1
|
Naik A, Stratton RJ, Leask A. Digital ulcers associated with scleroderma: A major unmet medical need. Wound Repair Regen 2024. [PMID: 39323322 DOI: 10.1111/wrr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Scleroderma or systemic sclerosis (SSc)-associated digital ischaemic complications, such as digital ulcers (SSc-DUs), appear relatively early during the disease course and are a major burden with substantial deterioration of quality of life. Expert rheumatologist and wound specialists have defined a DU; however, international application of the definition is still disorganised. Appearance of SSc-DUs is secondary to the onset of Raynaud's phenomenon and as a consequence, recommended first-line of treatment mainly includes vasodilators; however, many DUs are refractory to this treatment. Despite important practical issues, such as a lack of well-characterised SSc-wound healing animal model, significant efforts are needed to mechanistically understand the pathogenesis of SSc-DUs for developing clinically targetable disease modifying therapies.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Disease, University College London (Royal Free Campus), London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Erdő-Bonyár S, Rapp J, Subicz R, Böröcz K, Szinger D, Filipánits K, Minier T, Kumánovics G, Czirják L, Berki T, Simon D. Disturbed Complement Receptor Expression Pattern of B Cells Is Enhanced by Toll-like Receptor CD180 Ligation in Diffuse Cutaneous Systemic Sclerosis. Int J Mol Sci 2024; 25:9230. [PMID: 39273179 PMCID: PMC11394765 DOI: 10.3390/ijms25179230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Autoantibody production is a hallmark of systemic sclerosis (SSc) and the most extensively studied role of B cells in the pathogenesis of the disease. However, the potential involvement of innate immune molecules in B-cell dysfunction in SSc is less understood. B-cell activation is an early event in the pathogenesis of SSc and is influenced by complement receptors (CRs) and Toll-like receptors (TLRs), shaping antibody responses. CR2 and CR1 modulate B-cell activation, and the roles of CR3 and CR4 are associated with autoimmune conditions. We investigated the expression of CRs in B cells from patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and the effect of TLR CD180 ligation on their expression. We found no significant difference in the basal expression of CD21 and CD11c in B cells between dcSSc and healthy controls (HCs). However, reduced basal CD11b expression in B cells in dcSSc compared to HCs, accompanied by a decrease in CD35 and an increase in CD11c expression following CD180 ligation may promote plasma cell formation and autoantibody production. Additionally, we searched for correlations between dcSSc-associated anti-DNA topoisomerase I (Scl-70) autoantibody, anti-citrate synthase (CS) natural autoantibody and complement component 3 (C3) levels and found a negative correlation between C3 and anti-CS autoantibody in dcSSc but not in HCs, supporting the hypothesis that natural autoantibodies could activate the complement system contributing to tissue injury in SSc.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Judit Rapp
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Rovéna Subicz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Dávid Szinger
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Kristóf Filipánits
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Tünde Minier
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Gábor Kumánovics
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - László Czirják
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Sharma M, Sarode SC, Sarode G, Radhakrishnan R. Areca nut-induced oral fibrosis - Reassessing the biology of oral submucous fibrosis. J Oral Biosci 2024; 66:320-328. [PMID: 38395254 DOI: 10.1016/j.job.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a pathological condition characterized by excessive tissue healing resulting from physical, chemical, or mechanical trauma. Notably, areca nut consumption significantly contributes to the development of oral fibrosis. The current definition of OSF, recognizing its potential for malignant transformation, necessitates a more comprehensive understanding of its pathophysiology and etiology. HIGHLIGHTS Areca nut induces fibrotic pathways by upregulating inflammatory cytokines such as TGF-β and expressing additional cytokines. Moreover, it triggers the conversion of fibroblasts to myofibroblasts, characterized by α-SMA and γSMA expression, resulting in accelerated collagen production. Arecoline, a component of areca nut, has been shown to elevate levels of reactive oxygen species, upregulate the expression of various cytokines, and activate specific signaling pathways (MEK, COX2, PI3K), all contributing to fibrosis. Therefore, we propose redefining OSF as "Areca nut-induced oral fibrosis" (AIOF) to align with current epistemology, emphasizing its distinctive association with areca nut consumption. The refined definition enhances our ability to develop targeted interventions, thus contributing to more effective prevention and treatment strategies for oral submucous fibrosis worldwide. CONCLUSION Arecoline plays a crucial role as a mediator in fibrosis development, contributing to extracellular matrix accumulation in OSF. The re-evaluation of OSF as AIOF offers a more accurate representation of the condition. This nuanced perspective is essential for distinguishing AIOF from other forms of oral fibrosis and advancing our understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Faculty of Dental Sciences, SGT University, Gurugram, Haryana, 122505, India.
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Gargi Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India; Academic Unit of Oral Medicine and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
4
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
5
|
Roblin E, Clark KEN, Beesley C, Ong VH, Denton CP. Testing a candidate composite serum protein marker of skin severity in systemic sclerosis. Rheumatol Adv Pract 2024; 8:rkae039. [PMID: 38645474 PMCID: PMC11031358 DOI: 10.1093/rap/rkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives Using an integrated multi-omic analysis, we previously derived a candidate marker that estimates the modified Rodnan Skin Score (mRSS) and thus the severity of skin involvement in SSc. In the present study we explore technical and biological validation of this composite marker in a well-characterized cohort of SSc patients. Methods Cartilage oligomeric matrix protein (COMP), collagen type IV (COL4A1), tenascin-C (TNC) and spondin-1 (SPON1) were examined in serum samples from two independent cohorts of patients with dcSSc. The BIOlogical Phenotyping of diffuse SYstemic sclerosis cohort had previously been used to derive the composite marker and Molecular Determinants to Improve Scleroderma (SSc) treatment (MODERNISE) was a novel validation cohort. Multiple regression analysis derived a formula to predict the mRSS based on serum ELISA protein concentration. Results The serum concentration of two of the proteins-COMP and TNC-positively correlated with the mRSS, particularly in early dcSSc patients. Interpretable data could not be obtained for SPON1 due to technical limitations of the ELISA. COL4A1 showed a correlation with disease duration but not overall mRSS. Patients receiving MMF showed lower serum concentrations of COMP, COL4A1 and TNC and a lower composite biomarker score not established on treatment. A revised ELISA-based three-protein composite formula was derived for future validation studies. Conclusions Although more validation is required, our findings represent a further step towards a composite serum protein assay to assess skin severity in SSc. Future work will establish its utility as a predictive or prognostic biomarker.
Collapse
Affiliation(s)
- Elen Roblin
- Department of Rheumatology, Royal Free Hospital, London, UK
| | | | - Claire Beesley
- Centre for Rheumatology, University College London, London, UK
| | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | |
Collapse
|
6
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
7
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
8
|
Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol 2023; 143:1877-1885. [PMID: 37452808 DOI: 10.1016/j.jid.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses. Currently, the best-characterized PRRs include, in addition to TLRs, nucleotide-binding oligomerization domain-like receptors, RIG-I-like RNA helicases, C-type lectin receptors, and many more. Systemic sclerosis (SSc) is a chronic autoimmune condition characterized by inflammation and progressive fibrosis in multiple organs. Using an unbiased survey for SSc-associated DAMPs, we have identified the ECM glycoproteins fibronectin-containing extra domain A and tenascin C as the most highly upregulated in SSc skin and lung biopsies. These DAMPs activate TLR4 on resident stromal cells to elicit profibrotic responses and sustained myofibroblasts activation resulting in progressive fibrosis. This review summarizes the current understanding of the complex functional roles of DAMPs in the progression and failure of resolution of fibrosis in general, with a particular focus on SSc, and considers viable therapeutic approaches targeting DAMPs.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Jain I, Brougham-Cook A, Underhill GH. Effect of distinct ECM microenvironments on the genome-wide chromatin accessibility and gene expression responses of hepatic stellate cells. Acta Biomater 2023; 167:278-292. [PMID: 37343907 PMCID: PMC10527607 DOI: 10.1016/j.actbio.2023.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Cell microarrays demonstrated the cooperative effects of stiffness and ECM composition on H3K4 and H3K9 methylation/acetylation. ATAC sequencing revealed higher chromatin accessibility in HSCs on 1kPa compared to 25kPa substrates for all ECM conditions. Gene set enrichment analysis using RNA sequencing data of HSCs in defined ECM microenvironments demonstrated higher enrichment of NAFLD and fibrosis-related genes in pre-activated HSCs on 1kPa relative to 25kPa. Overall, these findings are indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs. STATEMENT OF SIGNIFICANCE: Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Overall, these findings were indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs.
