1
|
Bordi L, D'Auria A, Frasca F, Mazzotta V, Mazzetti P, Fracella M, d'Ettorre G, Antonelli G, Pistello M, Antinori A, Viscidi RP, Maggi F, Lalle E, Scagnolari C. MPXV infection impairs IFN response but is partially sensitive to IFN-γ antiviral effect. Med Microbiol Immunol 2024; 213:25. [PMID: 39527317 DOI: 10.1007/s00430-024-00808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The recent outbreak of monkeypox virus (MPXV) has caused global concern. How the virus evades the interferon (IFN) response is still poorly understood. We analyzed type I/II IFN (IFN-I/II) expression in clinical samples from MPXV-infected patients and measured IFN-I kinetics in MPXV-infected cells. We also evaluated the anti-MPXV activity of IFN-I/II in A549, HeLa and Vero-E6 cell lines. IFN-I/II mRNA expression was detected in skin lesions, anal swabs, nasopharyngeal samples and peripheral blood mononuclear cells (PBMC), with the highest levels in skin lesions (p < 0.05). High MPXV DNA levels in clinical samples were associated with increased IFN-I levels. In vitro, MPXV infection induced a peak of IFN-I between 48 and 72 h post-infection (p < 0.01). Pre-treatment of the A549, HeLa and Vero-E6 cells with high concentrations (≥ 100,000 International Unit, IU/ml) of IFN-α and IFN-ω did not inhibit or had little effect on MPXV replication, while IFN-β moderately reduced MPXV replication by 2.7-1.5 log10 at 100,000 IU/ml. In clinical samples there was a trend for elevated levels of IFN-γ in association with lower MPXV load and in vitro IFN-γ (3,600 IU/ml) strongly reduced viral titers by 3.4-1.6 log10. There were no significant differences in expression of select IFN-stimulated genes (ISGs) in MPXV infection in vitro. This study shows that MPXV delays IFN-I induction and inhibits expression of selected ISGs in vitro and is associated with an IFN-I resistance phenotype in vivo. However, MPXV is less resistant to IFN-γ in vivo and is sensitive to IFN-γ treatment in vitro, suggesting a potential therapeutic role for IFN-γ.
Collapse
Affiliation(s)
- Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Alessandra D'Auria
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Mazzotta
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Paola Mazzetti
- Department of Translational Research, Virology Section and Retrovirus Centre, University of Pisa, Pisa, Italy
| | - Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Mauro Pistello
- Department of Translational Research, Virology Section and Retrovirus Centre, University of Pisa, Pisa, Italy
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Eleonora Lalle
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617691. [PMID: 39416205 PMCID: PMC11482883 DOI: 10.1101/2024.10.10.617691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
|
3
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. PLoS Pathog 2024; 20:e1012673. [PMID: 39475961 PMCID: PMC11554218 DOI: 10.1371/journal.ppat.1012673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
Affiliation(s)
- Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Alvarez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stacey Crockett
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mahsa Sorouri
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C. Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Chuong C, Cereghino C, Rai P, Bates TA, Oberer M, Weger-Lucarelli J. Enhanced attenuation of chikungunya vaccines expressing antiviral cytokines. NPJ Vaccines 2024; 9:59. [PMID: 38472211 PMCID: PMC10933427 DOI: 10.1038/s41541-024-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Alphaviruses are vector-borne, medically relevant, positive-stranded RNA viruses that cause disease in animals and humans worldwide. Of this group, chikungunya virus (CHIKV) is the most significant human pathogen, responsible for generating millions of infections leading to severe febrile illness and debilitating chronic joint pain. Currently, there are limited treatments to protect against alphavirus disease; thus, there is a tremendous need to generate safe and effective vaccines. Live-attenuated vaccines (LAVs) are cost-effective and potent immunization strategies capable of generating long-term protection in a single dose. However, LAVs often produce systemic viral replication, which can lead to unwanted post-vaccination side effects and pose a risk of reversion to a pathogenic phenotype and transmission to mosquitoes. Here, we utilized a chimeric infectious clone of CHIKV engineered with the domain C of the E2 gene of Semliki Forest virus (SFV) to express IFNγ and IL-21-two potent antiviral and immunomodulatory cytokines-in order to improve the LAV's attenuation while maintaining immunogenicity. The IFNγ- and IL-21-expressing vaccine candidates were stable during passage and significantly attenuated post-vaccination, as mice experienced reduced footpad swelling with minimal systemic replication and dissemination capacity compared to the parental vaccine. Additionally, these candidates provided complete protection to mice challenged with WT CHIKV. Our dual attenuation strategy represents an innovative way to generate safe and effective alphavirus vaccines that could be applied to other viruses.
