1
|
Wang L, Song Y, Shu Y, Xue B, Yu F, Yin Y, Feng Z, Ma X, Yao Y, Pan Y, Jin S. CAVIN-2 positively correlates with diabetic PAD and promotes LDL transcytosis by inhibiting eNOS activation. Ann Med 2025; 57:2457526. [PMID: 39887709 PMCID: PMC11789226 DOI: 10.1080/07853890.2025.2457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE Caveolae are closely linked to the onset and progression of atherosclerosis. The pivotal involvement of caveolin-1 (CAV1) within the caveolae in atherosclerosis development has been consistently supported. However, the potential contributions of additional caveolae proteins to atherosclerosis necessitate further exploration. Therefore, this research aimed to afford clinical evidence linking CAVIN-2 to diabetic peripheral artery disease (PAD) and its role in low-density lipoprotein (LDL) transcytosis. METHODS Blood samples were collected from a total of 115 participants, including 36 patients without diabetes (ND), 26 patients with type 2 diabetes mellitus (T2DM), and 53 patients with T2DM and PAD (DM-PAD). The plasma levels of CAV1, CAVIN-1, and CAVIN-2 were measured by ELISA. The correlation between CAV1, CAVIN-1, CAVIN-2, and diabetic PAD was examined using Spearman correlation analysis. The predictive effect of CAV1 and CAVIN-2 were analyzed by receiver operating characteristic (ROC) curves. Cellular experiments were used to investigate the effect and mechanism of CAVIN-2 on LDL transcytosis. RESULTS Elevated CAV1 and CAVIN-2 levels were observed in T2DM and DM-PAD groups, with a positive correlation to DM-PAD and PAD severity. Both CAV1 and CAVIN-2 emerged as predictors of DM-PAD. In vitro, CAVIN-2 knockdown decreased LDL transcytosis, while CAVIN-2 overexpression increased it. Additionally, CAVIN-2 was found to inhibit eNOS activation and nitric oxide (NO) production, thereby promoting LDL transcytosis and atherosclerosis progression. CONCLUSION CAVIN-2 was positively correlated with DM-PAD and promoted LDL transcytosis through the inhibition of eNOS activation, contributing to atherosclerosis development. This study provided clinical evidence linking CAVIN-2 to diabetic PAD and suggested its potential as a biomarker for disease progression.
Collapse
Affiliation(s)
- Li Wang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Song
- Department of Endocrinology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Baorui Xue
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyang Yu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyun Feng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Ma
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yulin Yao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangze Pan
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Fang L, Li W, Zhao H, Wang W, Gao H, Wang P, Zhang X, Lv R, Xu F, Chen J, Lyu L, Chen Y. Irisin alleviates steroid-induced vascular dysfunction by regulating the αVβ5-c-Abl-Caveolin-1 signaling pathway. Biochem Pharmacol 2025; 236:116870. [PMID: 40086515 DOI: 10.1016/j.bcp.2025.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a progressive degenerative disease of the hip, primarily due to glucocorticoid (GC)-induced endothelial cell (EC) injury and compromised blood supply. Irisin is an EC-protective mytokine whose receptor is the integrin αVβ5. Caveolin-1 (CAV-1), a major component of caveolae, causes endothelial dysfunction when phosphorylated. However, the role of irisin and CAV-1 in SANFH remains unclear. In our study, irisin levels decreased but CAV-1 phosphorylation increased in human and mouse SANFH samples. Intraperitoneal irisin injection (250 μg/kg daily) notably reduced GC-induced osteonecrosis, vascular abnormalities, and CAV-1 phosphorylation in SANFH mice. In cultured ECs, GC induced CAV-1 phosphorylation by activating c-Abl via the glucocorticoid receptor, and irisin inhibited GC-induced phosphorylation of c-Abl and CAV-1 via the integrin αVβ5. Inhibition of integrin αVβ5 also abolished the protective effects of irisin on ERK and eNOS signalling, viability, angiogenesis, and migration in ECs. Therefore, our findings indicate that irisin has a protective role against vascular dysfunction in SANFH, possibly mediated by the inhibition of GC-triggered c-Abl-CAV-1 phosphorylation through integrin αVβ5. These findings provide insights into the potential therapeutic applications of irisin in SANFH.
Collapse
Affiliation(s)
- Lijun Fang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqiang Li
- Department of Emergency Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Wang
- School of Public Health, Shandong University, Jinan, China
| | - Hongmei Gao
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengqi Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinzhi Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruijuan Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Jiazheng Chen
- Department of Orthopaedics, Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| | - Linmao Lyu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Hwej A, Al-Ferjani A, Alshuweishi Y, Naji A, Kennedy S, Salt IP. Lack of AMP-activated protein kinase-α1 reduces nitric oxide synthesis in thoracic aorta perivascular adipose tissue. Vascul Pharmacol 2024; 157:107437. [PMID: 39433170 DOI: 10.1016/j.vph.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) releases anti-contractile bioactive molecules including NO. PVAT anti-contractile activity is attenuated in mice lacking AMPKα1 (AMP-activated protein kinase-α1). As AMPK regulates endothelial NO synthase (eNOS) activity in cultured cells, NO synthesis was examined in PVAT from AMPKα1 knockout (KO) mice. METHODS AND RESULTS Endothelium-denuded thoracic or abdominal aortic rings were isolated from wild type (WT) and KO mice. NOS inhibition enhanced vasoconstriction in PVAT-intact thoracic aortic rings from mice of either genotype yet had no effect on abdominal rings as assessed by wire myography. Thoracic aorta PVAT exhibited increased NO production, NOS activity and levels of the brown adipose tissue marker uncoupling protein-1 (UCP1) compared to abdominal PVAT. In KO mice, NO production was significantly reduced in thoracic but not abdominal PVAT. Reduced NO production in KO thoracic PVAT was not due to altered levels or phosphorylation of eNOS but was associated with increased caveolin-1:eNOS association and caveolin-1 Tyr14 phosphorylation. A peptide that disrupts eNOS:caveolin-1 association increased NO synthesis and reduced vasoconstriction of PVAT-intact thoracic but not abdominal aortic rings. KO thoracic PVAT also exhibited reduced UCP1 levels. CONCLUSIONS Murine thoracic aorta PVAT exhibits higher NO synthesis and UCP1 levels than abdominal aortic PVAT. Downregulation of AMPK suppresses NO synthesis which may contribute to the reduced anticontractile activity and reduced brown adipose tissue phenotype of KO thoracic PVAT. The mechanism underlying the effect of AMPK downregulation likely results from increased caveolin-1:eNOS association associated with caveolin-1 Tyr14 phosphorylation.