Collapse
Affiliation(s)
- Ishita Jain
- University of Illinois at Urbana Champaign, Urbana, USA
| | | | | |
Collapse
|
10
|
Pot SA, Lin Z, Shiu J, Benn MC, Vogel V. Growth factors and mechano-regulated reciprocal crosstalk with extracellular matrix tune the keratocyte-fibroblast/myofibroblast transition. Sci Rep 2023; 13:11350. [PMID: 37443325 PMCID: PMC10345140 DOI: 10.1038/s41598-023-37776-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Improper healing of the cornea after injury, infections or surgery can lead to corneal scar formation, which is associated with the transition of resident corneal keratocytes into activated fibroblasts and myofibroblasts (K-F/M). Myofibroblasts can create an extracellular matrix (ECM) niche in which fibrosis is promoted and perpetuated, resulting in progressive tissue opacification and vision loss. As a reversion back to quiescent keratocytes is essential to restore corneal transparency after injury, we characterized how growth factors with demonstrated profibrotic effects (PDGF, FGF, FBS, TGFβ1) induce the K-F/M transition, and whether their withdrawal can revert it. Indeed, the upregulated expression of αSMA and the associated changes in cytoskeletal architecture correlated with increases in cell contractility, fibronectin (Fn) and collagen matrix density and Fn fiber strain, as revealed by 2D cell culture, nanopillar cellular force mapping and a FRET-labeled Fn tension probe. Substrate mechanosensing drove a more complete K-F/M transition reversal following growth factor withdrawal on nanopillar arrays than on planar glass substrates. Using decellularized ECM scaffolds, we demonstrated that the K-F/M transition was inhibited in keratocytes reseeded onto myofibroblast-assembled, and/or collagen-1-rich ECM. This supports the presence of a myofibroblast-derived ECM niche that contains cues favoring tissue homeostasis rather than fibrosis.
Collapse
Affiliation(s)
- Simon A Pot
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co Ltd, 26-1 Wulongjiang Road, Fuzhou, 350100, People's Republic of China
| | - Jauye Shiu
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd, North District, Taichung City, Taiwan
| | - Mario C Benn
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
11
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
12
|
Benn MC, Pot SA, Moeller J, Yamashita T, Fonta CM, Orend G, Kollmannsberger P, Vogel V. How the mechanobiology orchestrates the iterative and reciprocal ECM-cell cross-talk that drives microtissue growth. SCIENCE ADVANCES 2023; 9:eadd9275. [PMID: 36989370 PMCID: PMC10058249 DOI: 10.1126/sciadv.add9275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Controlled tissue growth is essential for multicellular life and requires tight spatiotemporal control over cell proliferation and differentiation until reaching homeostasis. As cells synthesize and remodel extracellular matrix, tissue growth processes can only be understood if the reciprocal feedback between cells and their environment is revealed. Using de novo-grown microtissues, we identified crucial actors of the mechanoregulated events, which iteratively orchestrate a sharp transition from tissue growth to maturation, requiring a myofibroblast-to-fibroblast transition. Cellular decision-making occurs when fibronectin fiber tension switches from highly stretched to relaxed, and it requires the transiently up-regulated appearance of tenascin-C and tissue transglutaminase, matrix metalloprotease activity, as well as a switch from α5β1 to α2β1 integrin engagement and epidermal growth factor receptor signaling. As myofibroblasts are associated with wound healing and inflammatory or fibrotic diseases, crucial knowledge needed to advance regenerative strategies or to counter fibrosis and cancer progression has been gained.
Collapse
Affiliation(s)
- Mario C. Benn
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Simon A. Pot
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Tadahiro Yamashita
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Charlotte M. Fonta
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France
- Université Strasbourg, Strasbourg 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Philip Kollmannsberger
- Biomedical Physics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| |
Collapse
|
13
|
Substrate stiffness controls proinflammatory responses in human gingival fibroblasts. Sci Rep 2023; 13:1358. [PMID: 36693942 PMCID: PMC9873657 DOI: 10.1038/s41598-023-28541-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Soft gingiva is often compromised in gingival health; however, the underlying biological mechanisms remain unknown. Extracellular matrix (ECM) stiffness is involved in the progression of various fibroblast-related inflammatory disorders via cellular mechanotransduction. Gingival stiffness might regulate cellular mechanotransduction-mediated proinflammatory responses in gingival fibroblasts. This in vitro study aims to investigate the effects of substrate stiffness on proinflammatory responses in human gingival fibroblasts (hGFs). The hGFs isolated from two healthy donors cultured on type I collagen-coated polydimethylsiloxane substrates with different stiffnesses, representing soft (5 kPa) or hard (25 kPa) gingiva. Expression levels of proinflammatory mediators, prostaglandin E2 or interleukin-1β, in hGFs were significantly higher with the soft substrate than with the hard substrate, even without and with lipopolysaccharide (LPS) to induce inflammation. Expression levels of gingival ECM and collagen cross-linking agents in hGFs were downregulated more with the soft substrate than with the hard substrate through 14 days of culture. The soft substrate suppressed the expression of mechanotransduction-related transcriptional factors and activated the expression of inflammation-related factors, whereas the hard substrate demonstrated the opposite effects. Soft substrate induced proinflammatory responses and inhibition of ECM synthesis in hGFs by inactivating cellular mechanotransduction. This supports the importance of ECM stiffness in gingival health.