Collapse
Affiliation(s)
- Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Megan Oberer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Huang P, Wang X, Lei M, Ma Y, Chen H, Sun J, Hu Y, Shi J. Metabolomics Profiles Reveal New Insights of Herpes Simplex Virus Type 1 Infection. Int J Mol Sci 2023; 24:ijms24021521. [PMID: 36675052 PMCID: PMC9862159 DOI: 10.3390/ijms24021521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen that can cause significant morbidity, primarily facial cold sores and herpes simplex encephalitis. Previous studies have shown that a variety of viruses can reprogram the metabolic profiles of host cells to facilitate self-replication. In order to further elucidate the metabolic interactions between the host cell and HSV-1, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the metabolic profiles in human lung fibroblasts KMB17 infected with HSV-1. The results showed that 654 and 474 differential metabolites were identified in positive and negative ion modes, respectively, and 169 and 114 metabolic pathways that might be altered were screened. These altered metabolites are mainly involved in central carbon metabolism, choline metabolism, amino acid metabolism, purine and pyrimidine metabolism, cholesterol metabolism, bile secretion, and prolactin signaling pathway. Further, we confirmed that the addition of tryptophan metabolite kynurenine promotes HSV-1 replication, and the addition of 25-Hydroxycholesterol inhibits viral replication. Significantly, HSV-1 replication was obviously enhanced in the ChOKα (a choline metabolic rate-limiting enzyme) deficient mouse macrophages. These results indicated that HSV-1 induces the metabolic reprogramming of host cells to promote or resist viral replication. Taken together, these observations highlighted the significance of host cell metabolism in HSV-1 replication, which would help to clarify the pathogenesis of HSV-1 and identify new anti-HSV-1 therapeutic targets.
Collapse
Affiliation(s)
- Pu Huang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Xu Wang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Mengyue Lei
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ying Ma
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hongli Chen
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Institute of Medical Biology, Kunming Medical University, Kunming 650032, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (J.S.); (J.S.); Tel.: +86-871-68335334 (Jiandong Shi); Fax: +86-871-68175829 (Jiandong Shi)
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (J.S.); (J.S.); Tel.: +86-871-68335334 (Jiandong Shi); Fax: +86-871-68175829 (Jiandong Shi)
| |
Collapse
|
6
|
IDO1, FAT10, IFI6, and GILT Are Involved in the Antiretroviral Activity of γ-Interferon and IDO1 Restricts Retrovirus Infection by Autophagy Enhancement. Cells 2022; 11:cells11142240. [PMID: 35883685 PMCID: PMC9323257 DOI: 10.3390/cells11142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Gamma-interferon (γ-IFN) significantly inhibits infection by replication-defective viral vectors derived from the human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus (MLV) but the underlying mechanism remains unclear. Previously we reported that knockdown of γ-IFN-inducible lysosomal thiolreductase (GILT) abrogates the antiviral activity of γ-IFN in TE671 cells but not in HeLa cells, suggesting that other γ-IFN-inducible host factors are involved in its antiviral activity in HeLa cells. We identified cellular factors, the expression of which are induced by γ-IFN in HeLa cells, using a microarray, and analyzed the effects of 11 γ-IFN-induced factors on retroviral vector infection. Our results showed that the exogenous expression of FAT10, IFI6, or IDO1 significantly inhibits both HIV-1- and MLV-based vector infections. The antiviral activity of γ-IFN was decreased in HeLa cells, in which the function of IDO1, IFI6, FAT10, and GILT were simultaneously inhibited. IDO1 is an enzyme that metabolizes an essential amino acid, tryptophan. However, IDO1 did not restrict retroviral vector infection in Atg3-silencing HeLa cells, in which autophagy did not occur. This study found that IDO1, IFI6, FAT10, and GILT are involved in the antiviral activity of γ-IFN, and IDO1 inhibits retroviral infection by inducing autophagy.
Collapse
|
7
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
8
|
Li Q, Li X, Quan H, Wang Y, Qu G, Shen Z, He C. IL-10 -/- Enhances DCs Immunity Against Chlamydia psittaci Infection via OX40L/NLRP3 and IDO/Treg Pathways. Front Immunol 2021; 12:645653. [PMID: 34093535 PMCID: PMC8176032 DOI: 10.3389/fimmu.2021.645653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a common zoonotic agent that affects both poultry and humans. Interleukin 10 (IL-10) is an anti-inflammatory factor produced during chlamydial infection, while dendritic cells (DCs) are powerful antigen-presenting cells that induce a primary immune response in the host. However, IL-10 and DCs regulatory mechanisms in C. psittaci infection remain elusive. In vivo and in vitro investigations of the regulatory mechanisms were performed. IL-10−/− mice, conditional DCs depletion mice (zinc finger dendritic cell-diphtheria toxin receptor [zDC-DTR]), and double-deficient mice (DD, IL-10−/−/zDCDTR/DTR) were intranasally infected with C. psittaci. The results showed that more than 90% of IL-10−/− mice, 70% of wild-type mice, and 60% of double-deficient mice survived, whereas all zDC-DTR mice died. A higher lymphocyte proliferation index was found in the IL-10 inhibitor mice and IL-10−/− mice. Moreover, severe lesions and high bacterial loads were detected in the zDC-DTR mice compared with double-deficient mice. In vitro studies revealed increased OX40-OX40 ligand (OX40-OX40L) activation and CD4+T cell proliferation. Besides, the expression of indoleamine 2, 3-dioxygenase (IDO), and regulatory T cells were significantly reduced in the co-culture system of CD4+ T cells and IL-10−/− DCs in C. psittaci infection. Additionally, the activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome increased to facilitate the apoptosis of DCs, leading to rapid clearance of C. psittaci. Our study showed that IL-10−/− upregulated the function of deficient DCs by activating OX40-OX40L, T cells, and the NLPR3 inflammasome, and inhibiting IDO, and regulatory T cells. These effects enhanced the survival rate of mice and C. psittaci clearance. Our research highlights the mechanism of IL-10 interaction with DCs, OX40-OX40L, and the NLPR3 inflammasome, as potential targets against C. psittaci infection.
