1
|
FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. BIOSENSORS-BASEL 2021; 11:bios11090340. [PMID: 34562930 PMCID: PMC8468847 DOI: 10.3390/bios11090340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023]
Abstract
The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.
Collapse
|
2
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
3
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
4
|
Burgstaller S, Bischof H, Gensch T, Stryeck S, Gottschalk B, Ramadani-Muja J, Eroglu E, Rost R, Balfanz S, Baumann A, Waldeck-Weiermair M, Hay JC, Madl T, Graier WF, Malli R. pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sens 2019; 4:883-891. [PMID: 30864782 PMCID: PMC6488996 DOI: 10.1021/acssensors.8b01599] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Distinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor-referred to as pH-Lemon-optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells.
Collapse
Affiliation(s)
- Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Gensch
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sarah Stryeck
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Sabine Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C. Hay
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula 59812-4824, Montana United States
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Dong B, Song W, Lu Y, Kong X, Mehmood AH, Lin W. An ultrasensitive ratiometric fluorescent probe based on the ICT-PET-FRET mechanism for the quantitative measurement of pH values in the endoplasmic reticulum (ER). Chem Commun (Camb) 2019; 55:10776-10779. [DOI: 10.1039/c9cc03114f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-site ratiometric probe based on the ICT-PET-FRET mechanism for quantitatively measuring the pH values of the ER was developed.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Abdul Hadi Mehmood
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
6
|
Dirk BS, End C, Pawlak EN, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD. PACS-1 and adaptor protein-1 mediate ACTH trafficking to the regulated secretory pathway. Biochem Biophys Res Commun 2018; 507:519-525. [PMID: 30458990 DOI: 10.1016/j.bbrc.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein - 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher End
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
Genetically encoded fluorescent indicators for live cell pH imaging. Biochim Biophys Acta Gen Subj 2018; 1862:2924-2939. [PMID: 30279147 DOI: 10.1016/j.bbagen.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intracellular pH underlies most cellular processes. There is emerging evidence of a pH-signaling role in plant cells and microorganisms. Dysregulation of pH is associated with human diseases, such as cancer and Alzheimer's disease. SCOPE OF REVIEW In this review, we attempt to provide a summary of the progress that has been made in the field during the past two decades. First, we present an overview of the current state of the design and applications of fluorescent protein (FP)-based pH indicators. Then, we turn our attention to the development and applications of hybrid pH sensors that combine the capabilities of non-GFP fluorophores with the advantages of genetically encoded tags. Finally, we discuss recent advances in multicolor pH imaging and the applications of genetically encoded pH sensors in multiparameter imaging. MAJOR CONCLUSIONS Genetically encoded pH sensors have proven to be indispensable noninvasive tools for selective targeting to different cellular locations. Although a variety of genetically encoded pH sensors have been designed and applied at the single cell level, there is still much room for improvements and future developments of novel powerful tools for pH imaging. Among the most pressing challenges in this area is the design of brighter redshifted sensors for tissue research and whole animal experiments. GENERAL SIGNIFICANCE The design of precise pH measuring instruments is one of the important goals in cell biochemistry and may give rise to the development of new powerful diagnostic tools for various diseases.
Collapse
|
8
|
Cavallo A, Madaghiele M, Masullo U, Lionetto MG, Sannino A. Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies. J Appl Polym Sci 2016. [DOI: 10.1002/app.44380] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anna Cavallo
- Department of Engineering for Innovation; University of Salento; Lecce 73100 Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation; University of Salento; Lecce 73100 Italy
| | - Ugo Masullo
- Department of Engineering for Innovation; University of Salento; Lecce 73100 Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies; University of Salento; Lecce 73100 Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation; University of Salento; Lecce 73100 Italy
| |
Collapse
|
9
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
10
|
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking. J Biol Chem 2016; 291:9835-50. [PMID: 26961877 DOI: 10.1074/jbc.m115.711838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, Fin-00014, Helsinki, Finland, and
| | - TuKiet T Lam
- the W. M. Keck Foundation Biotechnology Resource Laboratory, Yale/Keck MS and Proteomics Resource, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, Connecticut 06511
| | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
11
|
Reddy G U, A AH, Ali F, Taye N, Chattopadhyay S, Das A. FRET-Based Probe for Monitoring pH Changes in Lipid-Dense Region of Hct116 Cells. Org Lett 2015; 17:5532-5. [DOI: 10.1021/acs.orglett.5b02568] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Upendar Reddy G
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Anila H. A
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Firoj Ali
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Nandaraj Taye
- Chromatin
and Disease Biology Laboratory, National Centre for Cell Science, Pune 411007, India
| | - Samit Chattopadhyay
- Chromatin
and Disease Biology Laboratory, National Centre for Cell Science, Pune 411007, India
| | - Amitava Das
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
12
|
Blanco EH, Peinado JR, Martín MG, Lindberg I. Biochemical and cell biological properties of the human prohormone convertase 1/3 Ser357Gly mutation: a PC1/3 hypermorph. Endocrinology 2014; 155:3434-47. [PMID: 24932808 PMCID: PMC4138575 DOI: 10.1210/en.2013-2151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Satiety and appetite signaling are accomplished by circulating peptide hormones. These peptide hormones require processing from larger precursors to become bioactive, often by the proprotein convertase 1/3 (PC1/3). Several subcellular maturation steps are necessary for PC1/3 to achieve its optimal enzymatic activity. Certain PC1/3 variants found in the general population slightly attenuate its enzymatic activity and are associated with obesity and diabetes. However, mutations that increase PC1/3 activity and/or affect its specificity could also have physiological consequences. We here present data showing that the known human Ser357Gly PC1/3 mutant (PC1/3(S357G)) represents a PC1/3 hypermorph. Conditioned media from human embryonic kidney-293 cells transfected with PC1/3(WT) and PC1/3(S357G) were collected and enzymatic activity characterized. PC1/3(S357G) exhibited a lower calcium dependence; a higher pH optimum (neutral); and a higher resistance to peptide inhibitors than the wild-type enzyme. PC1/3(S357G) exhibited increased cleavage to the C-terminally truncated form, and kinetic parameters of the full-length and truncated mutant enzymes were also altered. Lastly, the S357G mutation broadened the specificity of the enzyme; we detected PC2-like specificity on the substrate proCART, the precursor of the cocaine- and amphetamine regulated transcript neuropeptide known to be associated with obesity. The production of another anorexigenic peptide normally synthesized only by PC2, αMSH, was increased when proopiomelanocortin was coexpressed with PC1/3(S357G). Considering the aberrant enzymatic profile of PC1/3(S357G), we hypothesize that this enzyme possesses unusual processing activity that may significantly change the profile of circulating peptide hormones.
