1
|
De Nardi A, Marini G, Dorigatti I, Rosà R, Tamba M, Gelmini L, Prosperi A, Menegale F, Poletti P, Calzolari M, Pugliese A. Quantifying West Nile virus circulation in the avian host population in Northern Italy. Infect Dis Model 2025; 10:375-386. [PMID: 39816752 PMCID: PMC11729645 DOI: 10.1016/j.idm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season. We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections. Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.
Collapse
Affiliation(s)
- Alex De Nardi
- Department of Mathematics, University of Trento, Trento, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, TN, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Francesco Menegale
- Department of Mathematics, University of Trento, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Piero Poletti
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Wang HR, Liu T, Gao X, Wang HB, Xiao JH. Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review. Infect Dis Poverty 2024; 13:38. [PMID: 38790027 PMCID: PMC11127377 DOI: 10.1186/s40249-024-01207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.
Collapse
Affiliation(s)
- Hao-Ran Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiang Gao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hong-Bin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jian-Hua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Holcomb KM, Staples JE, Nett RJ, Beard CB, Petersen LR, Benjamin SG, Green BW, Jones H, Johansson MA. Multi-Model Prediction of West Nile Virus Neuroinvasive Disease With Machine Learning for Identification of Important Regional Climatic Drivers. GEOHEALTH 2023; 7:e2023GH000906. [PMID: 38023388 PMCID: PMC10654557 DOI: 10.1029/2023gh000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental United States (CONUS). Spatial heterogeneity in historical incidence, environmental factors, and complex ecology make prediction of spatiotemporal variation in WNV transmission challenging. Machine learning provides promising tools for identification of important variables in such situations. To predict annual WNV neuroinvasive disease (WNND) cases in CONUS (2015-2021), we fitted 10 probabilistic models with variation in complexity from naïve to machine learning algorithm and an ensemble. We made predictions in each of nine climate regions on a hexagonal grid and evaluated each model's predictive accuracy. Using the machine learning models (random forest and neural network), we identified the relative importance and variation in ranking of predictors (historical WNND cases, climate anomalies, human demographics, and land use) across regions. We found that historical WNND cases and population density were among the most important factors while anomalies in temperature and precipitation often had relatively low importance. While the relative performance of each model varied across climatic regions, the magnitude of difference between models was small. All models except the naïve model had non-significant differences in performance relative to the baseline model (negative binomial model fit per hexagon). No model, including the ensemble or more complex machine learning models, outperformed models based on historical case counts on the hexagon or region level; these models are good forecasting benchmarks. Further work is needed to assess if predictive capacity can be improved beyond that of these historical baselines.
Collapse
Affiliation(s)
- Karen M. Holcomb
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Now at Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - J. Erin Staples
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Randall J. Nett
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Charles B. Beard
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Lyle R. Petersen
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Stanley G. Benjamin
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Benjamin W. Green
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Hunter Jones
- Climate Prediction OfficeNational Oceanic and Atmospheric AdministrationSilver SpringMDUSA
| | - Michael A. Johansson
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPRUSA
| |
Collapse
|
5
|
Holcomb KM, Nguyen C, Komar N, Foy BD, Panella NA, Baskett ML, Barker CM. Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus. Epidemics 2023; 44:100697. [PMID: 37348378 PMCID: PMC10529638 DOI: 10.1016/j.epidem.2023.100697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.
Collapse
Affiliation(s)
- Karen M Holcomb
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| | - Chilinh Nguyen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States; Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Nicholas Komar
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nicholas A Panella
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, CA, United States
| | - Christopher M Barker
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
6
|
Natasha JA, Yasmin AR, Sharma RSK, Nur-Fazila SH, Nur-Mahiza MI, Arshad SS, Mohammed HO, Kumar K, Loong SK, Ahmad Khusaini MKS. Circulation of West Nile virus in mosquitoes approximate to the migratory bird stopover in West Coast Malaysia. PLoS Negl Trop Dis 2023; 17:e0011255. [PMID: 37023172 PMCID: PMC10112790 DOI: 10.1371/journal.pntd.0011255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/18/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Being a tropical country with a conducive environment for mosquitoes, mosquito-borne illnesses such as dengue, chikungunya, lymphatic filariasis, malaria, and Japanese encephalitis are prevalent in Malaysia. Recent studies reported asymptomatic infection of West Nile virus (WNV) in animals and humans, but none of the studies included mosquitoes, except for one report made half a century ago. Considering the scarcity of information, our study sampled mosquitoes near migratory bird stopover wetland areas of West Coast Malaysia located in the Kuala Gula Bird Sanctuary and Kapar Energy Venture, during the southward migration period in October 2017 and September 2018. Our previous publication reported that migratory birds were positive for WNV antibody and RNA. Using a nested RT-PCR analysis, WNV RNA was detected in 35 (12.8%) out of 285 mosquito pools consisting of 2,635 mosquitoes, most of which were Culex spp. (species). Sanger sequencing and phylogenetic analysis revealed that the sequences grouped within lineage 2 and shared 90.12%-97.01% similarity with sequences found locally as well as those from Africa, Germany, Romania, Italy, and Israel. Evidence of WNV in the mosquitoes substantiates the need for continued surveillance of WNV in Malaysia.
Collapse
Affiliation(s)
- Jafar Ali Natasha
- Department of Veterinary Laboratory Diagnostsis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnostsis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Reuben Sunil Kumar Sharma
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Md Isa Nur-Mahiza
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hussni Omar Mohammed
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Higher Institution Centre of Excellence, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
7
|
McMillan JR, Hamer GL, Levine RS, Mead DG, Waller LA, Goldberg TL, Walker ED, Brawn JD, Ruiz MO, Kitron U, Vazquez-Prokopec G. Multi-Year Comparison of Community- and Species-Level West Nile Virus Antibody Prevalence in Birds from Atlanta, Georgia and Chicago, Illinois, 2005-2016. Am J Trop Med Hyg 2023; 108:366-376. [PMID: 36572005 PMCID: PMC9896344 DOI: 10.4269/ajtmh.21-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is prevalent in the United States but shows considerable variation in transmission intensity. The purpose of this study was to compare patterns of WNV seroprevalence in avian communities sampled in Atlanta, Georgia and Chicago, Illinois during a 12-year period (Atlanta 2010-2016; Chicago 2005-2012) to reveal regional patterns of zoonotic activity of WNV. WNV antibodies were measured in wild bird sera using ELISA and serum neutralization methods, and seroprevalence among species, year, and location of sampling within each city were compared using binomial-distributed generalized linear mixed-effects models. Seroprevalence was highest in year-round and summer-resident species compared with migrants regardless of region; species explained more variance in seroprevalence within each city. Northern cardinals were the species most likely to test positive for WNV in each city, whereas all other species, on average, tested positive for WNV in proportion to their sample size. Despite similar patterns of seroprevalence among species, overall seroprevalence was higher in Atlanta (13.7%) than in Chicago (5%). Location and year of sampling had minor effects, with location explaining more variation in Atlanta and year explaining more variation in Chicago. Our findings highlight the nature and magnitude of regional differences in WNV urban ecology.
Collapse
Affiliation(s)
- Joseph R. McMillan
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas
| | - Rebecca S. Levine
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Lance A. Waller
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Marilyn O. Ruiz
- Department of Pathobiology, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Uriel Kitron
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Gonzalo Vazquez-Prokopec
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia,Address correspondence to Gonzalo Vazquez-Prokopec, Department of Environmental Sciences, Emory University, 400 Dowman Dr., Math and Science Center, 5th Floor, Suite E530, Atlanta, GA 30322. E-mail:
| |
Collapse
|
8
|
Bialosuknia SM, Dupuis II AP, Zink SD, Koetzner CA, Maffei JG, Owen JC, Landwerlen H, Kramer LD, Ciota AT. Adaptive evolution of West Nile virus facilitated increased transmissibility and prevalence in New York State. Emerg Microbes Infect 2022; 11:988-999. [PMID: 35317702 PMCID: PMC8982463 DOI: 10.1080/22221751.2022.2056521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.
Collapse
Affiliation(s)
- Sean M. Bialosuknia
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alan P. Dupuis II
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Hannah Landwerlen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Laura D. Kramer
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alexander T. Ciota
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| |
Collapse
|
9
|
Russell MC, Herzog CM, Gajewski Z, Ramsay C, El Moustaid F, Evans MV, Desai T, Gottdenker NL, Hermann SL, Power AG, McCall AC. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 2022; 11:e71503. [PMID: 35044908 PMCID: PMC8769645 DOI: 10.7554/elife.71503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.
