1
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Post JN, Loerakker S, Merks R, Carlier A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng Part A 2022; 28:542-554. [PMID: 35345902 DOI: 10.1089/ten.tea.2021.0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic set-ups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights.
Collapse
Affiliation(s)
- Janine Nicole Post
- University of Twente, 3230, Tissue Regeneration, Enschede, Overijssel, Netherlands;
| | - Sandra Loerakker
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands.,Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Noord-Brabant, Netherlands;
| | - Roeland Merks
- Leiden University, 4496, Institute for Biology Leiden and Mathematical Institute, Leiden, Zuid-Holland, Netherlands;
| | - Aurélie Carlier
- Maastricht University, 5211, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, Netherlands, 6200 MD;
| |
Collapse
|
3
|
Whitney KE, Briggs KK, Chamness C, Bolia IK, Huard J, Philippon MJ, Evans TA. Bone Marrow Concentrate Injection Treatment Improves Short-term Outcomes in Symptomatic Hip Osteoarthritis Patients: A Pilot Study. Orthop J Sports Med 2020; 8:2325967120966162. [PMID: 33344667 PMCID: PMC7731709 DOI: 10.1177/2325967120966162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the leading causes of disability in the United States, the hip being the second most affected weightbearing joint. Autologous bone marrow concentrate (BMC) is a promising alternative therapy to conventional treatments, with the potential to mitigate inflammation and improve joint function. PURPOSE To investigate the effectiveness of a single intra-articular BMC injection for patients with symptomatic hip OA. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 24 patients diagnosed with symptomatic hip OA who elected to undergo a single BMC injection were prospectively enrolled in the study. Patients were excluded if they reported a preinjection Numeric Rating Scale (NRS) score for pain with activity of <6 points out of 10. The Western Ontario and McMaster Universities Arthritis Index (WOMAC), modified Harris Hip Score (mHHS), Hip Outcome Score-Activities of Daily Living (HOS-ADL), 12-Item Short Form Health Survey (SF-12), and NRS pain scores were collected before and after the procedure (6 weeks, 3 months, and 6 months). Joint space and Tönnis OA grade scores were recorded on preinjection anteroposterior pelvis radiographs. RESULTS A total of 18 hips from 16 patients (7 male and 9 female) (mean age, 57.6 ± 11; mean body mass index, 25.9 ± 3.6 kg/m2) were used in the final analysis. Significant improvements were observed in NRS pain with activity (from 8 to 4.5; P < .001) and without activity (from 5 to 1; P < .001), WOMAC (from 31 to 16; P = .006), mHHS (from 63 to 80; P = .004), and HOS-ADL (from 71 to 85; P = .014) over 6 months. At 6 months, all patients maintained their improvements and did not return to preprocedure status. BMI significantly correlated with baseline WOMAC scores (P = .012) and inversely correlated with 6-month SF-12 Physical Component Summary (P = .038). Tönnis grades 2 and 3 were inversely correlated with 6-week SF-12 Mental Component Summary (P = .008) and 3-month pain with activity (P = .032). No serious adverse events were reported from the BMC harvest or injection procedure. CONCLUSION A single BMC injection can significantly improve subjective pain and function scores up to 6 months in patients with symptomatic hip OA. Further studies are warranted to evaluate BMC treatment against other therapeutics in a larger sample size and compare the biological signature profiles that may be responsible for the therapeutic effect.