Collapse
Affiliation(s)
- Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanggang Qu
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Zhiqiang Shen
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Thyrsted J, Holm CK. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr Opin Biotechnol 2020; 68:44-50. [PMID: 33113498 DOI: 10.1016/j.copbio.2020.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
To make new infectious particles, all viruses must manipulate host cell metabolism to secure sufficient availability of biomolecules and energy-a phenomenon now known as metabolic reprogramming. Numerous observations of this has already been made for a range of viruses with each type of virus seemingly applying its own unique tactics to accomplish this unifying goal. In this light, metabolic reprogramming of the infected cell is largely beneficial to the virus and not to the host. On the other hand, virus-induced metabolic reprogramming represents a transformed self with distorted cellular and extracellular levels of distinct metabolites and metabolic by-products. This review briefly outlines current knowledge of virus-induced metabolic reprogramming, discusses how this could be sensed by the infected host to initiate anti-viral programs, and presents examples of innate anti-viral mechanisms of the host that target the availability of biomolecules to block viral replication.
Collapse
Affiliation(s)
- Jacob Thyrsted
- Infection and Inflammation, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Christian Kanstrup Holm
- Infection and Inflammation, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
10
|
Indoleamine 2,3-Dioxygenase Is Involved in Interferon Gamma's Anti-BKPyV Activity in Renal Cells. Viruses 2020; 12:v12080865. [PMID: 32784805 PMCID: PMC7472348 DOI: 10.3390/v12080865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Reactivation of BK polyomavirus (BKPyV) infection is frequently increasing in transplant recipients treated with potent immunosuppressants and highlights the importance of immune system components in controlling viral reactivation. However, the immune response to BKPyV in general and the role of antiviral cytokines in infection control in particular are poorly understood. Here, we investigated the efficacy of interferons (IFN) alpha, lambda and gamma with regard to the BKPyV multiplication in Vero cells. Treatment with IFN-gamma inhibited the expression of the viral protein VP1 in a dose-dependent manner and decreased the expression of early and late viral transcripts. Viral inhibition by IFN-gamma was confirmed in human cells (Caki-1 cells and renal proximal tubular epithelial cells). One of the IFN-stimulated genes most strongly induced by IFN-gamma was the coding for the enzyme indoleamine 2,3 dioxygenase (IDO), which is known to limit viral replication and regulates the host immune system. The antiviral activity induced by IFN-gamma could be reversed by the addition of an IDO inhibitor, indicating that IDO has a specific role in anti-BKPyV activity. A better understanding of the action mechanism of these IFN-gamma-induced antiviral proteins might facilitate the development of novel therapeutic strategies.
Collapse
|
11
|
Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18:379-401. [PMID: 30760888 DOI: 10.1038/s41573-019-0016-5] [Citation(s) in RCA: 820] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
L-Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is involved in the regulation of immunity, neuronal function and intestinal homeostasis. Imbalances in Trp metabolism in disorders ranging from cancer to neurodegenerative disease have stimulated interest in therapeutically targeting the KP, particularly the main rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan-2,3-dioxygenase (TDO) as well as kynurenine monooxygenase (KMO). However, although small-molecule IDO1 inhibitors showed promise in early-stage cancer immunotherapy clinical trials, a phase III trial was negative. This Review summarizes the physiological and pathophysiological roles of Trp metabolism, highlighting the vast opportunities and challenges for drug development in multiple diseases.
Collapse
|
12
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
14
|
Majumdar T, Sharma S, Kumar M, Hussain MA, Chauhan N, Kalia I, Sahu AK, Rana VS, Bharti R, Haldar AK, Singh AP, Mazumder S. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis 2019; 10:161. [PMID: 30770800 PMCID: PMC6377608 DOI: 10.1038/s41419-019-1420-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have documented the diverse role of host immunity in infection by the protozoan parasite, Toxoplasma gondii. However, the contribution of the β-catenin pathway in this process has not been explored. Here, we show that AKT-mediated phosphorylated β-catenin supports T. gondii multiplication which is arrested in the deficiency of its phosphorylation domain at S552 position. The β-catenin-TCF4 protein complex binds to the promoter region of IRF3 gene and initiates its transcription, which was also abrogated in β-catenin knockout cells. TBK-independent phosphorylation of STING(S366) and its adaptor molecule TICAM2 by phospho-AKT(T308S473) augmented downstream IRF3-dependent IDO1 transcription, which was also dependent on β-catenin. But, proteasomal degradation of IDO1 by its tyrosine phosphorylation (at Y115 and Y253) favoured parasite replication. In absence of IDO1, tryptophan was catabolized into melatonin, which supressed cellular reactive oxygen species (ROS) and boosted parasite growth. Conversely, when tyrosine phosphorylation was abolished by phosphosite mutations, IDO1 escaped its ubiquitin-mediated proteasomal degradation system (UPS) and the stable IDO1 prevented parasite replication by kynurenine synthesis. We propose that T. gondii selectively utilizes tryptophan to produce the antioxidant, melatonin, thus prolonging the survival of infected cells through functional AKT and β-catenin activity for better parasite replication. Stable IDO1 in the presence of IFN-γ catabolized tryptophan into kynurenine, promoting cell death by suppressing phospho-AKT and phospho-β-catenin levels, and circumvented parasite replication. Treatment of infected cells with kynurenine or its analogue, teriflunomide suppressed kinase activity of AKT, and phosphorylation of β-catenin triggering caspase-3 dependent apoptosis of infected cells to inhibit parasite growth. Our results demonstrate that β-catenin regulate phosphorylated STING-TICAM2-IRF3-IDO1 signalosome for a cell-intrinsic pro-parasitic role. We propose that the downstream IRF3-IDO1-reliant tryptophan catabolites and their analogues can act as effective immunotherapeutic molecules to control T. gondii replication by impairing the AKT and β-catenin axis.