Collapse
Affiliation(s)
- Elias H Blanco
- Department of Anatomy and Neurobiology (E.H.B., J.R.P., I.L.), University of Maryland Medical School, Baltimore, Maryland 21201; and Department of Pediatrics (M.G.M.), Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | | | | | | |
Collapse
|
13
|
Day KJ, Staehelin LA, Glick BS. A three-stage model of Golgi structure and function. Histochem Cell Biol 2013; 140:239-49. [PMID: 23881164 DOI: 10.1007/s00418-013-1128-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
The Golgi apparatus contains multiple classes of cisternae that differ in structure, composition, and function, but there is no consensus about the number and definition of these classes. A useful way to classify Golgi cisternae is according to the trafficking pathways by which the cisternae import and export components. By this criterion, we propose that Golgi cisternae can be divided into three classes that correspond to functional stages of maturation. First, cisternae at the cisternal assembly stage receive COPII vesicles from the ER and recycle components to the ER in COPI vesicles. At this stage, new cisternae are generated. Second, cisternae at the carbohydrate synthesis stage exchange material with one another via COPI vesicles. At this stage, most of the glycosylation and polysaccharide synthesis reactions occur. Third, cisternae at the carrier formation stage produce clathrin-coated vesicles and exchange material with endosomes. At this stage, biosynthetic cargo proteins are packaged into various transport carriers, and the cisternae ultimately disassemble. Discrete transitions occur as a cisterna matures from one stage to the next. Within each stage, the structure and composition of a cisterna can evolve, but the trafficking pathways remain unchanged. This model offers a unified framework for understanding the properties of the Golgi in diverse organisms.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60615, USA
| | | | | |
Collapse
|
14
|
Zandberg WF, Benjannet S, Hamelin J, Pinto BM, Seidah NG. N-glycosylation controls trafficking, zymogen activation and substrate processing of proprotein convertases PC1/3 and subtilisin kexin isozyme-1. Glycobiology 2011; 21:1290-300. [PMID: 21527438 DOI: 10.1093/glycob/cwr060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The limited proteolysis of proteins by the proprotein convertases (PCs) is a common means of producing bioactive proteins or peptides. The PCs are associated with numerous human pathologies and their activity can be reduced through the use of specific inhibitors. Here, we demonstrate an alternative approach to inhibiting PCs by altering their N-glycosylation. Through site-directed mutagenesis, we show that the convertase PC1/3 contains two N-glycans, only one of which is critical for its prosegment cleavage. The exact structure of PC1/3 N-glycans does not significantly affect its zymogen activation within endocrine cells, but glycosylation of Asn(146) is critical. Processing of the PC1/3's substrate proopiomelanocortin (POMC) was used in a cell-based assay to screen a collection of 45 compounds structurally related to known glycosidase inhibitors. Two 5-thiomannose-containing disaccharide derivatives were discovered to block PC1/3 and POMC processing into the analgesic peptide β-endorphin. These compounds also reduced the zymogen activation of the convertase subtilisin kexin isozyme-1 (SKI-1), blocked the processing of its substrate the sterol regulatory element-binding protein SREBP-2 and altered its glycosylation. Thus, modification of PC glycosylation may also be a means of blocking their activity, an effect which, in the case of SKI-1, may be of possible therapeutic use since SREBP-2 regulates sterol levels including cholesterol biosynthesis and its metabolism.
Collapse
Affiliation(s)
- Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | |
Collapse
|
15
|
Jansen EJR, Hafmans TGM, Martens GJM. V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells. Mol Biol Cell 2010; 21:3330-9. [PMID: 20702583 PMCID: PMC2947469 DOI: 10.1091/mbc.e10-04-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The regulation of the V-ATPase, the proton pump mediating intraorganellar acidification, is still elusive. We find that excess of the neuroendocrine V-ATPase accessory subunit Ac45 reduces the intragranular pH and consequently disturbs prohormone convertase activation and prohormone processing. Thus, Ac45 represents the first V-ATPase regulator. The vacuolar (H+)-ATPase (V-ATPase) is an important proton pump, and multiple critical cell-biological processes depend on the proton gradient provided by the pump. Yet, the mechanism underlying the control of the V-ATPase is still elusive but has been hypothesized to involve an accessory subunit of the pump. Here we studied as a candidate V-ATPase regulator the neuroendocrine V-ATPase accessory subunit Ac45. We transgenically manipulated the expression levels of the Ac45 protein specifically in Xenopus intermediate pituitary melanotrope cells and analyzed in detail the functioning of the transgenic cells. We found in the transgenic melanotrope cells the following: i) significantly increased granular acidification; ii) reduced sensitivity for a V-ATPase-specific inhibitor; iii) enhanced early processing of proopiomelanocortin (POMC) by prohormone convertase PC1; iv) reduced, neutral pH–dependent cleavage of the PC2 chaperone 7B2; v) reduced 7B2-proPC2 dissociation and consequently reduced proPC2 maturation; vi) decreased levels of mature PC2 and consequently reduced late POMC processing. Together, our results show that the V-ATPase accessory subunit Ac45 represents the first regulator of the proton pump and controls V-ATPase-mediated granular acidification that is necessary for efficient prohormone processing.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition, and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
16
|
Sobota JA, Bäck N, Eipper BA, Mains RE. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009; 122:3542-53. [PMID: 19737820 DOI: 10.1242/jcs.034298] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
17
|
Abstract
There is an urgent need for developing a biosensor that can real-time and noninvasively determine glucose concentration within living cells. In our previous study, we have engineered a glucose indicator protein (GIP) that can provide continuous glucose monitoring through a conformation change-induced Förster resonance-energy transfer measurement. Because of the pH-sensitivity of the fluorescent proteins used in the GIP construction, the GIP made from these fluorescent proteins is less tolerant to a pH change, especially to the acidic environment. It has been well documented that intracellular pH does not always remain the same, and it fluctuates in metabolism and other cellular activities and also differs between cellular compartments. To address these issues, we developed a GIP that can tolerate to pH change. This GIP was constructed by flanking a glucose binding protein with a cyan fluorescent protein and a pH-insensitive yellow fluorescent protein. Our experimental results indicated that the new GIP is more tolerant to pH change. The glucose response of this new GIP kept almost unchanged from pH 7.3 to 5.3, suggesting its capability of tolerating to acidic environment. This capability is desirable for intracellular glucose measurement.
Collapse
Affiliation(s)
- Jared R Garrett
- College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
18
|
Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proc Natl Acad Sci U S A 2009; 106:7408-13. [PMID: 19376969 DOI: 10.1073/pnas.0809576106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several peptide hormones are initially synthesized as inactive precursors. It is only on entry of these prohormones and their processing proteases into dense core secretory granules (DCSGs) that the precursors are cleaved to generate their active forms. Prohormone convertase (PC)1/3 is a processing protease that is targeted to DCSGs. The signal for targeting PC1/3 to DCSGs resides in its carboxy-terminal tail (PC1/3(617-753)), where 3 regions (PC1/3(617-625), PC1/3(665-682), and PC1/3(711-753)) are known to aid in sorting and membrane association. In this article, we have determined a high-resolution structure of the extreme carboxy-terminal sorting domain, PC1/3(711-753) in micelles by NMR spectroscopy. PC1/3(711-753) contains 2 alpha helices located between residues 722-728 and 738-750. Functional assays demonstrate that the second helix (PC1/3(738-750)) is necessary and sufficient to target a constitutively secreted protein to granules, and that L(745) anchors a hydrophobic patch that is critical for sorting. Also, we demonstrate that calcium binding by the second helix of PC1/3(711-753) promotes aggregation of the domain via the hydrophobic patch centered on L(745). These results provide a structure-function analysis of a DCSG-sorting domain, and reveal the importance of a hydrophobic patch and calcium binding in controlling the sorting of proteins containing alpha helices to DCSGs.