Collapse
Affiliation(s)
- Kaitlyn E. Whitney
- The Steadman Clinic, Vail, Colorado, USA
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | | | | | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | | |
Collapse
|
4
|
Kamm JL, Parlane NA, Riley CB, Gee EK, Dittmer KE, McIlwraith CW. Blood type and breed-associated differences in cell marker expression on equine bone marrow-derived mesenchymal stem cells including major histocompatibility complex class II antigen expression. PLoS One 2019; 14:e0225161. [PMID: 31747418 PMCID: PMC6867698 DOI: 10.1371/journal.pone.0225161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As the search for an immune privileged allogeneic donor mesenchymal stem cell (MSC) line continues in equine medicine, the characterization of the cells between different sources becomes important. Our research seeks to more clearly define the MSC marker expression of different equine MSC donors. METHODS The bone marrow-derived MSCs from two equine breeds and different blood donor-types were compared over successive culture passages to determine the differential expression of important antigens. Eighteen Thoroughbreds and 18 Standardbreds, including 8 blood donor (erythrocyte Aa, Ca, and Qa antigen negative) horses, were evaluated. Bone marrow was taken from each horse for isolation and culture of MSCs. Samples from passages 2, 4, 6, and 8 were labelled and evaluated by flow cytometry. The cell surface expression of CD11a/18, CD44, CD90 and MHC class II antigens were assessed. Trilineage assays for differentiation into adipogenic, chondrogenic and osteogenic lines were performed to verify characterization of the cells as MSCs. FINDINGS There were significant differences in mesenchymal stem cell marker expression between breeds and blood antigen-type groups over time. Standardbred horses showed a significantly lower expression of MHC class II than did Thoroughbred horses at passages 2, 4 and 6. CD90 was significantly higher in universal blood donor Standardbreds as compared to non-blood donor Standardbreds over all time points. All MSC samples showed high expression of CD44 and low expression of CD11a/18. CONCLUSIONS Universal blood donor- type Standardbred MSCs from passages 2-4 show the most ideal antigen expression pattern of the horses and passages that we characterized for use as a single treatment of donor bone marrow-derived MSCs. Further work is needed to determine the significance of this differential expression along with the effect of the expression of MHC I on equine bone marrow-derived MSCs.
Collapse
Affiliation(s)
- J. Lacy Kamm
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Veterinary Associates, Karaka, Auckland, New Zealand
- * E-mail:
| | - Natalie A. Parlane
- AgResearch, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Christopher B. Riley
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Erica K. Gee
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Keren E. Dittmer
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C. Wayne McIlwraith
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Colorado State University, Orthopaedic Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
5
|
Dessels C, Pepper MS. Reference Gene Expression in Adipose-Derived Stromal Cells Undergoing Adipogenic Differentiation. Tissue Eng Part C Methods 2019; 25:353-366. [PMID: 31062665 PMCID: PMC6589494 DOI: 10.1089/ten.tec.2019.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
IMPACT STATEMENT As the use of adipose-derived stromal cells (ASCs) in clinical trials increases, so does the amount of experimental data from research groups, many of which use human ASCs to study adipogenesis in obesity. Different conditions are constantly being applied to ASCs in vitro, to obtain a therapeutic product for potential downstream applications. Few articles have looked at the effect of different conditions on ASC reference gene (RG) expression and stability, which was the aim of this research, as such this article will assist other researchers to make an informed decision about RG selection for gene expression studies using ASCs including those for adipogenesis.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Pennings I, van Dijk LA, van Huuksloot J, Fledderus JO, Schepers K, Braat AK, Hsiao EC, Barruet E, Morales BM, Verhaar MC, Rosenberg AJWP, Gawlitta D. Effect of donor variation on osteogenesis and vasculogenesis in hydrogel cocultures. J Tissue Eng Regen Med 2019; 13:433-445. [PMID: 30650247 PMCID: PMC6593839 DOI: 10.1002/term.2807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/29/2022]
Abstract
To introduce a functional vascular network into tissue-engineered bone equivalents, human endothelial colony forming cells (ECFCs) and multipotent mesenchymal stromal cells (MSCs) can be cocultured. Here, we studied the impact of donor variation of human bone marrow-derived MSCs and cord blood-derived ECFCs on vasculogenesis and osteogenesis using a 3D in vitro coculture model. Further, to make the step towards cocultures consisting of cells derived from a single donor, we tested how induced pluripotent stem cell (iPSC)-derived human endothelial cells (iECs) performed in coculture models. Cocultures with varying combinations of human donors of MSCs, ECFCs, or iECs were prepared in Matrigel. The constructs were cultured in an osteogenic differentiation medium. Following a 10-day culture period, the length of the prevascular structures and osteogenic differentiation were evaluated for up to 21 days of culture. The particular combination of MSC and ECFC donors influenced the vasculogenic properties significantly and induced variation in osteogenic potential. In addition, the use of iECs in the cocultures resulted in prevascular structure formation in osteogenically differentiated constructs. Together, these results showed that close attention to the source of primary cells, such as ECFCs and MSCs, is critical to address variability in vasculogenic and osteogenic potential. The 3D coculture model appeared to successfully generate prevascularized constructs and were sufficient in exceeding the ~200 μm diffusion limit. In addition, iPSC-derived cell lineages may decrease variability by providing a larger and potentially more uniform source of cells for future preclinical and clinical applications.