Collapse
Affiliation(s)
- Marie C Russell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Catherine M Herzog
- Center for Infectious Disease Dynamics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Chloe Ramsay
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Michelle V Evans
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- MIVEGEC, IRD, CNRS, Université MontpellierMontpellierFrance
| | - Trishna Desai
- Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Nicole L Gottdenker
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- Department of Veterinary Pathology, University of Georgia College of Veterinary MedicineAthensUnited States
| | - Sara L Hermann
- Department of Entomology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - Andrew C McCall
- Biology Department, Denison UniversityGranvilleUnited States
| |
Collapse
|
10
|
Meyers AC, Auckland L, Meyers HF, Rodriguez CA, Kontowicz E, Petersen CA, Travi BL, Sanders JP, Hamer SA. Epidemiology of Vector-Borne Pathogens Among U.S. Government Working Dogs. Vector Borne Zoonotic Dis 2021; 21:358-368. [PMID: 33601954 PMCID: PMC8086402 DOI: 10.1089/vbz.2020.2725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Surveillance of U.S. domestic dogs for exposure to vector-borne pathogens can identify regions of transmission that are relevant for human and animal health. Working dogs with high levels of outdoor exposure may be sensitive indicators of local risk, owing to increased contact with vectors. We randomly selected 476 high-value government working dogs from 40 states to determine the prevalence of infection with Dirofilaria immitis and Rickettsia spp., and exposure to Ehrlichia spp., Anaplasma spp., and Borrelia burgdorferi, and identify risk factors for positivity. Additionally, we tested 100 of these dogs from Texas for Leishmania spp. where sand fly vectors occur. Previously published Trypanosoma cruzi infection data on these dogs were used to identify coinfection or co-exposures. Infection prevalence was 0.84% for D. immitis, and all dogs were negative for Rickettsia spp. DNA. Seroprevalence of each pathogen was: B. burgdorferi 0.84%, Ehrlichia spp. 1.3%, Anaplasma spp. 1.5%, Leishmania spp. 2.0%, and T. cruzi 12.2%. Coinfection or co-exposure took place in four (0.84%) dogs. In bivariable analysis, we found that D. immitis-positive and Ehrlichia-seropositive dogs were significantly older than negative dogs (p < 0.05). Furthermore, seroprevalence of Anaplasma spp. was significantly higher among dogs in the Northeast United States relative to other areas of the country (4.7% vs. ≤1.4%; p = 0.041). Although autochthonous Leishmania infections have been described in the United States, the cases reported herein may represent imported Leishmania infection. Most federal working dogs are bred in Europe, where the parasite is endemic and congenitally transmitted. Serological cross-reaction between T. cruzi and Leishmania spp. complicates diagnosis. In this study, the use of multiple testing strategies in a comparative complementary manner provided evidence for these dogs' true exposures. Comprehensive surveillance for vector-borne pathogens in dogs can improve clinician awareness and target prevention and treatment in a One Health manner.
Collapse
Affiliation(s)
- Alyssa C. Meyers
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lisa Auckland
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah F. Meyers
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan, USA
| | - Carlos A. Rodriguez
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | - Eric Kontowicz
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruno L. Travi
- Department of Internal Medicine (Infectious Diseases) and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John P. Sanders
- Office of Workforce Health and Safety, Department of Homeland Security, Office of the Chief Human Capital Officer, Washington, District of Columbia, USA
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Address correspondence to: Sarah A. Hamer, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| |
Collapse
|
11
|
Kernbach ME, Martin LB, Unnasch TR, Hall RJ, Jiang RHY, Francis CD. Light pollution affects West Nile virus exposure risk across Florida. Proc Biol Sci 2021; 288:20210253. [PMID: 33757351 PMCID: PMC8059973 DOI: 10.1098/rspb.2021.0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.
Collapse
Affiliation(s)
- Meredith E. Kernbach
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Thomas R. Unnasch
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Richard J. Hall
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr., Athens, GA 30602, USA
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Clinton D. Francis
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| |
Collapse
|
12
|
Estrada-Franco JG, Fernández-Santos NA, Adebiyi AA, López-López MDJ, Aguilar-Durán JA, Hernández-Triana LM, Prosser SWJ, Hebert PDN, Fooks AR, Hamer GL, Xue L, Rodríguez-Pérez MA. Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: Non-human feeding revealed by meta-barcoding and next-generation sequencing. PLoS Negl Trop Dis 2020; 14:e0008867. [PMID: 33382725 PMCID: PMC7806141 DOI: 10.1371/journal.pntd.0008867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/13/2021] [Accepted: 10/09/2020] [Indexed: 01/06/2023] Open
Abstract
Background Aedes aegypti mosquito-borne viruses including Zika (ZIKV), dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV) have emerged and re-emerged globally, resulting in an elevated burden of human disease. Aedes aegypti is found worldwide in tropical, sub-tropical, and temperate areas. The characterization of mosquito blood meals is essential to understand the transmission dynamics of mosquito-vectored pathogens. Methodology/principal findings Here, we report Ae. aegypti and Culex quinquefasciatus host feeding patterns and arbovirus transmission in Northern Mexico using a metabarcoding-like approach with next-generation deep sequencing technology. A total of 145 Ae. aegypti yielded a blood meal analysis result with 107 (73.8%) for a single vertebrate species and 38 (26.2%) for two or more. Among the single host blood meals for Ae. aegypti, 28.0% were from humans, 54.2% from dogs, 16.8% from cats, and 1.0% from tortoises. Among those with more than one species present, 65.9% were from humans and dogs. For Cx. quinquefasciatus, 388 individuals yielded information with 326 (84%) being from a single host and 63 (16.2%) being from two or more hosts. Of the single species blood meals, 77.9% were from dogs, 6.1% from chickens, 3.1% from house sparrows, 2.4% from humans, while the remaining 10.5% derived from other 12 host species. Among those which had fed on more than one species, 11% were from dogs and humans, and 89% of other host species combinations. Forage ratio analysis revealed dog as the most over-utilized host by Ae. aegypti (= 4.3) and Cx. quinquefasciatus (= 5.6) and the human blood index at 39% and 4%, respectively. A total of 2,941 host-seeking female Ae. aegypti and 3,536 Cx. quinquefasciatus mosquitoes were collected in the surveyed area. Of these, 118 Ae. aegypti pools and 37 Cx. quinquefasciatus pools were screened for seven arboviruses (ZIKV, DENV 1–4, CHIKV, and West Nile virus (WNV)) using qRT-PCR and none were positive (point prevalence = 0%). The 95%-exact upper limit confidence interval was 0.07% and 0.17% for Ae. aegypti and Cx. quinquefasciatus, respectively Conclusions/significance The low human blood feeding rate in Ae. aegypti, high rate of feeding on mammals by Cx. quinquefasciatus, and the potential risk to transmission dynamics of arboviruses in highly urbanized areas of Northern Mexico is discussed. Elucidating arbovirus-vector-host contact networks is critical to understand and control mosquito-borne virus transmission, including pathogens such as ZIKV, DENV 1–4, CHIKV, and WNV. Here, we report the results of metabarcoding of blood meals of two primary pathogen mosquito vectors, Aedes aegypti and Culex quinquefasciatus. We found limited human blood feeding by Ae. aegypti and high preference for feeding on mammals by Cx. quinquefasciatus. Interestingly, blood meal analysis revealed dogs as the most utilized host for both vector species suggesting the potential for zooprophylaxis for human-amplified urban arboviruses. Pools of these vector species were tested for seven arboviruses and all were negative. We calculated vectorial capacity to discuss the potential risk and transmission dynamics of pathogens transmitted by these two important vectors in an urban location in Northern Mexico.
Collapse
Affiliation(s)
| | - Nadia A. Fernández-Santos
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Ciudad Reynosa, Tamaulipas, México
| | - Adeniran A. Adebiyi
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Ciudad Reynosa, Tamaulipas, México
| | - María de J. López-López
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Ciudad Reynosa, Tamaulipas, México
| | - Jesús A. Aguilar-Durán
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Ciudad Reynosa, Tamaulipas, México
| | | | | | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Ontario, Canada
| | - Anthony R. Fooks
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, United Kingdom
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Ling Xue
- College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang, P.R. China
| | - Mario A. Rodríguez-Pérez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Ciudad Reynosa, Tamaulipas, México
- * E-mail: ,
| |
Collapse
|
13
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
14
|
Karki S, Brown WM, Uelmen J, Ruiz MO, Smith RL. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, and biological conditions. PLoS One 2020; 15:e0227160. [PMID: 32437363 PMCID: PMC7241786 DOI: 10.1371/journal.pone.0227160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) has consistently been reported to be associated with human cases of illness in the region near Chicago, Illinois. However, the number of reported cases of human illness varies across years, with intermittent outbreaks. Several dynamic factors, including temperature, rainfall, and infection status of vector mosquito populations, are responsible for much of these observed variations. However, local landscape structure and human demographic characteristics also play a key role. The geographic and temporal scales used to analyze such complex data affect the observed associations. Here, we used spatial and statistical modeling approaches to investigate the factors that drive the outcome of WNV human illness on fine temporal and spatial scales. Our approach included multi-level modeling of long-term weekly data from 2005 to 2016, with weekly measures of mosquito infection, human illness and weather combined with more stable landscape and demographic factors on the geographical scale of 1000m hexagons. We found that hot weather conditions, warm winters, and higher MIR in earlier weeks increased the probability of an area of having a WNV human case. Higher population and the proportion of urban light intensity in an area also increased the probability of observing a WNV human case. A higher proportion of open water sources, percentage of grass land, deciduous forests, and housing built post 1990 decreased the probability of having a WNV case. Additionally, we found that cumulative positive mosquito pools up to 31 weeks can strongly predict the total annual human WNV cases in the Chicago region. This study helped us to improve our understanding of the fine-scale drivers of spatiotemporal variability of human WNV cases.