Collapse
|
14
|
Wang W, Bale S, Yalavarthi B, Verma P, Tsou PS, Calderone KM, Bhattacharyya D, Fisher GJ, Varga J, Bhattacharyya S. Deficiency of inhibitory TLR4 homolog RP105 exacerbates fibrosis. JCI Insight 2022; 7:e160684. [PMID: 36136452 PMCID: PMC9675479 DOI: 10.1172/jci.insight.160684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Activation of TLR4 by its cognate damage-associated molecular patterns (DAMPs) elicits potent profibrotic effects and myofibroblast activation in systemic sclerosis (SSc), while genetic targeting of TLR4 or its DAMPs in mice accelerates fibrosis resolution. To prevent aberrant DAMP/TLR4 activity, a variety of negative regulators evolved to dampen the magnitude and duration of the signaling. These include radioprotective 105 kDa (RP105), a transmembrane TLR4 homolog that competitively inhibits DAMP recognition of TLR4, blocking TLR4 signaling in immune cells. The role of RP105 in TLR4-dependent fibrotic responses in SSc is unknown. Using unbiased transcriptome analysis of skin biopsies, we found that levels of both TLR4 and its adaptor protein MD2 were elevated in SSc skin and significantly correlated with each other. Expression of RP105 was negatively associated with myofibroblast differentiation in SSc. Importantly, RP105-TLR4 association was reduced, whereas TLR4-TLR4 showed strong association in fibroblasts from patients with SSc, as evidenced by PLA assays. Moreover, RP105 adaptor MD1 expression was significantly reduced in SSc skin biopsies and explanted SSc skin fibroblasts. Exogenous RP105-MD1 abrogated, while loss of RP105 exaggerated, fibrotic cellular responses. Importantly, ablation of RP105 in mice was associated with augmented TLR4 signaling and aggravated skin fibrosis in complementary disease models. Thus, we believe RP105-MD1 to be a novel cell-intrinsic negative regulator of TLR4-MD2-driven sustained fibroblast activation, representing a critical regulatory network governing the fibrotic process. Impaired RP105 function in SSc might contribute to persistence of progression of the disease.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Ken M. Calderone
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Gary J. Fisher
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| |
Collapse
|
15
|
Tower RJ, Bancroft AC, Chowdary AR, Barnes S, Edwards NJ, Pagani CA, Dawson LA, Levi B. Single-cell mapping of regenerative and fibrotic healing responses after musculoskeletal injury. Stem Cell Reports 2022; 17:2334-2348. [PMID: 36150381 PMCID: PMC9561541 DOI: 10.1016/j.stemcr.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor β (TGF-β) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes. Regenerative and fibrotic injuries share common early response mechanisms Transcriptomes correlate with healing outcome more than injury type or cell source Matrix composition after injury-induced tissue repair is highly injury type dependent Inflammatory cascades are activated in immune and mesenchymal cells
Collapse
Affiliation(s)
- Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Alec C Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashish R Chowdary
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer Barnes
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Bioinformatics Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole J Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
17
|
Tenascin-C in fibrosis in multiple organs: Translational implications. Semin Cell Dev Biol 2022; 128:130-136. [PMID: 35400564 PMCID: PMC10119770 DOI: 10.1016/j.semcdb.2022.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify innate immune signaling via toll-like receptors (TLRs) as a key driver of persistent fibrotic response in SSc. Repeated injury triggers the in-situ generation of "damage-associated molecular patterns" (DAMPs) or danger signals. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation triggering the self-limited tissue repair response to self-sustained pathological fibrosis characteristic of SSc. Our unbiased survey for DAMPs associated with SSc identified extracellular matrix glycoprotein tenascin-C as one of the most highly up-regulated ECM proteins in SSc skin and lung biopsies [3,4]. Furthermore, tenascin C is responsible for driving sustained fibroblasts activation, thereby progression of fibrosis [3]. This review summarizes recent studies examining the regulation and complex functional role of tenascin C, presenting tenascin-TLR4 axis in pathological fibrosis, and novel anti-fibrotic approaches targeting their signaling.
Collapse
|
18
|
Clark KEN, Csomor E, Campochiaro C, Galwey N, Nevin K, Morse MA, Teo YV, Freudenberg J, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study. THE LANCET. RHEUMATOLOGY 2022; 4:e507-e516. [PMID: 36404995 PMCID: PMC9669928 DOI: 10.1016/s2665-9913(22)00094-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Skin fibrosis is a hallmark feature of systemic sclerosis. Skin biopsy transcriptomics and blister fluid proteomics give insight into the local environment of the skin. We have integrated these modalities with the aim of developing a surrogate for the modified Rodnan skin score (mRSS), using candidate genes and proteins from the skin and blister fluid as anchors to identify key analytes in the plasma. Methods In this single-centre, prospective observational study at the Royal Free Campus, University College London, London, UK, transcriptional and proteomic analyses of blood and skin were performed in a cohort of patients with systemic sclerosis (n=52) and healthy controls (n=16). Weighted gene co-expression network analysis was used to explore the association of skin transcriptomics data, clinical traits, and blister fluid proteomic results. Candidate hub analytes were identified as those present in both blister and skin gene sets (modules), and which correlated with plasma (module membership >0·7 and gene significance >0·6). Hub analytes were confirmed using RNA transcript data obtained from skin biopsy samples from patients with early diffuse cutaneous systemic sclerosis at 12 months. Findings We identified three modules in the skin, and two in blister fluid, which correlated with a diagnosis of early diffuse cutaneous systemic sclerosis. From these modules, 11 key hub analytes were identified, present in both skin and blister fluid modules, whose transcript and protein levels correlated with plasma protein concentrations, mRSS, and showed statistically significant correlation on repeat transcriptomic samples taken at 12 months. Multivariate analysis identified four plasma analytes as correlates of mRSS (COL4A1, COMP, SPON1, and TNC), which can be used to differentiate disease subtype. Interpretation This unbiased approach has identified potential biological candidates that might be drivers of local skin pathogenesis in systemic sclerosis. By focusing on measurable analytes in the plasma, we generated a promising composite plasma protein biomarker that could be used for assessment of skin severity, case stratification, and as a potential outcome measure for clinical trials and practice. Once fully validated, the biomarker score could replace a clinical score such as the mRSS, which carries substantial variability. Funding GlaxoSmithKline and UK Medical Research Council.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary A Morse
- Immunoinflammation, GlaxoSmithKline, Stevenage, UK
| | - Yee Voan Teo
- Computational Biology, GlaxoSmithKline, California, USA
| | | | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | | | | | | | |
Collapse
|
19
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
20
|
Emerging Approach for the Application of Hibiscus sabdariffa Extract Ointment in the Superficial Burn Care. Sci Pharm 2022. [DOI: 10.3390/scipharm90030041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wound healing comprises organized events involving tissue repair and regeneration. The discovery of toll-like receptors (TLRs) sheds recent light on the mechanisms involved in initiating inflammatory responses throughout the healing cascades. Hibiscus sabdariffa (HS) components may exhibit a wound healing action, owing to their antioxidant and anti-inflammatory activities. This study was designed to investigate the early effects of HS loaded in an ointment base on wound healing, antioxidant, antimicrobial effects, burning intensity, and histopathological features on the rat burn model in comparison to the standard treatment, Iruxol® ointment. A burn injury model was used to evaluate the wound healing potency of the preparation. Rats were treated with ointments three times on the day of the induction of the burn. Findings revealed that the strong antioxidant properties of the HS-loaded ointment augmented the skin healing potential by stimulating biomarkers required for skin regeneration. HS repressed the burning-induced inflammation by the effective reduction in the levels of tumor necrosis factor α (TNF-α) and IL-6 through TLR4 protein inhibition. Topical HS downregulates transforming growth factor-beta (TGF-β) levels. HS extract possesses a potential bactericidal activity against highly resistant clinical isolates of Pseudomonas aeruginosa. Overall, this study proclaims that HS-loaded topical preparations could be a valuable product that serves as adjuvants to accelerate burn wound healing through inactivating the TLR4 pathway.