Collapse
Affiliation(s)
- Iris Pennings
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lukas A van Dijk
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Juliet van Huuksloot
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost O Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Schepers
- Department of Cell Biology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Koen Braat
- Department of Cell Biology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Edward C Hsiao
- Department of Medicine and the Institute for Human Genetics and the Program for Craniofacial Biology, University of California San Francisco, San Francisco, CA
| | - Emilie Barruet
- Department of Medicine and the Institute for Human Genetics and the Program for Craniofacial Biology, University of California San Francisco, San Francisco, CA
| | - Blanca M Morales
- Department of Medicine and the Institute for Human Genetics and the Program for Craniofacial Biology, University of California San Francisco, San Francisco, CA
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Antoine J W P Rosenberg
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Kim M, Erickson IE, Huang AH, Garrity ST, Mauck RL, Steinberg DR. Donor Variation and Optimization of Human Mesenchymal Stem Cell Chondrogenesis in Hyaluronic Acid. Tissue Eng Part A 2018; 24:1693-1703. [PMID: 29792383 DOI: 10.1089/ten.tea.2017.0520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage repair that can undergo chondrogenesis in a variety of three-dimensional (3D) scaffolds. Hyaluronic acid (HA) hydrogels provide a biologically relevant interface for cell encapsulation. While previous studies have shown that MSC-laden HA constructs can mature in vitro to match native mechanical properties using cells from animal sources, clinical application will depend on the successful translation of these findings to human cells. Though numerous studies have investigated chondrogenesis of human MSC (hMSC)-laden constructs, their functional outcomes were quite inferior to those using animal sources, and donor-specific responses to 3D HA hydrogels have not been fully investigated. To that end, hMSCs were derived from seven donors, and their ability to undergo chondrogenesis in pellet culture and HA hydrogels was evaluated. Given the initial observation of overt cell aggregation and/or gel contraction for some donors, the impact of variation in cell and HA macromer concentration on functional outcomes during chondrogenesis was evaluated using one young/healthy donor. The findings show marked differences in functional chondrogenesis of hMSCs in 3D HA hydrogels based on donor. Increasing cell density resulted in increased mechanical properties, but also promoted construct contraction. Increasing the macromer density generally stabilized construct dimensions and increased extracellular matrix production, but limited the distribution of formed matrix at the center of the construct and reduced mechanical properties. Collectively, these findings suggest that the use of hMSCs may require tuning of cell density and gel mechanics on a donor-by-donor basis to provide for the most robust tissue formation for clinical application.
Collapse
Affiliation(s)
- Minwook Kim
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - Isaac E Erickson
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,4 DiscGenics, Inc. , Salt Lake City, Utah
| | - Alice H Huang
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,5 Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sean T Garrity
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Robert L Mauck
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| | - David R Steinberg
- 1 McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Krylova TA, Musorina AS, Koltsova AM, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Isolation and Comparative Characteristics of Mesenchymal Stem-Cell Lines Derived from Foreskin of Two Donors of Similar Age. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1990519x18040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Madsen SD, Russell KC, Tucker HA, Glowacki J, Bunnell BA, O'Connor KC. Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2017; 8:201. [PMID: 28962588 PMCID: PMC5622446 DOI: 10.1186/s13287-017-0649-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/14/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a mixture of progenitors that are heterogeneous in their regenerative potential. Development of MSC therapies with consistent efficacy is hindered by the absence of an immunophenotype of MSC heterogeneity. This study evaluates decoy TRAIL receptor CD264 as potentially the first surface marker to detect cellular aging in heterogeneous MSC cultures. METHODS CD264 surface expression, regenerative potential, and metrics of cellular aging were assessed in vitro for marrow MSCs from 12 donors ages 20-60 years old. Male and female donors were age matched. Expression of CD264 was compared with that of p16, p21, and p53 during serial passage of MSCs. RESULTS When CD264+ cell content was 20% to 35%, MSC cultures from young (ages 20-40 years) and older (ages 45-60 years) donors proliferated rapidly and differentiated extensively. Older donor MSCs containing < 35% CD264+ cells had a small size and negligible senescence despite the donor's advanced chronological age. Above the 35% threshold, CD264 expression inversely correlated with proliferation and differentiation potential. When CD264+ cell content was 75%, MSCs were enlarged and mostly senescent with severely compromised regenerative potential. There was no correlation of the older donors' chronological age to either CD264+ cell content or the regenerative potential of the donor MSCs. CD264 was upregulated after p53 and had a similar expression profile to that of p21 during serial passage of MSCs. No sex-linked differences were detected in this study. CONCLUSIONS These results suggest that CD264 is a surface marker of cellular age for MSCs, not the chronological age of the MSC donor. CD264 is first upregulated in MSCs at an intermediate stage of cellular aging and remains upregulated as aging progresses towards senescence. The strong inverse correlation of CD264+ cell content to the regenerative potential of MSCs has possible application to assess the therapeutic potential of patient MSCs, standardize the composition and efficacy of MSC therapies, and facilitate aging research on MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A Bunnell
- Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA. .,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
10
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
11
|
Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM, Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther 2017; 8:79. [PMID: 28412968 PMCID: PMC5393041 DOI: 10.1186/s13287-017-0531-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022] Open
Abstract
Background Inflammation is a key contributor to central nervous system (CNS) injury such as stroke, and is a major target for therapeutic intervention. Effective treatments for CNS injuries are limited and applicable to only a minority of patients. Stem cell-based therapies are increasingly considered for the treatment of CNS disease, because they can be used as in-situ regulators of inflammation, and improve tissue repair and recovery. One promising option is the use of bone marrow-derived mesenchymal stem cells (MSCs), which can secrete anti-inflammatory and trophic factors, can migrate towards inflamed and injured sites or can be implanted locally. Here we tested the hypothesis that pre-treatment with inflammatory cytokines can prime MSCs towards an anti-inflammatory and pro-trophic phenotype in vitro. Methods Human MSCs from three different donors were cultured in vitro and treated with inflammatory mediators as follows: interleukin (IL)-1α, IL-1β, tumour necrosis factor alpha (TNF-α) or interferon-γ. After 24 h of treatment, cell supernatants were analysed by ELISA for expression of granulocyte-colony stimulating factor (G-CSF), IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), IL-1 receptor antagonist (IL-1Ra) and vascular endothelial growth factor (VEGF). To confirm the anti-inflammatory potential of MSCs, immortalised mouse microglial BV2 cells were treated with bacterial lipopolysaccharide (LPS) and exposed to conditioned media (CM) of naïve or IL-1-primed MSCs, and levels of secreted microglial-derived inflammatory mediators including TNF-α, IL-10, G-CSF and IL-6 were measured by ELISA. Results Unstimulated MSCs constitutively expressed anti-inflammatory cytokines and trophic factors (IL-10, VEGF, BDNF, G-CSF, NGF and IL-1Ra). MSCs primed with IL-1α or IL-1β showed increased secretion of G-CSF, which was blocked by IL-1Ra. Furthermore, LPS-treated BV2 cells secreted less inflammatory and apoptotic markers, and showed increased secretion of the anti-inflammatory IL-10 in response to treatment with CM of IL-1-primed MSCs compared with CM of unprimed MSCs. Conclusions Our results demonstrate that priming MSCs with IL-1 increases expression of trophic factor G-CSF through an IL-1 receptor type 1 (IL-1R1) mechanism, and induces a reduction in the secretion of inflammatory mediators in LPS-activated microglial cells. The results therefore support the potential use of preconditioning treatments of stem cells in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0531-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Redondo-Castro