Collapse
Affiliation(s)
- Surendra Karki
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - William M. Brown
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - John Uelmen
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Marilyn O’Hara Ruiz
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas - A review. INFECTION GENETICS AND EVOLUTION 2020; 81:104244. [PMID: 32087345 DOI: 10.1016/j.meegid.2020.104244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Avian Plasmodium is of special interest to health care scientists and veterinarians due to the potency of causing avian malaria in non-adapted birds and their evolutionary phylogenetic relationship with human malaria species. This article aimed to provide a comprehensive list of the common avian Plasmodium parasites in the birds and mosquitoes, to specify the common Plasmodium species and lineages in the selected regions of West of Asia, East of Europe, and North of Africa/Middle East, and to determine the contribution of generalist and host-specific Plasmodium species and lineages. The final list of published infected birds includes 146 species, among which Passer domesticus was the most prevalent in the studied areas. The species of Acrocephalus arundinaceus and Sylvia atricapilla were reported as common infected hosts in the examined regions of three continents. The highest numbers of common species of infected birds between continent pairs were from Asia and Europe, and no common record was found from Europe and Africa. The species of Milvus migrans and Upupa epops were recorded as common species from Asia and Africa. The lineage of GRW11 and species of P. relictum were the most prevalent parasites among all the infection records in birds. The most prevalent genus of vectors of avian malaria belonged to Culex and species of Cx. pipiens. The lineage SGS1 with the highest number of occurrence has been found in various vectors comprising Cx. pipiens, Cx. modestus, Cx. theileri, Cx. sasai, Cx. perexiguus, Lutzia vorax, and Culicoides alazanicus. A total of 31 Plasmodium species and 59 Plasmodium lineages were recorded from these regions. SGS1, GRW04, and GRW11, and P. relictum and P. vaughani are specified as common generalist avian malaria parasites from these three geographic areas. The presence of avian Plasmodium parasites in distant geographic areas and various hosts may be explained by the movement of the infected birds through the migration routes. Although most recorded lineages were from Asia, investigating the distribution of lineages in some of the countries has not been done. Thus, the most important outcome of this review is the determination of the distribution pattern of parasite and vector species that shed light on gaps requiring further studies on the monitoring of avian Plasmodium and common vectors extension. This task could be achieved through scientific field and laboratory networking, performing active surveillance and designing regional/continental control programs of birds' malaria and other zoonotic diseases.
Collapse
|
16
|
Poh KC, Medeiros MCI, Hamer GL. Landscape and demographic determinants of Culex infection with West Nile virus during the 2012 epidemic in Dallas County, TX. Spat Spatiotemporal Epidemiol 2020; 33:100336. [PMID: 32370939 DOI: 10.1016/j.sste.2020.100336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/10/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
In 2012, the United States experienced one of the largest outbreaks of West Nile virus (WNV)-associated deaths, with the majority occurring in Dallas County (Co.), Texas (TX) and surrounding areas. In this study, logistic mixed models were used to identify associations between the landscape, human population, and WNV-infected Culex quinquefasciatus mosquitoes during the 2012 WNV epidemic in Dallas Co. We found increased probabilities for WNV-positive mosquitoes in north and central Dallas Co. The most significant predictors of the presence of WNV in Cx. quinquefasciatus pools were increased urbanization (based on an index composed of greater population density, lower normalized difference vegetation index, higher coverage of urban land types, and more impervious surfaces), older human populations, and lower elevation. These relationships between the landscape, sociodemographics, and risk of enzootic transmission identified regions of Dallas Co., TX with highest risk of spillover to human disease during the 2012 WNV epidemic.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Texas A&M University, TAMU MS 2475, College Station, 77843 TX, USA.
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, TAMU MS 2475, College Station, 77843 TX, USA.
| |
Collapse
|
17
|
Ribeiro GS, Hamer GL, Diallo M, Kitron U, Ko AI, Weaver SC. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol 2020; 40:1-10. [PMID: 32193135 PMCID: PMC7434662 DOI: 10.1016/j.coviro.2020.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
We review and contrast the evidence for an effect of amplifying host herd immunity on circulation and human exposure to arboviruses. Herd immunity of short-lived West Nile virus avian amplifying hosts appears to play a limited role in levels of enzootic circulation and spillover infections of humans, which are not amplifiers. In contrast, herd immunity of nonhuman primate hosts for enzootic Zika, dengue, and chikungunya viruses is much stronger and appears to regulate to a large extent the periodicity of sylvatic amplification in Africa. Following the recent Zika and chikungunya pandemics, human herd immunity in the Americas quickly rose to ∼50% in many regions, although seroprevalence remains patchy. Modeling from decades of chikungunya circulation in Asia suggests that this level of herd immunity will suppress for many years major chikungunya and Zika epidemics in the Americas, followed by smaller outbreaks as herd immunity cycles with a periodicity of up to several decades.
Collapse
Affiliation(s)
- Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Uriel Kitron
- Population Biology, Ecology, and Evolution Graduate Program, Graduate Division of Biological and Biomedical Sciences, Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555-0610 TX, USA.
| |
Collapse
|
18
|
Kramer LD, Ciota AT, Kilpatrick AM. Introduction, Spread, and Establishment of West Nile Virus in the Americas. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1448-1455. [PMID: 31549719 PMCID: PMC7182919 DOI: 10.1093/jme/tjz151] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 05/04/2023]
Abstract
The introduction of West Nile virus (WNV) to North America in 1999 and its subsequent rapid spread across the Americas demonstrated the potential impact of arboviral introductions to new regions, and this was reinforced by the subsequent introductions of chikungunya and Zika viruses. Extensive studies of host-pathogen-vector-environment interactions over the past two decades have illuminated many aspects of the ecology and evolution of WNV and other arboviruses, including the potential for pathogen adaptation to hosts and vectors, the influence of climate, land use and host immunity on transmission ecology, and the difficulty in preventing the establishment of a zoonotic pathogen with abundant wildlife reservoirs. Here, we focus on outstanding questions concerning the introduction, spread, and establishment of WNV in the Americas, and what it can teach us about the future of arboviral introductions. Key gaps in our knowledge include the following: viral adaptation and coevolution of hosts, vectors and the virus; the mechanisms and species involved in the large-scale spatial spread of WNV; how weather modulates WNV transmission; the drivers of large-scale variation in enzootic transmission; the ecology of WNV transmission in Latin America; and the relative roles of each component of host-virus-vector interactions in spatial and temporal variation in WNV transmission. Integrative studies that examine multiple factors and mechanisms simultaneously are needed to advance our knowledge of mechanisms driving transmission.
Collapse
Affiliation(s)
- Laura D Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY
- Corresponding author, e-mail:
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| |
Collapse
|
19
|
Vasić A, Oșlobanu LE, Marinov M, Crivei LA, Rățoi IA, Aniță A, Aniță D, Doroșencu A, Alexe V, Răileanu Ș, Simeunović P, Raileanu C, Falcuța E, Prioteasa FL, Bojkovski J, Pavlović I, Mathis A, Tews BA, Savuţa G, Veronesi E, Silaghi C. Evidence of West Nile Virus (WNV) Circulation in Wild Birds and WNV RNA Negativity in Mosquitoes of the Danube Delta Biosphere Reserve, Romania, 2016. Trop Med Infect Dis 2019; 4:tropicalmed4030116. [PMID: 31438608 PMCID: PMC6789615 DOI: 10.3390/tropicalmed4030116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) is a zoonotic flavivirus whose transmission cycle in nature includes wild birds as amplifying hosts and ornithophilic mosquito vectors. Bridge vectors can transmit WNV to mammal species potentially causing West Nile Fever. Wild bird migration is a mode of WNV introduction into new areas. The Danube Delta Biosphere Reserve (DDBR) is a major stopover of wild birds migrating between Europe and Africa. The aim of this study was to investigate the presence of WNV in the DDBR during the 2016 transmission season in wild birds and mosquitoes. Blood from 68 wild birds (nine different species) trapped at four different locations was analyzed by competitive ELISA and Virus Neutralization Test (VNT), revealing positive results in 8/68 (11.8%) of the wild birds by ELISA of which six samples (three from juvenile birds) were confirmed seropositive by VNT. Mosquitoes (n = 6523, 5 genera) were trapped with CDC Mini Light traps at two locations and in one location resting mosquitoes were caught. The presence of WNV RNA was tested in 134 pools by reverse transcription quantitative PCR (RT-qPCR). None of the pools was positive for WNV-specific RNA. Based on the obtained results, WNV was circulating in the DDBR during 2016.
