1
|
Gatti P, Schiavon C, Cicero J, Manor U, Germain M. Mitochondria- and ER-associated actin are required for mitochondrial fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544768. [PMID: 37398222 PMCID: PMC10312652 DOI: 10.1101/2023.06.13.544768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mitochondria play a crucial role in the regulation of cellular metabolism and signalling. Mitochondrial activity is modulated by the processes of mitochondrial fission and fusion, which are required to properly balance respiratory and metabolic functions, transfer material between mitochondria, and remove defective mitochondria. Mitochondrial fission occurs at sites of contact between the endoplasmic reticulum (ER) and mitochondria, and is dependent on the formation of actin filaments that drive mitochondrial constriction and the recruitment and activation of the dynamin-related GTPase fission protein DRP1. The requirement for mitochondria- and ER-associated actin filaments in mitochondrial fission remains unclear, and the role of actin in mitochondrial fusion remains entirely unexplored. Here we show that preventing the formation of actin filaments on either mitochondria or the ER disrupts both mitochondrial fission and fusion. We show that fusion but not fission is dependent on Arp2/3, whereas both fission and fusion are dependent on INF2 formin-dependent actin polymerization. We also show that mitochondria-associated actin marks fusion sites prior to the dynamin family GTPase fusion protein MFN2. Together, our work introduces a novel method for perturbing organelle-associated actin filaments, and demonstrates a previously unknown role for actin in mitochondrial fusion.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, Québec, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ)
| | - Cara Schiavon
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Julien Cicero
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Uri Manor
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, Québec, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ)
| |
Collapse
|
2
|
Venkatachalam T, Mannimala S, Pulijala Y, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that may target different GTPases. PLoS Genet 2024; 20:e1011330. [PMID: 39083711 PMCID: PMC11290852 DOI: 10.1371/journal.pgen.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yeshaswi Pulijala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
3
|
Xu L, Cao L, Li J, Staiger CJ. Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. THE PLANT CELL 2024; 36:764-789. [PMID: 38057163 PMCID: PMC10896301 DOI: 10.1093/plcell/koad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.
Collapse
Affiliation(s)
- Liyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- EMBRIO Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
5
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Li D, Yang Y, Lv C, Wang Y, Chao X, Huang J, Singh SP, Yuan Y, Zhang C, Lou J, Gao P, Huang S, Li B, Cai H. GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3. J Cell Biol 2023; 222:e202208151. [PMID: 37010470 PMCID: PMC10072221 DOI: 10.1083/jcb.202208151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenglin Lv
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengyu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Cao M, Zou X, Li C, Lin Z, Wang N, Zou Z, Ye Y, Seemann J, Levine B, Tang Z, Zhong Q. An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis. Nat Commun 2023; 14:1687. [PMID: 36973243 PMCID: PMC10042869 DOI: 10.1038/s41467-023-37340-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Dysfunction of cell cycle control and defects of primary ciliogenesis are two features of many cancers. Whether these events are interconnected and the driving mechanism coordinating them remains elusive. Here, we identify an actin filament branching surveillance system that alerts cells of actin branching insufficiency and regulates cell cycle progression, cytokinesis and primary ciliogenesis. We find that Oral-Facial-Digital syndrome 1 functions as a class II Nucleation promoting factor to promote Arp2/3 complex-mediated actin branching. Perturbation of actin branching promotes OFD1 degradation and inactivation via liquid-to-gel transition. Elimination of OFD1 or disruption of OFD1-Arp2/3 interaction drives proliferating, non-transformed cells into quiescence with ciliogenesis by an RB-dependent mechanism, while it leads oncogene-transformed/cancer cells to incomplete cytokinesis and irreversible mitotic catastrophe via actomyosin ring malformation. Inhibition of OFD1 leads to suppression of multiple cancer cell growth in mouse xenograft models. Thus, targeting OFD1-mediated actin filament branching surveillance system provides a direction for cancer therapy.
Collapse
Affiliation(s)
- Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Xiaoxiao Zou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Chaoyi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ni Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| |
Collapse
|
8
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
9
|
Baldauf L, Frey F, Arribas Perez M, Idema T, Koenderink GH. Branched actin cortices reconstituted in vesicles sense membrane curvature. Biophys J 2023:S0006-3495(23)00124-8. [PMID: 36806830 DOI: 10.1016/j.bpj.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.
