1
|
Greig J, Bates GT, Yin DI, Briant K, Simonetti B, Cullen PJ, Brodsky FM. CHC22 clathrin recruitment to the early secretory pathway requires two-site interaction with SNX5 and p115. EMBO J 2024; 43:4298-4323. [PMID: 39160272 PMCID: PMC11445476 DOI: 10.1038/s44318-024-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The two clathrin isoforms, CHC17 and CHC22, mediate separate intracellular transport routes. CHC17 performs endocytosis and housekeeping membrane traffic in all cells. CHC22, expressed most highly in skeletal muscle, shuttles the glucose transporter GLUT4 from the ERGIC (endoplasmic-reticulum-to-Golgi intermediate compartment) directly to an intracellular GLUT4 storage compartment (GSC), from where GLUT4 can be mobilized to the plasma membrane by insulin. Here, molecular determinants distinguishing CHC22 from CHC17 trafficking are defined. We show that the C-terminal trimerization domain of CHC22 interacts with SNX5, which also binds the ERGIC tether p115. SNX5, and the functionally redundant SNX6, are required for CHC22 localization independently of their participation in the endosomal ESCPE-1 complex. In tandem, an isoform-specific patch in the CHC22 N-terminal domain separately mediates binding to p115. This dual mode of clathrin recruitment, involving interactions at both N- and C-termini of the heavy chain, is required for CHC22 targeting to ERGIC membranes to mediate the Golgi-bypass route for GLUT4 trafficking. Interference with either interaction inhibits GLUT4 targeting to the GSC, defining a bipartite mechanism regulating a key pathway in human glucose metabolism.
Collapse
Affiliation(s)
- Joshua Greig
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - George T Bates
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Daowen I Yin
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Kit Briant
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Peter J Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Frances M Brodsky
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
2
|
Das J, Tiwari M, Subramanyam D. Clathrin Light Chains: Not to Be Taken so Lightly. Front Cell Dev Biol 2022; 9:774587. [PMID: 34970544 PMCID: PMC8712872 DOI: 10.3389/fcell.2021.774587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023] Open
Abstract
Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo. It is composed of three heavy chains and three light chains that together form a triskelion, the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in membrane trafficking, clathrin is also involved in various cellular and biological processes such as chromosomal segregation during mitosis and organelle biogenesis. Although the role of the heavy chains in regulating important physiological processes has been well documented, we still lack a complete understanding of how clathrin light chains regulate membrane traffic and cell signaling. This review highlights the importance and contributions of clathrin light chains in regulating clathrin assembly, vesicle formation, endocytosis of selective receptors and physiological and developmental processes.
Collapse
Affiliation(s)
- Jyoti Das
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
3
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
4
|
Savory K, Manivannan S, Zaben M, Uzun O, Syed YA. Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. Neurosci Biobehav Rev 2019; 108:83-93. [PMID: 31682886 DOI: 10.1016/j.neubiorev.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
Abstract
Copy number variant (CNV) syndromes are often associated with both neurocognitive deficits (NCDs) and congenital heart defects (CHDs). Children and adults with cardiac developmental defects likely to have NCDs leading to increased risk of hospitalisation and reduced level of independence. To date, the association between these two phenotypes have not been explored in relation to CNV syndromes. In order to address this question, we systematically reviewed the prevalence of CHDs in a range of CNV syndromes associated with NCDs. A meta-analysis showed a relationship with the size of CNV and its association with both NCDs and CHDs, and also inheritance pattern. To our knowledge, this is the first review to establish association between NCD and CHDs in CNV patients, specifically in relation to the severity of NCD. Importantly, we also found specific types of CHDs were associated with severe neurocognitive deficits. Finally, we discuss the implications of these results for patients in the clinical setting which warrants further exploration of this association in order to lead an improvement in the quality of patient's life.
