1
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2024:10.1038/s41418-024-01388-1. [PMID: 39327506 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
3
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
4
|
Yamanaka T, Kurosawa M, Yoshida A, Shimogori T, Hiyama A, Maity SN, Hattori N, Matsui H, Nukina N. The transcription factor NF-YA is crucial for neural progenitor maintenance during brain development. J Biol Chem 2024; 300:105629. [PMID: 38199563 PMCID: PMC10839448 DOI: 10.1016/j.jbc.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan; Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aya Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hiyama
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Cui M, Bezprozvannaya S, Hao T, Elnwasany A, Szweda LI, Liu N, Bassel-Duby R, Olson EN. Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during mouse fetal heart development. Dev Cell 2023; 58:2867-2880.e7. [PMID: 37972593 PMCID: PMC11000264 DOI: 10.1016/j.devcel.2023.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Cardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the role of the transcription factor NFYa in developing mouse hearts. Loss of NFYa alters cardiomyocyte composition, causing a decrease in immature regenerative cells and an increase in trabecular and mature cardiomyocytes, as identified by spatial and single-cell transcriptome analyses. NFYa-deleted cardiomyocytes exhibited reduced proliferation and impaired mitochondrial metabolism, leading to cardiac growth defects and embryonic death. NFYa, interacting with cofactor SP2, activates genes linking metabolism and proliferation at the transcription level. Our study identifies a nodal role of NFYa in regulating prenatal cardiac growth and a previously unrecognized transcriptional control mechanism of heart metabolism, highlighting the importance of mitochondrial metabolism during heart development and regeneration.
Collapse
Affiliation(s)
- Miao Cui
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tian Hao
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Sroka MW, Skopelitis D, Vermunt MW, Preall JB, El Demerdash O, de Almeida LMN, Chang K, Utama R, Gryder B, Caligiuri G, Ren D, Nalbant B, Milazzo JP, Tuveson DA, Dobin A, Hiebert SW, Stengel KR, Mantovani R, Khan J, Kohli RM, Shi J, Blobel GA, Vakoc CR. Myo-differentiation reporter screen reveals NF-Y as an activator of PAX3-FOXO1 in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2023; 120:e2303859120. [PMID: 37639593 PMCID: PMC10483665 DOI: 10.1073/pnas.2303859120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.
Collapse
Affiliation(s)
| | | | - Marit W. Vermunt
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | | | | | | | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH44106
| | | | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Benan Nalbant
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | | | | | | | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| | - Kristy R. Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY10461
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133Milano, Italy
| | - Javed Khan
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD20892
| | - Rahul M. Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA19104
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | | |
Collapse
|
7
|
Gallo A, Dolfini D, Bernardini A, Gnesutta N, Mantovani R. NF-YA isoforms with alternative splicing of exon-5 in Aves. Genomics 2023; 115:110694. [PMID: 37536396 DOI: 10.1016/j.ygeno.2023.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
NF-YA, the regulatory subunit of the trimeric CCAAT-binding transcription factor NF-Y, is present in vertebrates in two major alternative spliced isoforms: NF-YAl and NF-YAs, differing for the presence of exon-3. NF-YAx, a third isoform without exon-3/-5, was reported only in human neuronal cells and tumors. These events affect the Trans-Activation Domain. We provide here evidence for the expression of NF-YAx and for the existence of a new isoform, NF-YAg, skipping only exon-5. These isoforms are abundant in Aves, but not in reptiles, and are the prevalent transcripts in the initial phases of embryo development in chicken. Finally, we analyzed NF-YAg and NF-YAx amino acid sequence using AlphaFold: absence of exon-5 denotes a global reduction of β-stranded elements, while removal of the disordered exon-3 sequence has limited effects on TAD architecture. These data identify an expanded program of NF-YA isoforms within the TAD in Aves, implying a role during early development.
Collapse
Affiliation(s)
- A Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - A Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - N Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
8
|
Avellino A, Peng CH, Lin MD. Cell Cycle Regulation by NF-YC in Drosophila Eye Imaginal Disc: Implications for Synchronization in the Non-Proliferative Region. Int J Mol Sci 2023; 24:12203. [PMID: 37569581 PMCID: PMC10418845 DOI: 10.3390/ijms241512203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for photoreceptor cell differentiation. Here, we identify the transcription factor Nuclear Factor-YC (NF-YC) as a crucial player in this finely tuned progression, elucidating its specific role in the synchronized movement of the morphogenetic furrow. Depletion of NF-YC leads to extended expression of Cyclin A (CycA) and Cyclin B (CycB) from the FMW to the NPR. Notably, NF-YC knockdown resulted in decreased expression of Eyes absent (Eya) but did not affect Decapentaplegic (Dpp) and Hedgehog (Hh). Our findings highlight the role of NF-YC in restricting the expression of CycA and CycB in the NPR, thereby facilitating cell-cycle synchronization. Moreover, we identify the transcriptional cofactor Eya as a downstream target of NF-YC, revealing a new regulatory pathway in Drosophila eye development. This study expands our understanding of NF-YC's role from cell cycle control to encompass developmental processes.
Collapse
Affiliation(s)
- Anthony Avellino
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
| | - Chen-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Zhongyang Rd., Sec. 3, Hualien 97002, Taiwan;
- School of Medicine, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
9
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
10
|
Identification of key adipogenic transcription factors for the pork belly parameters via the association weight matrix. Meat Sci 2023; 195:109015. [DOI: 10.1016/j.meatsci.2022.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
11
|
Crespo-Piazuelo D, Acloque H, González-Rodríguez O, Mongellaz M, Mercat MJ, Bink MCAM, Huisman AE, Ramayo-Caldas Y, Sánchez JP, Ballester M. Identification of transcriptional regulatory variants in pig duodenum, liver, and muscle tissues. Gigascience 2022; 12:giad042. [PMID: 37354463 PMCID: PMC10290502 DOI: 10.1093/gigascience/giad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND In humans and livestock species, genome-wide association studies (GWAS) have been applied to study the association between variants distributed across the genome and a phenotype of interest. To discover genetic polymorphisms affecting the duodenum, liver, and muscle transcriptomes of 300 pigs from 3 different breeds (Duroc, Landrace, and Large White), we performed expression GWAS between 25,315,878 polymorphisms and the expression of 13,891 genes in duodenum, 12,748 genes in liver, and 11,617 genes in muscle. RESULTS More than 9.68 × 1011 association tests were performed, yielding 14,096,080 significantly associated variants, which were grouped in 26,414 expression quantitative trait locus (eQTL) regions. Over 56% of the variants were within 1 Mb of their associated gene. In addition to the 100-kb region upstream of the transcription start site, we identified the importance of the 100-kb region downstream of the 3'UTR for gene regulation, as most of the cis-regulatory variants were located within these 2 regions. We also observed 39,874 hotspot regulatory polymorphisms associated with the expression of 10 or more genes that could modify the protein structure or the expression of a regulator gene. In addition, 2 motifs (5'-GATCCNGYGTTGCYG-3' and a poly(A) sequence) were enriched across the 3 tissues within the neighboring sequences of the most significant single-nucleotide polymorphisms in each cis-eQTL region. CONCLUSIONS The 14 million significant associations obtained in this study are publicly available and have enabled the identification of expression-associated cis-, trans-, and hotspot regulatory variants within and across tissues, thus shedding light on the molecular mechanisms of regulatory variations that shape end-trait phenotypes.
