1
|
Caro-Ramírez JY, Franca CA, Lavecchia M, Naso LG, Williams PAM, Ferrer EG. Exploring the potential anti-thyroid activity of Acetyl-L-carnitine: Lactoperoxidase inhibition profile, iodine complexation and scavenging power against H 2O 2. Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124098. [PMID: 38460232 DOI: 10.1016/j.saa.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Carlos A Franca
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Martín Lavecchia
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina.
| |
Collapse
|
2
|
Cicalini I, Moffa S, Tommolini ML, Valentinuzzi S, Zucchelli M, Bucci I, Chiacchiaretta P, Fontana A, Federici L, De Laurenzi V, Del Boccio P, Rossi C, Pieragostino D. Impact of Maternal Lifestyle and Dietary Habits during Pregnancy on Newborn Metabolic Profile. Nutrients 2023; 15:nu15102297. [PMID: 37242180 DOI: 10.3390/nu15102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Expanded newborn screening (NBS) is a preventive program that allows for the early identification of over 40 congenital endocrine-metabolic diseases by analyzing dried blood spot samples collected from the newborn's heel within 48-72 h of birth. The determination of amino acids and acyl-carnitines by Flow Injection Analysis Tandem Mass Spectrometry (FIA-MS/MS) may also highlight metabolic alterations resulting from external factors, such as maternal nutrition. In the present study, we developed a questionnaire to investigate the eating habits of 109 women during pregnancy and statistically correlated the results from the investigation on dietary habits with the data obtained by the NBS laboratory of Abruzzo region (Italy). Parameters such as smoking, physical activity, and the intake of iodized salt, drugs, and supplements were analyzed. This study aimed to highlight how maternal lifestyle, diet, and drug intake during pregnancy may affect the neonatal metabolic profile, possibly generating false positive or false negative results in the NBS test. The results pointed out how the knowledge of maternal nutrition and lifestyle may also be precious in preventing misinterpretations of the neonatal metabolic profile, thereby reducing unnecessary stress for newborns and their parents and limiting costs for the health system.
Collapse
Affiliation(s)
- Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Samanta Moffa
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Lucia Tommolini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Rossi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol (Lausanne) 2023; 13:1092837. [PMID: 36686463 PMCID: PMC9846570 DOI: 10.3389/fendo.2022.1092837] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
An imbalance between pro-oxidative and antioxidative cellular mechanisms is oxidative stress (OxS) which may be systemic or organ-specific. Although OxS is a consequence of normal body and organ physiology, severely impaired oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' function and viability. The thyroid gland is an organ that exhibits both oxidative and antioxidative processes. In terms of OxS severity, the thyroid gland's response could be physiological (i.e. hormone production and secretion) or pathological (i.e. development of diseases, such as goitre, thyroid cancer, or thyroiditis). Protective nutritional antioxidants may benefit defensive antioxidative systems in resolving pro-oxidative dominance and redox imbalance, preventing or delaying chronic thyroid diseases. This review provides information on nutritional antioxidants and their protective roles against impaired redox homeostasis in various thyroid pathologies. We also review novel findings related to the connection between the thyroid gland and gut microbiome and analyze the effects of probiotics with antioxidant properties on thyroid diseases.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Yang M, Sun M, Jiang C, Wu Q, Jiang Y, Xu J, Luo Q. Thyroid hormones and carnitine in the second trimester negatively affect neonate birth weight: A prospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1080969. [PMID: 36896184 PMCID: PMC9989483 DOI: 10.3389/fendo.2023.1080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Maternal thyroid hormones and carnitine are reported to affect neonate birth weight during the second trimester, which is one of the most important markers for fetal growth and perinatal mortality and morbidity. Nevertheless, the effect of thyroid hormone and carnitine in the second trimester on birth weight has yet to be understood. METHOD This was a prospective cohort study with 844 subjects enrolled during the first trimester. Thyroid hormones, free carnitine (C0), neonate birth weight, as well as other related clinical and metabolic data were collected and assessed. RESULTS Pre-pregnancy weight and body mass index (BMI) as well as neonate birth weight were significantly different among different free thyroxine (FT4) level groups. Maternal weight gain and neonate birth weight varied significantly when grouped by different thyroid-stimulating hormone (TSH) levels. There was a significantly positive correlation between C0 and TSH (r = 0.31), free triiodothyronine (FT3) (r = 0.37), and FT4 (r = 0.59) (all P < 0.001). In addition, a significantly negative influence was found between birth weight and TSH (r = -0.48, P = 0.028), so as C0 (r = -0.55, P < 0.001) and FT4 (r = -0.64, P < 0.001). Further assessment detected a stronger combined effect of C0 and FT4 (P < 0.001) and of C0 and FT3 (P = 0.022) on birth weight. CONCLUSION Maternal C0 and thyroid hormones are of great importance in neonate birth weight, and routine examination of C0 and thyroid hormones during the second trimester has a positive effect on the intervention of birth weight.
