMC neuron population within two weeks of tamoxifen treatment. The same rate and steady state of POMC neurogenesis persisted from young adult to aged mice. These new POMC neurons established terminal projections to brain regions that were involved in energy homeostasis. Mice with Rax+ progenitor-derived POMC neurons had reduced body fat mass, improved glucose tolerance, increased insulin sensitivity, and decreased bodyweight in proportion to the number of new POMC neurons. CONCLUSIONS These data demonstrate that Rax+ progenitors generate POMC neurons in sufficient numbers during adulthood to mitigate the metabolic abnormalities of hypothalamic POMC-deficient mice. The findings suggest that adult hypothalamic neurogenesis is a robust phenomenon in mice that can significantly impact energy homeostasis.
Collapse
Affiliation(s)
- Surbhi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
10
|
Takeda H, Dondzillo A, Randall JA, Gubbels SP. Selective ablation of cochlear hair cells promotes engraftment of human embryonic stem cell-derived progenitors in the mouse organ of Corti. Stem Cell Res Ther 2021; 12:352. [PMID: 34147129 PMCID: PMC8214253 DOI: 10.1186/s13287-021-02403-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hearing loss affects 25% of the population at ages 60-69 years. Loss of the hair cells of the inner ear commonly underlies deafness and once lost this cell type cannot spontaneously regenerate in higher vertebrates. As a result, there is a need for the development of regenerative strategies to replace hair cells once lost. Stem cell-based therapies are one such strategy and offer promise for cell replacement in a variety of tissues. A number of investigators have previously demonstrated successful implantation, and certain level of regeneration of hair and supporting cells in both avian and mammalian models using rodent pluripotent stem cells. However, the ability of human stem cells to engraft and generate differentiated cell types in the inner ear is not well understood. METHODS We differentiate human pluripotent stem cells to the pre-placodal stage in vitro then transplant them into the mouse cochlea after selective and complete lesioning of the endogenous population of hair cells. RESULTS We demonstrate that hair cell ablation prior to transplantation leads to increased engraftment in the auditory sensory epithelium, the organ of Corti, as well as differentiation of transplanted cells into hair and supporting cell immunophenotypes. CONCLUSION We have demonstrated the feasibility of human stem cell engraftment into an ablated mouse organ of Corti.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Otolaryngology, University of Colorado Denver, Academic Office One, Suite 3001, 12631 E 17th Avenue, MS B205, Aurora, CO, 80045, USA
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, Kumamoto City, Japan
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado Denver, Academic Office One, Suite 3001, 12631 E 17th Avenue, MS B205, Aurora, CO, 80045, USA
| | - Jessica A Randall
- Department of Otolaryngology, University of Colorado Denver, Academic Office One, Suite 3001, 12631 E 17th Avenue, MS B205, Aurora, CO, 80045, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado Denver, Academic Office One, Suite 3001, 12631 E 17th Avenue, MS B205, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Fitzgerald M, Livingston M, Gibbs C, Deans TL. Rosa26 docking sites for investigating genetic circuit silencing in stem cells. Synth Biol (Oxf) 2020; 5:ysaa014. [PMID: 33195816 PMCID: PMC7644442 DOI: 10.1093/synbio/ysaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.
Collapse
Affiliation(s)
- Michael Fitzgerald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chelsea Gibbs
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Lu XB, Guo YH, Huang W. Characterization of the cHS4 insulator in mouse embryonic stem cells. FEBS Open Bio 2020; 10:644-656. [PMID: 32087050 PMCID: PMC7137798 DOI: 10.1002/2211-5463.12818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 01/16/2023] Open
Abstract
Synthetic biology circuits are often constructed with multiple gene expression units assembled in close proximity, and they can be used to perform complex functions in embryonic stem cells (ESCs). However, mutual interference between transcriptional units has not been well studied in mouse ESCs. To assess the efficiency of insulators at suppressing promoter interference in mouse ESCs, we used an evaluation scheme in which a tunable tetracycline response element promoter is connected to a constant Nanog promoter. The chicken hypersensitive site 4 (cHS4) insulator, widely used both for enhancer blocking and for barrier insulation in vitro and in vivo, was positioned between the two expression units for assessment. By inserting the cassette into various loci of the mouse ESC genome with PiggyBac transposon, we were able to quantitatively examine the protective effect of cHS4 by gradually increasing the transcriptional activity of the tetracycline response element promoter with doxycycline and then measuring the transcriptional activity of the Nanog promoter. Our results indicate that the cHS4 insulator has minimal insulating effects on promoter interference in mouse ESCs. Further studies show that the cHS4 insulation effect may be promoter specific and related to interaction with CCCTC‐binding factor‐mediated loop formation. In addition, we also compared DNA transposition and transgene expression with or without the cHS4 insulator using well‐established ESC reporters. The results indicate that cHS4 has no apparent effects on DNA transposition and transgene expression levels, but exerts modest protective effects on long‐term transgene silencing.