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, Caldes de Montbui (08140), Spain
| | - Hervé Acloque
- GABI, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas (78350), France
| | | | - Mayrone Mongellaz
- GABI, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas (78350), France
| | | | - Marco C A M Bink
- Hendrix Genetics Research Technology & Services B.V., Boxmeer (5830 AC), The Netherlands
| | | | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, Caldes de Montbui (08140), Spain
| | - Juan Pablo Sánchez
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, Caldes de Montbui (08140), Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, Caldes de Montbui (08140), Spain
| |
Collapse
|
12
|
Belluti S, Semeghini V, Rigillo G, Ronzio M, Benati D, Torricelli F, Reggiani Bonetti L, Carnevale G, Grisendi G, Ciarrocchi A, Dominici M, Recchia A, Dolfini D, Imbriano C. Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients. J Exp Clin Cancer Res 2021; 40:362. [PMID: 34782004 PMCID: PMC8594157 DOI: 10.1186/s13046-021-02166-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.
Collapse
Affiliation(s)
- Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Valentina Semeghini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Mirko Ronzio
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children & Adults, Division of Pathology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy.
| |
Collapse
|
13
|
Rigillo G, Basile V, Belluti S, Ronzio M, Sauta E, Ciarrocchi A, Latella L, Saclier M, Molinari S, Vallarola A, Messina G, Mantovani R, Dolfini D, Imbriano C. The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nat Commun 2021; 12:6013. [PMID: 34650038 PMCID: PMC8516959 DOI: 10.1038/s41467-021-26293-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Mirko Ronzio
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Elisabetta Sauta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Lucia Latella
- Department of Medicine, Institute of Translational Pharmacology, Italian National Research Council and Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Antonio Vallarola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy.
| |
Collapse
|
14
|
mTOR Driven Gene Transcription Is Required for Cholesterol Production in Neurons of the Developing Cerebral Cortex. Int J Mol Sci 2021; 22:ijms22116034. [PMID: 34204880 PMCID: PMC8199781 DOI: 10.3390/ijms22116034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated mammalian target of rapamycin (mTOR) activity is associated with various neurodevelopmental disorders ranging from idiopathic autism spectrum disorders (ASD) to syndromes caused by single gene defects. This suggests that maintaining mTOR activity levels in a physiological range is essential for brain development and functioning. Upon activation, mTOR regulates a variety of cellular processes such as cell growth, autophagy, and metabolism. On a molecular level, however, the consequences of mTOR activation in the brain are not well understood. Low levels of cholesterol are associated with a wide variety of neurodevelopmental disorders. We here describe numerous genes of the sterol/cholesterol biosynthesis pathway to be transcriptionally regulated by mTOR complex 1 (mTORC1) signaling in vitro in primary neurons and in vivo in the developing cerebral cortex of the mouse. We find that these genes are shared targets of the transcription factors SREBP, SP1, and NF-Y. Prenatal as well as postnatal mTORC1 inhibition downregulated expression of these genes which directly translated into reduced cholesterol levels, pointing towards a substantial metabolic function of the mTORC1 signaling cascade. Altogether, our results indicate that mTORC1 is an essential transcriptional regulator of the expression of sterol/cholesterol biosynthesis genes in the developing brain. Altered expression of these genes may be an important factor contributing to the pathogenesis of neurodevelopmental disorders associated with dysregulated mTOR signaling.
Collapse
|
15
|
Zhang Y, Sun Y, Zhang Y, Miao Q, Wang Q, Yang B, Li Y, Li L, Zhang R. Nuclear factor Y participates in alcoholic liver disease by activating SREBP1 expression in mice. Biochem Biophys Res Commun 2021; 541:90-94. [PMID: 33485268 DOI: 10.1016/j.bbrc.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/11/2023]
Abstract
Chronic and excessive alcohol consumption leads to alcoholic liver disease (ALD). However, the molecular mechanisms in the regulation of ALD have not been fully deciphered. Liver lipid accumulation is an important research direction in ALD. In this study, the physiological role of nuclear factor Y (NF-Y) in ALD and the related mechanisms were investigated using murine hepatocytes and an ethanol-induced liver injury mouse model. In this study, ethanol promoted hepatic NF-Y expression in a mouse model and Hepa1-6 mouse hepatocytes. Lentivirus-mediated NF-Y overexpression in Hepa1-6 cells markedly increased sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression compared with empty vector control cells. Conversely, CRISPR/Cas9-mediated knockdown of NF-Y subunit A (NF-YA) attenuated FASN and SREBP1 expression. Mechanistically, luciferase reporter gene assays and chromatin immunoprecipitation (ChIP) analysis indicated that NF-Y activates the transcription of SREBP1 by directly binding to the CCAAT regulatory sequence motif in the promoter. Overall, our results reveal a previously unrecognized physiological function of NF-Y in ALD by activating sterol regulatory element-binding protein 1 (SREBP1). Modulation of hepatic NF-Y expression may therefore offer an attractive therapeutic approach to manage ALD.
Collapse
Affiliation(s)
- Yanjie Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yajun Sun
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yange Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian Province, China
| | - Qin Miao
- Department of Addiction, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Qi Wang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Bin Yang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yanzhong Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Lin Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Ruiling Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China.
| |
Collapse
|
16
|
de Latouliere L, Manni I, Ferrari L, Pisati F, Totaro MG, Gurtner A, Marra E, Pacello L, Pozzoli O, Aurisicchio L, Capogrossi MC, Deflorian G, Piaggio G. MITO-Luc/GFP zebrafish model to assess spatial and temporal evolution of cell proliferation in vivo. Sci Rep 2021; 11:671. [PMID: 33436662 PMCID: PMC7804000 DOI: 10.1038/s41598-020-79530-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish. By in vitro and ex vivo experiments we demonstrate that luciferase activity in adult animals occurs in intestine, kidney and gonads, where detectable proliferating cells are located. Further, by time lapse experiments in live embryos, we observed a wave of GFP positive cells following fin clip. In adult zebrafish, in addition to a bright bioluminescence signal on the regenerating tail, an early unexpected signal coming from the kidney occurs indicating not only a fin cell proliferation, but also a systemic response to tissue damage. Finally, we observed that luciferase activity was inhibited by anti-proliferative interventions, i.e. 5FU, cell cycle inhibitors and X-Rays. In conclusion, MITO-Luc/GFP zebrafish is a novel animal model that may be crucial to assess the spatial and temporal evolution of cell proliferation in vivo.