Collapse
|
21
|
Parikh UM, Mentz J, Collier I, Davis MJ, Abu-Ghname A, Colchado D, Short WD, King A, Buchanan EP, Balaji S. Strategies to Minimize Surgical Scarring: Translation of Lessons Learned from Bedside to Bench and Back. Adv Wound Care (New Rochelle) 2022; 11:311-329. [PMID: 34416825 DOI: 10.1089/wound.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: An understanding of the physiology of wound healing and scarring is necessary to minimize surgical scar formation. By reducing tension across the healing wound, eliminating excess inflammation and infection, and encouraging perfusion to healing areas, surgeons can support healing and minimize scarring. Recent Advances: Preoperatively, newer techniques focused on incision placement to minimize tension, skin sterilization to minimize infection and inflammation, and control of comorbid factors to promote a healing process with minimal scarring are constantly evolving. Intraoperatively, measures like layered closure, undermining, and tissue expansion can be taken to relieve tension across the healing wound. Appropriate suture technique and selection should be considered, and finally, there are new surgical technologies available to reduce tension across the closure. Postoperatively, the healing process can be supported as proliferation and remodeling take place within the wound. A balance of moisture control, tension reduction, and infection prevention can be achieved with dressings, ointments, and silicone. Vitamins and corticosteroids can also affect the scarring process by modulating the cellular factors involved in healing. Critical Issues: Healing with no or minimal scarring is the ultimate goal of wound healing research. Understanding how mechanical tension, inflammation and infection, and perfusion and hypoxia impact profibrotic pathways allows for the development of therapies that can modulate cytokine response and the wound extracellular microenvironment to reduce fibrosis and scarring. Future Directions: New tension-off loading topical treatments, laser, and dermabrasion devices are under development, and small molecule therapeutics have demonstrated scarless wound healing in animal models, providing a promising new direction for future research aimed to minimize surgical scarring.
Collapse
Affiliation(s)
- Umang M. Parikh
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - James Mentz
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Ian Collier
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Matthew J. Davis
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Amjed Abu-Ghname
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Colchado
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Walker D. Short
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Alice King
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Edward P. Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Bolourani S, Sari E, Brenner M, Wang P. The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS One 2022; 17:e0266163. [PMID: 35377906 PMCID: PMC8979429 DOI: 10.1371/journal.pone.0266163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN We examined the role of eCIRP in the pathogenesis of bleomycin-induced pulmonary fibrosis (PF). MATERIAL AND METHODS Publicly available gene expression omnibus datasets were analyzed for the expression of CIRP in lung samples from patients with PF. Wild type (WT) or CIRP-/- mice received daily injections of 10 μg/g bleomycin for 10 days. A subset of bleomycin-injected WT mice was treated with the eCIRP antagonist C23 (8 μg/g/day) from day 10 to day 19. At three weeks, transthoracic echocardiography was performed to measure the degree of pulmonary hypertension, and lung tissues were collected and analyzed for markers of fibrosis. RESULTS Analysis of the mRNA data of human lung samples showed a significant positive correlation between CIRP and α-smooth muscle actin (α-SMA), an important marker of fibrosis. Moreover, the expression of CIRP was higher in patients with acute exacerbation of PF than in patients with stable PF. CIRP-/- mice showed attenuated induction of α-SMA and collagens (Col1a1, Col3a1), reduced hydroxyproline content, decreased histological fibrosis scores, and improved pulmonary hypertension as compared to WT mice. WT mice treated with C23 also had significant attenuation of the above endpoint measure. CONCLUSIONS Our study demonstrates that eCIRP plays a key role in promoting the development of PF, and blocking eCIRP with C23 can significantly attenuate this process.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| |
Collapse
|
23
|
Xue D, Tabib T, Morse C, Yang Y, Domsic R, Khanna D, Lafyatis R. Expansion of Fcγ Receptor IIIa-Positive Macrophages, Ficolin 1-Positive Monocyte-Derived Dendritic Cells, and Plasmacytoid Dendritic Cells Associated With Severe Skin Disease in Systemic Sclerosis. Arthritis Rheumatol 2022; 74:329-341. [PMID: 34042322 PMCID: PMC8626521 DOI: 10.1002/art.41813] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In this study, we sought a comprehensive understanding of myeloid cell types driving fibrosis in diffuse cutaneous systemic sclerosis (dcSSc) skin. METHODS We analyzed the transcriptomes of 2,465 myeloid cells from skin biopsy specimens from 12 dcSSc patients and 10 healthy control subjects using single-cell RNA sequencing. Monocyte-derived dendritic cells (mo-DCs) were assessed using immunohistochemical staining and immunofluorescence analyses targeting ficolin-1 (FCN-1). RESULTS A t-distributed stochastic neighbor embedding analysis of single-cell transcriptome data revealed 12 myeloid cell clusters, 9 of which paralleled previously described healthy control macrophage/DC clusters, and 3 of which were dcSSc-specific myeloid cell clusters. One SSc-associated macrophage cluster, highly expressing Fcγ receptor IIIA, was suggested on pseudotime analysis to be derived from normal CCR1+ and MARCO+ macrophages. A second SSc-associated myeloid population highly expressed monocyte markers FCN-1, epiregulin, S100A8, and S100A9, but was closely related to type 2 conventional DCs on pseudotime analysis and identified as mo-DCs. Mo-DCs were associated with more severe skin disease. Proliferating macrophages and plasmacytoid DCs were detected almost exclusively in dcSSc skin, the latter clustering with B cells and apparently derived from lymphoid progenitors. CONCLUSION Transcriptional signatures in these and other myeloid populations indicate innate immune system activation, possibly through Toll-like receptors and highly up-regulated chemokines. However, the appearance and activation of myeloid cells varies between patients, indicating potential differences in the underlying pathogenesis and/or temporal disease activity in dcSSc.
Collapse
Affiliation(s)
- Dan Xue
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tracy Tabib
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Robyn Domsic
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Ling H, Luo L, Dai X, Chen H. Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis. Mol Cell Biochem 2021; 477:205-212. [PMID: 34652537 DOI: 10.1007/s11010-021-04270-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis is one of the most common pathogens of sexually transmitted diseases, and its incidence in genital tract infections is now 4.7% in south China. Infertility is the end result of C. trachomatis-induced fallopian tubal fibrosis and is receiving intense attention from scientists worldwide. To reduce the incidence of infertility, it is important to understand the pathology-related changes of the genital tract where C. trachomatis infection is significant, especially the mechanism of fibrosis formation. During fibrosis development, the fallopian tube becomes sticky and occluded, which will eventually lead to tubal infertility. At present, the mechanism of fallopian tubal fibrosis induced by C. trachomatis infection is unclear. Our study attempted to summarize the possible mechanisms of fibrosis caused by C. trachomatis infection in the fallopian tube by reviewing published studies and further providing potential therapeutic targets to reduce the occurrence of infertility. This study also provides ideas for future research. Factors leading to fallopian tube fibrosis include inflammatory factors, miRNA, ECT, cHSP, and host factors. We hypothesized that C. trachomatis mediates the transcription and translation of EMT and ECM via upregulating TGF signaling pathway, which leads to the formation of fallopian tube fibrosis and ultimately to tubal infertility.
Collapse
Affiliation(s)
- Hua Ling
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Lipei Luo
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Xingui Dai
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
25
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
26
|
Tagliari E, Campos LF, Casagrande TAC, Fuchs T, de Noronha L, Campos ACL. Effects of oral probiotics administration on the expression of transforming growth factor β and the proinflammatory cytokines interleukin 6, interleukin 17, and tumor necrosis factor α in skin wounds in rats. JPEN J Parenter Enteral Nutr 2021; 46:721-729. [PMID: 34173254 DOI: 10.1002/jpen.2216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cytokines and growth factors play key roles during the tissue repair process. We aim to evaluate the effect of perioperative oral of probiotics, on the healing process in skin wound in rats, by histological aspects, and by the expression of TGF-β, and the pro-inflammatory cytokines IL6, IL7, and TNF-α. METHODS 72 adult male Wistar rats were split into two groups control (n = 36) and probiotic group (n = 36). Each group was subdivided into three subgroups with 12 animals each according to euthanasia day: 3rd, 7th, and 10th postoperative(PO) day. RESULTS Wound contraction was faster with the use of probiotics (p = .013). Also fibrosis was significantly higher in the Probiotic group in the 7th PO day (p = .028). In the probiotic group, there was a reduction of TNF-α at 3th PO day (p = .023); and a reduction of IL6 in 7th PO day (p = .030). There was also a reduction of the expression of IL-17 in 3rd PO day (p = .039) and 7rd PO day (P = .024). In contrast, TGF-β was lower in the 10th PO day (p = .031) in the probiotic group as compared to controls, indicating that the increase of the fibrosis caused negative feedback with the TGF-β. CONCLUSION Probiotics are associated with a shorter inflammatory phase by attenuating the expression of cytokines IL-6 and TNF-α and accelerating the reduction of IL-17 and TGF-β, leading to faster and improved cutaneous healing in rats.