Collapse
Affiliation(s)
- Xi-Bin Lu
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Han Guo
- Forward Pharmaceuticals Limited Co., Shenzhen, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:64-76. [PMID: 28918057 PMCID: PMC5485764 DOI: 10.1016/j.omtn.2017.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
Abstract
Neural cell fate is determined by a tightly controlled transcription regulatory network during development. The ability to manipulate the expression of multiple transcription factors simultaneously is required to delineate the complex picture of neural cell development. Because of the limited carrying capacity of the commonly used viral vectors, such as lentiviral or retroviral vectors, it is often challenging to perform perturbation experiments on multiple transcription factors. Here we have developed a piggyBac (PB) transposon-based CRISPR activation (CRISPRa) all-in-one system, which allows for simultaneous and stable endogenous transactivation of multiple transcription factors and long non-coding RNAs. As a proof of principle, we showed that the PB-CRISPRa system could accelerate the differentiation of human induced pluripotent stem cells into neurons and astrocytes by triggering endogenous expression of different sets of transcription factors. The PB-CRISPRa system has the potential to become a convenient and robust tool in neuroscience, which can meet the needs of a variety of in vitro and in vivo gain-of-function applications.
Collapse
|
14
|
Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q. Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Res 2017; 19:55-64. [PMID: 28073086 PMCID: PMC5629634 DOI: 10.1016/j.scr.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs) provide great capability for tissue regeneration, particularly in spinal cord injury (SCI). However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs) to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yiyan Zheng
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karl Schmitt
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Health Sciences, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Dong H Kim
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qilin Cao
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Homma K, Usui S, Kaneda M. Knock-in strategy at 3′-end ofCrxgene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation. Genes Cells 2017; 22:250-264. [DOI: 10.1111/gtc.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Kohei Homma
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| | - Sumiko Usui
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| | - Makoto Kaneda
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| |
Collapse
|
16
|
Thomas S, Straathof K, Himoudi N, Anderson J, Pule M. An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers. PLoS One 2016; 11:e0152196. [PMID: 27030986 PMCID: PMC4816271 DOI: 10.1371/journal.pone.0152196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma is the commonest extra cranial solid cancer of childhood. Despite escalation of treatment regimens, a significant minority of patients die of their disease. Disialoganglioside (GD2) is consistently expressed at high-levels in neuroblastoma tumors, which have been targeted with some success using therapeutic monoclonal antibodies. GD2 is also expressed in a range of other cancer but with the exception of some peripheral nerves is largely absent from non-transformed tissues. Chimeric Antigen Receptors (CARs) are artificial type I proteins which graft the specificity of a monoclonal antibody onto a T-cell. Clinical data with early CAR designs directed against GD2 have shown some promise in Neuroblastoma. Here, we describe a GD2-targeting CAR retroviral cassette, which has been optimized for CAR T-cell persistence, efficacy and safety.