Collapse
Affiliation(s)
- Katrina Savory
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Susruta Manivannan
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Orhan Uzun
- University Hospital of Wales, Heath Park, Cardiff, CF10 3AX, UK
| | - Yasir Ahmed Syed
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
5
|
Wang Q, Liu Z, Lin Z, Zhang R, Lu Y, Su W, Li F, Xu X, Tu M, Lou Y, Zhao J, Zheng X. De Novo Germline Mutations in SEMA5A Associated With Infantile Spasms. Front Genet 2019; 10:605. [PMID: 31354784 PMCID: PMC6635550 DOI: 10.3389/fgene.2019.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Infantile spasm (IS) is an early-onset epileptic encephalopathy that usually presents with hypsarrhythmia on an electroencephalogram with developmental impairment or regression. In this study, whole-exome sequencing was performed to detect potential pathogenic de novo mutations, and finally we identified a novel damaging de novo mutation in SEMA5A and a compound heterozygous mutation in CLTCL1 in three sporadic trios with IS. The expression profiling of SEMA5A in the human brain showed that it was mainly highly expressed in the cerebral cortex, during the early brain development stage (8 to 9 post-conception weeks and 0 to 5 months after birth). In addition, we identified a close protein-protein interaction network between SEMA5A and candidate genes associated with epilepsy, autism spectrum disorder (ASD) or intellectual disability. Gene enrichment and function analysis demonstrated that genes interacting with SEMA5A were significantly enriched in several brain regions across early fetal development, including the cortex, cerebellum, striatum and thalamus (q < 0.05), and were involved in axonal, neuronal and synapse-associated processes. Furthermore, SEMA5A and its interacting genes were associated with ASD, epilepsy syndrome and developmental disorders of mental health. Our results provide insightful information indicating that SEMA5A may contribute to the development of the brain and is associated with IS. However, further genetic studies are still needed to evaluate the role of SEMA5A in IS to definitively establish the role of SEMA5A in this disorder.
Collapse
Affiliation(s)
- Qiongdan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ru Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijue Su
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
7
|
Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph A, Abi-Rached L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife 2019; 8:41517. [PMID: 31159924 PMCID: PMC6548504 DOI: 10.7554/elife.41517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/01/2019] [Indexed: 01/29/2023] Open
Abstract
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Stephane M Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Alice Burke
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Marine D Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul J Norman
- Division of Bioinformatics and Personalized Medicine, University of Colorado, Aurora, United States.,Department of Microbiology and Immunology, University of Colorado, Aurora, United States
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, CNRS, Marseille, France
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Rasteiro
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Ovarian expression and localization of clathrin (Cltc) components in cutthroat trout, Oncorhynchus clarki: Evidence for Cltc involvement in endocytosis of vitellogenin during oocyte growth. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:24-34. [PMID: 28687414 DOI: 10.1016/j.cbpa.2017.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 11/24/2022]
Abstract
To evaluate potential involvement of clathrin in endocytosis of vitellogenin (Vtg) by teleost oocytes, cDNAs encoding clathrin heavy chain (cltc) were cloned from ovaries of cutthroat trout. Quantitative PCR revealed three types of cltc (cltc-a1, cltc-a2, cltc-b) to be expressed in 10 different tissues including the ovary. The cltc-a1 alone exhibited a significant decrease in ovarian expression during vitellogenesis; this was correlated with a corresponding decrease in transcripts encoding the major Vtg receptor (Vtgr). No development-related changes in ovarian cltc-a2 or cltc-b transcript levels were observed. In situ hybridization revealed a strong ctlc signal in pre-vitellogenic oocytes, but not in vitellogenic oocytes. Western blotting using a rabbit antiserum (a-Cltc) raised against a recombinant Cltc preparation detected a polypeptide band with an apparent mass of ~170kDa in vitellogenic ovary extracts. Immunohistochemistry using a-Cltc revealed Cltc to be uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, translocated to the periphery of lipid droplet stage oocytes, and localized to the oolemma during vitellogenesis. These patterns of cltc/Cltc distribution and abundance during oogenesis, which are identical to those previously reported for vtgr/Vtgr in this species, constitute the first empirical evidence that cltc-a1/Cltc-a1 is involved in Vtg endocytosis via the Vtgr in teleost fish.
Collapse
|
10
|
Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GHH, Chen YC, Benn CL, Carvalho OP, Shaikh SS, Phelan A, Robinson MS, Royle SJ, Woods CG. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 2015; 138:2147-60. [PMID: 26068709 PMCID: PMC4511860 DOI: 10.1093/brain/awv149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons.