Collapse
Affiliation(s)
- Ana Vasić
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943 Insel Riems, Germany
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Luanda Elena Oșlobanu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Mihai Marinov
- Danube Delta National Institute for Research and Development, Strada Babadag 165, 820112 Tulcea, Romania
| | - Luciana Alexandra Crivei
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Ioana Alexandra Rățoi
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Adriana Aniță
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Dragoș Aniță
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Alexandru Doroșencu
- Danube Delta National Institute for Research and Development, Strada Babadag 165, 820112 Tulcea, Romania
| | - Vasile Alexe
- Danube Delta National Institute for Research and Development, Strada Babadag 165, 820112 Tulcea, Romania
| | - Ștefan Răileanu
- Danube Delta National Institute for Research and Development, Strada Babadag 165, 820112 Tulcea, Romania
| | - Predrag Simeunović
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Cristian Raileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943 Insel Riems, Germany
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Elena Falcuța
- Cantacuzino National Medico-Military Institute for Research and Development, Splaiul Independenţei 103, 05096 Bucharest, Romania
| | - Florian Liviu Prioteasa
- Cantacuzino National Medico-Military Institute for Research and Development, Splaiul Independenţei 103, 05096 Bucharest, Romania
| | - Jovan Bojkovski
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Ivan Pavlović
- Scientific Veterinary Institute of Serbia Belgrade, Vojvode Toze 14, 11000 Belgrade, Serbia
| | - Alexander Mathis
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Birke Andrea Tews
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943 Insel Riems, Germany
| | - Gheorghe Savuţa
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu 3, 700490 Iaşi, Romania
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943 Insel Riems, Germany.
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland.
- Department of Biology, University of Greifswald, Domstrasse 11, 17489 Greifswald, Germany.
| |
Collapse
|
20
|
Poh KC, Chaves LF, Reyna-Nava M, Roberts CM, Fredregill C, Bueno R, Debboun M, Hamer GL. The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:260-272. [PMID: 31030133 DOI: 10.1016/j.scitotenv.2019.04.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 05/27/2023]
Abstract
Early warning systems for vector-borne diseases (VBDs) prediction are an ecological application where data from the interface of several environmental components can be used to predict future VBD transmission. In general, models for early warning systems only consider average environmental conditions ignoring variation in weather variables, despite the prediction from Schmalhausen's law about the importance of environmental variability for biological systems. We present results from a long-term mosquito surveillance program from Harris County, Texas, USA, where we use time series analysis techniques to study the abundance and West Nile virus (WNV) infection patterns in the local primary vector, Culex quinquefasciatus Say. We found that, as predicted by Schmalhausen's law, mosquito abundance was associated with the standard deviation and kurtosis of environmental variables. By contrast, WNV infection rates were associated with 8-month lagged temperature, suggesting environmental conditions during overwintering might be key for WNV amplification during summer outbreaks. Finally, model validation showed that seasonal autoregressive models successfully predicted mosquito WNV infection rates up to 2 months ahead, but did rather poorly at predicting mosquito abundance, a result that might reflect impacts of vector control for mosquito population reduction, geographic scale, and other artifacts generated by operational constraints of mosquito surveillance systems.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Luis F Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Cartago, Costa Rica
| | - Martin Reyna-Nava
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Christy M Roberts
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Chris Fredregill
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Rudy Bueno
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Mustapha Debboun
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
21
|
McMillan JR, Blakney RA, Mead DG, Koval WT, Coker SM, Waller LA, Kitron U, Vazquez‐Prokopec GM. Linking the vectorial capacity of multiple vectors to observed patterns of West Nile virus transmission. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph R. McMillan
- Program in Population Biology, Ecology and EvolutionEmory University Atlanta Georgia
| | | | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease StudyUniversity of Georgia Athens Georgia
| | - William T. Koval
- Department of Environmental SciencesEmory University Atlanta Georgia
| | - Sarah M. Coker
- Southeastern Cooperative Wildlife Disease StudyUniversity of Georgia Athens Georgia
| | - Lance A. Waller
- Program in Population Biology, Ecology and EvolutionEmory University Atlanta Georgia
- Department of Biostatistics and BioinformaticsRollins School of Public HealthEmory University Atlanta Georgia
| | - Uriel Kitron
- Program in Population Biology, Ecology and EvolutionEmory University Atlanta Georgia
- Department of Environmental SciencesEmory University Atlanta Georgia
| | - Gonzalo M. Vazquez‐Prokopec
- Program in Population Biology, Ecology and EvolutionEmory University Atlanta Georgia
- Department of Environmental SciencesEmory University Atlanta Georgia
| |
Collapse
|
22
|
Tolsá MJ, García-Peña GE, Rico-Chávez O, Roche B, Suzán G. Macroecology of birds potentially susceptible to West Nile virus. Proc Biol Sci 2018; 285:20182178. [PMID: 30963915 PMCID: PMC6304048 DOI: 10.1098/rspb.2018.2178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Zoonotic diseases transmitted by wildlife affect biological conservation, public and animal health, and the economy. Current research efforts are aimed at finding wildlife pathogens at a given location. However, a meta-analytical approach may reveal emerging macroecological patterns in the host-pathogen relationship at different temporal and spatial scales. West Nile virus (WNV) is a pathogen with worldwide detrimental impacts on bird populations. To understand macroecological patterns driving WNV infection, we aimed to recognize unknown competent reservoirs using three disease metrics-serological prevalence (SP), molecular prevalence (MP) and mortality (M)-and test if these metrics are correlated with the evolutionary history, geographical origin of bird species, viral strain, time-space and methodology. We performed a quantitative review of field studies on birds sampled for WNV. We obtained 4945 observations of 949 species from 39 countries. Our analysis supported the idea that MP and M are good predictors of reservoir competence, and allowed us to identify potential competent reservoirs. Furthermore, results indicated that the variability of these metrics was attributable to phylogeny, time-space and sample size. A macroecological approach is needed to recognize susceptible species and competent reservoirs, and to identify other factors driving zoonotic diseases originating from wildlife.
Collapse
Affiliation(s)
- María J. Tolsá
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Gabriel E. García-Peña
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Oscar Rico-Chávez
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Benjamin Roche
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- UMMISCO, IRD/Sorbonne Université, Bondy, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| |
Collapse
|
23
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
24
|
Poh KC, Martin E, Walker ED, Kitron U, Ruiz MO, Goldberg TL, Hamer GL. Co-circulation of Flanders Virus and West Nile Virus in Culex Mosquitoes (Diptera: Culicidae) from Chicago, Illinois. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1062-1066. [PMID: 29659921 PMCID: PMC6025230 DOI: 10.1093/jme/tjy051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 06/08/2023]
Abstract
West Nile virus (WNV) and Flanders virus (FLAV) co-occur in regions of North America. Because both viruses are maintained in a transmission cycle involving Culex mosquitoes and birds, screening mosquitoes for FLAV has been suggested as an enhancement to WNV surveillance and epidemic prediction. Using samples collected in 2010 and 2012 in Chicago, IL, USA, we demonstrate the presence of FLAV in four out of 287 (1.4%) Culex pools. We estimated minimum infection rates for WNV and FLAV to be 5.66 and 1.22 in 2010 and 8.74 and 0.61 in 2012, respectively. FLAV occurred 1 and 3 wk prior to the peak of WNV transmission in 2010 and 2012, respectively. FLAV sequences from Chicago were genetically diverse and phylogenetically representative of lineage A viruses from across the United States.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Estelle Martin
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Linden Drive, Madison, WI
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| |
Collapse
|
25
|
Nelson CW, Sibley SD, Kolokotronis SO, Hamer GL, Newman CM, Anderson TK, Walker ED, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL. Selective constraint and adaptive potential of West Nile virus within and among naturally infected avian hosts and mosquito vectors. Virus Evol 2018; 4:vey013. [PMID: 29942654 PMCID: PMC6007309 DOI: 10.1093/ve/vey013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Arthropod-borne viruses are among the most genetically constrained RNA viruses, yet they have a remarkable propensity to adapt and emerge. We studied wild birds and mosquitoes naturally infected with West Nile virus (WNV) in a 'hot spot' of virus transmission in Chicago, IL, USA. We generated full coding WNV genome sequences from spatiotemporally matched bird and mosquito samples using high-throughput sequencing, allowing a molecular evolutionary assessment with deep coverage. Mean FST among samples was 0.66 (±0.02 SE) and was bimodal, with mean nucleotide diversity being higher between samples (interhost πN = 0.001; πS = 0.024) than within them (intrahost πN < 0.0001; πS < 0.001). Eight genomic sites with FST > 1.01 (in the PrM, NS2a, NS3, NS4b, and 5'-noncoding genomic regions) showed bird versus mosquito variant frequency differences of >30 per cent and/or polymorphisms fixed in ≥5 host or vector individuals, suggesting host tropism for these variants. However, phylogenetic analyses demonstrated a lack of grouping by bird or mosquito, most inter-sample differences were synonymous (mean interhost πN/πS = 0.04), and there was no significant difference between hosts and vectors in either their nucleotide diversities or levels of purifying selection (mean intrahost πN/πS = 0.28 in birds and πN/πS = 0.21 in mosquitoes). This finding contrasts with the 'trade-off' and 'selective sieve' hypotheses that have been proposed and tested in the laboratory, which predict strong host versus vector effects on WNV genetic variation, with heightened selective constraint in birds alternating with heightened viral diversity in mosquitoes. Overall, our data show WNV to be highly selectively constrained within and between both hosts and vectors but still able to vary at a limited number of sites across the genome. Such site-specific plasticity in the face of overall selective constraint may offer a mechanism whereby highly constrained viruses such as WNV and its relatives can still adapt and emerge.