Collapse
Affiliation(s)
- Eliane Tagliari
- Graduate Program in Surgery, Division of Health Sciences, Federal University of Paraná, Curitiba, Brasil
| | - Letícia Fuganti Campos
- Graduate Program in Surgery, Division of Health Sciences, Federal University of Paraná, Curitiba, Brasil
| | | | - Taise Fuchs
- Professional Masters Program in Industrial Biotechnology, Positivo University
| | - Lúcia de Noronha
- Experimental Pathology Laboratory, Pontifical Catholic University of Paraná, Curitiba, Brasil
| | | |
Collapse
|
27
|
Eberle J, Wiehe RS, Gole B, Mattis LJ, Palmer A, Ständker L, Forssmann WG, Münch J, Gebhardt JCM, Wiesmüller L. A Fibrinogen Alpha Fragment Mitigates Chemotherapy-Induced MLL Rearrangements. Front Oncol 2021; 11:689063. [PMID: 34222016 PMCID: PMC8249925 DOI: 10.3389/fonc.2021.689063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Rearrangements in the Mixed Lineage Leukemia breakpoint cluster region (MLLbcr) are frequently involved in therapy-induced leukemia, a severe side effect of anti-cancer therapies. Previous work unraveled Endonuclease G as the critical nuclease causing initial breakage in the MLLbcr in response to different types of chemotherapeutic treatment. To identify peptides protecting against therapy-induced leukemia, we screened a hemofiltrate-derived peptide library by use of an enhanced green fluorescent protein (EGFP)-based chromosomal reporter of MLLbcr rearrangements. Chromatographic purification of one active fraction and subsequent mass spectrometry allowed to isolate a C-terminal 27-mer of fibrinogen α encompassing amino acids 603 to 629. The chemically synthesized peptide, termed Fα27, inhibited MLLbcr rearrangements in immortalized hematopoietic cells following treatment with the cytostatics etoposide or doxorubicin. We also provide evidence for protection of primary human hematopoietic stem and progenitor cells from therapy-induced MLLbcr breakage. Of note, fibrinogen has been described to activate toll-like receptor 4 (TLR4). Dissecting the Fα27 mode-of action revealed association of the peptide with TLR4 in an antagonistic fashion affecting downstream NFκB signaling and pro-inflammatory cytokine production. In conclusion, we identified a hemofiltrate-derived peptide inhibitor of the genome destabilizing events causing secondary leukemia in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Julia Eberle
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Liska Jule Mattis
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Anja Palmer
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Wolf-Georg Forssmann
- Pharis Biotec GmbH and Peptide Research Group, Institute of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
29
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
30
|
Yonebayashi S, Tajiri K, Hara M, Saito H, Suzuki N, Sakai S, Kimura T, Sato A, Sekimoto A, Fujita S, Okamoto R, Schwartz RJ, Yoshida T, Imanaka-Yoshida K. Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Front Immunol 2021; 12:620541. [PMID: 33763067 PMCID: PMC7982461 DOI: 10.3389/fimmu.2021.620541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein that is expressed during embryogenesis. It is not expressed in normal adults, but is up-regulated under pathological conditions. Although TNC knockout mice do not show a distinct phenotype, analyses of disease models using TNC knockout mice combined with in vitro experiments revealed the diverse functions of TNC. Since high TNC levels often predict a poor prognosis in various clinical settings, we developed a transgenic mouse that overexpresses TNC through Cre recombinase-mediated activation. Genomic walking showed that the transgene was integrated into and truncated the Atp8a2 gene. While homozygous transgenic mice showed a severe neurological phenotype, heterozygous mice were viable, fertile, and did not exhibit any distinct abnormalities. Breeding hemizygous mice with Nkx2.5 promoter-Cre or α-myosin heavy chain promoter Cre mice induced the heart-specific overexpression of TNC in embryos and adults. TNC-overexpressing mouse hearts did not have distinct histological or functional abnormalities. However, the expression of proinflammatory cytokines/chemokines was significantly up-regulated and mortality rates during the acute stage after myocardial infarction were significantly higher than those of the controls. Our novel transgenic mouse may be applied to investigations on the role of TNC overexpression in vivo in various tissue/organ pathologies using different Cre donors.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mari Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taizo Kimura
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akiyo Sekimoto
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Satoshi Fujita
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| |
Collapse
|
31
|
Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021; 2021:8874339. [PMID: 33505220 PMCID: PMC7811571 DOI: 10.1155/2021/8874339] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.
Collapse
Affiliation(s)
- Mohamed M. Aboudounya
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| | - Richard J. Heads
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| |
Collapse
|
32
|
Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum 2020; 51:310-317. [PMID: 33440304 DOI: 10.1016/j.semarthrit.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The field of pulmonary fibrosis is rapidly expanding as new insights highlight novel mechanisms that influence fibroblast biology and likely promote aberrant and chronic activation of the tissue repair response. Current paradigms suggest repeated epithelial microinjury as a driver for pathology; however, the rapid expansion of pulmonary fibrosis research calls for an overview on how fibroblasts respond to both neighbouring cells and the injury microenvironment. This review seeks to highlight recent discoveries and identify areas that require further research regarding fibroblasts, and their role in pulmonary fibrosis.
Collapse
Affiliation(s)
- B Wu
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - L Tang
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol Med 2020; 26:127. [PMID: 33297945 PMCID: PMC7727198 DOI: 10.1186/s10020-020-00256-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, autoimmune diseases are more prevalent in females than males. Various predisposing factors, including female sex hormones, X chromosome genes, and the microbiome have been implicated in the female bias of autoimmune diseases. During embryogenesis, one of the X chromosomes in the females is transcriptionally inactivated, in a process called X chromosome inactivation (XCI). This equalizes the impact of two X chromosomes in the females. However, some genes escape from XCI, providing a basis for the dual expression dosage of the given gene in the females. In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
35
|
Kang JH, Yang HW, Park JH, Shin JM, Kim TH, Lee SH, Lee HM, Park IH. Lipopolysaccharide regulates thymic stromal lymphopoietin expression via TLR4/MAPK/Akt/NF-κB-signaling pathways in nasal fibroblasts: differential inhibitory effects of macrolide and corticosteroid. Int Forum Allergy Rhinol 2020; 11:144-152. [PMID: 32623837 DOI: 10.1002/alr.22641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory disease of the sinonasal mucosa. Thymic stromal lymphopoietin (TSLP) is associated with T-helper 2 (Th2) response and induced by pathogen, allergen, toll-like receptor (TLR) ligands, and cytokines. Fibroblasts are known to be modulators of wound-healing, from inflammation to tissue remodeling. We examined effect of lipopolysaccharide (LPS) on TSLP production and the underlying mechanisms. We aimed to determine whether the effects of commonly used medications in CRS, namely corticosteroids, and macrolides, are related to LPS-induced TSLP in nasal fibroblasts. METHODS Fibroblasts were isolated from inferior turbinate tissues of CRS patients. TSLP and TLR4 expressions were determined by reverse transcript-polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunoassay, and immunofluorescence staining. Mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor-kappaB (NF-κB) phosphorylation was determined by Western blot and/or luciferase assay. RESULTS LPS increased TSLP expression in a dose- and time-dependent manner. LPS antagonist and corticosteroids inhibited TLR4 expression in LPS-stimulated fibroblasts. LPS-RS, macrolides, corticosteroids, and specific inhibitors suppressed LPS-induced alterations. Ex vivo culture showed similar results. CONCLUSION LPS induces TSLP production via the TLR4, MAPK, Akt, and NF-κB pathways. The effects of corticosteroids and macrolides are related to LPS-induced TSLP expression. We explored new treatment modalities targeting LPS-induced TSLP production that could replace the currently used corticosteroid and macrolides for treatment of CRS.