Collapse
Affiliation(s)
- Luisa de Latouliere
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Isabella Manni
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Laura Ferrari
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, 20139, Milan, Italy
| | | | - Aymone Gurtner
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Emanuele Marra
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | | | - Ombretta Pozzoli
- Laboratorio Di Biologia Vascolare e Medicina Rigenerativa - Centro Cardiologico Monzino - IRCCS (Istituto Di Ricovero E Cura a Carattere Scientifico), Milan, Italy.,Pfizer Italia, Via A.M. Mozzoni 12, 20152, Milan, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., via Castel Romano 100, 00128, Rome, Italy.,VITARES -APS, via Castel Romano 100, 00128, Rome, Italy
| | - Maurizio C Capogrossi
- Johns Hopkins University School of Medicine, Division of Cardiology, 301 Building, Suite 2400, 4940 Eastern Avenue, Baltimore, MD, 21224, USA.,Laboratory of Cardiovascular Sciences, National Institute on Aging/National Institutes of Health, Baltimore, MD, 21224, USA
| | - Gianluca Deflorian
- IFOM - FIRC Institute of Molecular Oncology, Milan, Italy.,Cogentech SRL - Benefit Corporation, Milan, Italy
| | - Giulia Piaggio
- UOSD SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
17
|
Gene expression profiling in neuronal cells identifies a different type of transcriptome modulated by NF-Y. Sci Rep 2020; 10:21714. [PMID: 33303918 PMCID: PMC7728767 DOI: 10.1038/s41598-020-78682-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure. Here, we knocked down NF-Y in two types of neuronal cells, neuro2a neuroblastoma cells and mouse brain striatal cells, and performed gene expression profiling. We found that down-regulated genes preferentially contained NF-Y-binding motifs in their proximal promoters, and notably enriched genes related to ER functions rather than those for cell cycle. This contrasts with the profiling data of HeLa and embryonic stem cells in which distinct down-regulation of cell cycle-related genes was observed. Clustering analysis further identified several functional clusters where populations of the down-regulated genes were highly distinct. Further analyses using chromatin immunoprecipitation and RNA-seq data revealed that the transcriptomic difference was not correlated with DNA binding of NF-Y but with splicing of NF-YA. These data suggest that neuronal cells have a different type of transcriptome in which ER-related genes are dominantly modulated by NF-Y, and imply that NF-YA splicing alteration could be involved in this cell type-specific gene modulation.
Collapse
|
18
|
Chen HH, Liu YL, Liu XY, Zhang JL, Xu HJ. Functional Analysis of Nuclear Factor Y in the Wing-Dimorphic Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Front Genet 2020; 11:585320. [PMID: 33240330 PMCID: PMC7670041 DOI: 10.3389/fgene.2020.585320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to a CCAAT box in nearly all eukaryotes. However, the function of NF-Y in the life-history traits of insects is unclear. Here, we identified three NF-Y subunits, NlNF-YA, NlNF-YB, and NlNF-YC, in the wing-dimorphic brown planthopper (BPH), Nilaparvata lugens. Spatio-temporal analysis indicated that NlNF-YA, NlNF-YB, and NlNF-YC distributed extensively in various body parts of fourth-instar nymphs, and were highly expressed at the egg stage. RNA interference (RNAi)-mediated silencing showed that knockdown of NlNF-YA, NlNF-YB, or NlNF-YC in third-instar nymphs significantly extended the fifth-instar duration, and decreased nymph-adult molting rate. The addition of 20-hydroxyecdysone could specifically rescue the defect in adult molting caused by NlNF-YARNAi, indicating that NlNF-Y might modulate the ecdysone signaling pathway in the BPH. In addition, NlNF-YARNAi, NlNF-YBRNAi, or NlNF-YCRNAi led to small and moderately malformed forewings and hindwings, and impaired the normal assembly of indirect flight muscles. Adult BPHs treated with NlNF-YARNAi, NlNF-YBRNAi, or NlNF-YCRNAi produced fewer eggs, and eggs laid by these BPHs had arrested embryogenesis. These findings deepen our understanding of NF-Y function in hemipteran insects.
Collapse
Affiliation(s)
- Hao-Hao Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Lai Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yang Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Li Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells 2020; 9:cells9030789. [PMID: 32214056 PMCID: PMC7140862 DOI: 10.3390/cells9030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.
Collapse
|
20
|
Bezzecchi E, Ronzio M, Dolfini D, Mantovani R. NF-YA Overexpression in Lung Cancer: LUSC. Genes (Basel) 2019; 10:genes10110937. [PMID: 31744190 PMCID: PMC6895822 DOI: 10.3390/genes10110937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
The CCAAT box is recognized by the trimeric transcription factor NF-Y, whose NF-YA subunit is present in two major splicing isoforms, NF-YAl (“long”) and NF-YAs (“short”). Little is known about the expression levels of NF-Y subunits in tumors, and nothing in lung cancer. By interrogating RNA-seq TCGA and GEO datasets, we found that, unlike NF-YB/NF-YC, NF-YAs is overexpressed in lung squamous cell carcinomas (LUSC). The ratio of the two isoforms changes from normal to cancer cells, with NF-YAs becoming predominant in the latter. NF-YA increased expression correlates with common proliferation markers. We partitioned all 501 TCGA LUSC tumors in the four molecular cohorts and verified that NF-YAs is similarly overexpressed. We analyzed global and subtype-specific RNA-seq data and found that CCAAT is the most abundant DNA matrix in promoters of genes overexpressed in all subtypes. Enriched Gene Ontology terms are cell-cycle and signaling. Survival curves indicate a worse clinical outcome for patients with increasing global amounts of NF-YA; same with hazard ratios with very high and, surprisingly, very low NF-YAs/NF-YAl ratios. We then analyzed gene expression in this latter cohort and identified a different, pro-migration signature devoid of CCAAT. We conclude that overexpression of the NF-Y regulatory subunit in LUSC has the scope of increasing CCAAT-dependent, proliferative (NF-YAshigh) or CCAAT-less, pro-migration (NF-YAlhigh) genes. The data further reinstate the importance of analysis of single isoforms of TFs involved in tumor development.
Collapse
|
21
|
Overexpression and alternative splicing of NF-YA in breast cancer. Sci Rep 2019; 9:12955. [PMID: 31506469 PMCID: PMC6736888 DOI: 10.1038/s41598-019-49297-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a CCAAT-binding trimeric transcription factor, whose regulome, interactome and oncogenic potential point to direct involvement in cellular transformation. Yet little is known about the levels of NF-Y subunits in tumors. We focused on breast carcinomas, and analyzed RNA-Seq datasets of TCGA and 54 BRCA cell lines at gene and isoforms level. We partitioned all tumors in the four major subclasses. NF-YA, but not histone-fold subunits NF-YB/NF-YC, is globally overexpressed, correlating with the proliferative Ki67 marker and a common set of 840 genes, with cell-cycle, metabolism GO terms. Their promoters are enriched in NF-Y, GC-rich and E2F sites. Surprisingly, there is an isoform switch, with the “short” isoform -NF-YAs- becoming predominant in tumors. E2F genes are also overexpressed in BRCA, but no switch in isoforms is observed. In Basal-like Claudinlow cell lines and tumors, expression of NF-YAl -long- isoform is high, together with 11 typical EMT markers and low levels of basal Keratins. Analysis of Progression-Free-Intervals indicates that tumors with unbalance of NF-YA isoforms ratios have worst clinical outcomes. The data suggest that NF-YA overexpression increases CCAAT-dependent, pro-growth genes in BRCA. NF-YAs is associated with a proliferative signature, but high levels of NF-YAl signal loss of epithelial features, EMT and acquisition of a more aggressive behavior in a subset of Claudinlow Basal-like tumors.