Collapse
Affiliation(s)
- Michael S Nahorski
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lihadh Al-Gazali
- 2 Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | | - David J Owen
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Georg H H Borner
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK 4 Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ya-Chun Chen
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Caroline L Benn
- 5 Neusentis, The Portway Building, Granta Park, Cambridge. CB21 6GS, UK
| | - Ofélia P Carvalho
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Samiha S Shaikh
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anne Phelan
- 5 Neusentis, The Portway Building, Granta Park, Cambridge. CB21 6GS, UK
| | - Margaret S Robinson
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Stephen J Royle
- 6 Division of Biomedical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - C Geoffrey Woods
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
11
|
Brodsky FM, Sosa RT, Ybe JA, O'Halloran TJ. Unconventional functions for clathrin, ESCRTs, and other endocytic regulators in the cytoskeleton, cell cycle, nucleus, and beyond: links to human disease. Cold Spring Harb Perspect Biol 2014; 6:a017004. [PMID: 25183831 DOI: 10.1101/cshperspect.a017004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, Departments of Pharmaceutical Chemistry and Microbiology and Immunology, The G.W. Hooper Foundation, University of California, San Francisco, San Francisco, California 94143-0552
| | - R Thomas Sosa
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | - Joel A Ybe
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Theresa J O'Halloran
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| |
Collapse
|
12
|
Vassilopoulos S, Gentil C, Lainé J, Buclez PO, Franck A, Ferry A, Précigout G, Roth R, Heuser JE, Brodsky FM, Garcia L, Bonne G, Voit T, Piétri-Rouxel F, Bitoun M. Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization. ACTA ACUST UNITED AC 2014; 205:377-93. [PMID: 24798732 PMCID: PMC4018784 DOI: 10.1083/jcb.201309096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clathrin heavy chain contributes to the formation and maintenance of the contractile apparatus in skeletal muscle through interactions with costameric proteins. The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM–sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM) U974, 2 Centre National de la Recherche Scientifique (CNRS) UMR 7215, and 3 Université Pierre et Marie Curie-Paris 6, UM 76, Paris F-75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schill NJ, Hedman AC, Choi S, Anderson RA. Isoform 5 of PIPKIγ regulates the endosomal trafficking and degradation of E-cadherin. J Cell Sci 2014; 127:2189-203. [PMID: 24610942 DOI: 10.1242/jcs.132423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) have distinct cellular targeting, allowing for site-specific synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to activate specific signaling cascades required for cellular processes. Several C-terminal splice variants of PIPKIγ (also known as PIP5K1C) exist, and have been implicated in a multitude of cellular roles. PI(4,5)P2 serves as a fundamental regulator of E-cadherin transport, and PI(4,5)P2-generating enzymes are important signaling relays in these pathways. We present evidence that the isoform 5 splice variant of PIPKIγ (PIPKIγi5) associates with E-cadherin and promotes its lysosomal degradation. Additionally, we show that the endosomal trafficking proteins SNX5 and SNX6 associate with PIPKIγi5 and inhibit PIPKIγi5-mediated E-cadherin degradation. Following HGF stimulation, activated Src directly phosphorylates PIPKIγi5. Phosphorylation of the PIPKIγi5 C-terminus regulates its association with SNX5 and, consequently, E-cadherin degradation. Additionally, this PIPKIγi5-mediated pathway requires Rab7 to promote degradation of internalized E-cadherin. Taken together, the data indicate that PIPKIγi5 and SNX5 are crucial regulators of E-cadherin sorting and degradation. PIPKIγi5, SNX and phosphoinositide regulation of lysosomal sorting represent a novel area of PI(4,5)P2 signaling and research. PIPKIγi5 regulation of E-cadherin sorting for degradation might have broad implications in development and tissue maintenance, and enhanced PIPKIγi5 function might have pathogenic consequences due to downregulation of E-cadherin.
Collapse
Affiliation(s)
- Nicholas J Schill
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular & Molecular Biology, Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Richard A Anderson
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
14
|
Hoshino S, Sakamoto K, Vassilopoulos S, Camus SM, Griffin CA, Esk C, Torres JA, Ohkoshi N, Ishii A, Tamaoka A, Funke BH, Kucherlapati R, Margeta M, Rando TA, Brodsky FM. The CHC22 clathrin-GLUT4 transport pathway contributes to skeletal muscle regeneration. PLoS One 2013; 8:e77787. [PMID: 24204966 PMCID: PMC3813726 DOI: 10.1371/journal.pone.0077787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023] Open
Abstract
Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans.