Collapse
Affiliation(s)
- Tanmay Majumdar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Chauhan
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, Delhi, 110067, India
| | - Amit Kumar Sahu
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, Delhi, 110067, India
| | - Vipin Singh Rana
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ruchi Bharti
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Arun Kumar Haldar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Ext., Lucknow, 226031, India
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, Delhi, 110067, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Kang S, Brown HM, Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw 2018; 18:e33. [PMID: 30402328 PMCID: PMC6215902 DOI: 10.4110/in.2018.18.e33] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Interferon-gamma (IFNG) is a pleiotropic cytokine that modulates both innate and adaptive immune networks; it is the most potent activator of macrophages and a signature cytokine of activated T lymphocytes. Though IFNG is now appreciated to have a multitude of roles in immune modulation and broad-spectrum pathogen defense, it was originally discovered, and named, as a secretory factor that interferes with viral replication. In contrast to the prototypical type I interferons produced by any cells upon viral infection, only specific subsets of immune cells can produce IFNG upon infection or stimulation with antigen or mitogen. Still, virtually all cells can respond to both types of interferons. This makes IFNG a versatile anti-microbial cytokine and also gives it a unique position in the antiviral defense system. The goal of this review is to highlight the direct antiviral mechanisms of IFNG, thereby clarifying its antiviral function in the effective control of viral infections.
Collapse
Affiliation(s)
- Soowon Kang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Hailey M. Brown
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Raniga K, Liang C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses 2018; 10:E36. [PMID: 29342871 PMCID: PMC5795449 DOI: 10.3390/v10010036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses exploit the host and induce drastic metabolic changes to ensure an optimal environment for replication and the production of viral progenies. In response, the host has developed diverse countermeasures to sense and limit these alterations to combat viral infection. One such host mechanism is through interferon signaling. Interferons are cytokines that enhances the transcription of hundreds of interferon-stimulated genes (ISGs) whose products are key players in the innate immune response to viral infection. In addition to their direct targeting of viral components, interferons and ISGs exert profound effects on cellular metabolism. Recent studies have started to illuminate on the specific role of interferon in rewiring cellular metabolism to activate immune cells and limit viral infection. This review reflects on our current understanding of the complex networking that occurs between the virus and host at the interface of cellular metabolism, with a focus on the ISGs in particular, cholesterol-25-hydroxylase (CH25H), spermidine/spermine acetyltransferase 1 (SAT1), indoleamine-2,3-dioxygenase (IDO1) and sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), which were recently discovered to modulate specific metabolic events and consequently deter viral infection.
Collapse
Affiliation(s)
- Kavita Raniga
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
17
|
Rajan D, Chinnadurai R, O'Keefe EL, Boyoglu-Barnum S, Todd SO, Hartert TV, Galipeau J, Anderson LJ. Protective role of Indoleamine 2,3 dioxygenase in Respiratory Syncytial Virus associated immune response in airway epithelial cells. Virology 2017; 512:144-150. [PMID: 28963880 DOI: 10.1016/j.virol.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
RSV is a major cause of severe lower respiratory infection in infants and young children. With no vaccine yet available, it is important to clarify mechanisms of disease pathogenesis. Since indoleamine-2,3-dioxygenase (IDO) is an immunomodulatory enzyme and is upregulated with RSV infection, we studied it in vivo during infection of BALB/c mice and in vitro in A549 cells. RSV infection upregulated IDO transcripts in vivo and in vitro. IDO siRNA decreased IDO transcripts ~2 fold compared to control siRNA after RSV infection but this decrease did not affect RSV replication. In the presence of IFN-γ, siRNA-induced a decrease in IDO expression that was associated with an increase in virus replication and increased levels of IL-6, IL-8, CXCL10 and CCL4. Thus, our results show IDO is upregulated with RSV infection and this upregulation likely participates with IFN-γ in inhibition of virus replication and suppression of some host cell responses to infection.
Collapse
Affiliation(s)
- Devi Rajan
- Department of Pediatrics, Emory Children's Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Evan L O'Keefe
- Department of Pediatrics, Emory Children's Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - Sean O Todd
- Department of Pediatrics, Emory Children's Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Tina V Hartert
- Department of Medicine, Vanderbilt Institute for Medicine & Public Health, Nashville, TN, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Larry J Anderson
- Department of Pediatrics, Emory Children's Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|
18
|
Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637803 DOI: 10.1128/cvi.00172-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.