Collapse
|
22
|
Wang Y, Yang S, Guan Q, Chen J, Zhang X, Zhang Y, Yuan Y, Su Z. Effects of Genetic Variants of Nuclear Receptor Y on the Risk of Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:4902301. [PMID: 31205951 PMCID: PMC6530108 DOI: 10.1155/2019/4902301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor-Y (NF-Y) consists of three evolutionary conserved subunits including NF-YA, NF-YB, and NF-YC; it is a critical transcriptional regulator of lipid and glucose metabolism and adipokine biosynthesis that are associated with type 2 diabetes mellitus (T2DM) occurrence, while the impacts of genetic variants in the NF-Y gene on the risk of T2DM remain to be investigated. In the present study, we screened five single-nucleotide polymorphisms (SNPs) with the SNaPshot method in 427 patients with T2DM and 408 healthy individuals. Subsequently, we analyzed the relationships between genotypes and haplotypes constructed from these SNPs with T2DM under diverse genetic models. Furthermore, we investigated the allele effects on the quantitative metabolic traits. Of the five tagSNPs, we found that three SNPs (rs2268188, rs6918969, and rs28869187) exhibited nominal significant differences in allelic or genotypic frequency between patients with T2DM and healthy individuals. The minor alleles G, C, and C at rs2268188, rs6918969, and rs28869187, respectively, conferred a higher T2DM risk under a dominant genetic model, and the carriers of these risk alleles (either homozygotes of the minor allele or heterozygotes) had statistically higher levels of fasting plasma glucose, cholesterol, and triglycerides. Haplotype analysis showed that SNPs rs2268188, rs6918969, rs28869187, and rs35105472 formed a haplotype block, and haplotype TTAC was protective against T2DM (OR = 0.76, 95% CI = 0.33-0.82, P = 0.004), while haplotype GCCG was associated with an elevated susceptibility to T2DM (OR = 2.33, 95% CI = 1.43-3.57, P = 0.001). This study is the first ever observation to our knowledge that indicates the genetic variants of NF-YA might influence a Chinese Han individual's occurrence of T2DM.
Collapse
Affiliation(s)
- Ying Wang
- Department of Geriatric Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, 610041 Sichuan, China
| | - Jinglu Chen
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueping Zhang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiming Yuan
- Department of Geriatric Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Nylén C, Aoi W, Abdelmoez AM, Lassiter DG, Lundell LS, Wallberg-Henriksson H, Näslund E, Pillon NJ, Krook A. IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1. Am J Physiol Endocrinol Metab 2018; 315:E995-E1004. [PMID: 29688769 DOI: 10.1152/ajpendo.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.
Collapse
Affiliation(s)
- Carolina Nylén
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Wataru Aoi
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences Kyoto Prefectural University , Kyoto , Japan
| | - Ahmed M Abdelmoez
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - David G Lassiter
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Leonidas S Lundell
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Harriet Wallberg-Henriksson
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Nicolas J Pillon
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
24
|
Libetti D, Bernardini A, Chiaramonte ML, Minuzzo M, Gnesutta N, Messina G, Dolfini D, Mantovani R. NF-YA enters cells through cell penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:430-440. [PMID: 30296497 DOI: 10.1016/j.bbamcr.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Cell Penetrating Peptides -CPPs- are short aminoacidic stretches present in proteins that have the ability to translocate the plasma membrane and facilitate delivery of various molecules. They are usually rich in basic residues, and organized as alpha helices. NF-Y is a transcription factor heterotrimer formed by two Histone Fold Domain -HFD- subunits and the sequence-specific NF-YA. NF-YA possesses two α-helices rich in basic residues. We show that it efficiently enters cells at nanomolar concentrations in the absence of carrier peptides. Mutagenesis identified at least two separate CPPs in the A1 and A2, which overlap with previously identified nuclear localization signals (NLS). The half-life of the transduced protein is short in human cancer cells, longer in mouse C2C12 myoblasts. The internalized NF-YA is capable of trimerization with the HFD subunits and binding to the target CCAAT box. Functionality is further suggested by protein transfection in C2C12 cells, leading to inhibition of differentiation to myotubes. In conclusion, NF-YA contains CPPs, hinting at novel -and unexpected- properties of this subunit.
Collapse
Affiliation(s)
- Debora Libetti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria Luisa Chiaramonte
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mario Minuzzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
25
|
Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res 2018; 8:1106-1125. [PMID: 30094088 PMCID: PMC6079162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to CCAAT boxes in nearly all eukaryotes and has long been a topic of interest since it is first identified. In plants, due to each subunit of NF-Y is encoded by multiple gene families, there are a wide variety NF-Y complex combinations that fulfill many pivotal functions. However, the animal NF-Y complex usually has only one type of combination, as each subunit is generally encoded by a single gene. Even though, mounting evidence points to that the animal NF-Y complex is also essential for numerous biological processes involved in proliferation and apoptosis, cancer and tumor, stress responses, growth and development. Therefore, a relatively comprehensive functional dissection of animal NF-Y will enable a deeper comprehension of how lesser combinations of the NF-Y complex regulate diverse aspects of biology processes in animal. Here, we focus mainly on reviewing recent advances related to NF-Y in the animal field, including subunit structural characteristics, expression regulation models and biological functions, and we also discuss future directions.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| |
Collapse
|
26
|
Belluti S, Semeghini V, Basile V, Rigillo G, Salsi V, Genovese F, Dolfini D, Imbriano C. An autoregulatory loop controls the expression of the transcription factor NF-Y. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:509-518. [DOI: 10.1016/j.bbagrm.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
|
27
|
Kinoshita S, Ceyhun SB, Md A, Siddique BS, Akolkar DB, Asakawa S, Watabe S. Promoter analysis of the fish gene of slow/cardiac-type myosin heavy chain implicated in specification of muscle fiber types. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:679-691. [PMID: 29349631 DOI: 10.1007/s10695-018-0463-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Vertebrate skeletal muscles consist of heterogeneous tissues containing various types of muscle fibers, where specification of the fiber type is crucial for muscle development. Fish are an attractive experimental model to study the mechanisms of such fiber type specification because of the separated localization of slow and fast muscles in the trunk myotome. We examined regulation of expression of the torafugu gene of slow/cardiac-type myosin heavy chain, MYH M5 , and isolated an operational promoter in order to force its tissue-specific expression across different fish species via the transgenic approach in zebrafish and medaka. This promoter activity was observed in adaxial cell-derived superficial slow muscle fibers under the control of a hedgehog signal. We also uncovered coordinated expression of MYH M5 and Sox6b, which is an important transcriptional repressor for specification of muscle fiber types and participates in hedgehog signaling. Sequence comparison in the 5'-flanking region identified three conserved regions, CSR1-CSR3, between torafugu MYH M5 and its zebrafish ortholog. Analysis of deletion mutants showed that CSR1 significantly stimulates gene expression in slow muscle fibers. In contrast, deletion of CSR3 resulted in ectopic expression of a reporter gene in fast muscle fibers. CSR3 was found to contain a putative Sox family protein-binding site. These results indicate that the dual mechanism causing inhibition in fast muscle fibers and activation in slow muscle fibers is essential for slow muscle fiber-specific gene expression in fish.