Collapse
Affiliation(s)
- Sachiko Hoshino
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuho Sakamoto
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Stéphane Vassilopoulos
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Stéphane M. Camus
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Christine A. Griffin
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher Esk
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Jorge A. Torres
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Norio Ohkoshi
- Department of Health, Faculty of Health Sciences, National University Corporation Tsukuba University of Technology, Tsukuba, Ibaraki, Japan
| | - Akiko Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Birgit H. Funke
- Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raju Kucherlapati
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marta Margeta
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frances M. Brodsky
- The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
15
|
Danson C, Brown E, Hemmings OJ, McGough IJ, Yarwood S, Heesom KJ, Carlton JG, Martin-Serrano J, May MT, Verkade P, Cullen PJ. SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome. J Cell Sci 2013; 126:4885-99. [PMID: 23986476 DOI: 10.1242/jcs.125732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sorting nexins (SNXs) are key regulators of the endosomal network. In designing an RNAi-mediated loss-of-function screen, we establish that of 30 human SNXs only SNX3, SNX5, SNX9, SNX15 and SNX21 appear to regulate EGF receptor degradative sorting. Suppression of SNX15 results in a delay in receptor degradation arising from a defect in movement of newly internalised EGF-receptor-labelled vesicles into early endosomes. Besides a phosphatidylinositol 3-phosphate- and PX-domain-dependent association to early endosomes, SNX15 also associates with clathrin-coated pits and clathrin-coated vesicles by direct binding to clathrin through a non-canonical clathrin-binding box. From live-cell imaging, it was identified that the activated EGF receptor enters distinct sub-populations of SNX15- and APPL1-labelled peripheral endocytic vesicles, which do not undergo heterotypic fusion. The SNX15-decorated receptor-containing sub-population does, however, undergo direct fusion with the Rab5-labelled early endosome. Our data are consistent with a model in which the EGF receptor enters the early endosome following clathrin-mediated endocytosis through at least two parallel pathways: maturation through an APPL1-intermediate compartment and an alternative more direct fusion between SNX15-decorated endocytic vesicles and the Rab5-positive early endosome.
Collapse
Affiliation(s)
- Chris Danson
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Z, Cui J, Wong WM, Li X, Xue W, Lin R, Wang J, Wang P, Tanner JA, Cheah KSE, Wu W, Huang JD. Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions. Development 2013; 140:617-26. [DOI: 10.1242/dev.085969] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controlled delivery of myofibril components to the appropriate sites of assembly is crucial for myofibrillogenesis. Here, we show that kinesin-1 heavy chain Kif5b plays important roles in anterograde transport of α-sarcomeric actin, non-muscle myosin IIB, together with intermediate filament proteins desmin and nestin to the growing tips of the elongating myotubes. Mice with Kif5b conditionally knocked out in myogenic cells showed aggregation of actin filaments and intermediate filament proteins in the differentiating skeletal muscle cells, which further affected myofibril assembly and their linkage to the myotendinous junctions. The expression of Kif5b in mutant myotubes rescued the localization of the affected proteins. Functional mapping of Kif5b revealed a 64-amino acid α-helix domain in the tail region, which directly interacted with desmin and might be responsible for the transportation of these proteins in a complex.