Collapse
Affiliation(s)
- Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Marcos Arribas Perez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Muresan CG, Sun ZG, Yadav V, Tabatabai AP, Lanier L, Kim JH, Kim T, Murrell MP. F-actin architecture determines constraints on myosin thick filament motion. Nat Commun 2022; 13:7008. [PMID: 36385016 PMCID: PMC9669029 DOI: 10.1038/s41467-022-34715-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Active stresses are generated and transmitted throughout diverse F-actin architectures within the cell cytoskeleton, and drive essential behaviors of the cell, from cell division to migration. However, while the impact of F-actin architecture on the transmission of stress is well studied, the role of architecture on the ab initio generation of stresses remains less understood. Here, we assemble F-actin networks in vitro, whose architectures are varied from branched to bundled through F-actin nucleation via Arp2/3 and the formin mDia1. Within these architectures, we track the motions of embedded myosin thick filaments and connect them to the extent of F-actin network deformation. While mDia1-nucleated networks facilitate the accumulation of stress and drive contractility through enhanced actomyosin sliding, branched networks prevent stress accumulation through the inhibited processivity of thick filaments. The reduction in processivity is due to a decrease in translational and rotational motions constrained by the local density and geometry of F-actin.
Collapse
Affiliation(s)
- Camelia G Muresan
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zachary Gao Sun
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - A Pasha Tabatabai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Laura Lanier
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
11
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
12
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Silva AM, Chan FY, Norman MJ, Sobral AF, Zanin E, Gassmann R, Belmonte JM, Carvalho AX. β-heavy-spectrin stabilizes the constricting contractile ring during cytokinesis. J Cell Biol 2022; 222:213538. [PMID: 36219157 PMCID: PMC9559602 DOI: 10.1083/jcb.202202024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Cytokinesis requires the constriction of an actomyosin-based contractile ring and involves multiple F-actin crosslinkers. We show that partial depletion of the C. elegans cytokinetic formin generates contractile rings with low F-actin levels that constrict but are structurally fragile, and we use this background to investigate the roles of the crosslinkers plastin/PLST-1 and β-heavy-spectrin/SMA-1 during ring constriction. We show that the removal of PLST-1 or SMA-1 has opposite effects on the structural integrity of fragile rings. PLST-1 loss reduces cortical tension that resists ring constriction and makes fragile rings less prone to ruptures and regressions, whereas SMA-1 loss exacerbates structural defects, leading to frequent ruptures and cytokinesis failure. Fragile rings without SMA-1 or containing a shorter SMA-1, repeatedly rupture at the same site, and SMA-1::GFP accumulates at repair sites in fragile rings and in rings cut by laser microsurgery. These results establish that β-heavy-spectrin stabilizes the constricting ring and reveals the importance of β-heavy-spectrin size for network connectivity at low F-actin density.
Collapse
Affiliation(s)
- Ana Marta Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Michael J. Norman
- Department of Physics, North Carolina State University, Raleigh, NC,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Ana Filipa Sobral
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reto Gassmann
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Julio Monti Belmonte
- Department of Physics, North Carolina State University, Raleigh, NC,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Ana Xavier Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal,Correspondence to Ana Xavier Carvalho:
| |
Collapse
|
14
|
Ozugergin I, Mastronardi K, Law C, Piekny A. Diverse mechanisms regulate contractile ring assembly for cytokinesis in the two-cell Caenorhabditis elegans embryo. J Cell Sci 2022; 135:jcs258921. [PMID: 35022791 PMCID: PMC10660071 DOI: 10.1242/jcs.258921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis occurs at the end of mitosis as a result of the ingression of a contractile ring that cleaves the daughter cells. The core machinery regulating this crucial process is conserved among metazoans. Multiple pathways control ring assembly, but their contribution in different cell types is not known. We found that in the Caenorhabditis elegans embryo, AB and P1 cells fated to be somatic tissue and germline, respectively, have different cytokinesis kinetics supported by distinct myosin levels and organization. Through perturbation of RhoA or polarity regulators and the generation of tetraploid strains, we found that ring assembly is controlled by multiple fate-dependent factors that include myosin levels, and mechanisms that respond to cell size. Active Ran coordinates ring position with the segregating chromatids in HeLa cells by forming an inverse gradient with importins that control the cortical recruitment of anillin. We found that the Ran pathway regulates anillin in AB cells but functions differently in P1 cells. We propose that ring assembly delays in P1 cells caused by low myosin and Ran signaling coordinate the timing of ring closure with their somatic neighbors. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | | | - Chris Law
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
15
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
16
|
Fujimoto K, Nakano K, Kuwayama H, Yumura S. Deletion of gmfA induces keratocyte-like migration in Dictyostelium. FEBS Open Bio 2021; 12:306-319. [PMID: 34855306 PMCID: PMC8727941 DOI: 10.1002/2211-5463.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022] Open
Abstract
Glia maturation factor (GMF) has been established as an inactivating factor of the actin‐related protein 2/3 (Arp2/3) complex, which regulates actin assembly. Regulation of actin assembly and reorganization is crucial for various cellular events, such as cell migration, cell division, and development. Here, to examine the roles of ADF‐H domain‐containing protein (also known as glia maturation factor; GmfA), the product of a single GMF homologous gene in Dictyostelium, gmfA‐null cells were generated. They had moderate defects in cell growth and cytokinesis. Interestingly, they showed a keratocyte‐like fan shape with a broader pseudopod, where Arp3 accumulated at higher levels than in wild‐type cells. They migrated with higher persistence, but their velocities were comparable to those of wild‐type cells. The polar pseudopods during cell division were also broader than those in wild‐type cells. However, GmfA did not localize at the pseudopods in migrating cells or the polar pseudopods in dividing cells. Adhesions of mutant cells to the substratum were much stronger than that of wild‐type cells. Although the mutant cells showed chemotaxis comparable to that of wild‐type cells, they formed disconnected streams during the aggregation stage; however, they finally formed normal fruiting bodies. These results suggest that GmfA plays a crucial role in cell migration.