Collapse
|
19
|
Mehraj V, Routy JP. Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int J Tryptophan Res 2015; 8:41-8. [PMID: 26309411 PMCID: PMC4527356 DOI: 10.4137/ijtr.s26862] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022] Open
Abstract
l-Tryptophan (l-Trp) is an essential amino acid that possesses diverse metabolic, neurological, and immunological roles spanning from the synthesis of proteins, neurotransmitter serotonin, and neurohormone melatonin, to its degradation into immunosuppressive catabolites by indoleamine-2, 3-dioxygenase (IDO) in the kynurenine pathway (KP). Trp catabolites, by activating aryl hydrocarbon receptor (AhR), play an important role in antimicrobial defense and immune regulation. IDO/AhR acts as a double-edged sword by both depleting l-Trp to starve the invaders and by contributing to the state of immunosuppression with microorganisms that were not cleared during acute infection. Pathogens experiencing Trp deprivation by IDO-mediated degradation include certain bacteria, parasites, and less likely viruses. However, chronic viral infections highjack the host immune response to create a state of disease tolerance via kynurenine catabolites. This review covers the latest data involving chronic viral infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes, and cytomegalovirus (CMV) and their cellular interplay with Trp catabolites. Strategies developed by viruses to escape immune control also represent new avenues for therapeutic interventions based on Trp metabolism.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada. ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
21
|
Haruki T, Miyazaki D, Inata K, Sasaki SI, Yamamoto Y, Kandori M, Yakura K, Noguchi Y, Touge C, Ishikura R, Touge H, Yamagami S, Inoue Y. Indoleamine 2,3-dioxygenase 1 in corneal endothelial cells limits herpes simplex virus type 1-induced acquired immune response. Br J Ophthalmol 2015; 99:1435-42. [PMID: 26142400 DOI: 10.1136/bjophthalmol-2015-306863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/14/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Corneal endothelial cells are known to be targets of herpes simplex virus type 1 (HSV-1) infection; however, the pathogenesis of HSV infections of the endothelial cells has not been definitively determined. The purpose of this study was to examine an unrecognised strategy of corneal endothelial cells to protect themselves from HSV-1 infection. METHODS Immortalised human corneal endothelial cells (HCEn) were infected with HSV-1. Based on the global transcriptional profile, the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was determined using real-time PCR and western blots. To examine whether IDO1 has any antiviral role, we tested whether viral replication was affected by blocking the activity of IDO1. The immune modulatory role of IDO1 was analysed to determine whether IDO1 might contribute to modulating the recall responses of HSV-1-sensitised CD4(+) T cells. RESULTS IDO1 was strongly expressed in HCEn cells after HSV-1 infection. IDO1 blockade did not significantly restrict viral transcription or replication, arguing against a previously recognised antiviral role for IDO1. When HCEn cells were examined for antigen-presenting function, HSV-1-primed HCEn cells stimulated the proliferation of allogeneic CD4(+) T cells and interleukin 10 (IL-10) secretion. When the recall response to HSV-1 was measured by the mixed lymphocyte reaction, the HCEn-stimulated CD4(+) T cells modulated and limited the recall response. When IDO1 was silenced in HCEn cells, the HCEn-mediated immune modulatory activity and regulatory T-cell activation were reduced. Overexpression of IDO1 promoted immune modulatory activity, which was partly conveyed by IL-10. CONCLUSIONS IDO1 induced by HSV-1 infection limits and dampens excessive acquired immune responses in corneal endothelial cells.
Collapse
Affiliation(s)
- Tomoko Haruki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Koudai Inata
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yukimi Yamamoto
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michiko Kandori
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Keiko Yakura
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yumiko Noguchi
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Chizu Touge
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryoko Ishikura
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hirokazu Touge
- Division of Medical Oncology and Respirology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Satoru Yamagami
- Corneal Transplantation Section, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
22
|
Kober C, Weibel S, Rohn S, Kirscher L, Szalay AA. Intratumoral INF-γ triggers an antiviral state in GL261 tumor cells: a major hurdle to overcome for oncolytic vaccinia virus therapy of cancer. Mol Ther Oncolytics 2015; 2:15009. [PMID: 27119106 PMCID: PMC4782962 DOI: 10.1038/mto.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022] Open
Abstract
Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible.
Collapse
Affiliation(s)
- Christina Kober
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Stephanie Weibel
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Department of Anesthesia and Critical Care, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Rohn
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lorenz Kirscher
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California, USA
- Genelux Corporation, San Diego Science Center, San Diego, California, USA
| |
Collapse
|
23
|
Schmidt SV, Schultze JL. New Insights into IDO Biology in Bacterial and Viral Infections. Front Immunol 2014; 5:384. [PMID: 25157255 PMCID: PMC4128074 DOI: 10.3389/fimmu.2014.00384] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022] Open
Abstract
Initially, indoleamine-2,3-dioxygenase (IDO) has been introduced as a bactericidal effector mechanism and has been linked to T-cell immunosuppression and tolerance. In recent years, evidence has been accumulated that IDO also plays an important role during viral infections including HIV, influenza, and hepatitis B and C. Moreover, novel aspects about the role of IDO in bacterial infections and sepsis have been revealed. Here, we review these recent findings highlighting the central role of IDO and tryptophan metabolism in many major human infections. Moreover, we also shed light on issues concerning human-specific and mouse-specific host–pathogen interactions that need to be considered when studying the biology of IDO in the context of infections.