Collapse
Affiliation(s)
- Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY 11203-2098, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Christina M Newman
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tavis K Anderson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI 48824-4320, USA
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, IL 61802, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Durand B, Tran A, Balança G, Chevalier V. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe. PLoS One 2017; 12:e0185962. [PMID: 29023472 PMCID: PMC5638290 DOI: 10.1371/journal.pone.0185962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i) reservoir hosts, (ii) vectors, both characterized by their diversity, abundance and competence, (iii) and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV) circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85). Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79-0.92), and a specificity of 68% (95% CI: 0.66-0.71). Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures.
Collapse
Affiliation(s)
- Benoit Durand
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Annelise Tran
- Cirad, UMR TETIS, Montpellier, France
- Cirad, UMR ASTRE, Montpellier, France
| | | | - Véronique Chevalier
- Cirad, UMR ASTRE, Montpellier, France
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| |
Collapse
|
27
|
Soltész Z, Erdélyi K, Bakonyi T, Barna M, Szentpáli-Gavallér K, Solt S, Horváth É, Palatitz P, Kotymán L, Dán Á, Papp L, Harnos A, Fehérvári P. West Nile virus host-vector-pathogen interactions in a colonial raptor. Parasit Vectors 2017; 10:449. [PMID: 28962629 PMCID: PMC5622512 DOI: 10.1186/s13071-017-2394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. Results Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. Conclusions Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region.
Collapse
Affiliation(s)
- Zoltán Soltész
- Lendület Ecosystem Services Research Group, MTA Centre for Ecological Research, Vácrátót, Hungary. .,Hungarian Natural History Museum, Budapest, Hungary.
| | - Károly Erdélyi
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Mónika Barna
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | | | - Szabolcs Solt
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | - Éva Horváth
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | - Péter Palatitz
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | | | - Ádám Dán
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - László Papp
- Hungarian Academy of Sciences, Biological Section, Budapest, Hungary
| | - Andrea Harnos
- Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| | - Péter Fehérvári
- Hungarian Natural History Museum, Budapest, Hungary.,Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
28
|
Zhang W, Chen S, Mahalingam S, Wang M, Cheng A. An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. J Gen Virol 2017; 98:2413-2420. [PMID: 28874226 DOI: 10.1099/jgv.0.000908] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
29
|
Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modeling of the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080892. [PMID: 28786934 PMCID: PMC5580596 DOI: 10.3390/ijerph14080892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 11/17/2022]
Abstract
The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus, within their flight range. Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling localities of gravid female Culex quinquefasciatus. The spatio-temporal correlations between VHC data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we developed a distribution model using the correlated predicting variables. Only 12 factors showed significant correlations with spatial distribution of VHC ratios (R² = 81.62, p < 0.01). Non-forested wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest relationship. The VHC ratios showed monthly environmental resilience in terms of number and type of influential factors. The highest prediction power of RU and other urban and built up land (OUBL), was demonstrated during May-August. This association was positively correlated with the onset of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife analysis in MaxEnt and independently collected field validation points. The spatial and temporal correlations of VHC ratios and their response to the predicting variables are discussed.
Collapse
|
30
|
Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown WM, Kitron UD, Goldberg TL. Culex Flavivirus During West Nile Virus Epidemic and Interepidemic Years in Chicago, United States. Vector Borne Zoonotic Dis 2017. [PMID: 28628366 DOI: 10.1089/vbz.2017.2124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Culex flavivirus (CxFV) is an insect-specific flavivirus infecting Culex mosquitoes, which are important vectors of West Nile virus (WNV). CxFV and WNV cocirculate in nature and coinfect Culex mosquitoes, including in a WNV "hotspot" in suburban Chicago. We previously identified a positive association between CxFV and WNV in mosquito pools collected from suburban Chicago in 2006. To further investigate this phenomenon, we compared the spatial and temporal distribution of CxFV during an interepidemic year (2011) and an epidemic year (2012) for WNV. Both viruses were more prevalent in mosquito pools in 2012 compared to 2011. During both years, the CxFV infection status of mosquito pools was associated with environmental factors such as habitat type and precipitation frequency rather than coinfection with WNV. These results support the idea that WNV and CxFV are ecologically associated, perhaps because both viruses respond to similar environmental drivers of mosquito populations.
Collapse
Affiliation(s)
- Christina M Newman
- 1 Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | | | - Tavis K Anderson
- 3 Virus and Prion Research Unit, National Animal Disease Center , USDA-ARS, Ames, Iowa
| | - Gabriel L Hamer
- 4 Department of Entomology, Texas A&M University , College Station, Texas
| | - Marilyn O Ruiz
- 5 Department of Pathobiology, University of Illinois , Urbana, Illinois
| | - Jeffrey D Brawn
- 6 Department of Natural Resources and Environmental Sciences, University of Illinois , Urbana, Illinois
| | - William M Brown
- 5 Department of Pathobiology, University of Illinois , Urbana, Illinois
| | - Uriel D Kitron
- 7 Department of Environmental Sciences, Emory University , Atlanta, Georgia
| | - Tony L Goldberg
- 8 Department of Pathobiological Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
31
|
Davis JK, Vincent G, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLOS CURRENTS 2017; 9:ecurrents.outbreaks.90e80717c4e67e1a830f17feeaaf85de. [PMID: 28736681 PMCID: PMC5503719 DOI: 10.1371/currents.outbreaks.90e80717c4e67e1a830f17feeaaf85de] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Predicting the timing and locations of future mosquito-borne disease outbreaks has the potential to improve the targeting of mosquito control and disease prevention efforts. Here, we present and evaluate prospective forecasts made prior to and during the 2016 West Nile virus (WNV) season in South Dakota, a hotspot for human WNV transmission in the United States. METHODS We used a county-level logistic regression model to predict the weekly probability of human WNV case occurrence as a function of temperature, precipitation, and an index of mosquito infection status. The model was specified and fitted using historical data from 2004-2015 and was applied in 2016 to make short-term forecasts of human WNV cases in the upcoming week as well as whole-year forecasts of WNV cases throughout the entire transmission season. These predictions were evaluated at the end of the 2016 WNV season by comparing them with spatial and temporal patterns of the human cases that occurred. RESULTS There was an outbreak of WNV in 2016, with a total of 167 human cases compared to only 40 in 2015. Model results were generally accurate, with an AUC of 0.856 for short-term predictions. Early-season temperature data were sufficient to predict an earlier-than-normal start to the WNV season and an above-average number of cases, but underestimated the overall case burden. Model predictions improved throughout the season as more mosquito infection data were obtained, and by the end of July the model provided a close estimate of the overall magnitude of the outbreak. CONCLUSIONS An integrated model that included meteorological variables as well as a mosquito infection index as predictor variables accurately predicted the resurgence of WNV in South Dakota in 2016. Key areas for future research include refining the model to improve predictive skill and developing strategies to link forecasts with specific mosquito control and disease prevention activities.
Collapse
|
32
|
Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD, Diffenbaugh NS, Kilpatrick AM. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc Biol Sci 2017; 284:20162078. [PMID: 28179512 PMCID: PMC5310598 DOI: 10.1098/rspb.2016.2078] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/12/2017] [Indexed: 11/12/2022] Open
Abstract
The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases.