Collapse
|
19
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
20
|
Perello M, Stuart R, Nillni EA. Prothyrotropin-releasing hormone targets its processing products to different vesicles of the secretory pathway. J Biol Chem 2008; 283:19936-47. [PMID: 18474603 DOI: 10.1074/jbc.m800732200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothyrotropin-releasing hormone (pro-TRH) is initially cleaved by the prohormone convertase-1/3 (PC1/3) in the trans-Golgi network generating N- and C-terminal intermediate forms that are then packed into secretory vesicles. However, it is not known whether these peptides are differentially sorted within the secretory pathway. This is of key importance because the processing products of several prohormones fulfill different biological functions. Using AtT20 cells stably transfected with prepro-TRH cDNA, we found that two specific N- and C-terminal peptides were located in different vesicles. Furthermore, the C-terminal pro-TRH-derived peptides were more efficiently released in response to KCl and norepinephrine, a natural secretagogue of TRH. Similar sorting and secretion of N- and C-terminal peptides occurs in vivo. When we blocked the initial proteolytic processing by a mutagenic approach, the differential sorting and secretion of these peptides were prevented. In summary, our data show that pro-TRH-derived peptides are differentially sorted within the secretory pathway and that the initial cleavage in the trans-Golgi network is key to this process. This could be a common mechanism used by neuroendocrine cells to regulate independently the secretion of different bioactive peptides derived from the same gene product.
Collapse
Affiliation(s)
- Mario Perello
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | | | | |
Collapse
|
21
|
Monastyrskaya K, Tschumi F, Babiychuk EB, Stroka D, Draeger A. Annexins sense changes in intracellular pH during hypoxia. Biochem J 2008; 409:65-75. [PMID: 17824845 DOI: 10.1042/bj20071116] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pH(i) (intracellular pH) is an important physiological parameter which is altered during hypoxia and ischaemia, pathological conditions accompanied by a dramatic decrease in pH(i). Sensors of pH(i) include ion transport systems which control intracellular Ca2+ gradients and link changes in pH(i) to functions as diverse as proliferation and apoptosis. The annexins are a protein family characterized by Ca2+-dependent interactions with cellular membranes. Additionally, in vitro evidence points to the existence of pH-dependent, Ca(2+)-independent membrane association of several annexins. We show that hypoxia promotes the interaction of the recombinant annexin A2-S100A10 (p11) and annexin A6 with the plasma membrane. We have investigated in vivo the influence of the pH(i) on the membrane association of human annexins A1, A2, A4, A5 and A6 tagged with fluorescent proteins, and characterized this interaction for endogenous annexins present in smooth muscle and HEK (human embryonic kidney)-293 cells biochemically and by immunofluorescence microscopy. Our results show that annexin A6 and the heterotetramer A2-S100A10 (but not annexins A1, A4 and A5) interact independently of Ca2+ with the plasma membrane at pH 6.2 and 6.6. The dimerization of annexin A2 within the annexin A2-S100A10 complex is essential for the pH-dependent membrane interaction at this pH range. The pH-induced membrane binding of annexins A6 and A2-S100A10 might have consequences for their functions as membrane organizers and channel modulators.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Dikeakos JD, Mercure C, Lacombe MJ, Seidah NG, Reudelhuber TL. PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanism. FEBS J 2007; 274:4094-102. [PMID: 17645548 DOI: 10.1111/j.1742-4658.2007.05937.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are seven members of the proprotein convertase (PC) family of secreted serine proteases that cleave their substrates at basic amino acids, thereby activating a variety of hormones, growth factors, and viruses. PC1/3, PC2 and PC5/6A are the only members of the PC family that are targeted to dense core secretory granules, where they carry out the processing of proteins that are secreted from the cell in a regulated manner. Previous studies have identified alpha-helices in the C-termini of the PC1/3 and PC2 proteases that are required for this subcellular targeting. In the current study, we demonstrate that a predicted alpha-helix in the C-terminus of PC5/6A is also critical for the ability of this domain to target a heterologous protein to the regulated secretory pathway of mouse endocrine AtT-20 cells. Analysis of the subcellular distribution of fusion proteins containing the C-terminal domains of PC1/3, PC2 and PC5/6A confirmed that all three domains have the capacity to redirect a constitutively secreted protein to the granule-containing cytoplasmic extensions. Analysis of the predicted structures formed by these three granule-sorting helices shows a correlation between their granule-sorting efficiency and the clustering of hydrophobic amino acids in their granule-targeting helices.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Laboratory of Molecular Biochemistry of Hypertension, Institut de Recherches Cliniques de Montréal (IRCM), QC, Canada
| | | | | | | | | |
Collapse
|
23
|
Dikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. ACTA ACUST UNITED AC 2007; 177:191-6. [PMID: 17438078 PMCID: PMC2064127 DOI: 10.1083/jcb.200701024] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular sorting of peptide hormone precursors to the dense core secretory granules (DCSGs) is essential for their bioactivation. Despite the fundamental importance of this cellular process, the nature of the sorting signals for entry of proteins into DCSGs remains a source of vigorous debate. This review highlights recent discoveries that are consistent with a model in which several protein domains, acting in a cell-specific fashion and at different steps in the sorting process, act in concert to regulate the entry of proteins into DCSGs.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
24
|
Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006; 21:124-33. [PMID: 16565478 DOI: 10.1152/physiol.00043.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
25
|
Bell ME, McDonald TJ, Myers DA. Proopiomelanocortin processing in the anterior pituitary of the ovine fetus after lesion of the hypothalamic paraventricular nucleus. Endocrinology 2005; 146:2665-73. [PMID: 15718276 DOI: 10.1210/en.2004-1324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic-pituitary-adrenocortical axis plays an essential role in the maturation of fetal organs and, in sheep, birth. Lesioning the paraventricular nucleus (PVN) in fetal sheep prevents adrenocortical maturation and parturition without altering plasma immunoreactive ACTH concentrations. The purpose of this study was to determine the effect of PVN lesion on anterior pituitary processing of proopiomelanocortin (POMC) to ACTH, plasma concentrations of ACTH and ACTH precursors (POMC; 22-kDa proACTH), and expression of subtilisin-like prohormone convertase 3 (SPC3) in corticotropes in fetal sheep. PVN lesion did not affect anterior pituitary POMC and 22-kDa proACTH levels, whereas ACTH was significantly affected. The ACTH precursor (POMC plus 22-kDa proACTH) to ACTH ratio in the anterior pituitary was significantly increased after PVN lesion. Post-PVN lesion, fetal plasma ACTH(1-39), was below the limit of detection, whereas ACTH precursors (POMC plus 22-kDa proACTH) were not affected. In the inferior region of the anterior pituitary, 40-50% of corticotropes had detectable SPC3 hybridization signal, and PVN lesion did not change the extent of colocalization of POMC and SPC3, or SPC3 mRNA levels within corticotropes. Neither the percent of corticotropes in the superior region containing SPC3 hybridization (7-12%) or hybridization signal strength was altered in response to PVN lesion. In conclusion, the fetal PVN is necessary for sustaining adequate anterior pituitary processing of POMC to ACTH and ACTH release needed for maturing the adrenal cortex in the sheep fetus.