Collapse
Affiliation(s)
- Zai Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ju Cui
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Wai Man Wong
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiuling Li
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wenqian Xue
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Raozhou Lin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jing Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Peigang Wang
- HKU-Pasteur Research Centre, The University of Hong Kong, Hong Kong
| | - Julian A. Tanner
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kathryn S. E. Cheah
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wutian Wu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jian-Dong Huang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
McGough IJ, Cullen PJ. Clathrin is not required for SNX-BAR-retromer-mediated carrier formation. J Cell Sci 2012; 126:45-52. [PMID: 23015596 DOI: 10.1242/jcs.112904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clathrin has been implicated in retromer-mediated trafficking, but its precise function remains elusive. Given the importance of retromers for efficient endosomal sorting, we have sought to clarify the relationship between clathrin and the SNX-BAR retromer. We find that the retromer SNX-BARs do not interact directly or indirectly with clathrin. In addition, we observe that SNX-BAR-retromer tubules and carriers are not clathrin coated. Furthermore, perturbing clathrin function, by overexpressing a dominant-negative clathrin or through suppression of clathrin expression, has no detectable effect on the frequency of SNX-BAR-retromer tubulation. We propose that SNX-BAR-retromer-mediated membrane deformation and carrier formation does not require clathrin, and hence the role of clathrin in SNX-BAR-retromer function would appear to lie in pre-SNX-BAR-retromer cargo sorting.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
18
|
Abstract
Clathrin is considered the prototype vesicle coat protein whose self-assembly mediates sorting of membrane cargo and recruitment of lipid modifiers. Detailed knowledge of clathrin biochemistry, structure, and interacting proteins has accumulated since the first observation, almost 50 years ago, of its role in receptor-mediated endocytosis of yolk protein. This review summarizes that knowledge, and focuses on properties of the clathrin heavy and light chain subunits and interaction of the latter with Hip proteins, to address the diversity of clathrin function beyond conventional receptor-mediated endocytosis. The distinct functions of the two human clathrin isoforms (CHC17 and CHC22) are discussed, highlighting CHC22's specialized involvement in traffic of the GLUT4 glucose transporter and consequent role in human glucose metabolism. Analysis of clathrin light chain function and interaction with the actin-binding Hip proteins during bacterial infection defines a novel actin-organizing function for CHC17 clathrin. By considering these diverse clathrin functions, along with intracellular sorting roles and influences on mitosis, further relevance of clathrin function to human health and disease is established.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143-0552, USA.
| |
Collapse
|
19
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
20
|
Abstract
Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.
Collapse
Affiliation(s)
- Christopher G Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
21
|
Esk C, Chen CY, Johannes L, Brodsky FM. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. ACTA ACUST UNITED AC 2010; 188:131-44. [PMID: 20065094 PMCID: PMC2812854 DOI: 10.1083/jcb.200908057] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.
Collapse
Affiliation(s)
- Christopher Esk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Genome-wide association studies have identified multiple genetic polymorphisms associated with schizophrenia. These polymorphisms conform to a polygenic disease model in which multiple alleles cumulatively increase the risk of developing disease. Two genes linked to schizophrenia, DTNBP1 and MUTED, encode proteins that belong to the endosome-localized Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). BLOC-1 plays a key role in endosomal trafficking and as such has been found to regulate cell-surface abundance of the D2 dopamine receptor, the biogenesis and fusion of synaptic vesicles, and neurite outgrowth. These functions are pertinent to both neurodevelopment and synaptic transmission, processes tightly regulated by selective cell-surface delivery of membrane proteins to and from endosomes. We propose that cellular processes, such as endosomal trafficking, act as convergence points in which multiple small effects from polygenic genetic polymorphisms accumulate to promote the development of schizophrenia.
Collapse
Affiliation(s)
- Pearl V. Ryder
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322
| |
Collapse
|
23
|
A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. EUKARYOTIC CELL 2009; 8:1665-76. [PMID: 19749174 DOI: 10.1128/ec.00123-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals.
Collapse
|
24
|
Koharudin LMI, Furey W, Liu H, Liu YJ, Gronenborn AM. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). J Biol Chem 2009; 284:23697-707. [PMID: 19553671 PMCID: PMC2749144 DOI: 10.1074/jbc.m109.008995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Indexed: 11/06/2022] Open
Abstract
Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 A resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new alpha2'-helix and a much longer alpha3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.