Collapse
Affiliation(s)
- Sara H Paull
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
- Research Applications Lab, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
| | - Daniel E Horton
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Moetasim Ashfaq
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Deeksha Rastogi
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- School of Public Health, Department of Biomedical Sciences, SUNY, Albany, NY 12201, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
| |
Collapse
|
33
|
Levine RS, Hedeen DL, Hedeen MW, Hamer GL, Mead DG, Kitron UD. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia. Parasit Vectors 2017; 10:62. [PMID: 28159002 PMCID: PMC5291963 DOI: 10.1186/s13071-017-1999-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The dilution effect is the reduction in vector-borne pathogen transmission associated with the presence of diverse potential host species, some of which are incompetent. It is popularized as the notion that increased biodiversity leads to decreased rates of disease. West Nile virus (WNV) is an endemic mosquito-borne virus in the United States that is maintained in a zoonotic cycle involving various avian host species. In Atlanta, Georgia, substantial WNV presence in the vector and host species has not translated into a high number of human cases. Methods To determine whether a dilution effect was contributing to this reduced transmission, we characterized the host species community composition and performed WNV surveillance of hosts and vectors in urban Atlanta between 2010 and 2011. We tested the relationship between host diversity and both host seroprevalence and vector infection rates using a negative binomial generalized linear mixed model. Results Regardless of how we measured host diversity or whether we considered host seroprevalence and vector infection rates as predictor variables or outcome variables, we did not detect a dilution effect. Rather, we detected an amplification effect, in which increased host diversity resulted in increased seroprevalence or infection rates; this is the first empirical evidence for this effect in a mosquito-borne system. Conclusions We suggest that this effect may be driven by an over-abundance of moderately- to poorly-competent host species, such as northern cardinals and members of the Mimid family, which cause optimal hosts to become rarer and present primarily in species-rich areas. Our results support the notion that dilution or amplification effects depend more on the identities of the species comprising the host community than on the absolute diversity of hosts. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1999-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca S Levine
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA.
| | - David L Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Meghan W Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University College of Agriculture and Life Sciences, TAMU 2475, College Station, TX, 77843, USA
| | - Daniel G Mead
- University of Georgia College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Uriel D Kitron
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA
| |
Collapse
|
34
|
Tantely ML, Goodman SM, Rakotondranaivo T, Boyer S. Review of West Nile virus circulation and outbreak risk in Madagascar: Entomological and ornithological perspectives. Parasite 2016; 23:49. [PMID: 27849515 PMCID: PMC5112766 DOI: 10.1051/parasite/2016058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/23/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile fever (WNF) is a zoonotic disease, occurring nearly globally. In Madagascar, West Nile virus (WNV) was first detected in 1978 from wild birds and the virus is currently distributed across the island, but no epidemic or epizootic period has been recorded. One fatal human case of WNV infection was reported in 2011, suggesting a "tip of the iceberg" phenomenon of a possible WNF epidemic/epizootic on the island. The main objective of this literature-based survey is to review patterns of WNV circulation in Madagascar from the entomological and ornithological points of view. Among the 235 mosquito species described from Madagascar, 29 species are widely associated with WNV infection; 16 of them are found naturally infected with WNV on the island and categorized into major, candidate, and potential vectors of WNV according to their vector capacity. This study upholds the hypothesis that WNV enzooticity is independent of annual movements of migratory birds passing through Madagascar. Moreover, the lack of regular migratory bird flux between Africa and Madagascar would reduce the probability of transmission and the subsequent reintroduction of the virus into locally occurring mosquito species. Given that Palearctic migratory birds are strongly implicated in the transmission of WNV, we highlight notable differences in the movements and species diversity of these birds in Madagascar as compared to eastern and northern Africa. Risk factors from this two-pronged approach are presented for the emergence of WNF outbreak.
Collapse
Affiliation(s)
- Michaël Luciano Tantely
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Steven M. Goodman
-
Field Museum of Natural History 1400 South Lake Shore Drive Chicago
60605 Illinois USA
-
Association Vahatra BP 3972 Antananarivo 101 Madagascar
| | - Tsirinaina Rakotondranaivo
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Sébastien Boyer
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| |
Collapse
|
35
|
Loss SR, Noden BH, Hamer GL, Hamer SA. A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America. Oecologia 2016; 182:947-959. [PMID: 27670413 DOI: 10.1007/s00442-016-3731-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
Abstract
Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1 %). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all "super-carrier" bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.
Collapse
Affiliation(s)
- Scott R Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, OK, 74078, USA.
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
36
|
Medeiros MCI, Ricklefs RE, Brawn JD, Ruiz MO, Goldberg TL, Hamer GL. Overlap in the Seasonal Infection Patterns of Avian Malaria Parasites and West Nile Virus in Vectors and Hosts. Am J Trop Med Hyg 2016; 95:1121-1129. [PMID: 27621305 DOI: 10.4269/ajtmh.16-0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/23/2016] [Indexed: 11/07/2022] Open
Abstract
Multiple vector-borne pathogens often circulate in the same vector and host communities, and seasonal infection dynamics influence the potential for pathogen interactions. Here, we explore the seasonal infection patterns of avian malaria (Haemosporida) parasites (Plasmodium and Haemoproteus) and West Nile virus (WNV) in birds and mosquitoes in suburban Chicago. We show that both pathogens vary seasonally in Culex mosquitoes and avian hosts, but that patterns of covariation are complex. Different putative Plasmodium species varied asynchronously across the season in mosquitoes and birds, suggesting that different forces may govern their transmission. Infections of Culex mosquitoes with Plasmodium parasites were positively associated with WNV infections in pools of individuals aggregated from the same time and site, suggesting that these pathogens respond to common environmental drivers and co-circulate among the same host and vector populations. Future research should focus on these common drivers, and whether these pathogens interact in vectors and hosts.
Collapse
Affiliation(s)
| | - Robert E Ricklefs
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, Illinois
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas.
| |
Collapse
|
37
|
Levine RS, Mead DG, Hamer GL, Brosi BJ, Hedeen DL, Hedeen MW, McMillan JR, Bisanzio D, Kitron UD. Supersuppression: Reservoir Competency and Timing of Mosquito Host Shifts Combine to Reduce Spillover of West Nile Virus. Am J Trop Med Hyg 2016; 95:1174-1184. [PMID: 27503511 DOI: 10.4269/ajtmh.15-0809] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/09/2016] [Indexed: 11/07/2022] Open
Abstract
In the eastern United States, human cases of West Nile virus (WNV) result from spillover from urban epizootic transmission between passerine birds and Culex mosquitoes. In Atlanta, GA, substantial WNV presence in hosts and vectors has not resulted in the human disease burden observed in cities with similar infection pressure. Our study goal was to investigate extrinsic ecological conditions that potentially contribute to these reduced transmission rates. We conducted WNV surveillance among hosts and vectors in urban Atlanta and recorded an overall avian seroprevalence of nearly 30%, which was significantly higher among northern cardinals, blue jays, and members of the mimid family, and notably low among American robins. Examination of temporal Culex feeding patterns showed a marked feeding shift from American robins in the early season to northern cardinals in the late season. We therefore rule out American robins as superspreaders in the Atlanta area and suggest instead that northern cardinals and mimids act as WNV "supersuppressor" species, which slow WNV transmission by drawing many infectious bites during the critical virus amplification period, yet failing to amplify transmission due to low host competencies. Of particular interest, urban forest patches provide spillover protection by increasing the WNV amplification fraction on supersuppressor species.
Collapse
Affiliation(s)
- Rebecca S Levine
- Department of Environmental Sciences, Emory University, Atlanta, Georgia.
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia College of Veterinary Medicine, Athens, Georgia
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Berry J Brosi
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - David L Hedeen
- Office of Environmental Services, Georgia Department of Transportation, Atlanta, Georgia
| | - Meghan W Hedeen
- Office of Environmental Services, Georgia Department of Transportation, Atlanta, Georgia
| | - Joseph R McMillan
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Donal Bisanzio
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Uriel D Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|
38
|
Karki S, Hamer GL, Anderson TK, Goldberg TL, Kitron UD, Krebs BL, Walker ED, Ruiz MO. Effect of Trapping Methods, Weather, and Landscape on Estimates of the Culex Vector Mosquito Abundance. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:93-103. [PMID: 27375359 PMCID: PMC4918690 DOI: 10.4137/ehi.s33384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 05/27/2023]
Abstract
The local abundance of Culex mosquitoes is a central factor adding to the risk of West Nile virus transmission, and vector abundance data influence public health decisions. This study evaluated differences in abundance estimates from mosquitoes trapped using two common methods: CO2-baited CDC light traps and infusion-baited gravid traps in suburban, Chicago, Illinois. On a weekly basis, the two methods were modestly correlated (r = 0.219) across 71 weeks over 4 years. Lagged weather conditions of up to four weeks were associated with the number of mosquitoes collected in light and gravid traps. Collections in light traps were higher with higher temperature in the same week, higher precipitation one, two, and four weeks before the week of trapping, and lower maximum average wind speed. Collections in gravid traps were higher with higher temperature in the same week and one week earlier, lower temperature four weeks earlier, and with higher precipitation two and four weeks earlier. Culex abundance estimates from light traps were significantly higher in semi-natural areas compared to residential areas, but abundance estimates from gravid traps did not vary by the landscape type. These results highlight the importance of the surveillance methods used in the assessment of local Culex abundance estimates. Measures of risk of exposure to West Nile virus should assess carefully how mosquito abundance has been estimated and integrated into assessments of transmission risk.