Collapse
Affiliation(s)
- Ju-Hyung Kang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea.,IVD Support Center, Korea University Guro Hospital, Seoul, South Korea
| | - Tae-Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea.,IVD Support Center, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
36
|
Nagaraja V, Matucci-Cerinic M, Furst DE, Kuwana M, Allanore Y, Denton CP, Raghu G, Mclaughlin V, Rao PS, Seibold JR, Pauling JD, Whitfield ML, Khanna D. Current and Future Outlook on Disease Modification and Defining Low Disease Activity in Systemic Sclerosis. Arthritis Rheumatol 2020; 72:1049-1058. [PMID: 32134199 DOI: 10.1002/art.41246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune rheumatic disease with heterogeneous clinical manifestations and a variable course in which the severity of the pathology dictates the disease prognosis and course. Among autoimmune rheumatic diseases, SSc has the highest mortality rate among all rheumatic diseases, though there are exciting new therapeutic targets that appear to halt the progression of SSc manifestations such as skin or lung fibrosis. In selected patients, high-intensity regimens with autologous stem cell transplantation can favorably modify the course. In what was once thought to be an untreatable disease, targeted therapies have now changed the outlook of SSc to a treatable disorder. Herein, we discuss the targeted therapies modifying the outlook on selected organ involvement and creating opportunities for future treatment. We also present a framework for defining low disease activity in SSc.
Collapse
Affiliation(s)
| | | | - Daniel E Furst
- University of California in Los Angeles, University of Washington, Seattle, and University of Florence, Florence, Italy
| | | | - Yannick Allanore
- Paris Descartes University, INSERM U1016, Université Sorbonne Paris Cité, and Cochin Hospital, Paris, France
| | | | | | | | | | - James R Seibold
- Scleroderma Research Consultants, LLC, Aiken, South Carolina
| | - John D Pauling
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals, Bath, UK
| | | | | |
Collapse
|
37
|
Zhang C, Jia Y, Liu B, Wang G, Zhang Y. TLR4 knockout upregulates the expression of Mfn2 and PGC-1α in a high-fat diet and ischemia-reperfusion mice model of liver injury. Life Sci 2020; 254:117762. [PMID: 32437795 DOI: 10.1016/j.lfs.2020.117762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
AIMS Patients with nonalcoholic fatty liver disease (NAFLD) have less tolerance to ischemia-reperfusion injury (IRI) of the liver than those with the healthy liver; hence have a higher incidence of severe complications after surgery. This study aimed to investigate the dynamics of the liver and mitochondrial damage and the impact of TLR4 knockout (TLR4KO) on Mfn2 expression in the composite model of NAFLD and IRI. MAIN METHODS We performed high-fat diet (HFD) feeding and ischemia reperfusion (IR) on wild type (WT) and TLR4 knockout TLR4KO mice. KEY FINDINGS The degree of structural and functional injuries to the liver and mitochondria (NAFLD and IRI) is greater than that caused by a single factor (NAFLD or IRI) or a simple superposition of both. The IL-6 and TNF-α expressions were significantly suppressed (P < .05), while PGC-1α and Mfn2 expressions were up-regulated considerably (P < .05) after TLR4KO. Furthermore, mitochondrial fusion increased, while ATP consumption and ROS production decreased significantly after TLR4KO (P < .05). The degree of reduction of compound injury by TLR4KO is more significant than the reduction degree of single factor injury. Also, TNF-α and IL-6 levels can be used predictive markers for mitochondrial damage and liver tolerance to NAFLD and IRI. SIGNIFICANCE TLR4KO upregulates the expression of Mfn2 and PGC-1α in the composite model of NAFLD and IRI. This pathway may be related to IL-6 and TNF-α. This evidence provides theoretical and experimental basis for the subsequent Toll-like receptor 4 (TLR4) receptor targeted therapy.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Li B, Yan C, Wu J, Stephane K, Dong X, Zhang YZ, Zhang Y, Yu Q, Zheng KY. Clonorchis sinensis ESPs enhance the activation of hepatic stellate cells by a cross-talk of TLR4 and TGF-β/Smads signaling pathway. Acta Trop 2020; 205:105307. [PMID: 31862462 DOI: 10.1016/j.actatropica.2019.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
Excretory/Secretory products (ESPs) from Clonorchis sinensis-a fluke dwelling on the biliary ducts-promote the activation of hepatic stellate cells (HSCs) and lead to hepatic fibrosis ultimately, although the mechanisms that are responsible for CsESPs-induced activation of HSCs are largely unknown. In the present study, we investigated the underlying mechanism of TLR4 in the regulation of the activation of HSCs caused by CsESPs. We found that the expression of TLR4 was significantly increased in the HSCs with CsESPs for 24 h, compared to the control group. However, the activation of HSCs induced by CsESPs was inhibited by interfering with TGF-β/Smad pathway using a TGF-β receptor I inhibitor LY2157299, indicating that TGF-β induced signaling pathway was involved in CsESPs-caused the activation of HSCs. In addition, the activation of HSCs caused by CsESPs was remarkably inhibited by a TLR4 specific inhibitor (VIPER), and phosphorylation of Smad2/3 was significantly attenuated but the expression of the pseudoreceptor of TGF-β-type I receptor (BAMBI) was obviously increased when TLR4 signaling pathway was blocked. The results of the present study demonstrate that activation of HSCs caused by CsESPs is mediated by a cross-talk between TLR4 and TGF-β/Smads signaling pathway, and may provide a potential treatment strategy to interrupt the process of liver fibrosis caused by C. sinensis.
Collapse
|
39
|
Fuchs PÖ, Calitz C, Pavlović N, Binet F, Solbak SMØ, Danielson UH, Kreuger J, Heindryckx F, Gerwins P. Fibrin fragment E potentiates TGF-β-induced myofibroblast activation and recruitment. Cell Signal 2020; 72:109661. [PMID: 32334027 DOI: 10.1016/j.cellsig.2020.109661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Fibrin is an essential constituent of the coagulation cascade, and the formation of hemostatic fibrin clots is central to wound healing. Fibrin clots are over time degraded into fibrin degradation products as the injured tissue is replaced by granulation tissue. Our goal was to study the role of the fibrin degradation product fragment E (FnE) in fibroblast activation and migration. We present evidence that FnE is a chemoattractant for fibroblasts and that FnE can potentiate TGF-β-induced myofibroblast formation. FnE forms a stable complex with αVβ3 integrin, and the integrin β3 subunit is required both for FnE-induced fibroblast migration and for potentiation of TGF-β-induced myofibroblast formation. Finally, subcutaneous infusion of FnE in mice results in a fibrotic response in the hypodermis. These results support a model where FnE released from clots in wounded tissue promote wound healing and fibrosis by both recruitment and activation of fibroblasts. Fibrin fragment E could thus represent a therapeutic target for treatment of pathological fibrosis.