Collapse
Affiliation(s)
- M Elizabeth Bell
- Department of Obstetrics and Gynecology, College of Medicine, Suite 468, RP1, 800 North Research Parkway, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
26
|
Lacombe MJ, Mercure C, Dikeakos JD, Reudelhuber TL. Modulation of Secretory Granule-targeting Efficiency by Cis and Trans Compounding of Sorting Signals. J Biol Chem 2005; 280:4803-7. [PMID: 15569678 DOI: 10.1074/jbc.m408658200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several protein domains acting through seemingly different mechanisms have been reported to have the capacity to target proteins to dense core secretory granules. Because proteins enter secretory granules with different efficiencies and because some of these proteins contain more than one granule-targeting motif, we have investigated whether compounding sorting signals could alter the efficiency of protein entry into secretory granules. In the current study we demonstrate that a paired basic cleavage site from human prorenin and an alpha-helix-containing secretory granule-sorting signal from the prohormone convertase PC1/3 can synergize to increase granule-sorting efficiency not only when located on the same protein, but also when located on distinct proteins that associate in the secretory pathway.
Collapse
Affiliation(s)
- Marie-Josée Lacombe
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
27
|
Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F. The Ca2+/Mn2+ pumps in the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:103-12. [PMID: 15590060 DOI: 10.1016/j.bbamcr.2004.08.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 08/31/2004] [Indexed: 11/28/2022]
Abstract
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed.
Collapse
Affiliation(s)
- Kurt Van Baelen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 2004; 280:1561-72. [PMID: 15522866 DOI: 10.1074/jbc.m410041200] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.
Collapse
Affiliation(s)
- Norihiro Nakamura
- Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
29
|
Paroutis P, Touret N, Grinstein S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 2004; 19:207-15. [PMID: 15304635 DOI: 10.1152/physiol.00005.2004] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The luminal pH of the secretory pathway plays a critical role in the posttranslational modification and sorting of proteins and lipids. The pH of each one of the organelles that constitute the pathway is unique, becoming more acidic as the biosynthetic cargo approaches its destination. The methods used for measurement of pH in the secretory pathway, its determinants, and its regulation are the subjects of this review.
Collapse
Affiliation(s)
- Paul Paroutis
- Cell Biology Program, Hospital for Sick Children, Toronto M5G 1X8 Ontario, Canada
| | | | | |
Collapse
|
30
|
Wuytack F, Raeymaekers L, Missiaen L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflugers Arch 2003; 446:148-53. [PMID: 12739151 DOI: 10.1007/s00424-003-1011-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2003] [Indexed: 11/28/2022]
Abstract
Besides the well-known sarco/endoplasmic-reticulum Ca(2+)-transport ATPases (SERCA), animal cells contain a much less characterized P-type Ca(2+)-transport ATPase: the PMR1/SPCA Ca(2+)/Mn(2+)-transport ATPase. SPCA is mainly targeted to the Golgi apparatus. Phylogenetic analysis indicates that it might be more closely related to a putative ancestral Ca(2+) pump than SERCA. SPCA supplies the Golgi apparatus, and possibly other more distal compartments of the secretory pathway, with the Ca(2+) and Mn(2+) necessary for the production and processing of secretory proteins. In the lactating mammary gland, SPCA appears to be the primary pump responsible for supplementing the milk with high (60-100 mM) Ca(2+). It could also play a role in detoxification of cells overloaded with Mn(2+). Mutations in the human gene encoding the SPCA pump ( ATP2C1) result in Hailey-Hailey disease, a keratinocyte disorder characterized by incomplete cell adhesion. Recent observations show that the Golgi apparatus can function as a Ca(2+) store, which can be involved in setting up cytosolic Ca(2+) oscillations.
Collapse
Affiliation(s)
- Frank Wuytack
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
31
|
Daull P, Home W, Boileau G, LeBel D. Brefeldin A-induced prosomatostatin N-glycosylation in AtT20 cells. Biochem Biophys Res Commun 2002; 296:618-24. [PMID: 12176026 DOI: 10.1016/s0006-291x(02)00904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prosomatostatin, the precursor of the hormone somatostatin, harbors an N-glycosylation site in its prodomain that has never been shown to be modified by the N-oligosaccharyl transferase (OST) of the endoplasmic reticulum (ER). The addition of Brefeldin A (BFA) to prosomatostatin transfected AtT20 cells leads to a quantitative glycosylation of the prohormone. Upon removal of the BFA the glycosylated hormone precursor is not deglycosylated, and is secreted after maturation of its oligosaccharide chain in the late secretory pathway. In addition, a significant proportion of the glycosylated hormone precursor remains in the cell. Since BFA is known to induce an effective collapse of the Golgi complex into the ER, the hypothesis that a prolonged exposure to the ER glycosylation machinery is responsible for the glycosylation was tested. No N-glycosylation was detected using a coupled in vitro transcription-translation system in the presence of canine pancreatic microsomes, indicating that rapid transit through the ER does not explain the lack of glycosylation observed in vivo in the absence of BFA. These observations show that co-translational glycosylation by OST becomes possible due to a still unidentified modification in the luminal environment brought about by the coalescence of the Golgi into the ER caused by BFA.