Collapse
Affiliation(s)
- Surendra Karki
- Department of Pathobiology, University of Illinois, Urbana-Champaign, IL, USA
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - Uriel D. Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA, USA
| | - Bethany L. Krebs
- Wellness and Animal Behavior Department, San Francisco Zoo, San Francisco, CA, USA
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, USA
| | - Marilyn O. Ruiz
- Department of Pathobiology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
39
|
A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors. J Theor Biol 2016; 399:33-42. [PMID: 27036097 DOI: 10.1016/j.jtbi.2016.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/15/2016] [Accepted: 03/19/2016] [Indexed: 11/23/2022]
Abstract
Though seasonal West Nile virus (WNV) outbreaks have been widely observed to be associated with the end of the avian nesting season, specific ecological mechanisms accounting for this synchronicity remain poorly understood. In this paper we develop and evaluate a novel mathematical model of enzootic WNV transmission to gain insight into the mechanisms responsible for structuring WNV dynamics. We incorporate avian (host) stage-structure (nestling, fledgling, and adult) and within-species heterogeneity in the form of stage-specific mosquito (vector) biting rates. We determine the extent to which temporal fluctuations in host stage and vector abundance throughout the season, along with the differential exposure of these stages to mosquito bites, affect the timing and magnitude of WNV outbreaks in the vector population. We find heterogeneity in avian stage exposure, particularly an increase in juvenile exposure, to result in earlier, more intense transmission. The effects of differential exposure are dependent upon vector abundance, both at carrying capacity as well as during initial stages of nestling production.
Collapse
|
40
|
Boothe E, Medeiros MCI, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL, Walker ED, Hamer GL. Identification of Avian and Hemoparasite DNA in Blood-Engorged Abdomens of Culex pipiens (Diptera; Culicidae) from a West Nile Virus Epidemic region in Suburban Chicago, Illinois. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:461-468. [PMID: 26334822 DOI: 10.1093/jme/tjv029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/20/2015] [Indexed: 06/05/2023]
Abstract
Multiple mosquito-borne parasites cocirculate in nature and potentially interact. To understand the community of parasites cocirculating with West Nile virus (WNV), we screened the bloodmeal content of Culex pipiens L. mosquitoes for three common types of hemoparasites. Blood-fed Cx. pipiens were collected from a WNV-epidemic area in suburban Chicago, IL, from May to September 2005 through 2010. DNA was extracted from dissected abdomens and subject to PCR and direct sequencing to identify the vertebrate host. RNA was extracted from the head or thorax and screened for WNV using quantitative reverse transcriptase PCR. Seventy-nine engorged females with avian host origin were screened using PCR and amplicon sequencing for filarioid nematodes, Haemosporida, and trypanosomatids. Filarioid nematodes were identified in 3.8% of the blooded abdomens, Plasmodium sp. in 8.9%, Haemoproteus in 31.6%, and Trypanosoma sp. in 6.3%. The sequences from these hemoparasite lineages were highly similar to sequences from birds in prior studies in suburban Chicago. Overall, 50.6% of blood-fed Culex pipiens contained hemoparasite DNA in their abdomen, presumably from current or prior bloodmeals. Additionally, we detected hemoparasite DNA in the blooded abdomen of three of 10 Cx. pipiens infected with WNV.
Collapse
Affiliation(s)
- Emily Boothe
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475
| | - Matthew C I Medeiros
- Department of Biology, University of Missouri-St. Louis, St. Louis, One University Blvd., MO 63121
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, 400 Dowman Drive, Atlanta, GA 30322
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 South Goodwin Ave., Urbana, IL 61801
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln, Urbana, IL 61801
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, 2215 Biomedical Physical Sciences East Lansing, MI 48824-4320
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475.
| |
Collapse
|
41
|
Abstract
Antibody duration, following a humoral immune response to West Nile virus (WNV) infection, is poorly understood in free-ranging avian hosts. Quantifying antibody decay rate is important for interpreting serologic results and for understanding the potential for birds to serorevert and become susceptible again. We sampled free-ranging birds in Chicago, Illinois, US, from 2005 to 2011 and Atlanta, Georgia, US, from 2010 to 2012 to examine the dynamics of antibody decay following natural WNV infection. Using serial dilutions in a blocking enzyme-linked immunosorbent assay, we quantified WNV antibody titer in repeated blood samples from individual birds over time. We quantified a rate of antibody decay for 23 Northern Cardinals (Cardinalis cardinalis) of 0.198 natural log units per month and 24 individuals of other bird species of 0.178 natural log units per month. Our results suggest that juveniles had a higher rate of antibody decay than adults, which is consistent with nonlinear antibody decay at different times postexposure. Overall, most birds had undetectable titers 2 yr postexposure. Nonuniform WNV antibody decay rates in free-ranging birds underscore the need for cautious interpretation of avian serology results in the context of arbovirus surveillance and epidemiology.
Collapse
|
42
|
Hahn MB, Monaghan AJ, Hayden MH, Eisen RJ, Delorey MJ, Lindsey NP, Nasci RS, Fischer M. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012. Am J Trop Med Hyg 2015; 92:1013-22. [PMID: 25802435 DOI: 10.4269/ajtmh.14-0737] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/08/2015] [Indexed: 11/07/2022] Open
Abstract
West Nile virus (WNV) is a leading cause of mosquito-borne disease in the United States. Annual seasonal outbreaks vary in size and location. Predicting where and when higher than normal WNV transmission will occur can help direct limited public health resources. We developed models for the contiguous United States to identify meteorological anomalies associated with above average incidence of WNV neuroinvasive disease from 2004 to 2012. We used county-level WNV data reported to ArboNET and meteorological data from the North American Land Data Assimilation System. As a result of geographic differences in WNV transmission, we divided the United States into East and West, and 10 climate regions. Above average annual temperature was associated with increased likelihood of higher than normal WNV disease incidence, nationally and in most regions. Lower than average annual total precipitation was associated with higher disease incidence in the eastern United States, but the opposite was true in most western regions. Although multiple factors influence WNV transmission, these findings show that anomalies in temperature and precipitation are associated with above average WNV disease incidence. Readily accessible meteorological data may be used to develop predictive models to forecast geographic areas with elevated WNV disease risk before the coming season.
Collapse
Affiliation(s)
- Micah B Hahn
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Andrew J Monaghan
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mary H Hayden
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Rebecca J Eisen
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mark J Delorey
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Nicole P Lindsey
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Roger S Nasci
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Marc Fischer
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
43
|
Krebs BL, Anderson TK, Goldberg TL, Hamer GL, Kitron UD, Newman CM, Ruiz MO, Walker ED, Brawn JD. Host group formation decreases exposure to vector-borne disease: a field experiment in a 'hotspot' of West Nile virus transmission. Proc Biol Sci 2014; 281:20141586. [PMID: 25339722 PMCID: PMC4213639 DOI: 10.1098/rspb.2014.1586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 11/12/2022] Open
Abstract
Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission.
Collapse
Affiliation(s)
- Bethany L Krebs
- School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA
| | - Tavis K Anderson
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA
| | - Christina M Newman
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, IL 61801, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI 48824-4320, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Medeiros MCI, Ellis VA, Ricklefs RE. Specialized avian Haemosporida trade reduced host breadth for increased prevalence. J Evol Biol 2014; 27:2520-8. [DOI: 10.1111/jeb.12514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
Affiliation(s)
- M. C. I. Medeiros
- Department of Biology; University of Missouri-St. Louis; One University Boulevard; St. Louis MO USA
| | - V. A. Ellis
- Department of Biology; University of Missouri-St. Louis; One University Boulevard; St. Louis MO USA
| | - R. E. Ricklefs
- Department of Biology; University of Missouri-St. Louis; One University Boulevard; St. Louis MO USA
| |
Collapse
|
45
|
Di Sabatino D, Bruno R, Sauro F, Danzetta ML, Cito F, Iannetti S, Narcisi V, De Massis F, Calistri P. Epidemiology of West Nile disease in Europe and in the Mediterranean Basin from 2009 to 2013. BIOMED RESEARCH INTERNATIONAL 2014; 2014:907852. [PMID: 25302311 PMCID: PMC4180897 DOI: 10.1155/2014/907852] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
West Nile virus (WNV) transmission has been confirmed in the last four years in Europe and in the Mediterranean Basin. An increasing concern towards West Nile disease (WND) has been observed due to the high number of human and animal cases reported in these areas confirming the importance of this zoonosis. A new epidemiological scenario is currently emerging: although new introductions of the virus from abroad are always possible, confirming the epidemiological role played by migratory birds, the infection endemisation in some European territories today is a reality supported by the constant reoccurrence of the same strains across years in the same geographical areas. Despite the WND reoccurrence in the Old World, the overwintering mechanisms are not well known, and the role of local resident birds or mosquitoes in this context is poorly understood. A recent new epidemiological scenario is the spread of lineage 2 strain across European and Mediterranean countries in regions where lineage 1 strain is still circulating creating favourable conditions for genetic reassortments and emergence of new strains. This paper summarizes the main epidemiological findings on WNV occurrence in Europe and in the Mediterranean Basin from 2009 to 2013, considering potential future spread patterns.