Collapse
Affiliation(s)
- Peder Öhman Fuchs
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden
| | - Carlemi Calitz
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden
| | - Nataša Pavlović
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden
| | - François Binet
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden
| | | | - U Helena Danielson
- Dept. of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Johan Kreuger
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden
| | - Femke Heindryckx
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden.
| | - Pär Gerwins
- Dept. of Medical Cell Biology, Uppsala University, P.O. Box 571, SE-751 23 Uppsala, Sweden; Dept. of Radiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
40
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
41
|
Mirsaeidi M, Barletta P, Glassberg MK. Systemic Sclerosis Associated Interstitial Lung Disease: New Directions in Disease Management. Front Med (Lausanne) 2019; 6:248. [PMID: 31737640 PMCID: PMC6834642 DOI: 10.3389/fmed.2019.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
A subgroup of patients with systemic sclerosis (SSc) develop interstitial lung disease (ILD), characterized by inflammation and progressive scarring of the lungs that can lead to respiratory failure. Although ILD remains the major cause of death in these individuals, there is no consensus statement regarding the classification and characterization of SSc-related ILD (SSc-ILD). Recent clinical trials address the treatment of SSc-ILD and the results may lead to new disease-altering therapies. In this review, we provide an update to the diagnosis, management and treatment of SSc-ILD.
Collapse
Affiliation(s)
- Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pamela Barletta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
42
|
Insights into myofibroblasts and their activation in scleroderma: opportunities for therapy? Curr Opin Rheumatol 2019; 30:581-587. [PMID: 30074511 DOI: 10.1097/bor.0000000000000543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The persistence of myofibroblasts is a key feature of fibrosis and in fibrotic diseases including scleroderma. This review evaluates the emerging concepts of the origins and cell populations that contribute to myofibroblasts and the molecular mechanisms that govern phenotypic conversion and that highlight opportunities for new interventional treatments in scleroderma. RECENT FINDINGS Studies have defined heterogeneity in fibroblast-like cells that can develop into myofibroblast in normal wound healing, scarring and fibrosis. Characterizing these distinct cell populations and their behaviour has been a key focus. In addition, the overarching impact of epigenetic regulation of genes associated with inflammatory responses, cell signalling and cell communication and the extracellular matrix (ECM) has provided important insights into the formation of myofibroblast and their function. Important new studies include investigations into the relationship between inflammation and myofibroblast production and further evidence has been gathered that reveal the importance of ECM microenvironment, biomechanical sensing and mechanotransduction. SUMMARY This review highlights our current understanding and outlines the increasing complexity of the biological processes that leads to the appearance of the myofibroblast in normal functions and in diseased tissues. We also focus on areas of special interest in particular, studies that have therapeutic potential in fibrosis and scleroderma.
Collapse
|
43
|
Xu C, Meng LB, Duan YC, Cheng YJ, Zhang CM, Zhou X, Huang CB. Screening and identification of biomarkers for systemic sclerosis via microarray technology. Int J Mol Med 2019; 44:1753-1770. [PMID: 31545397 PMCID: PMC6777682 DOI: 10.3892/ijmm.2019.4332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease. The pathogenesis of SSc is currently unclear, although like other rheumatic diseases its pathogenesis is complicated. However, the ongoing development of bioinformatics technology has enabled new approaches to research this disease using microarray technology to screen and identify differentially expressed genes (DEGs) in the skin of patients with SSc compared with individuals with healthy skin. Publicly available data were downloaded from the Gene Expression Omnibus (GEO) database and intra-group data repeatability tests were conducted using Pearson's correlation test and principal component analysis. DEGs were identified using an online tool, GEO2R. Functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the construction and analysis of the protein-protein interaction (PPI) network and identification and analysis of hub genes was carried out. A total of 106 DEGs were detected by the screening of SSc and healthy skin samples. A total of 10 genes [interleukin-6, bone morphogenetic protein 4, calumenin (CALU), clusterin, cysteine rich angiogenic inducer 61, serine protease 23, secretogranin II, suppressor of cytokine signaling 3, Toll-like receptor 4 (TLR4), tenascin C] were identified as hub genes with degrees ≥10, and which could sensitively and specifically predict SSc based on receiver operator characteristic curve analysis. GO and KEGG analysis showed that variations in hub genes were mainly enriched in positive regulation of nitric oxide biosynthetic processes, negative regulation of apoptotic processes, extracellular regions, extracellular spaces, cytokine activity, chemo-attractant activity, and the phosphoinositide 3 kinase-protein kinase B signaling pathway. In summary, bioinformatics techniques proved useful for the screening and identification of biomarkers of disease. A total of 106 DEGs and 10 hub genes were linked to SSc, in particular the TLR4 and CALU genes.
Collapse
Affiliation(s)
- Chen Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Ling-Bing Meng
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yu-Chen Duan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yong-Jing Cheng
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Chun-Mei Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xing Zhou
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Ci-Bo Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
44
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|
45
|
Castellano G, Stasi A, Franzin R, Sallustio F, Divella C, Spinelli A, Netti GS, Fiaccadori E, Cantaluppi V, Crovace A, Staffieri F, Lacitignola L, Grandaliano G, Simone S, Pertosa GB, Gesualdo L. LPS-Binding Protein Modulates Acute Renal Fibrosis by Inducing Pericyte-to-Myofibroblast Trans-Differentiation through TLR-4 Signaling. Int J Mol Sci 2019; 20:ijms20153682. [PMID: 31357597 PMCID: PMC6696277 DOI: 10.3390/ijms20153682] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/10/2023] Open
Abstract
During sepsis, the increased synthesis of circulating lipopolysaccharide (LPS)-binding protein (LBP) activates LPS/TLR4 signaling in renal resident cells, leading to acute kidney injury (AKI). Pericytes are the major source of myofibroblasts during chronic kidney disease (CKD), but their involvement in AKI is poorly understood. Here, we investigate the occurrence of pericyte-to-myofibroblast trans-differentiation (PMT) in sepsis-induced AKI. In a swine model of sepsis-induced AKI, PMT was detected within 9 h from LPS injection, as evaluated by the reduction of physiologic PDGFRβ expression and the dysfunctional α-SMA increase in peritubular pericytes. The therapeutic intervention by citrate-based coupled plasma filtration adsorption (CPFA) significantly reduced LBP, TGF-β, and endothelin-1 (ET-1) serum levels, and furthermore preserved PDGFRβ and decreased α-SMA expression in renal biopsies. In vitro, both LPS and septic sera led to PMT with a significant increase in Collagen I synthesis and α-SMA reorganization in contractile fibers by both SMAD2/3-dependent and -independent TGF-β signaling. Interestingly, the removal of LBP from septic plasma inhibited PMT. Finally, LPS-stimulated pericytes secreted LBP and TGF-β and underwent PMT also upon TGF-β receptor-blocking, indicating the crucial pro-fibrotic role of TLR4 signaling. Our data demonstrate that the selective removal of LBP may represent a therapeutic option to prevent PMT and the development of acute renal fibrosis in sepsis-induced AKI.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy.