Collapse
Affiliation(s)
- Philippe Daull
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | | | | | | |
Collapse
|
32
|
Halaban R, Patton RS, Cheng E, Svedine S, Trombetta ES, Wahl ML, Ariyan S, Hebert DN. Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. J Biol Chem 2002; 277:14821-8. [PMID: 11812790 DOI: 10.1074/jbc.m111497200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In tyrosinase-positive amelanotic melanoma cells, inactive tyrosinase accumulates in the endoplasmic reticulum. Based on studies described here, we propose that aberrant vacuolar proton ATPase (V-ATPase)-mediated proton transport in melanoma cells disrupts tyrosinase trafficking through the secretory pathway. Amelanotic but not melanotic melanoma cells or normal melanocytes display elevated proton export as observed by the acidification of the extracellular medium and their ability to maintain neutral intracellular pH. Tyrosinase activity and transit through the Golgi were restored by either maintaining the melanoma cells in alkaline medium (pH 7.4-7.7) or by restricting glucose uptake. The translocation of tyrosinase out of the endoplasmic reticulum and the induction of cell pigmentation in the presence of the ionophore monensin or the specific V-ATPase inhibitors concanamycin A and bafilomycin A1 supported a role for V-ATPases in this process. Because it was previously shown that V-ATPase activity is increased in solid tumors in response to an acidified environment, the appearance of hypopigmented cells in tyrosinase-positive melanoma tumors may indicate the onset of enhanced glycolysis and extracellular acidification, conditions known to favor metastatic spread and resistance to weak base chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Moore HPH, Andresen JM, Eaton BA, Grabe M, Haugwitz M, Wu MM, Machen TE. Biosynthesis and secretion of pituitary hormones: dynamics and regulation. Arch Physiol Biochem 2002; 110:16-25. [PMID: 11935396 DOI: 10.1076/apab.110.1.16.903] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the ACTH-secreting AtT-20 cell line to study the membrane sorting events that confer functionality (prohormone activation and regulated exocytosis) to these secretory carriers. The unique ability of granules to promote prohormone processing is attributed to their acidic interior. Using a novel avidin-targeted fluorescence ratio imaging technique, we have found that the trans-Golgi of live AtT-20 cells maintains a mildly acidic (approximately pH 6.2) interior. Budding of secretory granules causes the lumen to acidify to <pH 6.0, which is both necessary and sufficient to trigger SPC3-mediated proteolytic conversion of proopiomelanocortin to ACTH. Investigation of the pH regulatory mechanism indicates that the trans-Golgi and secretory granules maintain different pH values by distinct sorting of key membrane transporters. Mathematical modeling of our data suggests that the decreasing pH values of organelles of the regulated secretory pathway is established by gradually increasing the density of active H+ pumps from the ER to Golgi while concomitantly decreasing the H+ permeability from ER to Golgi to secretory granules. An in vitro assay was developed to study the formation of processing-competent secretory granules from their processing-incompetent precursor trans-Golgi compartment. Our data suggest that ARF1-mediated sorting of proton pumps and leaks during early stages of granule formation confers processing competency to the resulting organelle. Once formed, these young granules continue to undergo membrane remodeling which results in dynamic changes in their exocytotic behavior. Two SNAREs, VAMP4 and synaptotagmin IV, enter newly formed granules but are removed from the maturing granule membrane by vesicle budding. Sorting of these proteins is correlated with the acquisition of Ca2+-triggered exocytosis and a decrease in unregulated exocytotic rate. Thus, biosynthesis and secretion of pituitary hormones are dynamically regulated by intracellular sorting events that govern the functions of their secretory carriers.
Collapse
Affiliation(s)
- H-P H Moore
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Awaji T, Hirasawa A, Shirakawa H, Tsujimoto G, Miyazaki S. Novel green fluorescent protein-based ratiometric indicators for monitoring pH in defined intracellular microdomains. Biochem Biophys Res Commun 2001; 289:457-62. [PMID: 11716495 DOI: 10.1006/bbrc.2001.6004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To measure pH in defined intracellular microdomains of living cells, we developed ratiometric indicators based on fusing in tandem two green fluorescent protein (GFP) variants having different pH sensitivities. The indicators function in a single-excitation/dual-emission mode involving fluorescence resonance energy transfer, as well as in a dual-excitation/single-emission mode. The fluorescence ratio from GFpH and YFpH showed pH dependency and pK(a) values were 6.1 and 6.8, respectively. Using these indicators expressed in cultured cells, we measured and visualized pH changes in the cytosol and nucleus. Furthermore, by tethering the indicator to a membrane protein (the alpha(1B) adrenergic receptor), we visualized the pH in the vicinity of the protein during internalization caused by endocytosis after agonist stimulation. These novel probes will serve as a useful tool for monitoring pH in the defined organelle and in the microenvironment of a target protein, to analyze cellular function.
Collapse
Affiliation(s)
- T Awaji
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
35
|
Andresen JM, Moore HP. Biogenesis of processing-competent secretory organelles in vitro. Biochemistry 2001; 40:13020-30. [PMID: 11669640 DOI: 10.1021/bi0112762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Propeptide processing occurs in specific compartments of the secretory pathway, but how these processing-competent organelles are generated from their processing-incompetent precursor compartments is unknown. To dissect the process biochemically, we have developed a novel cell-free system reconstituting the production of processing-competent secretory granules in AtT-20 cells. Using donor membranes containing [(35)S]sulfate labeled pro-opiomelanocortin (POMC)(5) in the trans-Golgi, we can reconstitute cytosol- and ATP-dependent prohormone processing as well as incorporation of processed ACTH into immature secretory granules (ISGs). Under limiting cytosol conditions, both reactions are greatly stimulated by ADP-ribosylation factor 1 (ARF1) but not by the GDP-bound ARF1 T31N mutant. pH studies show that lumenal acidification, most likely due to ARF-mediated sorting of proton pumps and leaks during budding, confers processing competency to the resulting organelle. Surprisingly, comparison of onset of processing and ISG release reveals that they are distinct biochemical processes with different kinetics and separate cytosolic requirements. Moreover, ARF regulates the onset of prohormone processing but not ISG release. Our data suggest a two-step mechanism (onset of processing followed by ISG release) for the production of processing-competent organelles from the trans-Golgi and provide the first system with which these two steps may be individually dissected.
Collapse
Affiliation(s)
- J M Andresen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
36
|
Nakanishi T, Ikawa M, Yamada S, Toshimori K, Okabe M. Alkalinization of acrosome measured by GFP as a pH indicator and its relation to sperm capacitation. Dev Biol 2001; 237:222-31. [PMID: 11518518 DOI: 10.1006/dbio.2001.0353] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously targeted EGFP (a mutant of green fluorescent protein) to the lumen of the mouse sperm acrosome and reported the time course of EGFP release during the acrosome reaction. In the study reported here, we estimated the pH within the mouse sperm acrosome utilizing the pH-dependent nature of EGFP fluorescence. The average intra-acrosomal pH was estimated to be 5.3 +/- 0.1 immediately after sperm preparation, gradually increasing to 6.2 +/- 0.3 during 120 min of incubation in TYH media suitable for capacitation. Spontaneous acrosome reactions were noted to increase concomitantly with acrosomal alkalinization during incubation. We also demonstrated that acrosomal antigens detected by monoclonal antibodies MN7 and MC41 did not dissolve following the acrosome reaction in pH 5.3 media, but dissolved at pH 6.2. These data suggest that acrosomal alkalinization during incubation conducive for sperm capacitation may function to alter acrosomal contents and prepare them for release during the acrosome reaction.
Collapse
Affiliation(s)
- T Nakanishi
- Genome Information Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
37
|
Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem 2001; 276:33027-35. [PMID: 11402049 DOI: 10.1074/jbc.m103917200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.
Collapse
Affiliation(s)
- M M Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
38
|
Bell-Parikh LC, Eipper BA, Mains RE. Response of an integral granule membrane protein to changes in pH. J Biol Chem 2001; 276:29854-63. [PMID: 11395514 DOI: 10.1074/jbc.m103936200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.