Collapse
Affiliation(s)
- Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | | | - Asaduzzamann Md
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Bhuiyan Sharmin Siddique
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Dadasaheb B Akolkar
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
28
|
Zhang Y, Guan Q, Liu Y, Zhang Y, Chen Y, Chen J, Liu Y, Su Z. Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice. J Biol Chem 2018. [PMID: 29530977 DOI: 10.1074/jbc.ra117.000508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis is essential to maintain blood glucose levels, and its abnormal activation leads to hyperglycemia and type 2 diabetes. However, the molecular mechanisms in the regulation of hepatic gluconeogenesis remain to be fully defined. In this study, using murine hepatocytes and a liver-specific knockout mouse model, we explored the physiological role of nuclear factor Y (NF-Y) in regulating hepatic glucose metabolism and the underlying mechanism. We found that NF-Y targets the gluconeogenesis pathway in the liver. Hepatic NF-Y expression was effectively induced by cAMP, glucagon, and fasting in vivo Lentivirus-mediated NF-Y overexpression in Hepa1-6 hepatocytes markedly raised the gluconeogenic gene expression and cellular glucose production compared with empty vector control cells. Conversely, CRISPR/Cas9-mediated knockdown of NF-Y subunit A (NF-YA) attenuated gluconeogenic gene expression and glucose production. We also provide evidence indicating that CRE-loxP-mediated, liver-specific NF-YA knockout compromises hepatic glucose production. Mechanistically, luciferase reporter gene assays and ChIP analysis indicated that NF-Y activates transcription of the gluconeogenic genes Pck1 and G6pc, by encoding phosphoenolpyruvate carboxykinase (PEPCK) and the glucose-6-phosphatase catalytic subunit (G6Pase), respectively, via directly binding to the CCAAT regulatory sequence motif in their promoters. Of note, NF-Y enhanced gluconeogenesis by interacting with cAMP-responsive element-binding protein (CREB). Overall, our results reveal a previously unrecognized physiological function of NF-Y in controlling glucose metabolism by up-regulating the gluconeogenic genes Pck1 and G6pc Modulation of hepatic NF-Y expression may therefore offer an attractive therapeutic approach to manage type 2 diabetes.
Collapse
Affiliation(s)
- Yanjie Zhang
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Qiuyue Guan
- the Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu 610041, Sichuan, China, and
| | - Yin Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Yuwei Zhang
- the Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yulong Chen
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Jinglu Chen
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Yulan Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Zhiguang Su
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China,
| |
Collapse
|
29
|
Cicchillitti L, Manni I, Mancone C, Regazzo G, Spagnuolo M, Alonzi T, Carlomosti F, Dell'Anna ML, Dell'Omo G, Picardo M, Ciana P, Capogrossi MC, Tripodi M, Magenta A, Rizzo MG, Gurtner A, Piaggio G. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget 2018; 8:2628-2646. [PMID: 27793050 PMCID: PMC5356829 DOI: 10.18632/oncotarget.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy
| | - Fabrizio Carlomosti
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, 00167 Rome, Italy
| | - Maria Lucia Dell'Anna
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Dell'Omo
- Department of Oncology and Hemato-Oncology and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Maurizio C Capogrossi
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Magenta
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
30
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
31
|
Welch RD, Guo C, Sengupta M, Carpenter KJ, Stephens NA, Arnett SA, Meyers MJ, Sparks LM, Smith SR, Zhang J, Burris TP, Flaveny CA. Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome. Mol Metab 2017; 6:703-714. [PMID: 28702326 PMCID: PMC5485243 DOI: 10.1016/j.molmet.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The loss of skeletal muscle mass and strength are a central feature of traumatic injury and degenerative myopathies. Unfortunately, pharmacological interventions typically fail to stem the long-term decline in quality of life. Reduced Rev-Erb-mediated gene suppression in cultured C2C12 myoblasts has been shown to stimulate myoblast differentiation. Yet the mechanisms that allow Rev-Erb to pleiotropically inhibit muscle differentiation are not well understood. In this study, we sought to elucidate the role of Rev-Erb in the regulation of muscle differentiation and regeneration in vivo. METHODS Using Rev-Erbα/β shRNAs, pharmacological ligands, and Rev-Erbα null and heterozygous mice, we probed the mechanism of Rev-Erbα/β regulation of muscle differentiation and muscle regeneration. RESULTS ChIP seq analysis of Rev-Erb in differentiating myoblasts showed that Rev-Erbα did not transcriptionally regulate muscle differentiation through cognate Rev-Erb/ROR-response elements but through possible interaction with the cell fate regulator NF-Y at CCAAT-motifs. Muscle differentiation is stimulated by Rev-Erb release from CCAAT-motifs at promoter and enhancer elements of a number of myogenesis proteins. Partial loss of Rev-Erb expression in mice heterozygous for Rev-Erbα accelerated muscle repair in vivo whereas Rev-Erb knockout mice showed deficiencies in regenerative repair compared to wild type mice. These phenotypic differences between heterozygous and knockout mice were not apparently dependent on MRF induction in response to injury. Similarly, pharmacological disruption of Rev-Erb suppressive activity in injured muscle accelerated regenerative repair in response to acute injury. CONCLUSIONS Disrupting Rev-Erb activity in injured muscle accelerates regenerative muscle repair/differentiation through transcriptional de-repression of myogenic programs. Rev-Erb, therefore, may be a potent therapeutic target for a myriad of muscular disorders.
Collapse
MESH Headings
- Adult
- Animals
- CCAAT-Binding Factor/genetics
- CCAAT-Binding Factor/metabolism
- Cell Differentiation
- Cells, Cultured
- Female
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/physiology
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Regeneration
Collapse
Affiliation(s)
- Ryan D. Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Monideepa Sengupta
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Katherine J. Carpenter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Natalie A. Stephens
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Stacy A. Arnett
- Center for World Health and Medicine at Saint Louis University, Saint Louis, MO 63104, USA
| | - Marvin J. Meyers
- Center for World Health and Medicine at Saint Louis University, Saint Louis, MO 63104, USA
| | - Lauren M. Sparks
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Steven R. Smith
- Translational Research Institutes of Metabolism and Diabetes, Florida Hospital and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32804, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Colin A. Flaveny
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| |
Collapse
|
32
|
Vishnoi N, Yao J. Single-cell, single-mRNA analysis of Ccnb1 promoter regulation. Sci Rep 2017; 7:2065. [PMID: 28522800 PMCID: PMC5437063 DOI: 10.1038/s41598-017-02240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Promoter activation drives gene transcriptional output. Here we report generating site-specifically integrated single-copy promoter transgenes and measuring their expression to indicate promoter activities at single-mRNA level. mRNA counts, Pol II density and Pol II firing rates of the Ccnb1 promoter transgene resembled those of the native Ccnb1 gene both among asynchronous cells and during the cell cycle. We observed distinct activation states of the Ccnb1 promoter among G1 and G2/M cells, suggesting cell cycle-independent origin of cell-to-cell variation in Ccnb1 promoter activation. Expressing a dominant-negative mutant of NF-YA, a key transcriptional activator of the Ccnb1 promoter, increased its “OFF”/“ON” time ratios but did not alter Pol II firing rates during the “ON” period. Furthermore, comparing H3K4me2 and H3K79me2 levels at the Ccnb1 promoter transgene and the native Ccnb1 gene indicated that the enrichment of these two active histone marks did not predispose higher transcriptional activities. In summary, this experimental system enables bridging transcription imaging with molecular analysis to provide novel insights into eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
33
|
A defective dNTP pool hinders DNA replication in cell cycle-reactivated terminally differentiated muscle cells. Cell Death Differ 2017; 24:774-784. [PMID: 28186504 DOI: 10.1038/cdd.2017.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.