Collapse
Affiliation(s)
- Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| |
Collapse
|
17
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Rogerson C, Wotherspoon DJ, Tommasi C, Button RW, O'Shaughnessy RFL. Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation. Cell Death Differ 2021; 28:1849-1864. [PMID: 33462407 PMCID: PMC8184862 DOI: 10.1038/s41418-020-00712-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Duncan J Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Great Ormond Street Institute of Child Health, London, UK
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Robert W Button
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Xie Y, Budhathoki R, Blankenship JT. Combinatorial deployment of F-actin regulators to build complex 3D actin structures in vivo. eLife 2021; 10:63046. [PMID: 33949307 PMCID: PMC8149123 DOI: 10.7554/elife.63046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Despite extensive studies on the actin regulators that direct microfilament dynamics, how these regulators are combinatorially utilized in organismal tissues to generate 3D structures is an unresolved question. Here, we present an in-depth characterization of cortical actin cap dynamics and their regulation in vivo. We identify rapid phases of initiation, expansion, duplication, and disassembly and examine the functions of seven different actin and/or nucleator regulators (ANRPs) in guiding these behaviors. We find ANRPs provide distinct activities in building actin cap morphologies – specifically, while DPod1 is a major regulator of actin intensities, Cortactin is required for continued cortical growth, while Coronin functions in both growth and intensity and is required for Cortactin localization to the cap periphery. Unexpectedly, cortical actin populations recover more rapidly after regulator disruption, suggestive of a deep competition for limited G-actin pools, and we measure in vivo Arp2/3 recruitment efficiencies through an ectopic relocalization strategy. Our results illustrate how the coordination of multiple actin regulators can orchestrate organized and dynamic actin structures in a developmental system.
Collapse
Affiliation(s)
- Yi Xie
- Department of Biological Sciences, University of Denver, Denver, United States
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, United States
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, United States
| |
Collapse
|
21
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM, Petrie RJ. Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell 2021; 32:579-589. [PMID: 33502904 PMCID: PMC8101460 DOI: 10.1091/mbc.e20-04-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Donna McKeon
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kimheak Sao
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole M Naranjo
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
22
|
Kelkar M, Bohec P, Charras G. Mechanics of the cellular actin cortex: From signalling to shape change. Curr Opin Cell Biol 2020; 66:69-78. [DOI: 10.1016/j.ceb.2020.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
23
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Svitkina TM. Actin Cell Cortex: Structure and Molecular Organization. Trends Cell Biol 2020; 30:556-565. [PMID: 32278656 PMCID: PMC7566779 DOI: 10.1016/j.tcb.2020.03.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton consists of structurally and biochemically different actin filament arrays. Among them, the actin cortex is thought to have key roles in cell mechanics, but remains a poorly characterized part of the actin cytoskeleton. The cell cortex is typically defined as a thin layer of actin meshwork that uniformly underlies the plasma membrane of the entire cell. However, this definition applies only to specific cases. In general, the cortex structure and subcellular distribution vary significantly across cell types and physiological states of the cell. In this review, I focus on our current knowledge of the structure and molecular composition of the cell cortex.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Samandar Eweis D, Plastino J. Roles of Actin in the Morphogenesis of the Early Caenorhabditis elegans Embryo. Int J Mol Sci 2020; 21:ijms21103652. [PMID: 32455793 PMCID: PMC7279410 DOI: 10.3390/ijms21103652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
The cell shape changes that ensure asymmetric cell divisions are crucial for correct development, as asymmetric divisions allow for the formation of different cell types and therefore different tissues. The first division of the Caenorhabditis elegans embryo has emerged as a powerful model for understanding asymmetric cell division. The dynamics of microtubules, polarity proteins, and the actin cytoskeleton are all key for this process. In this review, we highlight studies from the last five years revealing new insights about the role of actin dynamics in the first asymmetric cell division of the early C. elegans embryo. Recent results concerning the roles of actin and actin binding proteins in symmetry breaking, cortical flows, cortical integrity, and cleavage furrow formation are described.