Collapse
Affiliation(s)
- Susanne V Schmidt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn , Bonn , Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn , Bonn , Germany
| |
Collapse
|
24
|
Zimmermann A, Hauka S, Maywald M, Le VTK, Schmidt SK, Däubener W, Hengel H. Checks and balances between human cytomegalovirus replication and indoleamine-2,3-dioxygenase. J Gen Virol 2013; 95:659-670. [PMID: 24337170 DOI: 10.1099/vir.0.061994-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite a rigorous blockade of interferon-γ (IFN-γ) signalling in infected fibroblasts as a mechanism of immune evasion by human cytomegalovirus (HCMV), IFN-γ induced indoleamine-2,3-dioxygenase (IDO) has been proposed to represent the major antiviral restriction factor limiting HCMV replication in epithelial cells. Here we show that HCMV efficiently blocks transcription of IFN-γ-induced IDO mRNA both in infected fibroblasts and epithelial cells even in the presence of a preexisting IFN-induced antiviral state. This interference results in severe suppression of IDO bioactivity in HCMV-infected cells and restoration of vigorous HCMV replication. Depletion of IDO expression nonetheless substantially alleviated the antiviral impact of IFN-γ treatment in both cell types. These findings highlight the effectiveness of this IFN-γ induced effector gene in restricting HCMV productivity, but also the impact of viral counter-measures.
Collapse
Affiliation(s)
- Albert Zimmermann
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Sebastian Hauka
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Marco Maywald
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Silvia K Schmidt
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Walter Däubener
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| |
Collapse
|
25
|
Schmidt F, Bleck C, Reh L, Novy K, Wollscheid B, Helenius A, Stahlberg H, Mercer J. Vaccinia Virus Entry Is Followed by Core Activation and Proteasome-Mediated Release of the Immunomodulatory Effector VH1 from Lateral Bodies. Cell Rep 2013; 4:464-76. [DOI: 10.1016/j.celrep.2013.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022] Open
|
26
|
van der Sluijs KF, van de Pol MA, Kulik W, Dijkhuis A, Smids BS, van Eijk HW, Karlas JA, Molenkamp R, Wolthers KC, Johnston SL, van der Zee JS, Sterk PJ, Lutter R. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax 2013; 68:1122-30. [PMID: 23882022 DOI: 10.1136/thoraxjnl-2013-203728] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Patients with allergic asthma have exacerbations which are frequently caused by rhinovirus infection. The antiviral tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO) is induced by interferon-γ and suppressed by Th2 mediators interleukin (IL)-4 and IL-13. We hypothesised that local IDO activity after viral airway infection is lower in patients with allergic asthma than in healthy controls. OBJECTIVE To determine whether IDO activity differs between patients with allergic asthma and healthy individuals before and after rhinovirus infection. METHODS Healthy individuals and patients with allergic asthma were experimentally infected with low-dose (10 TCID50) rhinovirus 16. Blood, bronchoalveolar lavage fluid and exhaled breath condensate (for mass spectrometry by UPLC-MS/MS) were obtained before and after rhinovirus challenge. RESULTS IDO activity was not induced by rhinovirus infection in either group, despite increases in cold scores. However, baseline pulmonary IDO activity was lower in patients with allergic asthma than in healthy individuals. In contrast, systemic tryptophan and its catabolites were markedly higher in patients with allergic asthma. Moreover, systemic quinolinic acid and tryptophan were associated with eosinophil cationic protein (r=0.43 and r=0.78, respectively) and eosinophils (r=0.38 and r=0.58, respectively) in bronchoalveolar lavage fluid and peak asthma symptom scores after rhinovirus challenge (r=0.53 and r=0.64, respectively). CONCLUSIONS Rhinovirus infection by itself induces no IDO activity, but the reduced pulmonary IDO activity in patients with allergic asthma at baseline may underlie a reduced control of viral infections. Notably, the enhanced systemic catabolism of tryptophan in patients with allergic asthma was strongly related to the outcome of rhinovirus challenge in asthma and may serve as a prognostic factor.