Collapse
|
34
|
Gurtner A, Manni I, Piaggio G. NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:604-616. [PMID: 27939755 DOI: 10.1016/j.bbagrm.2016.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
NF-Y is a ubiquitous heterotrimeric transcription factor with a binding affinity for the CCAAT consensus motif, one of the most common cis-acting element in the promoter and enhancer regions of eukaryote genes in direct (CCAAT) or reverse (ATTGG) orientation. NF-Y consists of three subunits, NF-YA, the regulatory subunit of the trimer, NF-YB, and NF-YC, all required for CCAAT binding. Growing evidence in cells and animal models support the notion that NF-Y, driving transcription of a plethora of cell cycle regulatory genes, is a key player in the regulation of proliferation. Proper control of cellular growth is critical for cancer prevention and uncontrolled proliferation is a hallmark of cancer cells. Indeed, during cell transformation aberrant molecular pathways disrupt mechanisms controlling proliferation and many growth regulatory genes are altered in tumors. Here, we review bioinformatics, molecular and functional evidence indicating the involvement of the cell cycle regulator NF-Y in cancer-associated pathways. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
35
|
Maity SN. NF-Y (CBF) regulation in specific cell types and mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:598-603. [PMID: 27815195 DOI: 10.1016/j.bbagrm.2016.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023]
Abstract
The CCAAT-binding factor CBF/NF-Y is needed for cell proliferation and early embryonic development. NF-Y can regulate the expression of different cell type-specific genes that are activated by various physiological signaling pathways. Dysregulation of NF-Y was observed in pathogenic conditions in humans such as scleroderma, neurodegenerative disease, and cancer. Conditional inactivation of the NF-YA gene in mice demonstrated that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function. Altogether, NF-Y is an essential transcription factor that plays a critical role in mammalian development, from the early stages to adulthood, and in human pathogenesis. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Sankar N Maity
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
36
|
Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep 2016; 6:34575. [PMID: 27687130 PMCID: PMC5043352 DOI: 10.1038/srep34575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression.
Collapse
|
37
|
de Latouliere L, Manni I, Iacobini C, Pugliese G, Grazi GL, Perri P, Cappello P, Novelli F, Menini S, Piaggio G. A bioluminescent mouse model of proliferation to highlight early stages of pancreatic cancer: A suitable tool for preclinical studies. Ann Anat 2016; 207:2-8. [DOI: 10.1016/j.aanat.2015.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023]
|
38
|
Falcone E, Grandoni L, Garibaldi F, Manni I, Filligoi G, Piaggio G, Gurtner A. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci. PLoS One 2016; 11:e0153658. [PMID: 27082112 PMCID: PMC4833383 DOI: 10.1371/journal.pone.0153658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/01/2016] [Indexed: 12/17/2022] Open
Abstract
Motivation miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor–miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. Results In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. Conclusions The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Availability and Implementation Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.
Collapse
Affiliation(s)
- Emmanuela Falcone
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Grandoni
- Department of Information Engineering, Electronics and Telecommunications (DIET), Faculty of Information Engineering, Statistics and Informatics, University Sapienza, Rome, Italy
| | - Francesca Garibaldi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giancarlo Filligoi
- Department of Information Engineering, Electronics and Telecommunications (DIET), Faculty of Information Engineering, Statistics and Informatics, University Sapienza, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- * E-mail: (GP); (AG)
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- * E-mail: (GP); (AG)
| |
Collapse
|
39
|
Benatti P, Belluti S, Miotto B, Neusiedler J, Dolfini D, Drac M, Basile V, Schwob E, Mantovani R, Blow JJ, Imbriano C. Direct non transcriptional role of NF-Y in DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:673-85. [PMID: 26732297 DOI: 10.1016/j.bbamcr.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/06/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julia Neusiedler
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - J Julian Blow
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy.
| |
Collapse
|
40
|
Basile V, Baruffaldi F, Dolfini D, Belluti S, Benatti P, Ricci L, Artusi V, Tagliafico E, Mantovani R, Molinari S, Imbriano C. NF-YA splice variants have different roles on muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:627-38. [PMID: 26921500 DOI: 10.1016/j.bbagrm.2016.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
Abstract
The heterotrimeric CCAAT-binding factor NF-Y controls the expression of a multitude of genes involved in cell cycle progression. NF-YA is present in two alternatively spliced isoforms, NF-YAs and NF-YAl, differing in 28 aminoacids in the N-terminal Q-rich activation domain. NF-YAs has been identified as a regulator of stemness and proliferation in mouse embryonic cells (mESCs) and human hematopoietic stem cells (hHSCs), whereas the role of NF-YAl is not clear. In the muscle system, NF-YA expression is observed in proliferating cells, but barely detectable in terminally differentiated cells in vitro and adult skeletal muscle in vivo. Here, we show that NF-YA inactivation in mouse myoblasts impairs both proliferation and differentiation. The overexpression of the two NF-YA isoforms differentially affects myoblasts fate: NF-YAs enhance cell proliferation, while NF-YAl boosts differentiation. The molecular mechanisms were investigated by expression profilings, detailing the opposite programs of the two isoforms. Bioinformatic analysis of the regulated promoters failed to detect a significant presence of CCAAT boxes in the regulated genes. NF-YAl activates directly Mef2D, Six genes, and p57kip2 (Cdkn1c), and indirectly the myogenic regulatory factors (MRFs). Specifically, Cdkn1c activation is induced by NF-Y binding to its CCAAT promoter and by reducing the expression of the lncRNA Kcnq1ot1, a negative regulator of Cdkn1c transcription. Overall, our results indicate that NF-YA alternative splicing is an influential muscle cell determinant, through direct regulation of selected cell cycle blocking genes, and, directly and indirectly, of muscle-specific transcription factors.
Collapse
Affiliation(s)
- Valentina Basile
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D e Via Campi 287, Modena, Italy
| | - Fiorenza Baruffaldi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D e Via Campi 287, Modena, Italy
| | - Paolo Benatti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D e Via Campi 287, Modena, Italy
| | - Laura Ricci
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D e Via Campi 287, Modena, Italy
| | - Valentina Artusi
- Centro di Ricerche Genomiche, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Enrico Tagliafico
- Centro di Ricerche Genomiche, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Susanna Molinari
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy.