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonjo Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Licia Martuscelli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Aoulad-Ali
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nancy J Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cay M Kielty
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Lee CY, Kang JY, Lim S, Ham O, Chang W, Jang DH. Hypoxic conditioned medium from mesenchymal stem cells promotes lymphangiogenesis by regulation of mitochondrial-related proteins. Stem Cell Res Ther 2016; 7:38. [PMID: 26968383 PMCID: PMC4788827 DOI: 10.1186/s13287-016-0296-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, cell-based therapeutic lymphangiogenesis has emerged and provided hope for lymphatic regeneration. Previous studies have demonstrated that secretomes of mesenchymal stem cells (MSCs) facilitate the regeneration of various damaged tissues. This study was conducted to evaluate the lymphangiogenic potential of hypoxic conditioned media (HCM) from MSCs. METHODS To investigate the effects of MSC-secreted factors in starved human lymphatic endothelial cells (hLEC), hLECs were treated with endothelial basal medium (EBM)-2 (control), normoxic conditioned media (NCM), or HCM in vitro and in vivo. RESULTS MSCs expressed lymphangiogenic factors including EGF, FGF2, HGF, IGF-1, and VEGF-A and -C. hLECs were treated with each medium. hLEC proliferation, migration, and tube formation were improved under HCM compared with NCM. Moreover, expression of mitochondrial-related factors, MFN1and 2, were improved in HCM-treated hLECs. Lymphedema mice injected with HCM showed markedly decreased lymphedema via increased lymphatic vessel formation when compared with EBM-2- or NCM-treated mice. CONCLUSIONS This study suggested that HCM from MSCs contain high levels of secreted lymphangiogenic factors and promote lymphangiogenesis by regulating mitochondrial-related factors. Thus, treatment with HCM may be a therapeutic strategy for lymphedema.
Collapse
Affiliation(s)
- Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin Young Kang
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Yangpyeong-gun, 12564, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, Republic of Korea
| | - Onju Ham
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 22711, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, 46241, Republic of Korea.
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Dongsu-ro 56, Bupyeong-gu, Incheon, 21431, Republic of Korea.
| |
Collapse
|
13
|
Kim Y, Liu JC. Protein-engineered microenvironments can promote endothelial differentiation of human mesenchymal stem cells in the absence of exogenous growth factors. Biomater Sci 2016; 4:1761-1772. [PMID: 27731432 DOI: 10.1039/c6bm00472e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein-based microenvironments are promising tools to obtain endothelial cells since they promote hMSC differentiation without exogenous VEGF.
Collapse
Affiliation(s)
- Yeji Kim
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Julie C. Liu
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
- Weldon School of Biomedical Engineering
| |
Collapse
|
14
|
Comparison of the depolarization response of human mesenchymal stem cells from different donors. Sci Rep 2015; 5:18279. [PMID: 26658512 PMCID: PMC4677319 DOI: 10.1038/srep18279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
Bioelectric signaling is currently being explored as a novel regulator of cell processes in non-excitable cells. In particular, stem cells have demonstrated increasing evidence of electrophysiology-mediated regulation of stemness acquisition, proliferation, differentiation, and migration. However, in light of many reports of primary stem cell heterogeneity, it is important to characterize the variability of stem cell response to biophysical manipulations in order to assess the utility of bioelectric modulation as a universal strategy for stem cell control. In this work, human mesenchymal stem cells (hMSCs) from five donors were evaluated for their response to membrane potential (Vmem) depolarization. We compared the inter-donor variability of their osteogenic and adipogenic differentiation potential, as well as their ability to maintain a differentiated phenotype after induction. We identified the markers that responded most consistently across donors and found that calcium deposition and gene expression of bone sialoprotein, lipoprotein lipase, and fatty acid binding protein 4 are the preferred markers for assessing differentiation response to Vmem depolarization. We also note that since there exists variability even among some of these markers, these assays should be performed on any newly acquired hMSC population if their bioelectric properties are to be studied further.