Collapse
Affiliation(s)
| | - William Furey
- Pharmacology and Chemical Biology
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | | | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | | |
Collapse
|
25
|
Vassilopoulos S, Esk C, Hoshino S, Funke BH, Chen CY, Plocik AM, Wright WE, Kucherlapati R, Brodsky FM. A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science 2009; 324:1192-6. [PMID: 19478182 DOI: 10.1126/science.1171529] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular trafficking of the glucose transporter GLUT4 from storage compartments to the plasma membrane is triggered in muscle and fat during the body's response to insulin. Clathrin is involved in intracellular trafficking, and in humans, the clathrin heavy-chain isoform CHC22 is highly expressed in skeletal muscle. We found a role for CHC22 in the formation of insulin-responsive GLUT4 compartments in human muscle and adipocytes. CHC22 also associated with expanded GLUT4 compartments in muscle from type 2 diabetic patients. Tissue-specific introduction of CHC22 in mice, which have only a pseudogene for this protein, caused aberrant localization of GLUT4 transport pathway components in their muscle, as well as features of diabetes. Thus, CHC22-dependent membrane trafficking constitutes a species-restricted pathway in human muscle and fat with potential implications for type 2 diabetes.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Department of Bioengineering and Therapeutic Sciences, University of California, School of Pharmacy, San Francisco (UCSF), San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hood FE, Royle SJ. Functional equivalence of the clathrin heavy chains CHC17 and CHC22 in endocytosis and mitosis. J Cell Sci 2009; 122:2185-90. [PMID: 19509056 DOI: 10.1242/jcs.046177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clathrin is crucial for endocytosis and plays a recently described role in mitosis. Two clathrin heavy chains (CHCs) are found in humans: the ubiquitous CHC17, and CHC22, a CHC that is enriched in skeletal muscle. Functional differences have been proposed for these clathrins despite high sequence similarity. Here, we compared each paralogue in functional assays of endocytosis and mitosis. We find that CHC17 and CHC22 are functionally equivalent. We also describe how previous work on CHC22 has involved a splice variant that is not usually expressed in cells.
Collapse
Affiliation(s)
- Fiona E Hood
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | | |
Collapse
|
27
|
Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 2006; 120:45-54. [PMID: 17148574 DOI: 10.1242/jcs.03302] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.
Collapse
Affiliation(s)
- Thomas Wassmer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
28
|
Gliem M, Weisheit G, Mertz KD, Endl E, Oberdick J, Schilling K. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects. Mol Cell Neurosci 2006; 33:447-58. [PMID: 17049261 PMCID: PMC2571944 DOI: 10.1016/j.mcn.2006.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/23/2006] [Accepted: 09/06/2006] [Indexed: 11/29/2022] Open
Abstract
During central nervous system (CNS) development, cell migration precedes and is key to the integration of diverse sets of cells. Mechanistically, CNS histogenesis is realized through a balanced interplay of cell-cell and cell-matrix adhesion molecules. Here, we summarize experiments that probe the developmental expression and potential significance of a set of cadherins, including M-, N- and R-cadherin, for patterning of the cerebellar cortex. We established a transgenic marker that allows cerebellar granule cells to be followed from the neuroblast stage to their final, postmitotic settlement. In conjunction with flow cytometry, this allowed us to derive a quantitative view of cadherin expression in differentiating granule cells and relate it to the expression of the same cadherins in cerebellar inhibitory interneuronal precursors. In vitro reaggregation analysis supports a role for cadherins in cell sorting and migration within the nascent cerebellar cortex that may be rationalized within the context of the differential adhesion hypothesis (Foty, R.A. and Steinberg, M.S., 2005. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255-263.).
Collapse
Affiliation(s)
- Michael Gliem
- Anatomisches Institut, Anatomie & Zellbiologie, University of Bonn, Bonn, Germany
| | - Gunnar Weisheit
- Anatomisches Institut, Anatomie & Zellbiologie, University of Bonn, Bonn, Germany
| | - Kirsten D. Mertz
- Anatomisches Institut, Anatomie & Zellbiologie, University of Bonn, Bonn, Germany
| | - Elmar Endl
- Institut für Molekulare Medizin und Experimentelle Immunologie, University of Bonn, Bonn, Germany
| | - John Oberdick
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
| | - Karl Schilling
- Anatomisches Institut, Anatomie & Zellbiologie, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Knuehl C, Chen CY, Manalo V, Hwang PK, Ota N, Brodsky FM. Novel Binding Sites on Clathrin and Adaptors Regulate Distinct Aspects of Coat Assembly. Traffic 2006; 7:1688-700. [PMID: 17052248 DOI: 10.1111/j.1600-0854.2006.00499.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.
Collapse
Affiliation(s)
- Christine Knuehl
- The G.W. Hooper Foundation, Departments of Microbiology and Immunology, Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Membranes and proteins are moved around the cell in small vesicles. A protein coat aids the budding of such vesicles from donor membranes. The major type of coat used by the cell is composed of clathrin, a three-legged protein that can form lattice-like coats on membranes destined for trafficking. In this review, I outline what we know about clathrin and discuss some recent advances in understanding the basic biology of this fascinating molecule, which include building a molecular model of a clathrin lattice and discovery of a new function for clathrin that occurs during mitosis.