Collapse
Affiliation(s)
- Simon Thomas
- Cancer Institute, University College London, London, United Kingdom
| | - Karin Straathof
- Institute of Child Health, University College London, London, United Kingdom
| | - Nourredine Himoudi
- Institute of Child Health, University College London, London, United Kingdom
| | - John Anderson
- Institute of Child Health, University College London, London, United Kingdom
| | - Martin Pule
- Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
17
|
Li S, Xue H, Wu J, Rao MS, Kim DH, Deng W, Liu Y. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells Dev 2015; 24:2925-42. [PMID: 26414932 DOI: 10.1089/scd.2015.0131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
Collapse
Affiliation(s)
- Shenglan Li
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Haipeng Xue
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jianbo Wu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mahendra S Rao
- 3 The New York Stem Cell Foundation , New York, New York
| | - Dong H Kim
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Wenbin Deng
- 4 Department of Biochemistry and Molecular Medicine, School of Medicine, University of California , Davis, California.,5 Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children , Sacramento, California
| | - Ying Liu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,6 The Senator Lloyd and B.A. Bentsen Center for Stroke Research, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
18
|
Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells 2015; 34:13-26. [DOI: 10.1002/stem.2196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
- Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente, P.O.Box 217; Enschede The Netherlands
| |
Collapse
|
19
|
Liu Y, Deng W. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 2015; 1638:30-41. [PMID: 26423934 DOI: 10.1016/j.brainres.2015.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control and to complement the iPSC-based approach for ALS disease modeling studies. Much knowledge has been generated from the study of both ALS iPSCs and ESCs. As these methods have advantages and disadvantages that should be balanced on experimental design in order for them to complement one another, combining the diverse methods would help build an expanded knowledge of ALS pathophysiology. The goals are to reverse engineer the human disease using ESCs and iPSCs, generate lineage reporter lines and in vitro disease models, target disease related genes, in order to better understand the molecular and cellular mechanisms of differentiation regulation along neural (neuronal versus glial) lineages, to unravel the pathogenesis of the neurodegenerative disease, and to provide appropriate cell sources for replacement therapy. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.
| |
Collapse
|
20
|
Jia J, Bai F, Jin Y, Santostefano KE, Ha UH, Wu D, Wu W, Terada N, Jin S. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins. Stem Cells Transl Med 2015; 4:913-26. [PMID: 26062981 DOI: 10.5966/sctm.2015-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022] Open
Abstract
The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies.
Collapse
Affiliation(s)
- Jingyue Jia
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Fang Bai
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yongxin Jin
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Katherine E Santostefano
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Un-Hwan Ha
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Donghai Wu
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Weihui Wu
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Naohiro Terada
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Shouguang Jin
- State Key Laboratory of Medical and Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China; Department of Molecular Genetics and Microbiology and Department of Pathology, University of Florida, Gainesville, Florida, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Pei Y, Sierra G, Sivapatham R, Swistowski A, Rao MS, Zeng X. A platform for rapid generation of single and multiplexed reporters in human iPSC lines. Sci Rep 2015; 5:9205. [PMID: 25777362 PMCID: PMC4361878 DOI: 10.1038/srep09205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript, we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore, we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages, further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays.
Collapse
Affiliation(s)
- Ying Pei
- Buck Institute for Age Research, Novato, CA
| | | | | | | | | | - Xianmin Zeng
- 1] Buck Institute for Age Research, Novato, CA [2] XCell Science, Novato, CA
| |
Collapse
|
22
|
Silvestrini MT, Yin D, Martin AJ, Coppes VG, Mann P, Larson PS, Starr PA, Zeng X, Gupta N, Panter SS, Desai TA, Lim DA. Interventional magnetic resonance imaging-guided cell transplantation into the brain with radially branched deployment. Mol Ther 2015; 23:119-29. [PMID: 25138755 PMCID: PMC4426791 DOI: 10.1038/mt.2014.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/09/2014] [Indexed: 01/06/2023] Open
Abstract
Intracerebral cell transplantation is being pursued as a treatment for many neurological diseases, and effective cell delivery is critical for clinical success. To facilitate intracerebral cell transplantation at the scale and complexity of the human brain, we developed a platform technology that enables radially branched deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. iMRI-guided RBD functioned as an "add-on" to standard neurosurgical and imaging workflows, and procedures were performed in a commonly available clinical MRI scanner. Multiple deposits of super paramagnetic iron oxide beads were safely delivered to the striatum of live swine, and distribution to the entire putamen was achieved via a single cannula insertion in human cadaveric heads. Human embryonic stem cell-derived dopaminergic neurons were biocompatible with the iMRI-guided RBD platform and successfully delivered with iMRI guidance into the swine striatum. Thus, iMRI-guided RBD overcomes some of the technical limitations inherent to the use of straight cannulas and standard stereotactic targeting. This platform technology could have a major impact on the clinical translation of a wide range of cell therapeutics for the treatment of many neurological diseases.