Collapse
|
15
|
Mitchell A, Rivas KA, Smith R, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5. Stem Cell Res Ther 2015; 6:231. [PMID: 26611913 PMCID: PMC4661990 DOI: 10.1186/s13287-015-0230-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Equine superficial digital flexor tendon injury is a well-accepted model of human tendon injury and is routinely treated with local injections of autologous mesenchymal stem cells (MSCs). Identification of a clinically safe medium for short-term cryopreservation of MSCs prior to cell implantation would streamline laboratory and clinical procedures for autologous regenerative therapies. Veterinary experience with short-term (MSCs prepared after the injury has occurred) cryopreserved MSCs in naturally occurring injury in the horse will be of value to human practitioners. Methods Equine bone marrow derived MSCs were cryopreserved in 6 different solutions consisting of 20 % serum, 10 % DMSO and 70 % media or 95 % serum and 5 % DMSO. Serum was autologous serum, commercially available pooled equine serum or fetal bovine serum (FBS). Cell survival, morphology and growth kinetics were assessed by total cell number, measurement of growth kinetics, colony-forming-unit-assay and morphology of MSCs after monolayer culture post-thaw. Results There were no significant differences in post-thaw viability, total cell number, morphology scores or growth kinetics among the 6 solutions. Post thaw viabilities from each group ranged from 80-90 %. In all solutions, there were significantly fewer MSCs and the majority (99 %) of MSCs remained in the original generation 24 hours post-thaw. Seventy two hours post-thaw, the majority of MSCs (50 %) were proliferating in the fourth generation. Mean colony count in the CFU-F assay ranged from 72 to 115 colonies. Conclusions Each of the serum sources could be used for short-term cryopreservation of equine bone marrow derived MSCs. Prior to clinical use, clinicians may prefer autologous serum and a lower concentration of DMSO. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0230-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexis Mitchell
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Kristen A Rivas
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA.
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2015; 37:115-25. [PMID: 26719857 PMCID: PMC4687432 DOI: 10.3892/ijmm.2015.2413] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage-related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro trilineage differentiation potential, but also gene expression profiles. While there was considerable interdonor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for the characterization of MSCs derived from different tissue sources. Collectively, our results suggest that, based on their tri-lineage differentiation potential and immunomodulatory effects, BM-MSCs and adipose tissue-derived MSCs (A-MSCs) represent the optimal stem cell source for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- June Seok Heo
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| | - Youjeong Choi
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| | - Han-Soo Kim
- Institute for Bio‑Medical Convergence, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hyun Ok Kim
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Small intestinal submucosa-derived extracellular matrix bioscaffold significantly enhances angiogenic factor secretion from human mesenchymal stromal cells. Stem Cell Res Ther 2015; 6:164. [PMID: 26346126 PMCID: PMC4562125 DOI: 10.1186/s13287-015-0165-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 02/24/2015] [Accepted: 08/19/2015] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The in vivo therapeutic effect of mesenchymal stromal cells (MSCs) is currently believed to be tightly linked to their paracrine secretion ability. However, insufficient or imprecise cell delivery, low cell survival and retention post-transplant, along with harsh donor site microenvironments, are major barriers to the clinical success of MSC therapies. Here we tested a small intestinal submucosa (SIS)-derived extracellular matrix (ECM) bioscaffold augmented with MSCs, with the hypothesis that they will facilitate the precise delivery of increased numbers of MSCs therefore improving cell viability and retention. METHODS In this study, we evaluated the secretion of angiogenic factors from three human MSC lines cultured on SIS ECM. We used human antibody array and enzyme-linked immunosorbent assay to measure the level of angiogenic factors released from MSCs when cultured on SIS ECM or regular tissue culture plastic. We tested MSCs cultured for three different time points. RESULTS We found that the SIS ECM culture environment can significantly enhance the release of several angiogenic factors when compared to MSCs cultured on standard tissue culture plastic. Specifically, vascular endothelial growth factor and interleukin-8 secretion was significantly increased at 24, 48 and 72 hours postseeding onto SIS ECM whereas vascular endothelial growth factor release for cells cultured on plastic surface remained the same during these time points. We also observed significant donor to donor variation in cytokine production. CONCLUSIONS This study demonstrates that MSCs transplanted onto a SIS ECM may greatly increase their therapeutic potential through an increase in pro-angiogenic cytokine release.