Collapse
Affiliation(s)
- Abdmajid Hwej
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Pharmacy, University of El-Mergib, Al-Khoms, Libya
| | - Ali Al-Ferjani
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Yazeed Alshuweishi
- School of Molecular Biosciences, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Clinical Laboratory Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdullah Naji
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Pharmacy, Department of Pharmacology, Najran University, Najran, Saudi Arabia
| | - Simon Kennedy
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian P Salt
- School of Molecular Biosciences, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
4
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Kataoka T, Ito H, Mori T, Hotta Y, Sanagawa A, Maeda Y, Furukawa-Hibi Y, Kimura K. Testosterone improved erectile function by upregulating transcriptional expression of growth factors in late androgen replacement therapy model rats. Int J Impot Res 2024; 36:437-442. [PMID: 36310186 DOI: 10.1038/s41443-022-00627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
We previously showed that castration of rats reduced erectile function over time; when testosterone replacement therapy was started 4 weeks after castration, erectile function improved. In this study, we examined the mechanism of improvement in erectile function following testosterone replacement therapy in rats. Thirty 12-week-old rats were divided into castrated (Cast), castrated with subcutaneous administration of testosterone (Cast + T), and sham (Sham) groups. Erectile function and mRNA and protein expression were evaluated in the rats by using standard methods. To assess erectile function, we measured the intracavernosal pressure, mean arterial pressure, mRNA expression of endothelial growth factors, and protein expression of endothelial nitric oxide synthase (eNOS). The intracavernosal pressure/mean arterial pressure ratio was significantly lower in the Cast group, and testosterone administration significantly improved (P = 0.017). Compared to the Cast group, the Cast+T group exhibited significantly increased mRNA expressions of vascular endothelial growth factor A (VEGF-A), intercellular adhesion molecule 1 (ICAM-1), transforming growth factor-β (TGF-β), nerve growth factor (NGF), α-smooth muscle actin (α-SMA), caveolae associated protein 1 (Cavin-1), Cavin-2, Cavin-3, sirtuin 1 (Sirt-1), sphingosine-1-phosphate 1 (S1P1), S1P2, and S1P3 and eNOS protein expression. Testosterone replacement therapy improved erectile function in castrated rats by increasing growth factors and eNOS protein.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
- Department of Pharmacology, Kataoka's lab, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
| | - Hiroto Ito
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Taiki Mori
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
6
|
Feng Y, Huang Z, Ma X, Zong X, Tesic V, Ding B, Wu CYC, Lee RHC, Zhang Q. Photobiomodulation Inhibits Ischemia-Induced Brain Endothelial Senescence via Endothelial Nitric Oxide Synthase. Antioxidants (Basel) 2024; 13:633. [PMID: 38929072 PMCID: PMC11200452 DOI: 10.3390/antiox13060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.
Collapse
Affiliation(s)
- Yu Feng
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Zhihai Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xuemei Zong
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Baojin Ding
- Department of Biochemistry & Molecular Biology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Quanguang Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| |
Collapse
|
7
|
Lim JE, Bernatchez P, Nabi IR. Scaffolds and the scaffolding domain: an alternative paradigm for caveolin-1 signaling. Biochem Soc Trans 2024; 52:947-959. [PMID: 38526159 PMCID: PMC11088920 DOI: 10.1042/bst20231570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.
Collapse
Affiliation(s)
- John E. Lim
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences Mall, Room 217, Vancouver, BC V6T 1Z3, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences Mall, Room 217, Vancouver, BC V6T 1Z3, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Marinho Y, Villarreal ES, Aboagye SY, Williams DL, Sun J, Silva CLM, Lutz SE, Oliveira SD. Schistosomiasis-associated pulmonary hypertension unveils disrupted murine gut-lung microbiome and reduced endoprotective Caveolin-1/BMPR2 expression. Front Immunol 2023; 14:1254762. [PMID: 37908354 PMCID: PMC10613683 DOI: 10.3389/fimmu.2023.1254762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-β)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Elizabeth S. Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Sammy Y. Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Claudia L. M. Silva
- Molecular and Biochemical Pharmacology Lab, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Suellen D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Vascular Immunobiology Lab, Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Luse MA, Jackson MG, Juśkiewicz ZJ, Isakson BE. Physiological functions of caveolae in endothelium. CURRENT OPINION IN PHYSIOLOGY 2023; 35:100701. [PMID: 37873030 PMCID: PMC10588508 DOI: 10.1016/j.cophys.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endothelial caveolae are essential for a wide range of physiological processes and have emerged as key players in vascular biology. Our understanding of caveolar biology in endothelial cells has expanded dramatically since their discovery revealing critical roles in mechanosensation, signal transduction, eNOS regulation, lymphatic transport, and metabolic disease progression. Furthermore, caveolae are involved in the organization of membrane domains, regulation of membrane fluidity, and endocytosis which contribute to endothelial function and integrity. Additionally, recent advances highlight the impact of caveolae-mediated signaling pathways on vascular homeostasis and pathology. Together, the diverse roles of caveolae discussed here represent a breadth of cellular functions presenting caveolae as a defining feature of endothelial form and function. In light of these new insights, targeting caveolae may hold potential for the development of novel therapeutic strategies to treat a range of vascular diseases.
Collapse
Affiliation(s)
- Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Madeline G. Jackson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| |
Collapse
|
10
|
Xu S, Wang F, Mai P, Peng Y, Shu X, Nie R, Zhang H. Mechanism Analysis of Vascular Calcification Based on Fluid Dynamics. Diagnostics (Basel) 2023; 13:2632. [PMID: 37627891 PMCID: PMC10453151 DOI: 10.3390/diagnostics13162632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular calcification is the abnormal deposition of calcium phosphate complexes in blood vessels, which is regarded as the pathological basis of multiple cardiovascular diseases. The flowing blood exerts a frictional force called shear stress on the vascular wall. Blood vessels have different hydrodynamic properties due to discrepancies in geometric and mechanical properties. The disturbance of the blood flow in the bending area and the branch point of the arterial tree produces a shear stress lower than the physiological magnitude of the laminar shear stress, which can induce the occurrence of vascular calcification. Endothelial cells sense the fluid dynamics of blood and transmit electrical and chemical signals to the full-thickness of blood vessels. Through crosstalk with endothelial cells, smooth muscle cells trigger osteogenic transformation, involved in mediating vascular intima and media calcification. In addition, based on the detection of fluid dynamics parameters, emerging imaging technologies such as 4D Flow MRI and computational fluid dynamics have greatly improved the early diagnosis ability of cardiovascular diseases, showing extremely high clinical application prospects.
Collapse
Affiliation(s)
- Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Yanren Peng
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Xiaorong Shu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Ruqiong Nie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| |
Collapse
|
11
|
Yang B, Ye Z, Zhu X, Huang R, Song E, Song Y. The redox activity of polychlorinated biphenyl quinone metabolite orchestrates its pro-atherosclerosis effect via CAV1 phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131697. [PMID: 37257380 DOI: 10.1016/j.jhazmat.2023.131697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Further investigations are required to prove that polychlorinated biphenyls (PCBs) exposure is a cardiovascular disease risk factor. Unlike previous studies that attributed the atherogenic effect of PCBs to aryl hydrocarbon receptor activation, we illustrated a new mechanism involved in the redox reactivity of PCBs. We discover the redox reactivity of quinone moiety is the primary factor for PCB29-pQ-induced proinflammatory response, which highly depends on the status of caveolin 1 (CAV1) phosphorylation. PCB29-pQ-mediated CAV1 phosphorylation disrupts endothelial nitric oxide synthase, toll-like receptor 4, and reduces interleukin-1 receptor-associated kinase 1 binding with CAV1. Phosphorylated proteomics analysis indicated that PCB29-pQ treatment significantly enriched phosphorylated peptides in protein binding functions, inflammation, and apoptosis signaling. Meanwhile, apolipoprotein E knockout (ApoE-/-) mice exposed to PCB29-pQ had increased atherosclerotic plaques compared to the vehicle group, while this effect was significantly reduced in ApoE-/-/CAV1-/- double knockout mice. Thus, we hypothesis CAV1 is a platform for proinflammatory cascades induced by PCB29-pQ on atherosclerotic processes. Together, these findings confirm that the redox activity of PCB metabolite plays a role in the etiology of atherosclerosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
13
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
14
|