Collapse
Affiliation(s)
- Mengmeng Yang
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Sun
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyu Jiang
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wu
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Jiang
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Xu
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Qiong Luo, ; Jian Xu,
| | - Qiong Luo
- Women’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Qiong Luo, ; Jian Xu,
| |
Collapse
|
5
|
Dahiya V, Vasudeva N, Sharma S, Kumar A. Role of Dietary Supplements in Thyroid Diseases. Endocr Metab Immune Disord Drug Targets 2022; 22:985-996. [PMID: 35440339 DOI: 10.2174/1871530322666220419125131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thyroid hormones play a vital role in regulating our body's metabolism. Two important thyroid hormones released from the thyroid gland are- tri-iodothyronine (T3) and tetra-iodothyronine (T4). Thyroid stimulating hormone and thyroid regulating hormone control the T3 and T4 levels in our body. Increased TSH levels indicate hypothyroidism and decreased TSH levels indicate hyperthyroidism. Iodine is a crucial nutrient for the synthesis of thyroid hormones and is mostly obtained from our diet. Other essential nutrients for the thyroid hormones formation include selenium, iron, vitamin D, vitamin B12, etc. Dietary changes in these nutrients can result in alterations in thyroid function and structure. Although, normally the hormonal diseases cannot be cured but we can improve their signs and symptoms using suitable dietary supplements. OBJECTIVE To thoroughly analyze the various benefits and risks associated with the use of dietary supplements for the prevention and treatment of various thyroid disorders, like hypothyroidism, as seen in hashimoto's thyroiditis; hyperthyroidism, as seen in grave's disease, sick euthyroidism and subclinical hypothyroidism. METHODS Literature was searched using the search terms; "dietary supplements+ thyroid diseases" on pub med, google scholar, scopus, cochrane library and other search engines and data was collected from 1967- November 2021 including research inputs from the authors. The literature was thoroughly read and deep knowledge was acquired on this topic, which was then sequentially organized and summarized using suitable tables and figures. CONCLUSION After analyzing the various studies on this topic we arrived at the conclusion that although, there are various claimed and observed health benefits of dietary supplements in prevention and treatment of various thyroid disorders; but still several studies have shown that, there are many risks associated too with the use of dietary supplements, and people using these products should be aware of these risks in order to use them very judiciously for the improvement of their thyroid status.
Collapse
Affiliation(s)
- Vinesh Dahiya
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ashok Kumar
- Internal Medicine, Kansas University Medical Center, Kansas, USA
| |
Collapse
|
6
|
Di Cosmo C, De Marco G, Agretti P, Ferrarini E, Dimida A, Falcetta P, Benvenga S, Vitti P, Tonacchera M. Screening for drugs potentially interfering with MCT8-mediated T 3 transport in vitro identifies dexamethasone and some commonly used drugs as inhibitors of MCT8 activity. J Endocrinol Invest 2022; 45:803-814. [PMID: 34850364 DOI: 10.1007/s40618-021-01711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Monocarboxylate transporter 8 (MCT8) is the first thyroid hormone transporter that has been linked to a human disease. Besides genetic alterations other factors might impair MCT8 activity. AIM This study aimed at investigating whether some common drugs having a structural similarity with TH and/or whose treatment is associated with thyroid function test abnormalities, or which behave as antagonists of TH action can inhibit MCT8-mediated T3 transport. METHODS [125I]T3 uptake and efflux were measured in COS-7 cells transiently transfected with hMCT8 before and after exposure to increasing concentrations of hydrocortisone, dexamethasone, prednisone, prednisolone, amiodarone, desethylamiodarone, dronedarone, buspirone, carbamazepine, valproic acid, and L-carnitine. The mode of inhibition was also determined. RESULTS Dexamethasone significantly inhibited T3 uptake at 10 μM; hydrocortisone reduced T3 uptake only at high concentrations, i.e. at 500 and 1000 μM; prednisone and prednisolone were devoid of inhibitory potential. Amiodarone caused a reduction of T3 uptake by MCT8 only at the highest concentrations used (44% at 50 μM and 68% at 100 μM), and this effect was weaker than that produced by desethylamiodarone and dronedarone; buspirone resulted a potent inhibitor, reducing T3 uptake at 0.1-10 μM. L-Carnitine inhibited T3 uptake only at 500 mM and 1 M. Kinetic experiments revealed a noncompetitive mode of inhibition for all compounds. All drugs inhibiting T3 uptake did not affect T3 release. CONCLUSION This study shows a novel effect of some common drugs, which is inhibition of T3 transport mediated by MCT8. Specifically, dexamethasone, buspirone, desethylamiodarone, and dronedarone behave as potent inhibitors of MCT8.