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/D e Via Campi 287, Modena, Italy.
| |
Collapse
|
41
|
Mojsin M, Topalovic V, Marjanovic Vicentic J, Stevanovic M. Transcription factor NF-Y inhibits cell growth and decreases SOX2 expression in human embryonal carcinoma cell line NT2/D1. BIOCHEMISTRY (MOSCOW) 2015; 80:202-7. [PMID: 25756534 DOI: 10.1134/s0006297915020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription factor NF-Y belongs to the embryonic stem cell transcription factor circuitry due to its role in the regulation of cell proliferation. We investigated the role of NF-Y in pluripotency maintenance using NT2/D1 cells as one of the best-characterized human embryonal carcinoma cell line. We investigated the efficiency of protein transduction and analyzed the effects of forced expression of short isoform of NF-Y A-subunit (NF-YAs) on NT2/D1 cell growth and expression of SOX2. We found that protein transduction is an efficient method for NF-Y overexpression in NT2/D1 cells. Next, we analyzed the effect of NF-YAs overexpression on NT2/D1 cell viability and detected significant reduction in cell growth. The negative effect of NF-YAs overexpression on NT2/D1 cell pluripotency maintenance was confirmed by the decrease in the level of the pluripotency marker SOX2. Finally, we checked the p53 status and determined that the NF-Y-induced inhibition of NT2/D1 cell growth is p53-independent.
Collapse
Affiliation(s)
- M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | |
Collapse
|
42
|
miR-30 family microRNAs regulate myogenic differentiation and provide negative feedback on the microRNA pathway. PLoS One 2015; 10:e0118229. [PMID: 25689854 PMCID: PMC4331529 DOI: 10.1371/journal.pone.0118229] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p, -30b, -30c, -30d and -30e) when compared to C57Bl/6 (WT) mice, we found that overexpression of miR-30 family miRNAs promotes differentiation, while inhibition restricts differentiation of myoblasts in vitro. Additionally, miR-30 family miRNAs are coordinately down-regulated during in vivo models of muscle injury (barium chloride injection) and muscle disuse atrophy (hindlimb suspension). Using bioinformatics tools and in vitro studies, we identified and validated Smarcd2, Snai2 and Tnrc6a as miR-30 family targets. Interestingly, we show that by targeting Tnrc6a, miR-30 family miRNAs negatively regulate the miRNA pathway and modulate both the activity of muscle-specific miR-206 and the levels of protein synthesis. These findings indicate that the miR-30 family may be an interesting biomarker of perturbed muscle homeostasis and muscle disease.
Collapse
|
43
|
Lu YH, Dallner OS, Birsoy K, Fayzikhodjaeva G, Friedman JM. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Mol Metab 2015; 4:392-405. [PMID: 25973387 PMCID: PMC4420997 DOI: 10.1016/j.molmet.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy.
Collapse
Affiliation(s)
- Yi-Hsueh Lu
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Olof Stefan Dallner
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gulya Fayzikhodjaeva
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA ; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
44
|
NF-Y inactivation causes atypical neurodegeneration characterized by ubiquitin and p62 accumulation and endoplasmic reticulum disorganization. Nat Commun 2014; 5:3354. [PMID: 24566496 DOI: 10.1038/ncomms4354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
Nuclear transcription factor-Y (NF-Y), a key regulator of cell-cycle progression, often loses its activity during differentiation into nonproliferative cells. In contrast, NF-Y is still active in mature, differentiated neurons, although its neuronal significance remains obscure. Here we show that conditional deletion of the subunit NF-YA in postmitotic mouse neurons induces progressive neurodegeneration with distinctive ubiquitin/p62 pathology; these proteins are not incorporated into filamentous inclusion but co-accumulated with insoluble membrane proteins broadly on endoplasmic reticulum (ER). The degeneration also accompanies drastic ER disorganization, that is, an aberrant increase in ribosome-free ER in the perinuclear region, without inducing ER stress response. We further perform chromatin immunoprecipitation and identify several NF-Y physiological targets including Grp94 potentially involved in ER disorganization. We propose that NF-Y is involved in a unique regulation mechanism of ER organization in mature neurons and its disruption causes previously undescribed novel neuropathology accompanying abnormal ubiquitin/p62 accumulation.
Collapse
|
45
|
Gaspard GJ, MacLean J, Rioux D, Pasumarthi KBS. A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. Am J Physiol Cell Physiol 2014; 306:C540-50. [PMID: 24477232 DOI: 10.1152/ajpcell.00206.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis, a known risk factor for heart disease, is typically caused by uncontrolled proliferation of fibroblasts and excessive deposition of extracellular matrix proteins in the myocardium. Cyclin-dependent kinase 1 (CDK1) is involved in the control of G2/M transit phase of the cell cycle. Here, we showed that isoproterenol (ISO)-induced cardiac fibrosis is associated with increased levels of CDK1 exclusively in fibroblasts in the adult mouse heart. Treatment of primary embryonic ventricular cell cultures with ISO (a nonselective β-adrenergic receptor agonist) increased CDK1 protein expression in fibroblasts and promoted their cell cycle activity. Quantitative PCR analysis confirmed that ISO increases CDK1 transcription in a transient manner. Further, the ISO-responsive element was mapped to the proximal -100-bp sequence of the CDK1 promoter region using various 5'-flanking sequence deletion constructs. Sequence analysis of the -100-bp CDK1 minimal promoter region revealed two putative nuclear factor-Y (NF-Y) binding elements. Overexpression of the NF-YA subunit in primary ventricular cultures significantly increased the basal activation of the -100-bp CDK1 promoter construct but not the ISO-induced transcription of the minimal promoter construct. In contrast, dominant negative NF-YA expression decreased the basal activity of the minimal promoter construct and ISO treatment fully rescued the dominant negative effects. Furthermore, site-directed mutagenesis of the distal NF-Y binding site in the -100-bp CDK1 promoter region completely abolished both basal and ISO-induced promoter activation of the CDK1 gene. Collectively, our results raise an exciting possibility that targeting CDK1 or NF-Y in the diseased heart may inhibit fibrosis and subsequently confer cardioprotection.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
46
|
Silvestre-Roig C, Fernández P, Mansego ML, van Tiel CM, Viana R, Anselmi CV, Condorelli G, de Winter RJ, Martín-Fuentes P, Solanas-Barca M, Civeira F, Focaccio A, de Vries CJM, Chaves FJ, Andrés V. Genetic variants in CCNB1 associated with differential gene transcription and risk of coronary in-stent restenosis. ACTA ACUST UNITED AC 2014; 7:59-70. [PMID: 24395923 DOI: 10.1161/circgenetics.113.000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of diagnostic tools to assess restenosis risk after stent deployment may enable the intervention to be tailored to the individual patient, for example, by targeting the use of drug-eluting stent to high-risk patients, with the goal of improving safety and reducing costs. The CCNB1 gene (encoding cyclin B1) positively regulates cell proliferation, a key component of in-stent restenosis. Therefore, we hypothesized that single-nucleotide polymorphisms in CCNB1 may serve as useful tools in risk stratification for in-stent restenosis. METHODS AND RESULTS We identified 3 single-nucleotide polymorphisms in CCNB1 associated with increased restenosis risk in a cohort of 284 patients undergoing coronary angioplasty and stent placement (rs350099: TT versus CC+TC; odds ratio [OR], 1.82; 95% confidence interval [CI], 1.09-3.03; P=0.023; rs350104: CC versus CT+TT; OR, 1.82; 95% CI, 1.02-3.26; P=0.040; and rs164390: GG versus GT+TT; OR, 2.27; 95% CI, 1.33-3.85; P=0.002). These findings were replicated in another cohort study of 715 patients (rs350099: TT versus CC+TC; OR, 1.88; 95% CI, 0.92-3.81; P=0.080; rs350104: CC versus CT+TT; OR, 2.23; 95% CI, 1.18-4.25; P=0.016; and rs164390: GG versus GT+TT; OR, 1.87; 95% CI, 1.03-3.47; P=0.040). Moreover, the haplotype containing all 3 risk alleles is associated with higher CCNB1 mRNA expression in circulating lymphocytes and increased in-stent restenosis risk (OR, 1.43; 95% CI, 1.00-1.823; P=0.039). The risk variants of rs350099, rs350104, and rs164390 are associated with increased reporter gene expression through binding of transcription factors nuclear factor-Y, activator protein 1, and specificity protein 1, respectively. CONCLUSIONS Allele-dependent transcriptional regulation of CCNB1 associated with rs350099, rs350104, and rs164390 affects the risk of in-stent restenosis. These findings reveal these common genetic variations as attractive diagnostic tools in risk stratification for restenosis.