Chen Z, Haus JM, DiPietro LA, Koh TJ, Minshall RD. Neutralization of excessive CCL28 improves wound healing in diabetic mice. Front Pharmacol 2023; 14:1087924. [PMID: 36713846 PMCID: PMC9880283 DOI: 10.3389/fphar.2023.1087924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Introduction: Chronic, non-healing skin wounds such as diabetic foot ulcers (DFUs) are common in patients with type 2 diabetes mellitus (T2DM) and often result in limb amputation and even death. However, mechanisms by which T2DM and inflammation negatively impact skin wound healing remains poorly understood. Here we investigate a mechanism by which an excessive level of chemokine CCL28, through its receptor CCR10, impairs wound healing in patients and mice with T2DM. Methods & Results: Firstly, a higher level of CCL28 was observed in skin and plasma in both patients with T2DM, and in obesity-induced type 2 diabetic db/db mice. Compared with WT mice, adipose tissue from db/db mice released 50% more CCL28, as well as 2- to 3-fold more IL-1β, IL-6, and TNF-α, and less VEGF, as determined by ELISA measurements. Secondly, overexpression of CCL28 with adenovirus (Adv-CCL28) caused elevation of proinflammatory cytokines as well as CCR10 expression and also reduced eNOS expression in the dorsal skin of WT mice as compared with control Adv. Thirdly, topical application of neutralizing anti-CCL28 Ab dose-dependently accelerated wound closure and eNOS expression, and decreased IL-6 level, with an optimal dose of 1 μg/wound. In addition, mRNA levels of eNOS and anti-inflammatory cytokine IL-4 were increased as shown by real-time RT-PCR. The interaction between eNOS and CCR10 was significantly reduced in diabetic mouse wounds following application of the optimal dose of anti-CCL28 Ab, and eNOS expression increased. Finally, enhanced VEGF production and increased subdermal vessel density as indicated by CD31 immunostaining were also observed with anti-CCL28 Ab. Discussion: Taken together, topical application of neutralizing anti-CCL28 Ab improved dorsal skin wound healing by reducing CCR10 activation and inflammation in part by preventing eNOS downregulation, increasing VEGF production, and restoring angiogenesis. These results indicate anti-CCL28 Ab has significant potential as a therapeutic strategy for treatment of chronic non-healing diabetic skin wounds such as DFUs.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Hu WY, Liu LF, Afradiasbagharani P, Lu RL, Chen ZL, Hu DP, Birch LA, Prins GS. Stem cells from a malignant rat prostate cell line generate prostate cancers in vivo: a model for prostate cancer stem cell propagated tumor growth. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:377-389. [PMID: 36636689 PMCID: PMC9831920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
Cancer stem cells (CSCs) are resistant to conventional cancer therapies, permitting the repopulation of new tumor growth and driving disease progression. Models for testing prostate CSC-propagated tumor growth are presently limited yet necessary for therapeutic advancement. Utilizing the congenic nontumorigenic NRP152 and tumorigenic NRP154 rat prostate epithelial cell lines, the present study investigated the self-renewal, differentiation, and regenerative abilities of prostate stem/progenitor cells and developed a CSC-based PCa model. NRP154 cells expressed reduced levels of tumor suppressor caveolin-1 and increased p-Src as compared to NRP152 cells. Gene knockdown of caveolin-1 in NRP152 cells upregulated p-Src, implicating their role as potential oncogenic mediators in NRP154 cells. A FACS-based Hoechst exclusion assay revealed a side population of stem-like cells (0.1%) in both NRP152 and NRP154 cell lines. Using a 3D Matrigel culture system, stem cells from both cell lines established prostaspheres at a 0.1% efficiency through asymmetric self-renewal and rapid proliferation of daughter progenitor cells. Spheres derived from both cell lines contained CD117+ and CD133+ stem cell subpopulations and basal progenitor cell subpopulations (p63+ and CK5+) but were negative for luminal cell CK8 markers at day 7. While some NRP152 sphere cells were androgen receptor (AR) positive at this timepoint, NRP154 cells were AR- up to 30 days of 3D culture. The regenerative capacity of the stem/progenitor cells was demonstrated by in vivo tissue recombination with urogenital sinus mesenchyme (UGM) and renal grafting in nude mice. While stem/progenitor cells from NRP152 spheroids generated normal prostate structures, CSCs and progeny cells from NRP154 tumoroids generated tumor tissues that were characterized by immunohistochemistry. Atypical hyperplasia and prostatic intraepithelial neoplasia (PIN) lesions progressed to adenocarcinoma with kidney invasion over 4 months. This provides clear evidence that prostate CSCs can repopulate new tumor growth outside the prostate gland that rapidly progresses to poorly differentiated adenocarcinoma with invasive capabilities. The dual in vitro/in vivo CSC model system presented herein provides a novel platform for screening therapeutic agents that target prostate CSCs for effective combined treatment protocols for local and advanced disease stages.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Li-Feng Liu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | | | - Ran-Li Lu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Zhen-Long Chen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBoston, MA 02215, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Lynn A Birch
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| | - Gail S Prins
- Department of Urology, University of Illinois at ChicagoChicago, IL 60612, USA
| |
Collapse
|
16
|
Chen Z, Haus JM, Chen L, Jiang Y, Sverdlov M, DiPietro LA, Xiong N, Wu SC, Koh TJ, Minshall RD. Inhibition of CCL28/CCR10-Mediated eNOS Downregulation Improves Skin Wound Healing in the Obesity-Induced Mouse Model of Type 2 Diabetes. Diabetes 2022; 71:2166-2180. [PMID: 35899992 PMCID: PMC9501665 DOI: 10.2337/db21-1108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022]
Abstract
Chronic, nonhealing skin wounds, such as diabetic foot ulcers (DFUs), are common in patients with type 2 diabetes. Here, we investigated the role of chemokine (C-C motif) ligand 28 (CCL28) and its receptor C-C chemokine receptor type 10 (CCR10) in downregulation of endothelial nitric (NO) oxide synthase (eNOS) in association with delayed skin wound healing in the db/db mouse model of type 2 diabetes. We observed reduced eNOS expression and elevated CCL28/CCR10 levels in dorsal skin of db/db mice and subdermal leg biopsy specimens from human subjects with type 2 diabetes. Further interrogation revealed that overexpression of CCR10 reduced eNOS expression, NO bioavailability, and tube formation of human dermal microvascular endothelial cells (HDMVECs) in vitro, which was recapitulated in mouse dorsal skin. In addition, incubation of HDMVECs with CCL28 led to internalization of the CCR10/eNOS complex and colocalization with lysosome-associated membrane protein 1. Finally, topical application of myristoylated CCR10 binding domain 7 amino acid (Myr-CBD7) peptide prevented CCR10-eNOS interaction and subsequent eNOS downregulation, enhanced eNOS/NO levels, eNOS/VEGF-R2+ microvessel density, and blood perfusion, reduced inflammatory cytokine levels, and importantly, decreased wound healing time in db/db mice. Thus, endothelial cell CCR10 activation in genetically obese mice with type 2 diabetes promotes eNOS depletion and endothelial dysfunction, and targeted disruption of CCR10/eNOS interaction improves wound healing.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Lin Chen
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL
| | - Ying Jiang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Maria Sverdlov
- Research Resources Center, Research Histology and Tissue Imaging Collaborative, University of Illinois at Chicago, Chicago, IL
| | - Luisa A. DiPietro
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Stephanie C. Wu
- Departments of Surgery and Stem Cell and Regenerative Medicine, Center for Lower Extremity Ambulatory Research, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Richard D. Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
17
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
18
|
Chen L, Wu Z, Yang L, Chen Y, Wang W, Cheng L, Li C, Lv D, Xia L, Chen J, Tang L, Zhang LI, Zhang S, Luo J. Nitric oxide in multikinase inhibitor-induced hand-foot skin reaction. Transl Res 2022; 245:82-98. [PMID: 35189405 DOI: 10.1016/j.trsl.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022]
Abstract
Hand-foot skin reaction (HFSR) is the most debilitating and prevalent side effect caused by multikinase inhibitors (MKIs) that share vascular endothelial growth factor receptor (VEGFR) as the common inhibition target, such as sorafenib, regorafenib, axitinib, etc. Though not life-threatening, HFSR can significantly deteriorate patients' quality of life and jeopardize the continuity of cancer therapy. Despite years of efforts, there are no FDA-approved treatments for HFSR and the understanding of the precise pathogenic mechanism is still limited. In this study, we hypothesized that nitric oxide has the potential therapeutic effect to reverse the toxicity caused by MKI through upregulation of several VEGF/VEGFR downstream signaling pathways. We found that glyceryl trinitrate (GTN), a nitric oxide donor, could stimulate cell proliferation, migration, and protect cells from apoptosis induced by MKIs in vitro. Local application of GTN mitigated tissue damage in a rat model, while not impacting the anti-tumor effect of the MKI in HepG2 tumor-bearing mice. Finally, GTN ointment alleviated cutaneous damages and improved quality of life in 6 HFSR patients. Our study proposed and validated the mechanism to counteract VEGFR inhibition, providing GTN as the potential treatment to MKI-induced HFSR, which may further improve the therapeutic window of various MKI based cancer therapies.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyun Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Cheng
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dazhao Lv
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Tang
- Department of Oncology, the 6th People' Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - L I Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China..