Collapse
Affiliation(s)
- C Di Cosmo
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy.
| | - G De Marco
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - P Agretti
- Laboratory of Chemistry and Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - E Ferrarini
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - A Dimida
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - P Falcetta
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - S Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - P Vitti
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - M Tonacchera
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa, via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
7
|
Setoyama D, Lee HY, Moon JS, Tian J, Kang YE, Lee JH, Shong M, Kang D, Yi H. Immunometabolic signatures predict recovery from thyrotoxic myopathy in patients with Graves' disease. J Cachexia Sarcopenia Muscle 2022; 13:355-367. [PMID: 34970859 PMCID: PMC8818593 DOI: 10.1002/jcsm.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Thyroid hormone excess induces protein energy wasting, which in turn promotes muscle weakness and bone loss in patients with Graves' disease. Although most studies have confirmed a relationship between thyrotoxicosis and muscle dysfunction, few have measured changes in plasma metabolites and immune cells during the development and recovery from thyrotoxic myopathy. The aim of this study was to identify specific plasma metabolites and T-cell subsets that predict thyrotoxic myopathy recovery in patients with Graves' disease. METHODS One hundred patients (mean age, 40.0 ± 14.2 years; 67.0% female), with newly diagnosed or relapsed Graves' disease were enrolled at the start of methimazole treatment. Handgrip strength and Five Times Sit to Stand Test performance time were measured at Weeks 0, 12, and 24. In an additional 35 patients (mean age, 38.9 ± 13.5 years; 65.7% female), plasma metabolites and immunophenotypes of peripheral blood were evaluated at Weeks 0 and 12, and the results of a short physical performance battery assessment were recorded at the same time. RESULTS In both patient groups, methimazole-induced euthyroidism was associated with improved handgrip strength and lower limb muscle function at 12 weeks. Elevated plasma metabolites including acylcarnitines were restored to normal levels at Week 12 regardless of gender, body mass index, or age (P trend <0.01). Senescent CD8+ CD28- CD57+ T-cell levels in peripheral blood were positively correlated with acylcarnitine levels (P < 0.05) and decreased during thyrotoxicosis recovery (P < 0.05). High levels of senescent CD8+ T cells at Week 0 were significantly associated with small increases in handgrip strength after 12 weeks of methimazole treatment (P < 0.05), but not statistically associated with Five Times Sit to Stand Test performance. CONCLUSIONS Restoring euthyroidism in Graves' disease patients was associated with improved skeletal muscle function and performance, while thyroid hormone-associated changes in plasma acylcarnitines levels correlated with muscle dysfunction recovery. T-cell senescence-related systemic inflammation correlated with plasma acylcarnitine levels and was also associated with small increases in handgrip strength.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
| | - Ho Yeop Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Ji Sun Moon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Jingwen Tian
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hyon‐Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| |
Collapse
|
8
|
Jaber MA, Benabdelkamel H, Dahabiyeh LA, Masood A, AlMalki RH, Musambil M, Alfadda AA, Abdel Rahman AM. The metabolomics approach revealed a distinctive metabolomics pattern associated with hyperthyroidism treatment. Front Endocrinol (Lausanne) 2022; 13:1050201. [PMID: 36440210 PMCID: PMC9685425 DOI: 10.3389/fendo.2022.1050201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hyperthyroidism is characterized by increased thyroid hormone production, which impacts various processes, including metabolism and energy expenditure. Yet, the underlying mechanism and subsequent influence of these changes are unknown. Metabolomics is a broad analytical method that enables qualitative and quantitative examination of metabolite level changes in biological systems in response to various stimuli, pathologies, or treatments. OBJECTIVES This study uses untargeted metabolomics to explore the potential pathways and metabolic patterns associated with hyperthyroidism treatment. METHODS The study consisted of 20 patients newly diagnosed with hyperthyroidism who were assessed at baseline and followed up after starting antithyroid treatment. Two blood samples were taken from each patient, pre (hyperthyroid state) and post-treatment (euthyroid state). Hyperthyroid and euthyroid states were identified based on thyroxine and thyroid-stimulating hormone levels. The metabolic alteration associated with antithyroid therapy was investigated using liquid chromatography- high-resolution mass spectrometry. The untargeted metabolomics data was analyzed using both univariate and multivariate analyses using MetaboAnalyst v5.0. The significant metabolic pattern was identified using the lab standard pipeline, which included molecular annotation in the Human Metabolome Database, LipidMap, LipidBlast, and METLIN. The identified metabolites were examined using pathway and network analyses and linked to cellular metabolism. RESULTS The results revealed a strong group separation between the pre- and post-hyperthyroidism treatment (Q2 = 0.573, R2 = 0.995), indicating significant differences in the plasma metabolome after treatment. Eighty-three mass ions were significantly dysregulated, of which 53 and 30 characteristics were up and down-regulated in the post-treatment compared to the pre-treatment group, respectively. The medium-chain acylcarnitines, octanoylcarnitine, and decanoylcarnitine, previously found to rise in hyperthyroid patients, were among the down-regulated metabolites, suggesting that their reduction could be a possible biomarker for monitoring euthyroid restoration. Kynurenine is a downregulated tryptophan metabolite, indicating that the enzyme kynurenine 3-hydroxylase, inhibited in hyperthyroidism, is back functioning. L-cystine, a cysteine dimer produced from cysteine oxidation, was among the down-regulated metabolites, and its accumulation is considered a sign of oxidative stress, which was reported to accompany hyperthyroidism; L-cystine levels dropped, this suggests that the plasma level of L-cystine can be used to monitor the progress of euthyroid state restoration. CONCLUSION The plasma metabolome of patients with hyperthyroidism before and after treatments revealed differences in the abundance of several small metabolites. Our findings add to our understanding of hyperthyroidism's altered metabolome and associated metabolic processes and shed light on acylcarnitines as a new biomarker for treatment monitoring in conjunction with thyroxine and thyroid-stimulating hormone.