Collapse
|
47
|
Silvestre-Roig C, Fernández P, Esteban V, Pello ÓM, Indolfi C, Rodríguez C, Rodríguez-Calvo R, López-Maderuelo MD, Bauriedel G, Hutter R, Fuster V, Ibáñez B, Redondo JM, Martínez-González J, Andrés V. Inactivation of Nuclear Factor-Y Inhibits Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Arterioscler Thromb Vasc Biol 2013; 33:1036-45. [DOI: 10.1161/atvbaha.112.300580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Atherosclerosis and restenosis are multifactorial diseases associated with abnormal vascular smooth muscle cell (VSMC) proliferation. Nuclear factor-Y (NF-Y) plays a major role in transcriptional activation of the
CYCLIN B1
gene (
CCNB1
), a key positive regulator of cell proliferation and neointimal thickening. Here, we investigated the role of NF-Y in occlusive vascular disease.
Approach and Results—
We performed molecular and expression studies in cultured cells, animal models, and human tissues. We find upregulation of NF-Y and cyclin B1 expression in proliferative regions of murine atherosclerotic plaques and mechanically induced lesions, which correlates with higher binding of NF-Y to target sequences in the
CCNB1
promoter. NF-YA expression in neointimal lesions is detected in VSMCs, macrophages, and endothelial cells. Platelet-derived growth factor-BB, a main inductor of VSMC growth and neointima development, induces the recruitment of NF-Y to the
CCNB1
promoter and augments both
CCNB1
mRNA expression and cell proliferation through extracellular signal–regulated kinase 1/2 and Akt activation in rat and human VSMCs. Moreover, adenovirus-mediated overexpression of a NF-YA-dominant negative mutant inhibits platelet-derived growth factor-BB–induced
CCNB1
expression and VSMC proliferation in vitro and neointimal lesion formation in a mouse model of femoral artery injury. We also detect NF-Y expression and DNA-binding activity in human neointimal lesions.
Conclusions—
Our results identify NF-Y as a key downstream effector of the platelet-derived growth factor-BB–dependent mitogenic pathway that is activated in experimental and human vasculoproliferative diseases. They also identify NF-Y inhibition as a novel and attractive strategy for the local treatment of neointimal formation induced by vessel denudation.
Collapse
Affiliation(s)
- Carlos Silvestre-Roig
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Patricia Fernández
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Vanesa Esteban
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Óscar M. Pello
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Ciro Indolfi
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Cristina Rodríguez
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Ricardo Rodríguez-Calvo
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - María Dolores López-Maderuelo
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Gerhard Bauriedel
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Randolph Hutter
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Valentín Fuster
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Borja Ibáñez
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Juan M. Redondo
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - José Martínez-González
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| | - Vicente Andrés
- From the Department of Epidemiology, Atherothrombosis and Imaging (C.S.-R., P.F., V.E., O.M.P., V.F., B.I., V.A.) and Department of Vascular Biology and Inflammation (M.D.L.-M., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Medical and Surgical Sciences, Division of Cardiology, URT CNR, University Magna Græcia, Catanzaro, Italy (C.I.); Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas, Institut Català de
| |
Collapse
|
48
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
49
|
Shi X, Metges CC, Seyfert HM. Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle. BMC Mol Biol 2012; 13:21. [PMID: 22738246 PMCID: PMC3441787 DOI: 10.1186/1471-2199-13-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme acetyl-CoA carboxylase-alpha (ACC-α) is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity. Results We finely mapped the repressor binding sites in reporter gene assays and demonstrate together with Electrophoretic Mobility Shift Assays that nuclear factor-Y (NF-Y) and CCAAT/enhancer binding protein-β (C/EBPβ) each separately repress PIA activity by binding to their cognate low affinity sites, located on distal elements of the promoter. Simultaneous binding of both factors results in strongest repression. Paradoxically, over expression of NFY factors, but also - and even more so - of C/EBPβ significantly activated the promoter when bound to high affinity sites on the proximal promoter. However, co-transfection experiments revealed that NF-Y may eventually diminish the strong stimulatory effect of C/EBPβ at the proximal PIA in a dose dependent fashion. We validated by chromatin immunoprecipitation, that NF-Y and C/EBP factors may physically interact. Conclusion The proximal promoter segment of PIA appears to be principally in an active state, since even minute concentrations of both, NF-Y and C/EBPβ factors can saturate the high affinity activator sites. Higher factor concentrations will saturate the low affinity repressive sites on the distal promoter resulting in reduced and calibrated promoter activity. Based on measurements of the mRNA concentrations of those factors in different tissues we propose that the interplay of both factors may set tissue-specific limits for PIA activity.
Collapse
Affiliation(s)
- Xuanming Shi
- Research Unit for Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | | | | |
Collapse
|
50
|
Goeman F, Manni I, Artuso S, Ramachandran B, Toietta G, Bossi G, Rando G, Cencioni C, Germoni S, Straino S, Capogrossi MC, Bacchetti S, Maggi A, Sacchi A, Ciana P, Piaggio G. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals. Mol Biol Cell 2012; 23:1467-74. [PMID: 22379106 PMCID: PMC3327325 DOI: 10.1091/mbc.e12-01-0039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The activity of the nuclear factor-Y (NF-Y) transcription factor is restricted to proliferating cells in vitro. We engineered transgenic mice that enabled bioluminescence imaging of NF-Y activity in every area of the body. We visualized areas of proliferation, and we highlight for the first time a role of NF-Y activity in hepatocyte proliferation during liver regeneration. In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y–dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues.
Collapse
Affiliation(s)
- Frauke Goeman
- Experimental Oncology Department, Istituto Regina Elena, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|