Collapse
Affiliation(s)
- L C Bell-Parikh
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
39
|
Abstract
Ca(2+)-triggered exocytosis is a hallmark of neurosecretory granules, but the cellular pathway leading to the assembly of these regulated exocytotic carriers is poorly understood. Here we used the pituitary AtT-20 cell line to study the biogenesis of regulated exocytotic carriers involved in peptide hormone secretion. We show that immature secretory granules (ISGs) freshly budded from the trans-Golgi network (TGN) exhibit characteristics of unregulated exocytotic carriers. During a subsequent maturation period they undergo an important switch to become regulated exocytotic carriers. We have identified a novel sorting pathway responsible for this transition. The SNARE proteins, VAMP4 and synaptotagmin IV (Syt IV), enter ISGs initially but are sorted away during maturation. Sorting is achieved by vesicle budding from the ISGs, because it can be inhibited by brefeldin A (BFA). Inhibition of this sorting pathway with BFA arrested the maturing granules in a state that responded poorly to stimuli, suggesting that the transition to regulated exocytotic carriers requires the removal of a putative inhibitor. In support of this, we found that overexpression of Syt IV reduced the stimulus-responsiveness of maturing granules. We conclude that secretory granules undergo a switch from unregulated to regulated secretory carriers during biogenesis. The existence of such a switch may provide a mechanism for cells to modulate their secretory activities under different physiological conditions.
Collapse
|
40
|
Eaton BA, Haugwitz M, Lau D, Moore HP. Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci 2000; 20:7334-44. [PMID: 11007891 PMCID: PMC6772794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2000] [Revised: 07/18/2000] [Accepted: 07/19/2000] [Indexed: 02/17/2023] Open
Abstract
Ca(2+)-triggered exocytosis is a hallmark of neurosecretory granules, but the cellular pathway leading to the assembly of these regulated exocytotic carriers is poorly understood. Here we used the pituitary AtT-20 cell line to study the biogenesis of regulated exocytotic carriers involved in peptide hormone secretion. We show that immature secretory granules (ISGs) freshly budded from the trans-Golgi network (TGN) exhibit characteristics of unregulated exocytotic carriers. During a subsequent maturation period they undergo an important switch to become regulated exocytotic carriers. We have identified a novel sorting pathway responsible for this transition. The SNARE proteins, VAMP4 and synaptotagmin IV (Syt IV), enter ISGs initially but are sorted away during maturation. Sorting is achieved by vesicle budding from the ISGs, because it can be inhibited by brefeldin A (BFA). Inhibition of this sorting pathway with BFA arrested the maturing granules in a state that responded poorly to stimuli, suggesting that the transition to regulated exocytotic carriers requires the removal of a putative inhibitor. In support of this, we found that overexpression of Syt IV reduced the stimulus-responsiveness of maturing granules. We conclude that secretory granules undergo a switch from unregulated to regulated secretory carriers during biogenesis. The existence of such a switch may provide a mechanism for cells to modulate their secretory activities under different physiological conditions.
Collapse
Affiliation(s)
- B A Eaton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
41
|
Kuliawat R, Prabakaran D, Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 2000; 11:1959-72. [PMID: 10848622 PMCID: PMC14896 DOI: 10.1091/mbc.11.6.1959] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, two different prohormone-processing enzymes, prohormone convertase 1 (PC1) and carboxypeptidase E, have been implicated in enhancing the storage of peptide hormones in endocrine secretory granules. It is important to know the extent to which such molecules may act as "sorting receptors" to allow the selective trafficking of cargo proteins from the trans-Golgi network into forming granules, versus acting as enzymes that may indirectly facilitate intraluminal storage of processed hormones within maturing granules. GH4C1 cells primarily store prolactin in granules; they lack PC1 and are defective for intragranular storage of transfected proinsulin. However, proinsulin readily enters the immature granules of these cells. Interestingly, GH4C1 clones that stably express modest levels of PC1 store more proinsulin-derived protein in granules. Even in the presence of PC1, a sizable portion of the proinsulin that enters granules goes unprocessed, and this portion largely escapes granule storage. Indeed, all of the increased granule storage can be accounted for by the modest portion converted to insulin. These results are not unique to GH4C1 cells; similar results are obtained upon PC1 expression in PC12 cells as well as in AtT20 cells (in which PC1 is expressed endogenously at higher levels). An in vitro assay of protein solubility indicates a difference in the biophysical behavior of proinsulin and insulin in the PC1 transfectants. We conclude that processing to insulin, facilitated by the catalytic activities of granule proteolytic enzymes, assists in the targeting (storage) of the hormone.
Collapse
Affiliation(s)
- R Kuliawat
- Division of Endocrinology, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
42
|
Wu MM, Llopis J, Adams S, McCaffery JM, Kulomaa MS, Machen TE, Moore HP, Tsien RY. Organelle pH studies using targeted avidin and fluorescein-biotin. CHEMISTRY & BIOLOGY 2000; 7:197-209. [PMID: 10712929 DOI: 10.1016/s1074-5521(00)00088-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian organelles of the secretory pathway are of differing pH. The pH values form a decreasing gradient: the endoplasmic reticulum (ER) is nearly neutral, the Golgi is mildly acidic and the secretory granules are more acidic still ( approximately pH 5). The mechanisms that regulate pH in these organelles are still unknown. RESULTS Using a novel method, we tested whether differences in H(+) 'leak' and/or counterion conductances contributed to the pH difference between two secretory pathway organelles. A pH-sensitive, membrane-permeable fluorescein-biotin was targeted to endoplasmic-reticulum- and Golgi-localized avidin-chimera proteins in HeLa cells. In live, intact cells, ER pH (pH(ER)) was 7.2 +/- 0.2 and Golgi pH (pH(G)) was 6.4 +/- 0.3 and was dissipated by bafilomycin. Buffer capacities of the cytosol, ER and Golgi were all similar (6-10 mM/pH). ER membranes had an apparent H(+) permeability three times greater than that of Golgi membranes. Removal of either K(+) or Cl(-) did not affect ER and Golgi H(+) leak rates, or steady-state pH(G) and pH(ER). CONCLUSIONS The Golgi is more acidic than the ER because it has an active H(+) pump and fewer or smaller H(+) leaks. Neither buffer capacity nor counterion permeabilities were key determinants of pH(G), pH(ER) or ER/Golgi H(+) leak rates.