Collapse
|
18
|
Georgi N, Taipaleenmaki H, Raiss CC, Groen N, Portalska KJ, van Blitterswijk C, de Boer J, Post JN, van Wijnen AJ, Karperien M. MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells Dev 2015; 24:1946-55. [PMID: 25915705 DOI: 10.1089/scd.2014.0534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability of human mesenchymal stromal/stem cells (hMSCs) to differentiate into various mesenchymal cell lineages makes them a promising cell source for the use in tissue repair strategies. Since the differentiation potential of hMSCs differs between donors, it is necessary to establish biomarkers for the identification of donors with high differentiation potential. In this study, we show that microRNA (miRNA) expression levels are effective for distinguishing donors with high differentiation potential from low differentiation potential. Twenty hMSC donors were initially tested for marker expression and differentiation potential. In particular, the chondrogenic differentiation potential was evaluated on the basis of histological matrix formation, mRNA expression levels of chondrogenic marker genes, and quantitative glycosaminoglycan deposition. Three donors out of twenty were identified as donors with high chondrogenic potential, whereas nine showed moderate and eight showed low chondrogenic potential. Expression profiles of miRNAs involved in chondrogenesis and cartilage homeostasis were used for the distinction between high-performance hMSCs and low-performance hMSCs. Global mRNA expression profiles of the donors before the onset of chondrogenic differentiation revealed minor differences in gene expression between low and high chondrogenic performers. However, analysis of miRNA expression during a 7-day differentiation period identified miR-210 and miR-630 as positive regulators of chondrogenesis. In contrast, miR-181 and miR-34a, which are negative regulators of chondrogenesis, were upregulated during differentiation in low-performing donors. In conclusion, profiling of hMSC donors for a specific panel of miRNAs may have a prognostic value for selecting donors with high differentiation potential to improve hMSC-based strategies for tissue regeneration.
Collapse
Affiliation(s)
- Nicole Georgi
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Hanna Taipaleenmaki
- 2 Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma-, Hand- and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Christian C Raiss
- 3 Nanobiophysics Group, Faculty of Science and Technology, MESA+Institute for Nanotechnology, University of Twente , Enschede, the Netherlands
| | - Nathalie Groen
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Karolina Janaeczek Portalska
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Clemens van Blitterswijk
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Jan de Boer
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Janine N Post
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Andre J van Wijnen
- 5 Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Marcel Karperien
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| |
Collapse
|
19
|
Lloyd-Griffith C, Duffy GP, O'Brien FJ. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells. J Anat 2015; 227:767-80. [PMID: 25833670 DOI: 10.1111/joa.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.
Collapse
Affiliation(s)
- Cai Lloyd-Griffith
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| |
Collapse
|
20
|
Lee SH, Lee Y, Chun YW, Crowder SW, Young PP, Park KD, Sung HJ. In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal Stem Cells. ADVANCED FUNCTIONAL MATERIALS 2014; 24:6771-6781. [PMID: 26327818 PMCID: PMC4551405 DOI: 10.1002/adfm.201401110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Clinical trials utilizing mesenchymal stem cells (MSCs) for severe vascular diseases have highlighted the need to effectively engraft cells and promote pro-angiogenic activity. A functional material accomplishing these two goals is an ideal solution as spatiotemporal and batch-to-batch variability in classical therapeutic delivery can be minimized, and tissue regeneration would begin rapidly at the implantation site. Gelatin may serve as a promising biomaterial due to its excellent biocompatibility, biodegradability, and non-immuno/antigenicity. However, the dissolution of gelatin at body temperature and quick enzymatic degradation in vivo have limited its use thus far. To overcome these challenges, an injectable, in situ crosslinkable gelatin was developed by conjugating enzymatically-crosslinkable hydroxyphenyl propionic acid (GHPA). When MSCs are cultured in 3D in vitro or injected in vivo in GHPA, spontaneous endothelial differentiation occurs, as evidenced by marked increases in endothlelial cell marker expressions (Flk1, Tie2, ANGPT1, vWF) in addition to forming an extensive perfusable vascular network after 2-week subcutaneous implantation. Additionally, favorable host macrophage response is achieved with GHPA as shown by decreased iNOS and increased MRC1 expression. These results indicate GHPA as a promising soluble factor-free cell delivery template which induces endothelial differentiation of MSCs with robust neovasculature formation and favorable host response.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA; Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37235 USA
| | - Yunki Lee
- Dept. of Molecular Science & Technology, Ajou University, Suwon 443-749 South Korea
| | - Young Wook Chun
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA; Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37235 USA
| | - Spencer W. Crowder
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA; Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37235 USA
| | - Pampee P. Young
- Dept. of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235 USA
| | - Ki Dong Park
- Dept. of Molecular Science & Technology, Ajou University, Suwon 443-749 South Korea
| | - Hak-Joon Sung
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA; Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37235 USA
| |
Collapse
|
21
|
Kemper O, Herten M, Fischer J, Haversath M, Beck S, Classen T, Warwas S, Tassemeier T, Landgraeber S, Lensing-Höhn S, Krauspe R, Jäger M. Prostacyclin suppresses twist expression in the presence of indomethacin in bone marrow-derived mesenchymal stromal cells. Med Sci Monit 2014; 20:2219-27. [PMID: 25382306 PMCID: PMC4238757 DOI: 10.12659/msm.890953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin, it completely suppressed Twist. Thus, in the treatment of avascular osteonecrosis or painful bone marrow edema, the undesirable effects of indomethacin might be counterbalanced by iloprost.