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China..
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China..
| |
Collapse
|
19
|
Chen J, Zhang H, Yang Y, Chen B. Quercetin regulates vascular endothelium function in chronic renal failure via modulation of Eph/Cav-1 signaling. Drug Dev Res 2022; 83:1167-1175. [PMID: 35470469 DOI: 10.1002/ddr.21940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Arteriovenous fistula (AVF) is frequently believed to be the best vascular access for chronic renal failure (CRF) patients. Vascular endothelial cell dysfunction has been implicated in AVF maturation. Quercetin (Quer) is a natural polyphenolic compound widely used in traditional Chinese medicine. We aimed to uncover the impacts of Quer on vascular endothelial cells in a CRF rat model and human umbilical vein endothelial cells (HUVECs) stimulated by lipopolysaccharide (LPS) and serum from rat with CRF. Blood urea nitrogen and serum creatinine levels were tested in CRF rat model after administration of Quer. H&E staining was used to estimate endothelial damage. Nitric oxide (NO), endothelial NO synthase (eNOS), EPH receptor B4 (EphB4), EphrinB2, and p-caveolin-1 (p-Cav-1) levels in the serum were examined by enzyme-linked immunosorbent assay. Western blot was employed to analyze the expressions of eNOS, phosphorylated (p)-eNOS, EphB4, and Cav-1 in arterial tissues and HUVECs. Cell counting kit-8 was applied for assessing cell proliferation. TUNEL (terminal-deoxynucleotidyl transferase-mediated nick end labeling) assay was employed to estimate cell apoptosis. Results showed that Quer ameliorated renal function impairment and endothelial injury in vivo. Meanwhile, Quer boosted the proliferation and suppressed the apoptosis of HUVECs stimulated by LPS and serum from rat with CRF. Additionally, Quer elevated NO and eNOS levels, upregulated p-eNOS expression but downregulated EphB4, EphrinB2, and p-Cav-1 expressions. Moreover, EphB4 inhibitor had the similar effect as Quer treatment in HUVECs stimulated by LPS and serum from rat with CRF. Collectively, Quer might effectively regulate vascular function to prevent AVF failure in CRF via modulation of Eph/Cav-1 signaling.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Huaming Zhang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Yanbo Yang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Bo Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
20
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
21
|
Taguchi K, Kaneko N, Okudaira K, Matsumoto T, Kobayashi T. Endothelial dysfunction caused by circulating microparticles from diabetic mice is reduced by PD98059 through ERK and ICAM-1. Eur J Pharmacol 2021; 913:174630. [PMID: 34774495 DOI: 10.1016/j.ejphar.2021.174630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction contributes to the development of diabetic complications and the production of circulating microparticles (MPs). Our previous study showed that diabetic mice-derived MPs (DM MPs) had increased levels of extracellular regulated protein kinase 1/2 (ERK1/2) and impaired endothelial-dependent relaxation in aortas when compared with control mice-derived MPs. This study was designed to investigate whether PD98059, an ERK1/2 inhibitor, affects the function of aortas and DM MPs. MPs were obtained from streptozotocin-induced DM, DM after PD98059 treatment, and ICR mice as control. The mice and MPs were then analyzed on the basis of their vascular function and enzyme expressions. Compared with the controls, platelet-derived MPs and ERK1/2 levels in the MPs were significantly elevated in the DM but showed little change in PD98059-treated DM. PD98059 mainly decreased ERK1/2 phosphorylation in the MPs. In the aortas of DM and DM MPs the endothelium-dependent vascular function was impaired, and there was a significantly greater improvement in the vascular function in the PD98059-treated DM aortas and the aortas treated with PD98059-treated DM MPs than in DM aortas and the aortas treated with DM MPs. Furthermore, DM MPs increased ERK1/2 and intracellular adhesion molecule-1 (ICAM-1) expressions in the aortas, but PD98059-treated DM MPs did not show these effects. For the first time, these results indicate that PD98059 treatment improves endothelial dysfunction in DM, and adhesion properties of DM MPs can be partly blocked by PD98059 via ERK and ICAM-1. These effects may explain some of the vascular complications in diabetes.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
22
|
Troiano JA, Potje SR, Graton ME, Gonçalves ET, Tostes RC, Antoniali C. Caveolin-1/Endothelial Nitric Oxide Synthase Interaction Is Reduced in Arteries From Pregnant Spontaneously Hypertensive Rats. Front Physiol 2021; 12:760237. [PMID: 34858211 PMCID: PMC8631196 DOI: 10.3389/fphys.2021.760237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
We have investigated the role caveolae/caveolin-1 (Cav-1) plays in endothelial nitric oxide synthase (eNOS) activation and how it impacts pregnancy-induced decreased vascular reactivity in normotensive (Wistar rats) and spontaneously hypertensive rats (SHR). Wistar rats and SHR were divided into non-pregnant (NP) and pregnant (P). Nitrite levels were assessed by the Griess method in the aorta and mesenteric vascular bed. In functional studies, arteries were incubated with methyl-β-cyclodextrin (dextrin, 10mmol/L), which disrupts caveolae by depleting cholesterol, and concentration-response curves to phenylephrine (PE) and acetylcholine (ACh) were constructed. Electronic microscopy was used to determine endothelial caveolae density in the aorta and resistance mesenteric artery in the presence of vehicle or dextrin (10mmol/L). Western blot was performed to evaluate Cav-1, p-Cav-1, calmodulin (CaM), and heat shock protein 90 (Hsp90) expression. Cav-1/eNOS interaction in the aorta and mesenteric vascular bed was assessed by co-immunoprecipitation. Nitric oxide (NO) generation was greater in arteries from P groups compared to NP groups. Dextrin did not change vascular responses in the aorta from P groups or the number of caveolae in P groups compared to NP groups. Compared to NP Wistar rats, NP SHR showed smaller number of caveolae and reduced Cav-1 expression. Pregnancy did not alter Cav-1, CaM, or Hsp90 expression in the aorta or mesenteric vascular bed from Wistar rats or SHR. These results suggest that pregnancy does not alter expression of the main eNOS regulatory proteins, but it decreases Cav-1/eNOS interaction. Reduced Cav-1/eNOS interaction in the aorta and mesenteric vascular bed seems to be an important mechanism to increase eNOS activity and nitric oxide production in pregnant normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Jéssica A Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Simone R Potje
- Department of Physics and Chemistry, Ribeirão Preto, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.,Department of Biological Sciences, Minas Gerais State University (UEMG), Passos, Brazil
| | - Murilo E Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Emily T Gonçalves
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
23
|
Malikova E, Kmecova Z, Doka G, Pivackova LB, Balis P, Trubacova S, Velasova E, Krenek P, Klimas J. Pioglitazone restores phosphorylation of downregulated caveolin-1 in right ventricle of monocrotaline-induced pulmonary hypertension. Clin Exp Hypertens 2021; 44:101-112. [PMID: 34747283 DOI: 10.1080/10641963.2021.1996589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Caveolin-1 (cav-1) plays a role in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH is characterized by a loss of cav-1 in pulmonary arteries; however, less is known regarding its role in the hypertrophied right ventricle (RV). We aimed to characterize the role of cav-1 and Hsp90 in the RV of MCT-induced PAH and their impact on endothelial nitric oxide synthase (eNOS). Additionally, we focused on restoration of cav-1 expression with pioglitazone administration. METHODS Male 12-week-old Wistar rats were injected subcutaneously with monocrotaline (60 mg/kg). Selected proteins (cav-1, eNOS, pSer1177eNOS, Hsp90) and mRNAs (cav-1α, cav-1β, eNOS) were determined in the RV and left ventricle (LV) 4 weeks later. In a separate MCT-induced PAH study, pioglitazone (10 mg/kg/d, orally) administration started on day 14 after MCT. RESULTS MCT induced RV hypertrophy and lung enlargement. Cav-1 and pTyr14cav-1 were decreased in RV. Caveolin-1α (cav-1α) and caveolin-1β (cav-1β) mRNAs were decreased in both ventricles. Hsp90 protein was increased in RV. eNOS and pSer1177eNOS proteins were unchanged in the ventricles. eNOS mRNA was reduced in RV. Pioglitazone treatment increased oxygen saturation and pTyr14cav-1 vs. MCT group. CONCLUSIONS Restoration of pTyr14cav-1 did not lead to amelioration of the disease, nor did it prevent RV hypertrophy and fibrosis, which was indicated by an increase in Acta2, Nppb, Col3a1, and Tgfβ1 mRNA.