Collapse
Affiliation(s)
- Matthew T Silvestrini
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Present address: Department of Bioengineering, University of California, Davis, Davis, California, USA
| | - Dali Yin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alastair J Martin
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Valerie G Coppes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Preeti Mann
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, California, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - S S Panter
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Tejal A Desai
- Department of Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, San Francisco, California, USA
| |
Collapse
|
23
|
TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PLoS One 2014; 9:e114275. [PMID: 25474420 PMCID: PMC4256397 DOI: 10.1371/journal.pone.0114275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/08/2014] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated protein (Cas) to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.
Collapse
|
24
|
Lepperhof V, Polchynski O, Kruttwig K, Brüggemann C, Neef K, Drey F, Zheng Y, Ackermann JP, Choi YH, Wunderlich TF, Hoehn M, Hescheler J, Šarić T. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS One 2014; 9:e107363. [PMID: 25226590 PMCID: PMC4167328 DOI: 10.1371/journal.pone.0107363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/15/2014] [Indexed: 01/16/2023] Open
Abstract
Cell loss after transplantation is a major limitation for cell replacement approaches in regenerative medicine. To assess the survival kinetics of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) we generated transgenic murine iPSC lines which, in addition to CM-specific expression of puromycin N-acetyl-transferase and enhanced green fluorescent protein (EGFP), also constitutively express firefly luciferase (FLuc) for bioluminescence (BL) in vivo imaging. While undifferentiated iPSC lines generated by random integration of the transgene into the genome retained stable FLuc activity over many passages, the BL signal intensity was strongly decreased in purified iPS-CM compared to undifferentiated iPSC. Targeted integration of FLuc-expression cassette into the ROSA26 genomic locus using zinc finger nuclease (ZFN) technology strongly reduced transgene silencing in iPS-CM, leading to a several-fold higher BL compared to iPS-CM expressing FLuc from random genomic loci. To investigate the survival kinetics of iPS-CM in vivo, purified CM obtained from iPSC lines expressing FLuc from a random or the ROSA26 locus were transplanted into cryoinfarcted hearts of syngeneic mice. Engraftment of viable cells was monitored by BL imaging over 4 weeks. Transplanted iPS-CM were poorly retained in the myocardium independently of the cell line used. However, up to 8% of cells survived for 28 days at the site of injection, which was confirmed by immunohistological detection of EGFP-positive iPS-CM in the host tissue. Transplantation of iPS-CM did not affect the scar formation or capillary density in the periinfarct region of host myocardium. This report is the first to determine the survival kinetics of drug-selected iPS-CM in the infarcted heart using BL imaging and demonstrates that transgene silencing in the course of iPSC differentiation can be greatly reduced by employing genome editing technology. FLuc-expressing iPS-CM generated in this study will enable further studies to reduce their loss, increase long-term survival and functional integration upon transplantation.
Collapse
Affiliation(s)
- Vera Lepperhof
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Olga Polchynski
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Klaus Kruttwig
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Chantal Brüggemann
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Drey
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yunjie Zheng
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Justus P. Ackermann
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas F. Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
25
|
Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 2014; 3:821-35. [PMID: 24833591 DOI: 10.5966/sctm.2013-0212] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Chengyu Liu
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Trevor Cerbini
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Hong San
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Yongshun Lin
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Guokai Chen
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mahendra S Rao
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jizhong Zou
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA; Center for Molecular Medicine, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
26
|
|
27
|
Macarthur CC. Site-specific integration in human ESC using Jump-In™ TI™ technology. Methods Mol Biol 2013; 997:273-85. [PMID: 23546764 DOI: 10.1007/978-1-62703-348-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Engineering of human embryonic stem cells (hESC) offers a great potential tool for the study of human gene function. There are many techniques that can be used to engineer human cells, but most are lacking in either specificity or efficiency. Jump-In™ TI™ technology utilizes two bacteriophage recombinases (PhiC31 and R4) to specifically, efficiently, and stably introduce genetic elements into the genome of human ESCs. The techniques described here allow the user to first deliver a targeting site to a defined locus, and second to deliver the genetic elements of interest to that targeting site, allowing for stable, single copy integration into the genome. These integrated elements show high levels of expression in the pluripotent state, as well as in multiple differentiated lineages.