Collapse
Affiliation(s)
- Koenraad F van der Sluijs
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
O'Connor MA, Green WR. The role of indoleamine 2,3-dioxygenase in LP-BPM5 murine retroviral disease progression. Virol J 2013; 10:154. [PMID: 23680027 PMCID: PMC3751850 DOI: 10.1186/1743-422x-10-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory intracellular enzyme involved in tryptophan degradation. IDO is induced during cancer and microbial infections by cytokines, ligation of co-stimulatory molecules and/or activation of pattern recognition receptors, ultimately leading to modulation of the immune response. LP-BM5 murine retroviral infection induces murine AIDS (MAIDS), which is characterized by profound and broad immunosuppression of T- and B-cell responses. Our lab has previously described multiple mechanisms regulating the development of immunodeficiency of LP-BM5-induced disease, including Programmed Death 1 (PD-1), IL-10, and T-regulatory (Treg) cells. Immunosuppressive roles of IDO have been demonstrated in other retroviral models, suggesting a possible role for IDO during LP-BM5-induced retroviral disease progression and/or development of viral load. Methods Mice deficient in IDO (B6.IDO−/−) and wildtype C57BL/6 (B6) mice were infected with LP-BM5 murine retrovirus. MAIDS and LP-BM5 viral load were assessed at termination. Results As expected, IDO was un-inducible in B6.IDO−/− during LP-BM5 infection. B6.IDO−/− mice infected with LP-BM5 retrovirus succumbed to MAIDS as indicated by splenomegaly, serum hyper IgG2a and IgM, decreased responsiveness to B- and T-cell mitogens, conversion of a proportion of CD4+ T cells from Thy1.2+ to Thy1.2-, and increased percentages of CD11b+Gr-1+ cells. LP-BM5 infected B6.IDO−/− mice also demonstrated the development of roughly equivalent disease kinetics as compared to infected B6 mice. Splenic viral loads of B6 and B6.IDO−/− mice were also equivalent after infection as measured by LP-BM5-specific Def Gag and Eco Gag viral mRNA, determined by qRT-PCR. Conclusions Collectively, these results demonstrate IDO neither plays an essential role, nor is required, in LP-BM5-induced disease progression or LP-BM5 viral load.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
28
|
McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC, Mellor AL. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 2013; 249:135-57. [PMID: 22889220 DOI: 10.1111/j.1600-065x.2012.01149.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.
Collapse
Affiliation(s)
- Tracy L McGaha
- Immunotherapy Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
The N-terminus of vaccinia virus host range protein C7L is essential for function. Virus Genes 2012; 46:20-7. [PMID: 23001690 DOI: 10.1007/s11262-012-0822-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Vaccinia virus (VACV), a member of the Poxviridae family of large double-stranded DNA viruses, is being used as a smallpox vaccine as well as an expression vector for immunization against other infectious diseases and cancer. The host range of wild type VACV is very broad among mammalian cells. C7L is a host range gene identified in VACV and is well conserved in mammalian poxviruses except for parapoxviruses and molluscum contagiosum virus. The molecular mechanisms by which the C7L gene exerts host range function are not well understood. The C7L protein does not have any known conserved domains or show sequence similarity to cellular proteins or viral proteins other than the C7L homologs in mammalian poxviruses. We generated recombinant vaccinia viruses carrying deletion mutants of the C7L gene using NYVAC as a parental strain and found that the N-terminus is essential for host range function of C7L, which is consistent with a previous report that showed that homology among C7L homologs are greater near the N-terminus than the C-terminus.
Collapse
|
30
|
Divanovic S, Sawtell NM, Trompette A, Warning JI, Dias A, Cooper AM, Yap GS, Arditi M, Shimada K, Duhadaway JB, Prendergast GC, Basaraba RJ, Mellor AL, Munn DH, Aliberti J, Karp CL. Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. J Infect Dis 2011; 205:152-61. [PMID: 21990421 DOI: 10.1093/infdis/jir621] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role--antimicrobial or immunoregulatory--is pathogen-specific.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Trilling M, Le VTK, Zimmermann A, Ludwig H, Pfeffer K, Sutter G, Smith GL, Hengel H. Gamma interferon-induced interferon regulatory factor 1-dependent antiviral response inhibits vaccinia virus replication in mouse but not human fibroblasts. J Virol 2009; 83:3684-95. [PMID: 19211768 PMCID: PMC2663247 DOI: 10.1128/jvi.02042-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 01/22/2009] [Indexed: 12/20/2022] Open
Abstract
Vaccinia virus (VACV) replicates in mouse and human fibroblasts with comparable kinetics and efficiency, yielding similar titers of infectious progeny. Here we demonstrate that gamma interferon (IFN-gamma) but not IFN-alpha or IFN-beta pretreatment of mouse fibroblasts prior to VACV infection induces a long-lasting antiviral state blocking VACV replication. In contrast, high doses of IFN-gamma failed to establish an antiviral state in human fibroblasts. In mouse fibroblasts, IFN-gamma impeded the viral replication cycle at the level of late gene transcription and blocked the multiplication of VACV genomes. The IFN-gamma-induced antiviral state invariably prevented the growth of different VACV strains but was not effective against the replication of ectromelia virus. The IFN-gamma effect required intact IFN-gamma receptor signaling prior to VACV infection through Janus kinase 2 (Jak2) and signal transducer and activator of transcription 1 (STAT1). The permissive state of IFN-gamma-treated human cells was unrelated to the VACV-encoded IFN decoy receptors B8 and B18 and associated with a complete disruption of STAT1 homodimer formation and DNA binding. Unlike human fibroblasts, mouse cells responded with long-lasting STAT1 activation which was preserved after VACV infection. The deletion of the IFN regulatory factor 1 (IRF-1) gene from mouse cells rescued efficient VACV replication, demonstrating that IRF-1 target genes have a critical role in VACV control. These data have implications for the understanding of VACV pathogenesis and identify an incongruent IFN-gamma response between the human host and the mouse model.