Collapse
Affiliation(s)
- Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Bratislava, Slovakia
| | - Simona Trubacova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Velasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
24
|
Xiao X, Xu M, Yu H, Wang L, Li X, Rak J, Wang S, Zhao RC. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther 2021; 6:354. [PMID: 34675187 PMCID: PMC8531331 DOI: 10.1038/s41392-021-00765-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Senescent endothelial cells (ECs) could impair the integrity of the blood vessel endothelium, leading to vascular aging and a series of diseases, such as atherosclerosis, diabetes. Preventing or mitigating EC senescence might serve as a promising therapeutic paradigm for these diseases. Recent studies showed that small extracellular vesicles (sEV) have the potential to transfer bioactive molecules into recipient cells and induce phenotypic changes. Since mesenchymal stem cells (MSCs) have long been postulated as an important source cell in regenerative medicine, herein we investigated the role and mechanism of MSC-derived sEV (MSC-sEV) on EC senescence. In vitro results showed that MSC-sEV reduced senescent biomarkers, decreased senescence-associated secretory phenotype (SASP), rescued angiogenesis, migration and other dysfunctions in senescent EC induced by oxidative stress. In the In vivo natural aging and type-2 diabetes mouse wound-healing models (both of which have senescent ECs), MSC-sEV promoted wound closure and new blood vessel formation. Mechanically, miRNA microarray showed that miR-146a was highly expressed in MSC-sEV and also upregulated in EC after MSC-sEV treatment. miR-146a inhibitors abolished the stimulatory effects of MSC-sEV on senescence. Moreover, we found miR-146a could suppress Src phosphorylation and downstream targets VE-cadherin and Caveolin-1. Collectively, our data indicate that MSC-sEV mitigated endothelial cell senescence and stimulate angiogenesis through miR-146a/Src.
Collapse
Affiliation(s)
- Xian Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meiqian Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hongliang Yu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic medical college, Qingdao University, 308 Ningxia Road, 266071, Qingdao, China
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Department of Cell Biology, School of Life Sciences, Shanghai University, 200444, Shanghai, China.
| |
Collapse
|
25
|
Daneva Z, Ottolini M, Chen YL, Klimentova E, Kuppusamy M, Shah SA, Minshall RD, Seye CI, Laubach VE, Isakson BE, Sonkusare SK. Endothelial pannexin 1-TRPV4 channel signaling lowers pulmonary arterial pressure in mice. eLife 2021; 10:67777. [PMID: 34490843 PMCID: PMC8448527 DOI: 10.7554/elife.67777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States.,Department of Pharmacology, University of Virginia, Charlottesville, United States
| | - Yen Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Eliska Klimentova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Soham A Shah
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| | - Richard D Minshall
- Department of Anesthesiology, Department of Pharmacology, University of Illinois, Chicago, United States
| | - Cheikh I Seye
- Department of Biochemistry, University of Missouri-Columbia, Columbia, United States
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, United States
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| |
Collapse
|
26
|
Mineharu Y, Miyamoto S. RNF213 and GUCY1A3 in Moyamoya Disease: Key Regulators of Metabolism, Inflammation, and Vascular Stability. Front Neurol 2021; 12:687088. [PMID: 34381413 PMCID: PMC8350054 DOI: 10.3389/fneur.2021.687088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Moyamoya disease is an idiopathic chronically progressive cerebrovascular disease, which causes both ischemic and hemorrhagic stroke. Genetic studies identified RNF213/Mysterin and GUCY1A3 as disease-causing genes. They were also known to be associated with non-moyamoya intracranial large artery disease, coronary artery disease and pulmonary artery hypertension. This review focused on these two molecules and their strong linker, calcineurin/NFAT signaling and caveolin to understand the pathophysiology of moyamoya disease and related vascular diseases. They are important regulators of lipid metabolism especially lipotoxicity, NF-κB mediated inflammation, and nitric oxide-mediated vascular protection. Although intimal thickening with fibrosis and damaged vascular smooth muscle cells are the distinguishing features of moyamoya disease, origin of the fibrous tissue and the mechanism of smooth muscle cell damages remains not fully elucidated. Endothelial cells and smooth muscle cells have long been a focus of interest, but other vascular components such as immune cells and extracellular matrix also need to be investigated in future studies. Molecular research on moyamoya disease would give us a clue to understand the mechanism preserving vascular stability.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
27
|
Liu YG, Chen Y, Wang X, Zhao P, Zhu Y, Qi Z. Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells. Emerg Microbes Infect 2021; 9:1330-1341. [PMID: 32538298 PMCID: PMC7473060 DOI: 10.1080/22221751.2020.1757388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Japanese encephalitis virus (JEV) remains the predominant cause of viral encephalitis worldwide. It reaches the central nervous system upon crossing the blood-brain barrier through pathogenic mechanisms that are not completely understood. Here, using a high-throughput siRNA screening assay combined with verification experiments, we found that JEV enters the primary human brain microvascular endothelial cells (HBMEC) through a caveolae-mediated endocytic pathway. The role of ezrin, an essential host factor for JEV entry based on our screening, in caveolae-mediated JEV internalization was investigated. We observed that JEV internalization in HBMEC is largely dependent on ezrin-mediated actin cytoskeleton polymerization. Moreover, Src, a protein predicted by a STRING database search, was found to be required in JEV entry. By a variety of pharmacological inhibition and immunoprecipitation assays, we found that Src, ezrin, and caveolin-1 were sequentially activated and formed a complex during JEV infection. A combination of in vitro kinase assay and subcellular analysis demonstrated that ezrin is essential for Src-caveolin-1 interactions. In vivo, both Src and ezrin inhibitors protected ICR suckling mice against JEV-induced mortality and diminished mouse brain viral load. Therefore, JEV entry into HBMEC requires the activation of the Src-ezrin-caveolin-1 signalling axis, which provides potential targets for restricting JEV infection.
Collapse
Affiliation(s)
- Yan-Gang Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Yang Chen
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China.,College of Basic Medicine, Naval Medical University (Second Military Medical University Shanghai), Shanghai, People's Republic of China
| | - Xiaohang Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China.,College of Basic Medicine, Naval Medical University (Second Military Medical University Shanghai), Shanghai, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Yongzhe Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| |
Collapse
|
28
|
Abstract
Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.
Collapse
Affiliation(s)
- Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences mall, room 217, Vancouver, BC, V6T 1Z3, Canada. .,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada.
| |
Collapse
|
29
|
Abstract
Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.