Collapse
Affiliation(s)
- M M Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Peters EM, Tobin DJ, Seidah NG, Schallreuter KU. Pro-opiomelanocortin-related peptides, prohormone convertases 1 and 2 and the regulatory peptide 7B2 are present in melanosomes of human melanocytes. J Invest Dermatol 2000; 114:430-7. [PMID: 10692100 DOI: 10.1046/j.1523-1747.2000.00913.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, it has been shown that alpha-melanocyte stimulating hormone can directly activate tyrosinase by removing the allosteric regulator 6(R)-L-erythro 5,6,7,8 tetrahydrobiopterin resulting in a stable alpha-melanocyte stimulating hormone/6(R)-L-erythro 5,6,7,8 tetrahydrobiopterin complex. As melanin production occurs in the melanosome, a specific organelle of the melanocyte, it seemed important to investigate whether these organelles themselves actually produce pro-opiomelanocortin-related peptides in their acidic environment. The presence of alpha-melanocyte stimulating hormone and adrenocorticotropin in the epidermis and melanocytes has been shown by several investigators. In order to follow possible pro-opiomelanocortin processing in the melanosome, human melanocytes were established in MCDB 153 medium and utilized for immunohistochemistry, immunogold electron microscopy, and western blotting. For this purpose antibodies against alpha-melanocyte stimulating hormone, adrenocorticotropin, prohormone convertases 1 and 2 (PC1 and PC2) and the PC2 regulatory protein 7B2 were used. Our results demonstrated the presence of the entire system for pro-opiomelanocortin processing in the melanosome. Considering the pH optima of these convertases, the results are in agreement with an autocrine intramelanosomal production of pro- opiomelanocortin-related peptides and an autocrine production and recycling of the cofactor 6(R)-L- erythro 5,6,7,8 tetrahydrobiopterin in melanocytes. Based on these novel observations, we would like to propose that the pigmentation process may not necessarily involve a melanocortin-1 receptor-mediated mechanism.
Collapse
Affiliation(s)
- E M Peters
- Clinical and Experimental Dermatology, Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK
| | | | | | | |
Collapse
|
44
|
Abstract
The processing of pro-opiomelanocortin (POMC) to generate bioactive ACTH in the anterior pituitary is mediated by prohormone convertase 1 (PC1). Leukemia inhibitory factor (LIF) and interleukin 6 (IL-6), two cytokines sharing the common gp130 receptor subunit and functioning through activation of the intracellular JAK/STAT pathway, induce POMC synthesis and ACTH release. We investigated the effects of LIF and IL-6 on PC1 expression and its subsequent processing of POMC. A significant time-dependent up-regulation of both PC1 protein and mRNA by LIF and IL-6 was seen in mouse corticotroph AtT-20 cells. IL-6 or LIF increased the synthesis of ACTH-related products with a concomitant increase in bioactive 5 and 13 kDa ACTH indicating coordinated regulation of substrate and processing enzyme. AtT-20 cells transiently transfected with a human PC1-promoter-luciferase reporter construct and treated with LIF or IL-6 showed significantly increased luciferase activity. Additionally, lipopolysaccharide (LPS) administration to rats resulted in an increase in both pituitary PC1 and POMC mRNA. These findings suggest that the ACTH increase induced by LIF and IL-6 is due to both increased POMC synthesis as well as increased POMC processing by up-regulation of PC1. These two coordinately regulated processing events probably exert central roles in the pathophysiological response to some stresses, such as inflammatory stress.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Aspartic Acid Endopeptidases/genetics
- Aspartic Acid Endopeptidases/metabolism
- Blotting, Northern
- Blotting, Western
- Cell Extracts
- Cells, Cultured
- Cytokine Receptor gp130
- Growth Inhibitors/metabolism
- Growth Inhibitors/physiology
- Humans
- Interleukin-6/metabolism
- Interleukin-6/physiology
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lipopolysaccharides/pharmacology
- Lymphokines/metabolism
- Lymphokines/physiology
- Male
- Membrane Glycoproteins/physiology
- Mice
- Pituitary Gland/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Proprotein Convertase 1
- Proprotein Convertases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytokine/metabolism
- Receptors, Cytokine/physiology
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-6/physiology
- Receptors, OSM-LIF
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Q L Li
- Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
45
|
Muller L, Lindberg I. The cell biology of the prohormone convertases PC1 and PC2. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:69-108. [PMID: 10506829 DOI: 10.1016/s0079-6603(08)60720-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mature peptide hormones and neuropeptides are typically synthesized from much larger precursors and require several posttranslational processing steps--including proteolytic cleavage--for the formation of the bioactive species. The subtilisin-related proteolytic enzymes that accomplish neuroendocrine-specific cleavages are known as prohormone convertases 1 and 2 (PC1 and PC2). The cell biology of these proteases within the regulated secretory pathway of neuroendocrine cells is complex, and they are themselves initially synthesized as inactive precursor molecules. ProPC1 propeptide cleavage occurs rapidly in the endoplasmic reticulum, yet its major site of action on prohormones takes place later in the secretory pathway. PC1 undergoes an interesting carboxyl terminal processing event whose function appears to be to activate the enzyme. ProPC2, on the other hand, exhibits comparatively long initial folding times and exits the endoplasmic reticulum without propeptide cleavage, in association with the neuroendocrine-specific protein 7B2. Once the proPC2/7B2 complex arrives at the trans-Golgi network, 7B2 is internally cleaved into two domains, the 21-kDa fragment and a carboxy-terminal 31 residue peptide. PC2 propeptide removal occurs in the maturing secretory granule, most likely through autocatalysis, and 7B2 association does not appear to be directly required for this cleavage event. However, if proPC2 has not encountered 7B2 intracellularly, it cannot generate a catalytically active mature species. The molecular mechanism behind the intriguing intracellular association of 7B2 and proPC2 is still unknown, but may involve conformational rearrangement or stabilization of a proPC2 conformer mediated by a 36-residue internal segment of 21-kDa 7B2.
Collapse
Affiliation(s)
- L Muller
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
46
|
Bruzzaniti A, Marx R, Mains RE. Activation and routing of membrane-tethered prohormone convertases 1 and 2. J Biol Chem 1999; 274:24703-13. [PMID: 10455138 DOI: 10.1074/jbc.274.35.24703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many peptide hormones and neuropeptides are processed by members of the subtilisin-like family of prohormone convertases (PCs), which are either soluble or integral membrane proteins. PC1 and PC2 are soluble PCs that are primarily localized to large dense core vesicles in neurons and endocrine cells. We examined whether PC1 and PC2 were active when expressed as membrane-tethered proteins, and how tethering to membranes alters the biosynthesis, enzymatic activity, and intracellular routing of these PCs. PC1 and PC2 chimeras were constructed using the transmembrane domain and cytoplasmic domain of the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The membrane-tethered PCs were rerouted from large dense core vesicles to the Golgi region. In addition, the chimeras were transiently expressed at the cell surface and rapidly internalized to the Golgi region in a fashion similar to PAM. Membrane-tethered PC1 and PC2 exhibited changes in pro-domain maturation rates, N-glycosylation, and in the pH and calcium optima required for maximal enzymatic activity against a fluorogenic substrate. In addition, the PC chimeras efficiently cleaved endogenous pro-opiomelanocortin to the correct bioactive peptides. The PAM transmembrane domain/cytoplasmic domain also prevented stimulated secretion of pro-opiomelanocortin products in AtT-20 cells.