Collapse
Affiliation(s)
- Malak A. Jaber
- Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lina A. Dahabiyeh
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Assim A. Alfadda, ; Anas M. Abdel Rahman,
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Assim A. Alfadda, ; Anas M. Abdel Rahman,
| |
Collapse
|
9
|
Benvenga S, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Camastra S, Bonofiglio D, Antonelli A, Fallahi P. Nutraceuticals in Thyroidology: A Review of in Vitro, and in Vivo Animal Studies. Nutrients 2020; 12:nu12051337. [PMID: 32397091 PMCID: PMC7285044 DOI: 10.3390/nu12051337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals are defined as a food, or parts of a food, that provide medical or health benefits, including the prevention of different pathological conditions, and thyroid diseases, or the treatment of them. Nutraceuticals have a place in complementary medicines, being positioned in an area among food, food supplements, and pharmaceuticals. The market of certain nutraceuticals such as thyroid supplements has been growing in the last years. In addition, iodine is a fundamental micronutrient for thyroid function, but also other dietary components can have a key role in clinical thyroidology. Here, we have summarized the in vitro, and in vivo animal studies present in literature, focusing on the commonest nutraceuticals generally encountered in the clinical practice (such as carnitine, flavonoids, melatonin, omega-3, resveratrol, selenium, vitamins, zinc, and inositol), highlighting conflicting results. These experimental studies are expected to improve clinicians’ knowledge about the main supplements being used, in order to clarify the potential risks or side effects and support patients in their use.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina;
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, Policlinico Universitario G. Martino, 98125 Messina, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
10
|
Benvenga S, Feldt-Rasmussen U, Bonofiglio D, Asamoah E. Nutraceutical Supplements in the Thyroid Setting: Health Benefits beyond Basic Nutrition. Nutrients 2019; 11:E2214. [PMID: 31540254 PMCID: PMC6770945 DOI: 10.3390/nu11092214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a growing interest in nutraceuticals, which may be considered as an efficient, preventive, and therapeutic tool in facing different pathological conditions, including thyroid diseases. Although iodine remains the major nutrient required for the functioning of the thyroid gland, other dietary components play important roles in clinical thyroidology-these include selenium, l-carnitine, myo-inositol, melatonin, and resveratrol-some of which have antioxidant properties. The main concern regarding the appropriate and effective use of nutraceuticals in prevention and treatment is due to the lack of clinical data supporting their efficacy. Another limitation is the discrepancy between the concentration claimed by the label and the real concentration. This paper provides a detailed critical review on the health benefits, beyond basic nutrition, of some popular nutraceutical supplements, with a special focus on their effects on thyroid pathophysiology and aims to distinguish between the truths and myths surrounding the clinical use of such nutraceuticals.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine-Endocrinology, University of Messina, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
- Interdepartmental Program on Molecular and Clinical Endocrinology and Women's Endocrine Health, AOU Policlinico G. Martino, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
| | - Ulla Feldt-Rasmussen
- Medical Endocrinology and Metabolism PE 2132, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ernest Asamoah
- Community Physicians Network, Diabetes & Endocrinology Care, 8435 Clearvista Place, Suite 101, Indianapolis, IN 46256, USA.
| |
Collapse
|
11
|
Wang Y, Li X, Yang Q, Wang W, Zhang Y, Liu J, Zheng L, Zha B. Granulocyte-Colony-Stimulating Factor Effectively Shortens Recovery Duration in Anti-Thyroid-Drug-Induced Agranulocytosis: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:789. [PMID: 31824417 PMCID: PMC6882865 DOI: 10.3389/fendo.2019.00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Background and aim: Granulocyte-colony-stimulating factor (G-CSF) is highly beneficial as a general treatment for anti-thyroid drug (ATD)-induced agranulocytosis. This meta-analysis aimed to assess the clinical effects of G-CSF and non-G-CSF on recovery duration in patients with ATD-induced agranulocytosis by analyzing the overall clinical outcomes. Methods: The PubMed, Embase, Ovid, Cochrane, Google Scholar, China National Knowledge Infrastructure (CNKI) databases were searched for published studies from 1900 to 2018. No language restriction was implemented. Results: This meta-analysis included 10 published retrospective studies and one prospective study. Data were obtained from 11 trials (474 patients: 247 with G-CSF and 227 with non-G-CSF treatment). Compared with the non-G-CSF group, the G-CSF group presented shorter recovery duration [weighted mean difference (WMD) = -3.04 days, 95% confidence interval (95% CI): -4.38 to -1.69 (Z = 4.43 P = 0.000)]. However, the recovery duration varied across regions and recovery criteria. Asian patients achieved significant clinical outcomes [WMD = -3.16 days (95% CI: -4.58 to -1.74, P = 0.000)] compared with European and South American patients [WMD = -2.19 days (95% CI: -7.38 to 3.01, P = 0.409)]. Also, according to various recovery criteria, a duration of granulocyte count increase of more than 1.5 or 1.0 × 109/L [WMD = -3.50 days (95% CI: -4.82 to -2.18, P = 0.000)] revealed a better treatment effect. Conclusion: G-CSF can significantly shorten the recovery duration in patients with ATD-induced agranulocytosis.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
- Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanan Zhang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Liang Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Liang Zheng