Collapse
|
30
|
Potje SR, Paula TDC, Paulo M, Bendhack LM. The Role of Glycocalyx and Caveolae in Vascular Homeostasis and Diseases. Front Physiol 2021; 11:620840. [PMID: 33519523 PMCID: PMC7838704 DOI: 10.3389/fphys.2020.620840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
This review highlights recent findings about the role that endothelial glycocalyx and caveolae play in vascular homeostasis. We describe the structure, synthesis, and function of glycocalyx and caveolae in vascular cells under physiological and pathophysiological conditions. Special focus will be given in glycocalyx and caveolae that are associated with impaired production of nitric oxide (NO) and generation of reactive oxygen species (ROS). Such alterations could contribute to the development of cardiovascular diseases, such as atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Simone Regina Potje
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago Dal-Cin Paula
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Jones JH, Friedrich E, Hong Z, Minshall RD, Malik AB. PV1 in Caveolae Controls Lung Endothelial Permeability. Am J Respir Cell Mol Biol 2020; 63:531-539. [PMID: 32663411 DOI: 10.1165/rcmb.2020-0102oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Caveolae are prominent plasmalemmal invaginations in endothelial cells, especially in the lung vasculature, which comprises a vast surface area. PV1 (plasmalemmal vesicle-associated protein-1), a 60-kD glycoprotein expressed in endothelial cells, is essential for generating spoke-like diaphragmatic structures that span the neck region of endothelial caveolae. However, their role in caveolae-mediated uptake and endothelial-barrier function is unknown. Here, we generated mice with endothelial cell-specific deletion of PV1 through tamoxifen-induced Cdh5.Cre.ERT2 (endothelial-specific vascular cadherin.Cre.estrogen receptor 2)-mediated excision of the floxed PV1 allele. We observed that loss of PV1 specifically in endothelial cells increased lung vascular permeability of fluid and protein, indicating that PV1 is required for maintenance of lung vascular-barrier integrity. Endothelial-specific PV1 deletion also increased caveolae-mediated uptake of tracer albumin compared with controls, promoted Au-albumin accumulation in the bulb of caveolae, and induced caveolar swelling. In addition, we observed the progressive loss of plasma proteins from the circulation and reduced arterial pressure resulting from transudation of water and protein as well as edema formation in multiple tissues, including lungs. These changes seen after endothelial-specific PV1 deletion occurred in the absence of disruption of endothelial junctions. We demonstrated that exposure of wild-type mice to endotoxin, which is known to cause acute lung injury and increase protein permeability, also significantly reduced PV1 protein expression. We conclude that the key function of PV1 is to regulate lung endothelial permeability through its ability to restrict the entry of plasma proteins such as albumin into caveolae and their transport through the endothelial barrier.
Collapse
Affiliation(s)
- Joshua H Jones
- Department of Pharmacology.,Medical Scientist Training Program
| | | | | | - Richard D Minshall
- Department of Pharmacology.,Center for Lung and Vascular Biology, and.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology.,Center for Lung and Vascular Biology, and
| |
Collapse
|
32
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
33
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
34
|
Luchetti F, Crinelli R, Nasoni MG, Benedetti S, Palma F, Fraternale A, Iuliano L. LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims? Br J Pharmacol 2020; 178:3104-3114. [PMID: 32986849 DOI: 10.1111/bph.15272] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidized LDLs (oxLDLs) and oxysterols play a key role in endothelial dysfunction and the development of atherosclerosis. The loss of vascular endothelium function negatively impacts vasomotion, cell growth, adhesiveness and barrier functions. While for some of these disturbances, a reasonable explanation can be provided from a mechanistic standpoint, for many others, the molecular mediators that are involved are unknown. Caveolae, specific plasma membrane domains, have recently emerged as targets and mediators of oxLDL-induced endothelial dysfunction. Caveolae and their associated protein caveolin-1 (Cav-1) are involved in oxLDLs/LDLs transcytosis, mainly through the scavenger receptor class B type 1 (SR-B1 or SCARB1). In contrast, oxLDLs endocytosis is mediated by the lectin-like oxidized LDL receptor 1 (LOX-1), whose activity depends on an intact caveolae system. In addition, LOX-1 regulates the expression of Cav-1 and vice versa. On the other hand, oxLDLs may affect cholesterol plasma membrane content/distribution thus influencing caveolae architecture, Cav-1 localization and the associated signalling. Overall, the evidence indicate that caveolae have both active and passive roles in oxLDL-induced endothelial cell dysfunction. First, as mediators of lipid uptake and transfer in the subendothelial space and, later, as targets of changes in composition/dynamics of plasma membrane lipids resulting from increased levels of circulating oxLDLs. Gaining a better understanding of how oxLDLs interact with endothelial cells and modulate caveolae-mediated signalling pathways, leading to endothelial dysfunction, is crucial to find new targets for intervention to tackle atherosclerosis and the related clinical entities. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
35
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
36
|
Sun S, Cai B, Li Y, Su W, Zhao X, Gong B, Li Z, Zhang X, Wu Y, Chen C, Tsang SH, Yang J, Li X. HMGB1 and Caveolin-1 related to RPE cell senescence in age-related macular degeneration. Aging (Albany NY) 2020; 11:4323-4337. [PMID: 31284269 PMCID: PMC6660032 DOI: 10.18632/aging.102039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is considered a major cause of RPE dysfunction and senescence in age-related macular degeneration (AMD), and N-retinylidene-N-retinylethanolamine (A2E) is the main fluorophore identified in lipofuscin from aged human eyes. Here, human-induced pluripotent stem cell (iPSC)-RPE was generated from healthy individuals to reveal proteomic changes associated with A2E-related RPE cell senescence. A novel RPE cell senescence-related protein, high-mobility group box 1 (HMGB1), was identified based on proteomic mass spectrometry measurements on iPSC-RPE with A2E treatment. Furthermore, HMGB1 upregulated Caveolin-1, which also was related RPE cell senescence. To investigate whether changes in HMGB1 and Caveolin-1 expression under A2E exposure contribute to RPE cell senescence, human ARPE-19 cells were stimulated with A2E; expression of HMGB1, Caveolin-1, tight junction proteins and senescent phenotypes were verified. HMGB1 inhibition alleviated A2E induced cell senescence. Migration of RPE cells was evaluated. Notably, A2E less than or equal to 10μM induced both HMGB1 and Caveolin-1 protein upregulation and HMGB1 translocation, while Caveolin-1 expression was downregulated when there was more than 10μM A2E. Our data indicate that A2E-induced upregulation of HMGB1、Caveolin-1 and HMGB1 release may relate to RPE cell senescence and play a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Bincui Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yao Li
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Wenqi Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xuzheng Zhao
- Tangshan Eye Hospital, Tangshan, People's Republic of China
| | - Boteng Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Jin Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Asthana A, Ndyabawe K, Mendez D, Douglass M, Haidekker MA, Kisaalita WS. Calcium Oscillation Frequency Is a Potential Functional Complex Physiological Relevance Indicator for a Neuroblastoma-Based 3D Culture Model. ACS Biomater Sci Eng 2020; 6:4314-4323. [PMID: 33463347 DOI: 10.1021/acsbiomaterials.9b01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro screening for drugs that affect neural function in vivo is still primitive. It primarily relies on single cellular responses from 2D monolayer cultures that have been shown to be exaggerations of the in vivo response. For the 3D model to be physiologically relevant, it should express characteristics that not only differentiate it from 2D but also closely emulate those seen in vivo. These complex physiologically relevant (CPR) outcomes can serve as a standard for determining how close a 3D culture is to its native tissue or which out of a given number of 3D platforms is better suited for a given application. In this study, Fluo-4-based calcium fluorescence imaging was performed followed by automated image data processing to quantify the calcium oscillation frequency of SHSY5Y cells cultured in 2D and 3D formats. It was found that the calcium oscillation frequency is upregulated in traditional 2D cultures while it was comparable to in vivo in spheroid and microporous polymer scaffold-based 3D models, suggesting calcium oscillation frequency as a potential functional CPR indicator for neural cultures.