Collapse
Affiliation(s)
- Mirko Trilling
- Heinrich-Heine-Universität, Institut für Virologie, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Becerra A, Warke RV, Xhaja K, Evans B, Evans J, Martin K, de Bosch N, Rothman AL, Bosch I. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function. J Gen Virol 2009; 90:810-817. [PMID: 19264674 DOI: 10.1099/vir.0.004416-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-gamma) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-gamma against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo.
Collapse
Affiliation(s)
- Aniuska Becerra
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Rajas V Warke
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Kris Xhaja
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Barbara Evans
- University of Massachusetts Medical School Proteomic and Mass Spectrometry Core Facility, 365 Plantation Street, Worcester, MA 01605, USA
| | - James Evans
- University of Massachusetts Medical School Proteomic and Mass Spectrometry Core Facility, 365 Plantation Street, Worcester, MA 01605, USA
| | - Katherine Martin
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Norma de Bosch
- Banco Municipal de Sangre del Distrito Capital, San Jose, Caracas, Venezuela
| | - Alan L Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Irene Bosch
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
33
|
Co MDT, Orphin L, Cruz J, Pazoles P, Green KM, Potts J, Leporati AM, Babon JAB, Evans JE, Ennis FA, Terajima M. In vitro evidence that commercial influenza vaccines are not similar in their ability to activate human T cell responses. Vaccine 2008; 27:319-27. [PMID: 18977404 DOI: 10.1016/j.vaccine.2008.09.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/19/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
We evaluated three commercial trivalent inactivated vaccines (TIVs) from the 2007-2008 season in terms of their ability to elicit in vitro T cell responses. T cell-mediated immunity may offer a more cross-reactive vaccine approach for the prevention of pandemic or epidemic influenza. Human cytotoxic T cell lines demonstrated differences in matrix protein 1 and nucleocapsid protein recognition of autologous target cells. Peripheral blood mononuclear cells stimulated with each of the TIVs showed statistically significant differences between the vaccines in the numbers of IFNgamma producing cells activated. These data suggest that TIV vaccines are not similar in their ability to activate human T cell responses.
Collapse
Affiliation(s)
- Mary Dawn T Co
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Influenza A virus matrix protein 1-specific human CD8+ T-cell response induced in trivalent inactivated vaccine recipients. J Virol 2008; 82:9283-7. [PMID: 18614638 DOI: 10.1128/jvi.01047-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among 17 HLA-A2-positive healthy adults, CD8+ T-cell responses against an HLA-A2-restricted matrix protein 1 (M1) epitope increased after immunization with trivalent inactivated influenza vaccine (TIV) in two individuals. The presence of M1 in TIV was confirmed by Western blotting. T-cell cytotoxicity assays showed that TIV is processed and the epitope is presented by antigen-presenting cells to an M1 epitope-specific CD8+ T-cell line for specific lysis. These data show that TIV, which is formulated to contain surface glycoproteins to induce serotype-specific antibody responses, also contains M1, capable of inducing subtype cross-reactive CD8+ T-cell responses in some vaccinees.
Collapse
|
35
|
Heseler K, Spekker K, Schmidt SK, MacKenzie CR, Däubener W. Antimicrobial and immunoregulatory effects mediated by human lung cells: role of IFN-γ-induced tryptophan degradation. ACTA ACUST UNITED AC 2008; 52:273-81. [DOI: 10.1111/j.1574-695x.2007.00374.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Austin CJD, Astelbauer F, Kosim-Satyaputra P, Ball HJ, Willows RD, Jamie JF, Hunt NH. Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties. Amino Acids 2008; 36:99-106. [PMID: 18274832 DOI: 10.1007/s00726-008-0037-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
Abstract
The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the most significant pathway for mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its dual role in immunity and the pathogenesis of many diseases. Reported here are differences and similarities between biochemical behaviour and structural features of recombinant human IDO and recombinant mouse IDO. Significant differences were observed in the conversion of substrates and pH stability. Differences in inhibitor potency and thermal stability were also noted. Secondary structural features were broadly similar but variation between species was apparent, particularly in the alpha-helix portion of the enzymes. With mouse models substituting for human diseases, the differences between mouse and human IDO must be recognised before applying experimental findings from one system to the next.
Collapse
Affiliation(s)
- Christopher J D Austin
- Molecular Immunopathology Unit, Bosch Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus that is often capable of establishing a persistent infection, which may lead to chronic liver disease, cirrhosis, hepatocellular carcinoma, and eventually death. For more than 20 years, hepatitis C patients have been treated with interferon-alpha (IFN-α). Current treatment usually consists of polyethylene glycol-conjugated IFN-α that is combined with ribavirin, but even the most advanced IFN-based therapies are still ineffective in eliminating the virus from a large proportion of individuals. Therefore, a better understanding of the IFN-induced innate immune response is urgently needed. By using selectable self-replicating RNAs (replicons) and, more recently, recombinant full-length genomes, many groups have tried to elucidate the mechanism(s) by which IFNs inhibit HCV replication. This chapter attempts to summarize the current state of knowledge in this interesting field of HCV research.
Collapse
|