| | - Bingbing Zha
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
- Bingbing Zha
| |
Collapse
|
12
|
Al-Majdoub M, Lantz M, Spégel P. Treatment of Swedish Patients with Graves' Hyperthyroidism Is Associated with Changes in Acylcarnitine Levels. Thyroid 2017; 27:1109-1117. [PMID: 28699427 DOI: 10.1089/thy.2017.0218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hyperthyroidism is associated with alterations in metabolism that are currently only partially understood. The objective of the study was to investigate changes in metabolism associated with reinstatement of euthyroidism in Swedish patients. METHODS Eighty metabolites in plasma were profiled from 10 subjects with Graves' disease (GD) at baseline and after 9 and 15 months of treatment to reinstate euthyroidism. Thyroid parameters, thyrotropin (TSH), TSH receptor antibodies, free triiodothyronine, and free thyroxine were followed. Main findings were validated in plasma from 20 subjects with GD at baseline and at three, six, and nine months. The study was conducted at the endocrinology clinic in Malmö, Sweden. RESULTS Euthyroidism was reinstated at three months, and thyroid status did not change further during the 15-month follow-up. This was paralleled by altered levels of 9/19 detected acylcarnitines (p < 0.05 after adjustment for multiple testing). Levels of short-chain acylcarnitines were decreased, intermediate-chain acylcarnitines elevated, and long-chain acylcarnitines unaltered. CONCLUSIONS GD and treatment of the disease is associated with pronounced acyl chain length-dependent alterations in acylcarnitine levels. These changes may be impacted by ethnicity and or dietary differences.
Collapse
Affiliation(s)
- Mahmoud Al-Majdoub
- 1 Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö Lund University , Malmö, Sweden
| | - Mikael Lantz
- 1 Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö Lund University , Malmö, Sweden
- 2 Department of Endocrinology, Skåne University Hospital , Malmö, Sweden
| | - Peter Spégel
- 1 Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö Lund University , Malmö, Sweden
- 3 Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Malmö, Sweden
| |
Collapse
|
13
|
Abstract
Natural health products (or dietary supplements) refer to those products found in oral dosage forms, containing 1 or more active ingredients considered to be a nutrient, an herbal product, or any other nonnutrient/nonherbal substance. Their use continues to increase in the general population and in patients seen by nutrition support clinicians. Aside from an appraisal of product safety and effectiveness, attention should be paid to the potential for these product ingredients to interact with medication. Estimates are that at least 15 million adults in the United States are at risk for supplement-drug interactions. These can occur through both pharmacokinetic and pharmacodynamic mechanisms. This review describes the influence of dietary supplements on both the disposition and the effect of medication and provides numerous examples. Patients at greatest risk for interactions are those with chronic disease, who use multiple medications-particularly those with a narrow therapeutic range-have genetic variants in drug metabolism, impaired organ function, and are at either end of the age spectrum. Knowledge of the specific effects on drug absorption, metabolism, and effect is still incomplete. Relative to the large number of possible interactions between supplements and medication, only a small number of combinations have been examined or reported. The greatest limiting factor remains the quality or reliability of the existing evidence, as many widely accepted interactions are only theoretical based either on in vitro data or known pharmacology. A distinction needs to be clearly drawn between "documented" interactions and "potential" interactions. Although drug-drug interactions have been widely recognized, supplement-drug interactions may be as important to recognize, report, and manage.
Collapse
Affiliation(s)
- Joseph Boullata
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| |
Collapse
|
14
|
Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology 2016; 74:46-56. [PMID: 27580013 PMCID: PMC5159228 DOI: 10.1016/j.psyneuen.2016.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
Hypo- and hyperthyroid states, as well as functional abnormalities in the hypothalamic-pituitary-thyroid axis have been associated with psychiatric conditions like anxiety and depression. However, the nature of this relationship is poorly understood since it is difficult to ascertain the thyroid status of the brain in humans. Data from animal models indicate that the brain exhibits efficient homeostatic mechanisms that maintain local levels of the active thyroid hormone, triiodothyronine (T3) within a narrow range. To better understand the consequences of peripheral and central thyroid status for mood-related behaviors, we used a mouse model of type 3 deiodinase (DIO3) deficiency (Dio3 -/- mouse). This enzyme inactivates thyroid hormone and is highly expressed in the adult central nervous system. Adult Dio3 -/- mice exhibit elevated levels of T3-dependent gene expression in the brain, despite peripheral hypothyroidism as indicated by low circulating levels of thyroxine and T3. Dio3 -/- mice of both sexes exhibit hyperactivity and significantly decreased anxiety-like behavior, as measured by longer time spent in the open arms of the elevated plus maze and in the light area of the light/dark box. During the tail suspension, they stayed immobile for a significantly shorter time than their wild-type littermates, suggesting decreased depression-like behavior. These results indicate that increased thyroid hormone in the brain, not necessarily in peripheral tissues, correlates with hyperactivity and with decreases in anxiety and depression-like behaviors. Our results also underscore the importance of DIO3 as a determinant of behavior by locally regulating the brain levels of thyroid hormone.