Collapse
Affiliation(s)
- Chad C Macarthur
- Primary and Stem Cell Systems, Life Technologies, Carlsbad, CA, USA
| |
Collapse
|
28
|
Efthymiou A, Shaltouki A, Steiner JP, Jha B, Heman-Ackah SM, Swistowski A, Zeng X, Rao MS, Malik N. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells. ACTA ACUST UNITED AC 2013; 19:32-43. [PMID: 24019252 DOI: 10.1177/1087057113501869] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Anastasia Efthymiou
- 1National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fontes A, Lakshmipathy U. Advances in genetic modification of pluripotent stem cells. Biotechnol Adv 2013; 31:994-1001. [PMID: 23856320 DOI: 10.1016/j.biotechadv.2013.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 05/24/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022]
Abstract
Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Andrew Fontes
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | | |
Collapse
|
30
|
Yang SL, Harnish E, Leeuw T, Dietz U, Batchelder E, Wright PS, Peppard J, August P, Volle-Challier C, Bono F, Herbert JM, Izpisua Belmonte JC. Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis. Protein Cell 2012; 3:934-42. [PMID: 23161332 DOI: 10.1007/s13238-012-2107-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 02/04/2023] Open
Abstract
Articular cartilage, which is mainly composed of collagen II, enables smooth skeletal movement. Degeneration of collagen II can be caused by various events, such as injury, but degeneration especially increases over the course of normal aging. Unfortunately, the body does not fully repair itself from this type of degeneration, resulting in impaired movement. Microfracture, an articular cartilage repair surgical technique, has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However, the therapeutic outcomes of all these techniques vary in different patients depending on their age, health, lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage, both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone, or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs), which are able to self-renew and differentiate into multiple cell types, provides a potentially valuable cell resource for drug screening in a "more relevant" cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis.
Collapse
Affiliation(s)
- Sheng-Lian Yang
- Gene Expression Laboratories, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Q, Spusta SC, Mi R, Lassiter RNT, Stark MR, Höke A, Rao MS, Zeng X. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 2012. [PMID: 23197806 DOI: 10.5966/sctm.2011-0042] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The neural crest (NC) is a transient, multipotent, migratory cell population unique to vertebrates that gives rise to diverse cell lineages. Much of our knowledge of NC development comes from studies of organisms such as chicken and zebrafish because human NC is difficult to obtain because of its transient nature and the limited availability of human fetal cells. Here we examined the process of NC induction from human pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). We showed that NC cells could be efficiently induced from hESCs by a combination of growth factors in medium conditioned on stromal cells and that NC stem cells (NCSCs) could be purified by p75 using fluorescence-activated cell sorting (FACS). FACS-isolated NCSCs could be propagated in vitro in five passages and cryopreserved while maintaining NCSC identity characterized by the expression of a panel of NC markers such as p75, Sox9, Sox10, CD44, and HNK1. In vitro-expanded NCSCs were able to differentiate into neurons and glia (Schwann cells) of the peripheral nervous system, as well as mesenchymal derivatives. hESC-derived NCSCs appeared to behave similarly to endogenous embryonic NC cells when injected in chicken embryos. Using a defined medium, we were able to generate and propagate a nearly pure population of Schwann cells that uniformly expressed glial fibrillary acidic protein, S100, and p75. Schwann cells generated by our protocol myelinated rat dorsal root ganglia neurons in vitro. To our knowledge, this is the first report on myelination by hESC- or iPSC-derived Schwann cells.
Collapse
Affiliation(s)
- Qiuyue Liu
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|