Collapse
Affiliation(s)
- S J Royle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
31
|
Lee JA, Sinkovits RS, Mock D, Rab EL, Cai J, Yang P, Saunders B, Hsueh RC, Choi S, Subramaniam S, Scheuermann RH. Components of the antigen processing and presentation pathway revealed by gene expression microarray analysis following B cell antigen receptor (BCR) stimulation. BMC Bioinformatics 2006; 7:237. [PMID: 16670020 PMCID: PMC1479375 DOI: 10.1186/1471-2105-7-237] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 05/02/2006] [Indexed: 12/28/2022] Open
Abstract
Background Activation of naïve B lymphocytes by extracellular ligands, e.g. antigen, lipopolysaccharide (LPS) and CD40 ligand, induces a combination of common and ligand-specific phenotypic changes through complex signal transduction pathways. For example, although all three of these ligands induce proliferation, only stimulation through the B cell antigen receptor (BCR) induces apoptosis in resting splenic B cells. In order to define the common and unique biological responses to ligand stimulation, we compared the gene expression changes induced in normal primary B cells by a panel of ligands using cDNA microarrays and a statistical approach, CLASSIFI (Cluster Assignment for Biological Inference), which identifies significant co-clustering of genes with similar Gene Ontology™ annotation. Results CLASSIFI analysis revealed an overrepresentation of genes involved in ion and vesicle transport, including multiple components of the proton pump, in the BCR-specific gene cluster, suggesting that activation of antigen processing and presentation pathways is a major biological response to antigen receptor stimulation. Proton pump components that were not included in the initial microarray data set were also upregulated in response to BCR stimulation in follow up experiments. MHC Class II expression was found to be maintained specifically in response to BCR stimulation. Furthermore, ligand-specific internalization of the BCR, a first step in B cell antigen processing and presentation, was demonstrated. Conclusion These observations provide experimental validation of the computational approach implemented in CLASSIFI, demonstrating that CLASSIFI-based gene expression cluster analysis is an effective data mining tool to identify biological processes that correlate with the experimental conditional variables. Furthermore, this analysis has identified at least thirty-eight candidate components of the B cell antigen processing and presentation pathway and sets the stage for future studies focused on a better understanding of the components involved in and unique to B cell antigen processing and presentation.
Collapse
Affiliation(s)
- Jamie A Lee
- Department of Pathology, Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert S Sinkovits
- San Diego Supercomputer Center, University of California, San Diego, California 92122, USA
| | - Dennis Mock
- San Diego Supercomputer Center, University of California, San Diego, California 92122, USA
| | - Eva L Rab
- Department of Pathology, Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jennifer Cai
- Department of Pathology, Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peng Yang
- Department of Pathology, Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brian Saunders
- San Diego Supercomputer Center, University of California, San Diego, California 92122, USA
| | - Robert C Hsueh
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sangdun Choi
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Shankar Subramaniam
- San Diego Supercomputer Center, University of California, San Diego, California 92122, USA
- Department of Bioengineering, University of California, San Diego, California 92122, USA
| | - Richard H Scheuermann
- Department of Pathology, Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- San Diego Supercomputer Center, University of California, San Diego, California 92122, USA
| | | |
Collapse
|
32
|
Liu H, Liu ZQ, Chen CXQ, Magill S, Jiang Y, Liu YJ. Inhibitory regulation of EGF receptor degradation by sorting nexin 5. Biochem Biophys Res Commun 2006; 342:537-46. [PMID: 16487940 DOI: 10.1016/j.bbrc.2006.01.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/20/2006] [Indexed: 12/18/2022]
Abstract