Collapse
|
38
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
39
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
40
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
41
|
Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, Minshall RD. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J 2020; 34:5838-5850. [PMID: 32124475 DOI: 10.1096/fj.201902060r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022]
Abstract
Chemokines and their receptors play important roles in vascular homeostasis, development, and angiogenesis. Little is known regarding the molecular signaling mechanisms activated by CCL28 chemokine via its primary receptor CCR10 in endothelial cells (ECs). Here, we test the hypothesis that CCL28/CCR10 signaling plays an important role in regulating skin wound angiogenesis through endothelial nitric oxide synthase (eNOS)-dependent Src, PI3K, and MAPK signaling. We observed nitric oxide (NO) production in human primary ECs stimulated with exogenous CCL28, which also induced direct binding of CCR10 and eNOS resulting in inhibition of eNOS activity. Knockdown of CCR10 with siRNA lead to reduced eNOS expression and tube formation suggesting the involvement of CCR10 in EC angiogenesis. Based on this interaction, we engineered a myristoylated 7 amino acid CCR10-binding domain (Myr-CBD7) peptide and showed that this can block eNOS interaction with CCR10, but not with calmodulin, resulting in upregulation of eNOS activity. Importantly, topical administration of Myr-CBD7 peptide on mouse dermal wounds not only blocked CCR10-eNOS interaction, but also enhanced expression of eNOS, CD31, and IL-4 with reduction of CCL28 and IL-6 levels associated with improved wound healing. These results point to a potential therapeutic strategy to upregulate NO bioavailability, enhance angiogenesis, and improve wound healing by disrupting CCL28-activated CCR10-eNOS interaction.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie C Wu
- Center for Lower Extremity Ambulatory Research (CLEAR), Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
Song M, Li L, Lei Y, Sun X. NOS3 Deletion in Cav1 Deficient Mice Decreases Drug Sensitivity to a Nitric Oxide Donor and Two Nitric Oxide Synthase Inhibitors. Invest Ophthalmol Vis Sci 2020; 60:4002-4007. [PMID: 31560766 DOI: 10.1167/iovs.19-27582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aims to investigate the pharmacologic consequence of genetic deletion of nitric oxide synthase 3 (NOS3) in caveolin 1 (Cav1)-/- mice (double knockout [DKO]) in response to a nitric oxide (NO) donor and two NOS inhibitors. Methods NO donor sodium nitroprusside (SNP; 10-40 mg/mL), NOS inhibitor L-NG-nitroarginine methyl ester (L-NAME; 10-200 μM), and cavtratin (10-75 μM ) was administered topically to the eye while the contralateral eyes were vehicle controls. Intraocular pressure (IOP) was measured in both eyes by tonometry. Cyclic guanosine monophosphate (cGMP) level in outflow tissue was measured by ELISA assay. Protein expression were analyzed by western blot. Results Inducible NOS (iNOS) expression significantly increased in the DKO mice compared with the wild type (WT), Cav1 knockout (Cav1 KO), and NOS3 KO mice. In contrast to WT, Cav1 KO and NOS3 KO mice, SNP concentration of up to 30 mg/mL did not significantly affect IOP in DKO mice. However, higher concentration (40 mg/mL) SNP significantly reduced IOP by 14% (n = 8, P < 0.01). Similarly, only 200 μM L-NAME produced a significant increase in IOP (n = 10, P < 0.05). Cavtratin did not significantly change IOP in DKO and NOS3 KO mice. cGMP activity in DKO mice was significantly lower than Cav1 KO mice (n = 4, P < 0.05). Conclusions In conclusion, our results demonstrated that genetic deletion of NOS3 in Cav1 deficient mice resulted in reduced sensitivity to the NO donor SNP and the two NOS inhibitors possibly due to compromised NOS and cGMP activity.
Collapse
Affiliation(s)
- Maomao Song
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liping Li
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Lei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Yan F, Su L, Chen X, Wang X, Gao H, Zeng Y. Molecular regulation and clinical significance of caveolin-1 methylation in chronic lung diseases. Clin Transl Med 2020; 10:151-160. [PMID: 32508059 PMCID: PMC7240871 DOI: 10.1002/ctm2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases represent a largely global burden whose pathogenesis remains largely unknown. Research increasingly suggests that epigenetic modifications, especially DNA methylation, play a mechanistic role in chronic lung diseases. DNA methylation can affect gene expression and induce various diseases. Of the caveolae in plasma membrane of cell, caveolin-1 (Cav-1) is a crucial structural constituent involved in many important life activities. With the increasingly advanced progress of genome-wide methylation sequencing technologies, the important impact of Cav-1 DNA methylation has been discovered. The present review overviews the biological characters, functions, and structure of Cav-1; epigenetic modifications of Cav-1 in health and disease; expression and regulation of Cav-1 DNA methylation in the respiratory system and its significance; as well as clinical potential as disease-specific biomarker and targets for early diagnosis and therapy.
Collapse
Affiliation(s)
- Furong Yan
- Clinical Center for Molecular Diagnosis and TherapySecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Lili Su
- Clinical Center for Molecular Diagnosis and TherapySecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care MedicineRespiratory Medicine Center of Fujian ProvinceSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xiangdong Wang
- Clinical Center for Molecular Diagnosis and TherapySecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and TherapySecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Yiming Zeng
- Department of Pulmonary and Critical Care MedicineRespiratory Medicine Center of Fujian ProvinceSecond Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| |
Collapse
|
44
|
Zimnicka AM, Chen Z, Toth PT, Minshall RD. Live-Cell FRET Imaging of Phosphorylation-Dependent Caveolin-1 Switch. Methods Mol Biol 2020; 2169:71-80. [PMID: 32548820 PMCID: PMC9828887 DOI: 10.1007/978-1-0716-0732-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The detection of dynamic conformational changes in proteins in live cells is challenging. Live-cell FRET (Förster Resonance Energy Transfer) is an example of a noninvasive technique that can be used to achieve this goal at nanometer resolution. FRET-based assays are dependent on the presence of fluorescent probes, such as CFP- and YFP-conjugated protein pairs. Here, we describe an experimental protocol in which live-cell FRET was used to measure conformational changes in caveolin-1 (Cav-1) oligomers on the surface of plasmalemma vesicles, or caveolae.
Collapse
Affiliation(s)
- Adriana M Zimnicka
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhenlong Chen
- Department of and Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
- Research Resources Center Fluorescence Imaging Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA.
- Department of and Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, Wang YX, Ding YB. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2019; 38:106-117. [PMID: 31746004 DOI: 10.1002/cbf.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Preeclampsia is not fully understood; and few biomarkers, therapeutic targets, and therapeutic agents for its management have been identified. Original investigative findings suggest that abnormal placentation triggers preeclampsia and leads to hypertension, proteinuria, endothelial dysfunction, and inflammation, which are characteristics of the disease. Because of the regulatory roles that it plays in several metabolic processes, adiponectin has become a cytokine of interest in metabolic medicine. In this review, we have discussed the role of adiponectin in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis, which are the major phases of placentation. Also, we have highlighted the physiological profile of adiponectin in the course of normal pregnancy. Moreover, we have discussed the involvement of adiponectin in hypertension, endothelial dysfunction, inflammation, and proteinuria. Furthermore, we have summarized the reported relationship between the maternal serum adiponectin level and preeclampsia. The available evidence indicates that adiponectin level physiologically falls as pregnancy advances, regulates placentation, and exhibits protective effects against the symptoms of preeclampsia and that while hyperadiponectinemia is evident in normal-weight preeclamptic women, hypoadiponectinemia is evident in overweight and obese preeclamptic women. Therefore, the clinical use of adiponectin as a biomarker, therapeutic target, or therapeutic agent against the disease looks promising and should be considered.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - William K B A Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Armin Czika
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - William Nelson
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
46
|
Zuniga-Hertz JP, Patel HH. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol 2019; 10:1340. [PMID: 31736773 PMCID: PMC6828933 DOI: 10.3389/fphys.2019.01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The increase in atmospheric oxygen levels imposed significant environmental pressure on primitive organisms concerning intracellular oxygen concentration management. Evidence suggests the rise of cholesterol, a key molecule for cellular membrane organization, as a cellular strategy to restrain free oxygen diffusion under the new environmental conditions. During evolution and the increase in organismal complexity, cholesterol played a pivotal role in the establishment of novel and more complex functions associated with lipid membranes. Of these, caveolae, cholesterol-rich membrane domains, are signaling hubs that regulate important in situ functions. Evolution resulted in complex respiratory systems and molecular response mechanisms that ensure responses to critical events such as hypoxia facilitated oxygen diffusion and transport in complex organisms. Caveolae have been structurally and functionally associated with respiratory systems and oxygen diffusion control through their relationship with molecular response systems like hypoxia-inducible factors (HIF), and particularly as a membrane-localized oxygen sensor, controlling oxygen diffusion balanced with cellular physiological requirements. This review will focus on membrane adaptations that contribute to regulating oxygen in living systems.