Collapse
|
15
|
An JH, Kim YJ, Kim KJ, Kim SH, Kim NH, Kim HY, Kim NH, Choi KM, Baik SH, Choi DS, Kim SG. L-carnitine supplementation for the management of fatigue in patients with hypothyroidism on levothyroxine treatment: a randomized, double-blind, placebo-controlled trial. Endocr J 2016; 63:885-895. [PMID: 27432821 DOI: 10.1507/endocrj.ej16-0109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypothyroid patients experience fatigue-related symptoms despite adequate thyroid hormone replacement. Thyroid hormone plays an essential role in carnitine-dependent fatty acid import and oxidation. We investigated the effects of L-carnitine supplementation on fatigue in patients with hypothyroidism. In total, 60 patients (age 50.0 ± 9.2 years, 3 males, 57 females) who still experienced fatigue (fatigue severity scale [FSS] score ≥ 36) were given L-carnitine (n = 30, 990 mg L-carnitine twice daily) or placebo (n = 30) for 12 weeks. After 12 weeks, although neither the FSS score nor the physical fatigue score (PFS) changed significantly, the mental fatigue score (MFS) was significantly decreased by treatment with L-carnitine compared with placebo (from 4.5 ± 1.9 to 3.9 ± 1.5 vs. from 4.2 ± 1.8 to 4.6 ± 1.6, respectively; P < 0.01). In the L-carnitine group, 75.0%, 53.6%, and 50.0% of patients showed improvement in the FSS score, PFS, and MFS, respectively, but only 20.0%, 24.0%, and 24.0%, respectively, did so in the placebo group (all P < 0.05). Both the PFS and MFS were significantly improved in patients younger than 50 years and those with free T3 ≥ 4.0 pg/mL by treatment with L-carnitine compared with placebo. Additionally, the MFS was significantly improved in patients taking thyroid hormone after thyroid cancer surgery. These results suggest that L-carnitine supplementation may be useful in alleviating fatigue symptoms in hypothyroid patients, especially in those younger than 50 years and those who have hypothyroidism after thyroidectomy for thyroid cancer (ClinicalTrials.gov: NCT01769157).
Collapse
Affiliation(s)
- Jee Hyun An
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An JH, Kim SG. L-carnitine supplementation in hypothyroidism [Letter to the Editor]. Endocr J 2016; 63:939-940. [PMID: 27580951 DOI: 10.1507/endocrj.ej16-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jee Hyun An
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | |
Collapse
|
17
|
Hanada H, Kobuchi H, Yamamoto M, Kashiwagi K, Katsu K, Utsumi T, Kashiwagi A, Sasaki J, Inoue M, Utsumi K. Acetyl-L-carnitine suppresses thyroid hormone-induced and spontaneous anuran tadpole tail shortening. Hereditas 2013; 150:1-9. [PMID: 23489246 DOI: 10.1111/j.1601-5223.2013.02284.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptotic tail shortening during anuran metamorphosis. L-carnitine is known to shuttle free fatty acids (FFAs) from the cytosol into mitochondria matrix for β-oxidation and energy production, and in a previous study we found that treatment with L-carnitine suppresses 3, 3', 5-triiodothyronine (T3 ) and FFA-induced MPT by reducing the level of FFAs. In the present study we focus on acetyl-L-carnitine, which is also involved in fatty acid oxidation, to determine its effect on T3 -induced tail regression in Rana rugosa tadpoles and spontaneous tail regression in Xenopus laevis tadpoles. The ladder-like DNA profile and increases in caspase-3 and caspase-9 indicative of apoptosis in the tails of T3 -treated tadpoles were found to be suppressed by the addition of acetyl-L-carnitine. Likewise, acetyl-L-carnitine was found to inhibit thyroid hormone regulated spontaneous metamorphosis in X. laevis tadpoles, accompanied by decreases in caspase and phospholipase A2 activity, as well as non-ladder-like DNA profiles. These findings support our previous conclusion that elevated levels of FFAs initiate MPT and activate the signaling pathway controlling apoptotic cell death in tadpole tails during anuran metamorphosis.