Collapse
Affiliation(s)
- Oliver Kemper
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Monika Herten
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Johannes Fischer
- Institute for Transplantation Diagnostics and Cell Therapy, University Düsseldorf, Düsseldorf, Germany
| | - Marcel Haversath
- Department of Orthopaedics, University Duisburg-Essen, Essen, Germany
| | - Sascha Beck
- Department of Orthopedics, University Duisburg-Essen, Essen, Germany
| | - Tim Classen
- Department of Orthopaedics, University Hospital of Duisburg-Essen, Essen, Germany
| | - Sebastian Warwas
- Department of Orthopaedics, University Hospital of Duisburg-Essen, Essen, Germany
| | - Tjark Tassemeier
- Department of Orthopaedics, University Hospital of Duisburg-Essen, Essen, Germany
| | | | - Sabine Lensing-Höhn
- Department of Orthopedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Rüdiger Krauspe
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Marcus Jäger
- Department of Orthopedics, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Pollock K, Sumstad D, Kadidlo D, McKenna DH, Hubel A. Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy 2014; 17:38-45. [PMID: 25457275 DOI: 10.1016/j.jcyt.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Current methods of mesenchymal stromal cell (MSC) cryopreservation result in variable post-thaw recovery and phenotypic changes caused by freezing. The objective of this investigation was to determine the influence of ex vivo cell expansion on phenotype of MSCs and the response of resulting phenotypes to freezing and thawing. METHODS Human bone marrow aspirate was used. MSCs were isolated and cells were assessed for total count, viability, apoptosis and senescence over 6 passages (8-10 doublings/passage) in ex vivo culture. One half of cells harvested at each passage were re-plated for continued culture and the other half were frozen at 1°C/min in a controlled-rate freezer. Frozen samples were stored in liquid nitrogen, thawed and reassessed for total cell count, viability and senescence immediately and 48 h after thaw. RESULTS Viability did not differ significantly between samples before freeze or after thaw. Senescence increased over time in pre-freeze culture and was significantly higher in one sample that had growth arrest both before freeze and after thaw. Freezing resulted in similar initial post-thaw recovery in all samples, but 48-h post-thaw growth arrest was observed in the sample with high senescence only. CONCLUSIONS High pre-freeze senescence appears to correlate with poor post-thaw function in MSC samples, but additional studies are necessary to obtain a sample sizes large enough to quantify results.
Collapse
Affiliation(s)
- Kathryn Pollock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darin Sumstad
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Diane Kadidlo
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
23
|
Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014; 143:181-96. [PMID: 24594234 DOI: 10.1016/j.pharmthera.2014.02.013] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically.
Collapse
Affiliation(s)
- Annelies Bronckaers
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| | - Petra Hilkens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Wendy Martens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Tom Struys
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
24
|
German SJ, Behbahani M, Miettinen S, Grijpma DW, Haimi SP. Proliferation and Differentiation of Adipose Stem Cells Towards Smooth Muscle Cells on Poly(trimethylene carbonate) Membranes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salvador Jimenez German
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Mehdi Behbahani
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Susanna Miettinen
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- University of Groningen, University Medical Centre Groningen; Department of Biomedical Engineering; Groningen The Netherlands
| | - Suvi P. Haimi
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| |
Collapse
|
25
|
Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 2013; 10:29-37. [PMID: 24322872 DOI: 10.4161/org.27405] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.
Collapse
Affiliation(s)
- Austin Nuschke
- Department of Pathology; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|