Collapse
Affiliation(s)
- Juan Pablo Zuniga-Hertz
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
47
|
Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, Comhair S, Erzurum S, Silva CLM, Machado RF, Bonini MG, Minshall RD. Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:1191-1202. [PMID: 30943774 PMCID: PMC7297129 DOI: 10.1161/atvbaha.118.312038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Suellen D S Oliveira
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
| | - Jiwang Chen
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
- Research Resources Center Cardiovascular Research Core (J.C., M.C.), University of Illinois at Chicago
| | - Maricela Castellon
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
- Research Resources Center Cardiovascular Research Core (J.C., M.C.), University of Illinois at Chicago
| | - Mao Mao
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - J Usha Raj
- Department of Pediatrics (J.U.R.), University of Illinois at Chicago
| | - Suzy Comhair
- Lerner Research Institute (S.C., S.E.), Cleveland Clinic Foundation, OH
| | - Serpil Erzurum
- Lerner Research Institute (S.C., S.E.), Cleveland Clinic Foundation, OH
| | - Claudia L M Silva
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil (C.L.M.S.)
| | - Roberto F Machado
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - Marcelo G Bonini
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - Richard D Minshall
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
- Department of Pharmacology (R.D.M.), University of Illinois at Chicago
| |
Collapse
|
48
|
Adiponectin inhibits proliferation of vascular endothelial cells induced by Ox-LDL by promoting dephosphorylation of Caveolin-1 and depolymerization of eNOS and up-regulating release of NO. Int Immunopharmacol 2019; 73:424-434. [PMID: 31152980 DOI: 10.1016/j.intimp.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Oxidized low density lipoprotein (ox-LDL) can induce the proliferation and differentiation of endothelial cells, which is one of the important mechanisms of ox-LDL atherosclerosis. Adiponectin is an endogenous bioactive polypeptide secreted by adipocytes, it participates in the metabolism of fat and glucose. It has the effect of reducing blood triglyceride and LDL content. Adiponectin also inhibits the abnormal proliferation and migration of endothelial cells, but its molecular mechanism is unclear. In this study, we used cell model of Ox-LDL-induced human aortic endothelial cells (HAECs) proliferation to analyze the molecular mechanism of APN inhibiting HAECs abnormal proliferation. The results showed that APN could inhibit the cell viability and DNA synthesis of HAECs after Ox-LDL treatment, up-regulate the apoptosis level and reduce the proportion of S + G2 phase cells. Further analysis showed that adiponectin could promote the dephosphorylation of Caveolin-1, which could dissociate eNOS and Caveolin-1, promote the phosphorylation of eNOS and enhance the synthesis of NO. NO increased expression levels of cleaved caspase 3 and p21 in the cells and inhibited the abnormal proliferation of HAECs. The regulation of phosphorylation and dephosphorylation of Caveolae-1 plays a key role in this process. Further study of the molecular mechanism of Caveolae-1 in the inhibition of HAECs abnormal proliferation by APN may reveal the potential of APN in the treatment of cardiovascular diseases.
Collapse
|
49
|
Lee SH, Park CS, Ok SH, Kim D, Kim KN, Hong JM, Kim JY, Bae SI, An S, Sohn JT. Bupivacaine-induced contraction is attenuated by endothelial nitric oxide release modulated by activation of both stimulatory and inhibitory phosphorylation (Ser1177 and Thr495) of endothelial nitric oxide synthase. Eur J Pharmacol 2019; 853:121-128. [PMID: 30880179 DOI: 10.1016/j.ejphar.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/09/2023]
Abstract
This study examined the mechanism associated with the endothelium-dependent attenuation of vasoconstriction induced by bupivacaine (BPV), with a particular focus on the upstream cellular signaling pathway of endothelial nitric oxide synthase (eNOS) phosphorylation induced by BPV in human umbilical vein endothelial cells (HUVECs). BPV concentration-response curves were investigated in the isolated rat aorta. The effects of Nω-nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), methylene blue, calmidazolium, the Src kinase inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and the combination of L-arginine and L-NAME on BPV-induced contraction in endothelium-intact aorta preparations were examined. The effects of BPV alone and in combination with PP2 on the phosphorylation of eNOS (at Ser1177 or Thr495), caveolin-1 and Src kinase were examined in HUVECs. BPV-induced contraction was lower in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, methylene blue and calmidazolium increased BPV-induced contraction in endothelium-intact aortae, whereas PP2 alone and combined treatment with L-arginine and L-NAME inhibited BPV-induced contraction. Low-concentration BPV (30 µM) induced both stimulatory (Ser1177) and inhibitory (Thr495) phosphorylation of eNOS in HUVECs. However, high-concentration BPV (150 µM) induced only stimulatory (Ser1177) eNOS phosphorylation. Additionally, phosphorylation of Src kinase, caveolin-1 and inhibitory eNOS (Thr495) induced by low-concentration BPV was inhibited by PP2. These results suggest that contraction induced by low-concentration BPV is attenuated by endothelial nitric oxide release, which is modulated both stimulatory (Ser1177) and inhibitory eNOS phosphorylation (Thr495). BPV-induced phosphorylation of eNOS (Thr495) is indirectly mediated by an upstream cellular signaling pathway involving Src kinase (Tyr416) and caveolin-1 (Tyr14).
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Chang-Shin Park
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Dana Kim
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Kyung Nam Kim
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Seungmin An
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea; Institute of Health Sciences, Gyeongsang National University, Jinju-si 52727, Republic of Korea.
| |
Collapse
|
50
|
Impact of nitrate therapy on the expression of caveolin-1 and its phosphorylated isoform in lungs in the model of monocrotaline induced pulmonary hypertension. EUROPEAN PHARMACEUTICAL JOURNAL 2018. [DOI: 10.2478/afpuc-2018-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: Nitric oxide signalling pathway showed to be one of the crucial factors in the treatment and pathogenesis of pulmonary arterial hypertension. The aim of this study was to determine the effect of administration of inorganic nitrate, NaNO3, on the expression of caveolin-1 and its phosphorylated isoform (pTyr14Cav-1) in lungs in the experimental model of monocrotaline induced pulmonary hypertension.
Methods: 10 weeks old male Wistar rats were subcutaneously injected with 60 mg/kg dose of monocrotaline (MCT) or vehicle (CON). Twelve days after the injection, part of the MCT group was receiving 0.3 mM NaNO3 (MCT+N0.3) daily in the drinking water and rest was receiving 0.08% NaCl solution. Four weeks after MCT administration, the rats were sacrificed in CO2. Protein expression in lungs was determined by western blot.
Results: We observed a significant decrease in the caveolin-1 expression and a significant shift towards the expression of pTyr14Cav-1 in the group treated with nitrate (p < 0.05).
Conclusion: NaNO3 administration affected the expression of caveolin-1 and the ratio of its active (phosphorylated) isoform increased.
Collapse
|