Collapse
Affiliation(s)
- Hideki Hanada
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dietrich JW, Landgrafe G, Fotiadou EH. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. J Thyroid Res 2012; 2012:351864. [PMID: 23365787 PMCID: PMC3544290 DOI: 10.1155/2012/351864] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| | - Gabi Landgrafe
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
- Klinik für Allgemein- und Visceralchirurgie, Agaplesion Bethesda Krankenhaus Wuppertal gGmbH, Hainstraße 35, 42109 Wuppertal, NRW, Germany
| | - Elisavet H. Fotiadou
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| |
Collapse
|
19
|
Gender differences in locomotor and stereotypic behavior associated with l-carnitine treatment in mice. ACTA ACUST UNITED AC 2011; 8:1-13. [PMID: 21497767 DOI: 10.1016/j.genm.2011.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The carnitines exert neuroprotective and neuromodulatory actions, and carnitine supplementation increases locomotor activity (LMA) in experimental animals. METHODS We measured 13 indexes of LMA and 3 indexes of stereotypic activity (STA) in adult male and female caged mice. In a randomized 4-week trial, 10 males and 10 females received 50 mg/kg body weight PO l-carnitine, and another 10 males and 10 females received placebo. RESULTS Compared with placebo-treated females, placebo-treated males had a greater number of stereotypies (NSTs), stereotypy counts (STCs), stereotypy time (STT), and right front time (RFT), but smaller total distance traveled (TDT), margin distance (MD), number of vertical movements (NVMs), and left rear time (LRT). Compared with placebo-treated males, carnitine-treated males had greater horizontal activity (HA), movement time (MT), NVM, STT, TDT, STC, MD, LRT, and clockwise revolutions (CRs), but smaller left front time (LFT) and RFT. Compared with placebo-treated females, carnitine-treated females had greater NST, STC, STT, LFT, and RFT, but smaller NM, HA, NVM, VA, MT, anticlockwise revolutions (ACRs), CR, TDT, and MD; right rear time (RRT) remained statistically insignificant across all comparisons. CONCLUSIONS In summary, l-carnitine caused gender differences to persist for STC, diminish for NST and STT, disappear for LRT and NVM, change in the opposite direction for TDT and MD, appear de novo for HA, VA, NM, MT, and LFT, and remain absent for RRT and ACR. Some indexes of LMA and STA are sexually dimorphic in adult mice, and l-carnitine differentially maintains, diminishes/cancels, inverts, or creates the sexual dimorphism of particular indexes.
Collapse
|
20
|
Unexpected awakening from comatose thyroid storm after a single intravenous injection of L-carnitine. Intensive Care Med 2011; 37:1716-7. [PMID: 21739342 DOI: 10.1007/s00134-011-2293-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
21
|
Fardella CE, Gloger S. Neurobehavioral and psychological changes induced by hyperthyroidism: diagnostic and therapeutic implications. Expert Rev Neurother 2010; 2:709-16. [PMID: 19810987 DOI: 10.1586/14737175.2.5.709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical studies have demonstrated that neuropsychiatric symptoms may be common and often the only symptoms of patients affected by hyperthyroidism. The correct diagnosis of hyperthyroidism is crucial for optimal treatment because the neuropsychiatric symptoms tend to parallel resolution as the biochemical parameters of hyperthyroidism are normalized. For these reasons, a routine evaluation in every patient consulting for emotional pathologies is recommended, independent of other manifestations of thyroid disease. The effect of high levels of thyroid hormones in the CNS has been related to changes in the presence of alpha- and beta-adrenergic postsynaptic receptors, or more recently to changes in the serotonin concentration. However, the available information is incomplete and many questions remain to be answered in order to explain how the thyroid hormone modifies the CNS response. Increased knowledge of the molecular targets (i.e., genes) of thyroid hormones in the brain may help to provide an answer to these questions.
Collapse
Affiliation(s)
- Carlos E Fardella
- Department of Endocrinology, Faculty of Medicine, P. Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | | |
Collapse
|
22
|
Tjørve E, Tjørve KMC, Olsen JO, Senum R, Oftebro H. On commonness and rarity of thyroid hormone resistance: a discussion based on mechanisms of reduced sensitivity in peripheral tissues. Med Hypotheses 2007; 69:913-21. [PMID: 17383828 DOI: 10.1016/j.mehy.2006.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Reduced sensitivity to thyroid hormone (TH) in peripheral tissues can occur as defects in TH transport into the cell, intracellular TH metabolism, cytosolic mechanisms, TH entry into the nucleus, thyroxin receptors (TRs) and receptor binding, transcription and post-transcriptional mechanisms. Current literature reveals an extensive list of mutations, drugs, toxins, metabolites and autoimmune antibodies that may impair TH action in the cell, but such impairment may not be picked up by assays of TH and TSH in blood plasma. Substances may induce tissue specific resistance to thyroid hormone (RTH), e.g. by affecting numbers of different TR isoforms. Recent literature also indicates mechanisms by which different conditions, for example, chronic fatigue syndrome (CFS), chronic renal failure (CRF) and nonthyroidal illness, can be accompanied by acquired RTH caused by inhibition of TH metabolism, cell uptake, TR binding and transcription. This prompts us to reassess commonness and rarity of congenital vs. acquired RTH. We hypothesise that observed clinical symptoms of hypothyroidism in chemically euthyroid patients are typically caused by changes in hormonal systems, autoimmune antibodies, metabolites or other substances in the body, leading to reduced sensitivity to TH in peripheral tissues. These changes may be a by-product of other processes and a reversible biological response in the body, and may also result in chronic acquired RTH. Antibodies may prove to be the most common cause of chronic reduction in TH sensitivity. It is argued that the acquired form of RTH, caused by endogenous and exogenous sources, may indeed be more common than the congenital, as in insulin resistance. If acquired RTH exists, then it may not be picked up by blood assays of TH and TSH. An appropriate test to assess TH action in peripheral tissues is therefore greatly desired.