Endosomal trafficking of EGF receptor (EGFR) upon stimulation is a highly regulated process during receptor-mediated signaling. Recently, the sorting nexin (SNX) family has emerged as an important regulator in the membrane trafficking of EGFR. Here, we report the identification of a novel interaction between two members of the family, SNX1 and SNX5, which is mediated by the newly defined BAR domain of both SNXs. We have also shown that the PX domain of SNX5 binds specifically to PtdIns other than to PtdIns(3)P. Furthermore, the BAR domain but not the PX domain of SNX5 is sufficient for its subcellular membrane association. Functionally, overexpression of SNX5 inhibits the degradation of EGFR. This process appears to be independent of its interaction with SNX1. However, overexpression of SNX1 is able to attenuate the effect of SNX5 on EGFR degradation, suggesting the two proteins may play antagonistic roles in regulating endosomal trafficking of the receptor.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurology and Neurobiology, University of Pittsburgh School of Medicine, W958 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wakeham DE, Abi-Rached L, Towler MC, Wilbur JD, Parham P, Brodsky FM. Clathrin heavy and light chain isoforms originated by independent mechanisms of gene duplication during chordate evolution. Proc Natl Acad Sci U S A 2005; 102:7209-14. [PMID: 15883369 PMCID: PMC1091751 DOI: 10.1073/pnas.0502058102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, there are two isoforms each of clathrin heavy chain (CHC17 and CHC22) and light chain (LCa and LCb) subunits, all encoded by separate genes. CHC17 forms the ubiquitous clathrin-coated vesicles that mediate membrane traffic. CHC22 is implicated in specialized membrane organization in skeletal muscle. CHC17 is bound and regulated by LCa and LCb, whereas CHC22 does not functionally interact with either light chain. The imbalanced interactions between clathrin subunit isoforms suggest a distinct evolutionary history for each isoform pair. Phylogenetic and sequence analysis placed both heavy and light chain gene duplications during chordate evolution, 510-600 million years ago. Genes encoding CHC22 orthologues were found in several vertebrate species, with only a pseudogene present in mice. Multiple paralogons surrounding the CHC genes (CLTC and CLTD) were identified, evidence that genomic or large-scale gene duplication produced the two CHC isoforms. In contrast, clathrin light chain genes (CLTA and CLTB) apparently arose by localized duplication, within 1-11 million years of CHC gene duplication. Analysis of sequence divergence patterns suggested that structural features of the CHCs were maintained after gene duplication, but new interactions with regulatory proteins evolved for the CHC22 isoform. Thus, independent mechanisms of gene duplication expanded clathrin functions, concomitant with development of neuromuscular sophistication in chordates.
Collapse
Affiliation(s)
- Diane E Wakeham
- The G. W. Hooper Foundation and Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
34
|
Stoddart A, Jackson AP, Brodsky FM. Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 2005; 16:2339-48. [PMID: 15716350 PMCID: PMC1087239 DOI: 10.1091/mbc.e05-01-0025] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B cell antigen receptor (BCR) association with lipid rafts, the actin cytoskeleton, and clathrin-coated pits influences B cell signaling and antigen presentation. Although all three cellular structures have been separately implicated in BCR internalization, the relationship between them has not been clearly defined. In this study, internalization pathways were characterized by specifically blocking each potential mechanism of internalization. BCR uptake was reduced by approximately 70% in B cells conditionally deficient in clathrin heavy chain expression. Actin or raft antagonists were both able to block the residual, clathrin-independent BCR internalization. These agents also affected clathrin-dependent internalization, indicating that clathrin-coated pits, in concert with mechanisms dependent on rafts and actin, mediate the majority of BCR internalization. Clustering G(M1) gangliosides enhanced clathrin-independent BCR internalization, and this required actin. Thus, although rafts or actin independently did not mediate BCR internalization, they apparently cooperate to promote some internalization even in the absence of clathrin. Simultaneous inhibition of all BCR uptake pathways resulted in sustained tyrosine phosphorylation and activation of the extracellular signal-regulated kinase (ERK), strongly suggesting that downstream BCR signaling can occur without receptor translocation to endosomes and that internalization leads to signal attenuation.
Collapse
Affiliation(s)
- Angela Stoddart
- G. W. Hooper Foundation, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
35
|
Chen CY, Brodsky FM. Huntingtin-interacting Protein 1 (Hip1) and Hip1-related Protein (Hip1R) Bind the Conserved Sequence of Clathrin Light Chains and Thereby Influence Clathrin Assembly in Vitro and Actin Distribution in Vivo. J Biol Chem 2005; 280:6109-17. [PMID: 15533940 DOI: 10.1074/jbc.m408454200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.
Collapse
Affiliation(s)
- Chih-Ying Chen
- G. W. Hooper Foundation, Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0552, USA
| | | |
Collapse
|