Collapse
Affiliation(s)
- Dureen Samandar Eweis
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
- Correspondence:
| |
Collapse
|
26
|
Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J Cell Biol 2020; 219:e201911058. [PMID: 31977034 PMCID: PMC7041673 DOI: 10.1083/jcb.201911058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Activation of naive T cells by antigen-presenting cells (APCs) is an essential step in mounting an adaptive immune response. It is known that antigen recognition and T cell receptor (TCR) signaling depend on forces applied by the T cell actin cytoskeleton, but until recently, the underlying mechanisms have been poorly defined. Here, we review recent advances in the field, which show that specific actin-dependent structures contribute to the process in distinct ways. In essence, T cell priming involves a tug-of-war between the cytoskeletons of the T cell and the APC, where the actin cytoskeleton serves as a mechanical intermediate that integrates force-dependent signals. We consider each of the relevant actin-rich T cell structures separately and address how they work together at the topologically and temporally complex cell-cell interface. In addition, we address how this mechanobiology can be incorporated into canonical immunological models to improve how these models explain T cell sensitivity and antigenic specificity.
Collapse
Affiliation(s)
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber. Dev Biol 2020; 461:75-85. [PMID: 31945342 DOI: 10.1016/j.ydbio.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/30/2023]
Abstract
Intercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and growth of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold growth that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and growth. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and growth throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain stability. Our data suggest that nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.
Collapse
|
28
|
Chan FY, Silva AM, Carvalho AX. Using the Four-Cell C. elegans Embryo to Study Contractile Ring Dynamics During Cytokinesis. Methods Mol Biol 2020; 2101:297-325. [PMID: 31879911 DOI: 10.1007/978-1-0716-0219-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytokinesis is the process that completes cell division by partitioning the contents of the mother cell between the two daughter cells. It involves the highly regulated assembly and constriction of an actomyosin contractile ring, whose function is to pinch the mother cell in two. Research on the contractile ring has particularly focused on the signaling mechanisms that dictate when and where the ring is formed. In vivo studies of ring constriction are however scarce and its mechanistic understanding is therefore limited. Here we present several experimental approaches for monitoring ring constriction in vivo, using the four-cell C. elegans embryo as model. These approaches allow for the ring to be perturbed only after it forms and include the combination of live imaging with acute drug treatments, temperature-sensitive mutants and rapid temperature shifts, as well as laser microsurgery. In addition, we explain how to combine these with RNAi-mediated depletion of specific components of the cytokinetic machinery.
Collapse
Affiliation(s)
- Fung Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Marta Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
29
|
Arp2/3-Branched Actin Maintains an Active Pool of GTP-RhoA and Controls RhoA Abundance. Cells 2019; 8:cells8101264. [PMID: 31623230 PMCID: PMC6830327 DOI: 10.3390/cells8101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
Small GTPases regulate cytoskeletal dynamics, cell motility, and division under precise spatiotemporal control. Different small GTPases exhibit cross talks to exert feedback response or to act in concert during signal transduction. However, whether and how specific cytoskeletal components' feedback to upstream signaling factors remains largely elusive. Here, we report an intriguing finding that disruption of the Arp2/3-branched actin specifically reduces RhoA activity but upregulates its total protein abundance. We further dissect the mechanisms underlying these circumstances and identify the altered cortactin/p190RhoGAP interaction and weakened CCM2/Smurf1 binding to be involved in GTP-RhoA reduction and total RhoA increase, respectively. Moreover, we find that cytokinesis defects induced by Arp2/3 inhibition can be rescued by activating RhoA. Our study reveals an intricate feedback from the actin cytoskeleton to the small GTPase. Our work highlights the role of Arp2/3-branched actin in signal transduction aside from its function in serving as critical cytoskeletal components to maintain cell morphology and motility.
Collapse
|
30
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|