Collapse
Affiliation(s)
- E Tjørve
- Lillehammer University College, 2626 Lillehammer, Norway.
| | | | | | | | | |
Collapse
|
23
|
Benvenga S, Amato A, Calvani M, Trimarchi F. Effects of carnitine on thyroid hormone action. Ann N Y Acad Sci 2005; 1033:158-67. [PMID: 15591013 DOI: 10.1196/annals.1320.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
By experiments on cells (neurons, hepatocytes, and fibroblasts) that are targets for thyroid hormones and a randomized clinical trial on iatrogenic hyperthyroidism, we validated the concept that L-carnitine is a peripheral antagonist of thyroid hormone action. In particular, L-carnitine inhibits both triiodothyronine (T3) and thyroxine (T4) entry into the cell nuclei. This is relevant because thyroid hormone action is mainly mediated by specific nuclear receptors. In the randomized trial, we showed that 2 and 4 grams per day of oral L-carnitine are capable of reversing hyperthyroid symptoms (and biochemical changes in the hyperthyroid direction) as well as preventing (or minimizing) the appearance of hyperthyroid symptoms (or biochemical changes in the hyperthyroid direction). It is noteworthy that some biochemical parameters (thyrotropin and urine hydroxyproline) were refractory to the L-carnitine inhibition of thyroid hormone action, while osteocalcin changed in the hyperthyroid direction, but with a beneficial end result on bone. A very recent clinical observation proved the usefulness of L-carnitine in the most serious form of hyperthyroidism: thyroid storm. Since hyperthyroidism impoverishes the tissue deposits of carnitine, there is a rationale for using L-carnitine at least in certain clinical settings.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Sezione di Endocrinologia, Dipartimento Clinico Sperimentale di Medicina e Farmacologia, University of Messina School of Medicine, 98125 Messina, Italy.
| | | | | | | |
Collapse
|
24
|
Manoli I, De Martino MU, Kino T, Alesci S. Modulatory Effects of l-Carnitine on Glucocorticoid Receptor Activity. Ann N Y Acad Sci 2004; 1033:147-57. [PMID: 15591012 DOI: 10.1196/annals.1320.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
L-carnitine (3-hydroxy-4-N,N,N-trimethylaminobutyrate) is a conditionally essential nutrient with a major role in cellular energy metabolism. It is available in the United States as both a prescription drug and an over-the-counter nutritional supplement. Accumulating evidence from both animal and human studies indicates that pharmacologic doses of L-carnitine (LCAR) have immunomodulatory effects resembling those of glucocorticoids (GC). On the other hand, in contrast to GC, which cause bone loss, LCAR seems to have positive effects on bone metabolism. To explore the molecular bases of this GC-like activity of LCAR, we investigated its effects on glucocorticoid receptor (GR)-modulated cytokine release ex vivo, and on the transcriptional activity, intracellular trafficking, and binding of GR in vitro. At high noncytotoxic doses, LCAR (a) suppressed the lipopolysaccharide-stimulated release of tumor necrosis factor alpha and interleukin-12 from primary human monocytes in a GC-like fashion, (b) stimulated the transcriptional activity of GR on the GC-responsive promoters, (c) triggered nuclear translocation of green fluorescent protein (GFP)-fused GR, and (d) reduced the whole cell binding of [(3)H]-dexamethasone to GR. These results suggest that LCAR is a "nutritional modulator" of the GR, by acting as an agonist-like compound. Since LCAR appears to have positive effects on bone metabolism, in contrast to GC, LCAR may share some of the therapeutic properties of GC, particularly on the immune system, but not their deleterious side effects on some of other organs/tissues. Thus, LCAR is potentially a useful alternative compound of GC in particular therapeutic situations. The clinical and therapeutic implications of these findings, as well as a better understanding of their mechanisms, warrant further research.
Collapse
Affiliation(s)
- Irini Manoli
- Endocrine Section, Laboratory of Clinical Investigation, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Benvenga S, Lapa D, Cannavò S, Trimarchi F. Successive thyroid storms treated with L-carnitine and low doses of methimazole. Am J Med 2003; 115:417-8. [PMID: 14553887 DOI: 10.1016/s0002-9343(03)00399-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
Both in vivo and in primary rat hepatocyte culture, carbohydrate and triiodothyronine (T(3)) rapidly induce transcription of the rat S14 gene. To determine if regulation of this gene by T(3) is similar in human liver cells, we transfected the S14 upstream region into HepG2 cells. We chose this cell line because many others have used this cell line to study the effect of thyroid hormone on hepatic gene expression. We found that changing media glucose concentration did not affect S14 transcription. Furthermore, addition of T(3) to HepG2 cells caused a marked reduction of rat S14 transcription. This paradoxical reduction was dependent on cotransfection of the T(3) receptor. We obtained similar results in the other human hepatoma cell lines, HuH-7 and Hep3B. The paradoxical response was not limited to human cells. We found a similar response in the nonmalignant permanent mouse liver cell line, AML-12. This paradoxical response was specific to the S14 gene because transfection of all the cell lines with a CAT or luciferase reporter driven by a mouse mammary tumor virus promoter containing 1 or 4 copies of a palindromic thyroid hormone response element (TRE) showed marked induction by T(3). Our results show that T(3) abnormally regulates the S14 gene in proliferating liver cell lines of diverse origins. This paradoxical regulation by T(3) is caused by an interaction between T(3) and the thyroid hormone receptor. The factors that lead to this paradoxical response are not active in primary hepatocytes and normal intact liver.
Collapse
Affiliation(s)
- Yasuhiro Ota
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|