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Alessandra Spinelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Giuseppe Stefano Netti
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Enrico Fiaccadori
- Nephrology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, 70010 Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, 70010 Bari, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, 70010 Bari, Italy
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Simona Simone
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| |
Collapse
|
46
|
Bhattacharyya S, Wang W, Tamaki Z, Shi B, Yeldandi A, Tsukimi Y, Yamasaki M, Varga J. Pharmacological Inhibition of Toll-Like Receptor-4 Signaling by TAK242 Prevents and Induces Regression of Experimental Organ Fibrosis. Front Immunol 2018; 9:2434. [PMID: 30405628 PMCID: PMC6207051 DOI: 10.3389/fimmu.2018.02434] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a poorly understood heterogeneous condition with progressive multi-organ fibrosis. Recent genetic and genomic evidence suggest a pathogenic role for dysregulated innate immunity and toll-like receptor (TLR) activity in SSc. Levels of both TLR4, as well as certain endogenous TLR ligands, are elevated in skin and lung tissues from patients with SSc and correlate with clinical disease parameters. Conversely, genetic targeting of TLR4 or its endogenous “damage-associated” ligands ameliorates progressive tissue fibrosis. Targeting TLR4 signaling therefore represents a pharmacological strategy to prevent intractable fibrosis. We examined the effect of TAK242, a small molecule TLR4 inhibitor, in preclinical fibrosis models and in SSc fibroblasts. TAK242 treatment prevented, promoted regression of, bleomycin-induced dermal and pulmonary fibrosis, and reduced the expression of several pro-fibrotic mediators. Furthermore, TAK242 ameliorated peritoneal fibrosis and reduced spontaneous hypodermal thickness in TSK/+ mice. Importantly, TAK242 abrogated collagen synthesis and myofibroblasts differentiation in explanted constitutively active SSc fibroblast. Altogether, these findings identify TAK242 as an anti-fibrotic agent in preclinical models of organ fibrosis. TAK242 might potentially represent a novel strategy for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Zenshiro Tamaki
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Shi
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | - Anjana Yeldandi
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| | | | | | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
47
|
Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat Commun 2018; 9:4099. [PMID: 30291253 PMCID: PMC6173721 DOI: 10.1038/s41467-018-06658-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Host pathways mediating changes in immune states elicited by intestinal microbial colonization are incompletely characterized. Here we describe alterations of the host immune state induced by colonization of germ-free zebrafish larvae with an intestinal microbial community or single bacterial species. We show that microbiota-induced changes in intestinal leukocyte subsets and whole-body host gene expression are dependent on the innate immune adaptor gene myd88. Similar patterns of gene expression are elicited by colonization with conventional microbiome, as well as mono-colonization with two different zebrafish commensal bacterial strains. By studying loss-of-function myd88 mutants, we find that colonization suppresses Myd88 at the mRNA level. Tlr2 is essential for microbiota-induced effects on myd88 transcription and intestinal immune cell composition. It remains unclear how microbial sensing during early-life colonization results in immune homeostasis rather than acute inflammation. Here the authors show that zebrafish larvae colonization suppresses intestinal MyD88, accounting for a considerable proportion of microbiota-induced alterations in immune setpoint.
Collapse
|
48
|
Shamilov R, Aneskievich BJ. TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling. J Immunol Res 2018; 2018:3491269. [PMID: 30402506 PMCID: PMC6192141 DOI: 10.1155/2018/3491269] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023] Open
Abstract
TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Rambon Shamilov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
49
|
Dufour AM, Alvarez M, Russo B, Chizzolini C. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Front Immunol 2018; 9:1865. [PMID: 30150989 PMCID: PMC6099180 DOI: 10.3389/fimmu.2018.01865] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Functional cytokine networks have been poorly characterized in systemic sclerosis (SSc). While interleukin-17A (IL-17A) is increased in SSc skin and other organs, its role is still debated, particularly considering fibrogenesis. We uncover here a dual function of IL-17A in the presence of transforming growth factor-β 1 (TGF-β), the master pro-fibrotic cytokine. In the one hand, we report an unexpected synergic activity resulting in enhanced production of IL-6 by dermal fibroblasts; in the other hand, a substantial inhibition of type I collagen (col-I) production. IL-17A or TGF-β enhanced the production of IL-6 by 8- to 16-folds when compared to control in healthy donors (HD) and SSc cultures. However, the joint presence of IL-17A and TGF-β resulted in robustly exuberant responses with levels of IL-6 up to 100-folds higher than those observed in untreated cells. Inhibition of NFκB signaling pathway preferentially inhibited the production of IL-6 driven by IL-17A in HD fibroblasts, while inhibition of PI3K preferentially inhibited the production of IL-6 driven by TGF-β. Interestingly, when p38 MAPK was inhibited, substantial reduction of IL-6 production was observed for both IL-17A and TGF-β. Consistently with the inhibition experiments, the combined stimulation of fibroblasts by IL-17A and TGF-β resulted in 1.8-fold increase in p38 MAPK phosphorylation (P = 0.025), when compared to levels of phosphorylated p38 MAPK induced by IL-17A alone. Furthermore, the enhanced phosphorylation of p38 MAPK in the joint presence of IL-17A and TGF-β was unique among the signaling molecules we examined. As expected, TGF-β induced SMAD2 phosphorylation and col-I production. However, in fibroblasts cultured in the joint presence of TGF-β and IL-17A, SMAD2 phosphorylation was decreased by 0.6-folds (P = 0.022) when compared to that induced by TGF-β alone. Remarkably, in this condition, the production of col-I and fibronectin was significantly decreased in both HD and SSc. Thus, IL-17A and TGF-β reciprocally influence each other effector functions in fibroblasts. Intracellular molecular switches may favor synergic or antagonistic activities, which are revealed by specific readouts. The implications of these data in the context of SSc are far reaching, particularly in terms of therapeutic approaches since IL-6, IL-17A, and TGF-β are all putative targets of treatment.
Collapse
Affiliation(s)
- Aleksandra Maria Dufour
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Montserrat Alvarez
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Barbara Russo
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| |
Collapse
|
50
|
Bhattacharyya S, Wang W, Qin W, Cheng K, Coulup S, Chavez S, Jiang S, Raparia K, De Almeida LMV, Stehlik C, Tamaki Z, Yin H, Varga J. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight 2018; 3:98850. [PMID: 29997297 DOI: 10.1172/jci.insight.98850] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Persistent fibrosis in multiple organs is the hallmark of systemic sclerosis (SSc). Recent genetic and genomic studies implicate TLRs and their damage-associated molecular pattern (DAMP) endogenous ligands in fibrosis. To test the hypothesis that TLR4 and its coreceptor myeloid differentiation 2 (MD2) drive fibrosis persistence, we measured MD2/TLR4 signaling in tissues from patients with fibrotic SSc, and we examined the impact of MD2 targeting using a potentially novel small molecule. Levels of MD2 and TLR4, and a TLR4-responsive gene signature, were enhanced in SSc skin biopsies. We developed a small molecule that selectively blocks MD2, which is uniquely required for TLR4 signaling. Targeting MD2/TLR4 abrogated inducible and constitutive myofibroblast transformation and matrix remodeling in fibroblast monolayers, as well as in 3-D scleroderma skin equivalents and human skin explants. Moreover, the selective TLR4 inhibitor prevented organ fibrosis in several preclinical disease models and mouse strains, and it reversed preexisting fibrosis. Fibroblast-specific deletion of TLR4 in mice afforded substantial protection from skin and lung fibrosis. By comparing experimentally generated fibroblast TLR4 gene signatures with SSc skin biopsy gene expression datasets, we identified a subset of SSc patients displaying an activated TLR4 signature. Together, results from these human and mouse studies implicate MD2/TLR4-dependent fibroblast activation as a key driver of persistent organ fibrosis. The results suggest that SSc patients with high TLR4 activity might show optimal therapeutic response to selective inhibitors of MD2/TLR4 complex formation.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wenyi Qin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kui Cheng
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sara Coulup
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sherry Chavez
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shuangshang Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kirtee Raparia
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA
| | | | - Christian Stehlik
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA
| | - Zenshiro Tamaki
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|