Collapse
Affiliation(s)
- A Bruzzaniti
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
47
|
Díaz-Rodríguez E, Cabrera N, Esparís-Ogando A, Montero JC, Pandiella A. Cleavage of the TrkA neurotrophin receptor by multiple metalloproteases generates signalling-competent truncated forms. Eur J Neurosci 1999; 11:1421-30. [PMID: 10103137 DOI: 10.1046/j.1460-9568.1999.00552.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ectodomain of the neurotrophin receptor TrkA has been recovered as a soluble fragment from the culture media of cells by a process that involves endoproteolytic cleavage. This cleavage may be upregulated by several treatments, including NGF treatment or protein kinase C activation. In this report we have investigated the cellular site and proteolytic activities involved in TrkA cleavage, and the effects of ectodomain truncation on signalling. Cleavage occurs when the receptor is at, or near, the cell surface, and it can be prevented by agents that affect protein sorting. Cleavage generates several cell-bound fragments, and their generation can be differentially blocked by inhibitors, documenting the involvement of multiple plasma membrane metalloendoproteases. The major cell-bound receptor fragment (i) is tyrosine-phosphorylated in vivo; (ii) does autophosphorylate in vitro; and (iii) is able to associate with intracellular signalling substrates. Artificial deletion of the TrkA ectodomain results in an active receptor that induced neurite outgrowth in pheochromocytoma cells. Cleavage by this natural cellular mechanism appears thus to serve not only as an outlet of receptor binding fragments, but also to generate signalling-competent cell-bound receptor fragments. In the nervous system this ligand-independent receptor activation could play important roles in the development and survival of neurons.
Collapse
Affiliation(s)
- E Díaz-Rodríguez
- Instituto de Microbiolgía Bioquímica, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
48
|
Boudreault A, Gauthier D, Rondeau N, Savaria D, Seidah NG, Chrétien M, Lazure C. Molecular characterization, enzymatic analysis, and purification of murine proprotein convertase-1/3 (PC1/PC3) secreted from recombinant baculovirus-infected insect cells. Protein Expr Purif 1998; 14:353-66. [PMID: 9882569 DOI: 10.1006/prep.1998.0964] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA coding for the murine proprotein convertase-1 (mPC1 also known as mPC3 or mSPC3) was inserted into the Autographa californica nuclear polyhedrosis virus. Following infection of Spodoptera frugiperda cells, the recombinant N-glycosylated protein is secreted into the cell culture medium from which it can be purified to homogeneity as a fully enzymatically active enzyme. Two major secreted molecular forms of mPC1 with apparent molecular weights of 85 and 71 kDa, respectively, and a minor one of 75 kDa are immunodetected in the medium. Automated NH2-terminal sequencing reveals that all three forms result from processing at the predicted zymogen activation site whereas both the 75- and the 71-kDa forms are truncated at their COOH-terminus. Labeling by an active-site titrant demonstrates that the 85-kDa form is optimally labeled at near neutral pH whereas the COOH-truncated forms are optimally labeled at acidic pH. Additionally it is shown that the 85-kDa mPC1 is transformed into the COOH-truncated forms following in vitro incubation at acidic pH levels and in presence of calcium. Concomitantly, the transformation from 85 to 71 kDa is accompanied by a 10- to 40-fold increase in enzymatic activity upon assaying at pH 6.0. The 71-kDa form can be recovered after purification at a level of 1 to 1.5 mg per liter of cell culture medium and is enzymatically stable only in the pH range from 5.0 to 6.5. Cells treated with tunicamycin show a drastically reduced secretion of the convertase in the medium but are not affected by swainsonine and deoxymannojirimycin. Finally, the 85-kDa secreted mPC1 is shown to be sulfated.
Collapse
Affiliation(s)
- A Boudreault
- Protein Engineering Network of Centre of Excellence, Laboratory of Neuropeptides Structure and Metabolism, J. A. de Sève Laboratories of Molecular Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Dumermuth E, Moore HP. Analysis of constitutive and constitutive-like secretion in semi-intact pituitary cells. Methods 1998; 16:188-97. [PMID: 9790865 DOI: 10.1006/meth.1998.0666] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study biosynthetic transport through the constitutive and regulated secretory pathways, we have designed a semi-intact mammalian cell system that restores the transport of secretory proteins from the trans-Golgi/trans-Golgi network (TGN) to the cell surface. The mouse pituitary AtT-20 cell line is a suitable model to biochemically analyze molecular sorting in the secretory pathway. The prohormone proopiomelanocortin is sulfated on N-linked carbohydrate chains in the trans-Golgi prior to proteolytic processing in the secretory granule. Radiolabeling with [35S]sulfate therefore provides a convenient tool to selectively follow molecular events in the regulated secretory pathway without interference from earlier steps. Likewise, transport through the constitutive secretory pathway may be monitored using sulfate-labeled glycosaminoglycan chains. We show that export from the TGN is efficiently reconstituted in cells made semi-intact with streptolysin O, and is dependent on temperature, ATP and GTP hydrolysis, and cytosol. Packaging of proopiomelanocortin into immature secretory granules also activates the proteolytic processing machinery which eventually converts the prohormone to its bioactive mature product, adrenocorticotropic hormone. In addition, a large fraction of incompletely processed proopiomelanocortin is secreted as the processing intermediates from immature secretory granules. This process of constitutive-like secretion can be clearly distinguished from direct constitutive secretion from the trans-Golgi network by kinetic and compositional criteria. Furthermore, we have found that specific inhibitors of different protein phosphatases and kinases are potent blockers of constitutive and constitutive-like secretion. This experimental model should provide a valuable system to elucidate the molecular mechanism regulating post-Golgi traffic during secretory granule biogenesis.
Collapse
Affiliation(s)
- E Dumermuth
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720-3200, USA
| | | |
Collapse
|
50
|
Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 1998; 95:6803-8. [PMID: 9618493 PMCID: PMC22642 DOI: 10.1073/pnas.95.12.6803] [Citation(s) in RCA: 852] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many cellular events depend on a tightly compartmentalized distribution of H+ ions across membrane-bound organelles. However, measurements of organelle pH in living cells have been scarce. Several mutants of the Aequorea victoria green fluorescent protein (GFP) displayed a pH-dependent absorbance and fluorescent emission, with apparent pKa values ranging from 6.15 (mutations F64L/S65T/H231L) and 6.4 (K26R/F64L/S65T/Y66W/N146I/M153T/ V163A/N164H/H231L) to a remarkable 7.1 (S65G/S72A/T203Y/H231L). We have targeted these GFPs to the cytosol plus nucleus, the medial/trans-Golgi by fusion with galactosyltransferase, and the mitochondrial matrix by using the targeting signal from subunit IV of cytochrome c oxidase. Cells in culture transfected with these cDNAs displayed the expected subcellular localization by light and electron microscopy and reported local pH that was calibrated in situ with ionophores. We monitored cytosolic and nuclear pH of HeLa cells, and mitochondrial matrix pH in HeLa cells and in rat neonatal cardiomyocytes. The pH of the medial/trans-Golgi was measured at steady-state (calibrated to be 6.58 in HeLa cells) and after various manipulations. These demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl- serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality. The amenability to engineer GFPs to specific subcellular locations or tissue targets using gene fusion and transfer techniques should allow us to examine pH at sites previously inaccessible.
Collapse
Affiliation(s)
- J Llopis
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | | | | | | | | |
Collapse
|