Collapse
Affiliation(s)
- Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Rossana Bruno
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Francesca Sauro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Maria Luisa Danzetta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Francesca Cito
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Simona Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Valeria Narcisi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| |
Collapse
|
46
|
Medeiros MCI, Anderson TK, Higashiguchi JM, Kitron UD, Walker ED, Brawn JD, Krebs BL, Ruiz MO, Goldberg TL, Ricklefs RE, Hamer GL. An inverse association between West Nile virus serostatus and avian malaria infection status. Parasit Vectors 2014; 7:415. [PMID: 25178911 PMCID: PMC4262112 DOI: 10.1186/1756-3305-7-415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Various ecological and physiological mechanisms might influence the probability that two or more pathogens may simultaneously or sequentially infect a host individual. Concurrent infections can have important consequences for host condition and fitness, including elevated mortality risks. In addition, interactions between coinfecting pathogens may have important implications for transmission dynamics. Methods Here, we explore patterns of association between two common avian pathogens (West Nile virus and avian malaria parasites) among a suburban bird community in Chicago, IL, USA that share mosquito vectors. We surveyed 1714 individual birds across 13 species for both pathogens through established molecular protocols. Results Field investigations of haemosporidian and West Nile virus (WNV) infections among sampled birds yielded an inverse association between WNV serostatus and Plasmodium infection status. This relationship occurred in adult birds but not in juveniles. There was no evidence for a relationship between Haemoproteus infection and WNV serostatus. We detected similar prevalence of Plasmodium among birds captured with active WNV infections and spatiotemporally paired WNV-naïve individuals of the same species, demonstrating that the two pathogens can co-infect hosts. Conclusions Mechanisms explaining the negative association between WNV serostatus and Plasmodium infection status remain unclear and must be resolved through experimental infection procedures. However, our results highlight potential interactions between two common avian pathogens that may influence their transmission among hosts. This is especially relevant considering that West Nile virus is a common zoonotic pathogen with public health implications. Moreover, both pathogens are instructive models in infectious disease ecology, and infection with either has fitness consequences for their avian hosts. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-415) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew C I Medeiros
- Department of Biology, University of Missouri-St, Louis, One University Boulevard, St, Louis, MO 63121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Janousek WM, Marra PP, Kilpatrick AM. Avian roosting behavior influences vector-host interactions for West Nile virus hosts. Parasit Vectors 2014; 7:399. [PMID: 25167979 PMCID: PMC4159503 DOI: 10.1186/1756-3305-7-399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive work has shown that vectors almost never feed at random. Often, a subset of individual hosts and host species are fed on much more frequently than expected from their abundance and this can amplify pathogen transmission. However, the drivers of variation in contact patterns between vectors and their hosts are not well understood, even in relatively well-studied systems such as West Nile virus (WNV). METHODS We compared roosting height and roost aggregation size of seven avian host species of WNV with patterns of host-seeking mosquito (Culex pipiens) abundance at communal and non-communal roost sites. RESULTS First, host-seeking mosquito abundance increased with height and paralleled increased mosquito feeding preferences on species roosting higher in the tree canopy. Second, there were several hundred-fold fewer mosquitoes per bird trapped at American robin (Turdus migratorius) communal roosts compared to non-communal roost sites, which could reduce transmission from and to this key amplifying host species. Third, seasonal changes in communal roost formation may partly explain observed seasonal changes in mosquito feeding patterns, including a decrease in feeding on communal roosting robins. CONCLUSIONS These results illustrate how variation in habitat use by hosts and vectors and social aggregation by hosts influence vector-host interactions and link the behavioral ecology of birds and the transmission of vector-borne diseases to humans.
Collapse
Affiliation(s)
- William M Janousek
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.
| | | | | |
Collapse
|
48
|
Gardner AM, Lampman RL, Muturi EJ. Land use patterns and the risk of West Nile virus transmission in central Illinois. Vector Borne Zoonotic Dis 2014; 14:338-45. [PMID: 24746038 DOI: 10.1089/vbz.2013.1477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how human land use patterns influence mosquito ecology and the risk of mosquito-borne pathogens is critical for the development of disease management strategies. We examined how different environments influenced mosquito species composition, abundance, and West Nile virus (WNV) infection rates in central Illinois. Using a combination of gravid traps and CDC light traps, adult mosquitoes were collected every other week from June 24 to September 16, 2012, in four major land use categories-row crops, prairies, forest fragments, and residential neighborhoods. The mosquitoes were identified to species morphologically, and pools of pure and mixed Culex mosquitoes (primarily Culex pipiens and Culex restuans) were tested for WNV-RNA by qRT-PCR. Mosquito species diversity was significantly higher in forest habitats compared to residential, agricultural, and prairie land use categories. All the four landscape types were equally important habitats for WNV vectors Cx. pipiens and Cx. restuans, contrary to previous findings that these species principally inhabit the residential areas. WNV-infected mosquito pools were observed in all land use types, and the infection rates overlapped among land use categories. Although our findings support the importance of residential habitats for WNV transmission to humans, they also establish that prairie, row crops, and wood lots are potentially important refuges for enzootic transmission. This is particularly important in urban ecosystems where these land use categories are small, interspersed fragments serving as potential refuge sites during periods of low rainfall.
Collapse
Affiliation(s)
- Allison M Gardner
- 1 Department of Entomology, University of Illinois at Urbana-Champaign , Champaign, Illinois
| | | | | |
Collapse
|
49
|
Dispersal of adult culex mosquitoes in an urban west nile virus hotspot: a mark-capture study incorporating stable isotope enrichment of natural larval habitats. PLoS Negl Trop Dis 2014; 8:e2768. [PMID: 24676212 PMCID: PMC3967984 DOI: 10.1371/journal.pntd.0002768] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems. The distance and direction of adult mosquitoes movement on the landscape are important processes in the spread of mosquito-borne diseases, and are critical to understand to the development of effective intervention programs. Here we present a novel approach to study adult mosquito dispersal by using stable isotope enrichment of natural larval habitats. We apply this technique in a focal hotspot of West Nile virus (WNV) transmission in suburban, Chicago, USA to measure dispersal of Culex spp. mosquitoes. We enriched larval mosquitoes in residential catch basins using 15N-potassium nitrate and captured adult mosquitoes in traps surrounding these catch basins. Of 10,817 adult female Culex mosquitoes trapped and tested for stable isotopes, 12 individuals were enriched with 15N, indicating they originated from the catch basins receiving stable isotope amendments. The mean dispersal distance was 1.15 km and maximum flight range was 2.48 km. Ninety percent of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems.
Collapse
|
50
|
Chevalier V, Tran A, Durand B. Predictive modeling of West Nile virus transmission risk in the Mediterranean Basin: how far from landing? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 11:67-90. [PMID: 24362544 PMCID: PMC3924437 DOI: 10.3390/ijerph110100067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022]
Abstract
The impact on human and horse health of West Nile fever (WNF) recently and dramatically increased in Europe and neighboring countries. Involving several mosquito and wild bird species, WNF epidemiology is complex. Despite the implementation of surveillance systems in several countries of concern, and due to a lack of knowledge, outbreak occurrence remains unpredictable. Statistical models may help identifying transmission risk factors. When spatialized, they provide tools to identify areas that are suitable for West Nile virus transmission. Mathematical models may be used to improve our understanding of epidemiological process involved, to evaluate the impact of environmental changes or test the efficiency of control measures. We propose a systematic literature review of publications aiming at modeling the processes involved in WNF transmission in the Mediterranean Basin. The relevance of the corresponding models as predictive tools for risk mapping, early warning and for the design of surveillance systems in a changing environment is analyzed.
Collapse
Affiliation(s)
- Véronique Chevalier
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-4-6759-3706; Fax: +33-4-6759-3754
| | - Annelise Tran
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Cirad, UMR TETIS, Montpellier F-34398, France; E-Mail:
| | - Benoit Durand
- Anses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort F-94706, France; E-Mail:
| |
Collapse
|